Dotto, M. C., Petsch, K. A., Aukerman, M. J., Beatty, M., Hammell, M., Timmermans, M. C. (December 2014) Genome-Wide Analysis of leafbladeless1-Regulated and Phased Small RNAs Underscores the Importance of the TAS3 ta-siRNA Pathway to Maize Development. PLoS Genetics, 10 (12). e1004826. ISSN 1553-7390
Preview |
PDF (Paper)
Timmermans and Hammell PLoS Genetics 2014.pdf - Published Version Download (5MB) | Preview |
Abstract
Maize leafbladeless1 (lbl1) encodes a key component in the trans-acting short-interfering RNA (ta-siRNA) biogenesis pathway. Correlated with a great diversity in ta-siRNAs and the targets they regulate, the phenotypes conditioned by mutants perturbing this small RNA pathway vary extensively across species. Mutations in lbl1 result in severe developmental defects, giving rise to plants with radial, abaxialized leaves. To investigate the basis for this phenotype, we compared the small RNA content between wild-type and lbl1 seedling apices. We show that LBL1 affects the accumulation of small RNAs in all major classes, and reveal unexpected crosstalk between ta-siRNA biogenesis and other small RNA pathways regulating transposons. Interestingly, in contrast to data from other plant species, we found no evidence for the existence of phased siRNAs generated via the one-hit model. Our analysis identified nine TAS loci, all belonging to the conserved TAS3 family. Information from RNA deep sequencing and PARE analyses identified the tasiR-ARFs as the major functional ta-siRNAs in the maize vegetative apex where they regulate expression of AUXIN RESPONSE FACTOR3 (ARF3) homologs. Plants expressing a tasiR-ARF insensitive arf3a transgene recapitulate the phenotype of lbl1, providing direct evidence that deregulation of ARF3 transcription factors underlies the developmental defects of maize ta-siRNA biogenesis mutants. The phenotypes of Arabidopsis and Medicago ta-siRNA mutants, while strikingly different, likewise result from misexpression of the tasiR-ARF target ARF3. Our data indicate that diversity in TAS pathways and their targets cannot fully account for the phenotypic differences conditioned by ta-siRNA biogenesis mutants across plant species. Instead, we propose that divergence in the gene networks downstream of the ARF3 transcription factors or the spatiotemporal pattern during leaf development in which these proteins act constitute key factors underlying the distinct contributions of the ta-siRNA pathway to development in maize, Arabidopsis, and possibly other plant species as well.
Item Type: | Paper |
---|---|
Subjects: | organism description > plant > maize bioinformatics > genomics and proteomics > genetics & nucleic acid processing > genomes bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > sRNA bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > siRNA Investigative techniques and equipment > assays > whole genome sequencing |
CSHL Authors: | |
Communities: | CSHL labs > Hammell M. lab CSHL labs > Timmermans lab |
Depositing User: | Matt Covey |
Date: | December 2014 |
Date Deposited: | 05 Jan 2015 17:03 |
Last Modified: | 05 Jan 2015 17:03 |
PMCID: | PMC4263373 |
Related URLs: | |
URI: | https://repository.cshl.edu/id/eprint/31006 |
Actions (login required)
Administrator's edit/view item |