Biderman, Dan, Whiteway, Matthew R, Hurwitz, Cole, Greenspan, Nicholas, Lee, Robert S, Vishnubhotla, Ankit, Warren, Richard, Pedraja, Federico, Noone, Dillon, Schartner, Michael, Huntenburg, Julia M, Khanal, Anup, Meijer, Guido T, Noel, Jean-Paul, Pan-Vazquez, Alejandro, Socha, Karolina Z, Urai, Anne E, Cunningham, John P, Sawtell, Nathaniel B, Paninski, Liam (April 2023) Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling, and cloud-native open-source tools. bioRxiv. ISSN 2692-8205 (Submitted)
PDF
10.1101.2023.04.28.538703.pdf - Submitted Version Available under License Creative Commons Attribution No Derivatives. Download (23MB) |
Abstract
Contemporary pose estimation methods enable precise measurements of behavior via supervised deep learning with hand-labeled video frames. Although effective in many cases, the supervised approach requires extensive labeling and often produces outputs that are unreliable for downstream analyses. Here, we introduce "Lightning Pose," an efficient pose estimation package with three algorithmic contributions. First, in addition to training on a few labeled video frames, we use many unlabeled videos and penalize the network whenever its predictions violate motion continuity, multiple-view geometry, and posture plausibility (semi-supervised learning). Second, we introduce a network architecture that resolves occlusions by predicting pose on any given frame using surrounding unlabeled frames. Third, we refine the pose predictions post-hoc by combining ensembling and Kalman smoothing. Together, these components render pose trajectories more accurate and scientifically usable. We release a cloud application that allows users to label data, train networks, and predict new videos directly from the browser.
Item Type: | Paper |
---|---|
Subjects: | organism description > animal behavior neurobiology neurobiology > neuroscience |
CSHL Authors: | |
Communities: | CSHL labs > Churchland lab CSHL labs > Engel lab CSHL labs > Zador lab |
SWORD Depositor: | CSHL Elements |
Depositing User: | CSHL Elements |
Date: | 28 April 2023 |
Date Deposited: | 26 Nov 2024 14:50 |
Last Modified: | 26 Nov 2024 14:50 |
PMCID: | PMC10168383 |
Related URLs: | |
URI: | https://repository.cshl.edu/id/eprint/41742 |
Actions (login required)
Administrator's edit/view item |