CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer

Neesse, A., Frese, K. K., Bapiro, T. E., Nakagawa, T., Sternlicht, M. D., Seeley, T. W., Pilarsky, C., Jodrell, D. I., Spong, S. M., Tuveson, D. A. (July 2013) CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proceedings of the National Academy of Sciences of the United States of America, 110 (30). pp. 12325-30. ISSN 0027-8424

PDF (Paper)
Tuveson PNAS 2013.pdf - Published Version

Download (418kB) | Preview
URL: http://www.ncbi.nlm.nih.gov/pubmed/23836645
DOI: 10.1073/pnas.1300415110


Pancreatic ductal adenocarcinoma (PDA) is characterized by abundant desmoplasia and poor tissue perfusion. These features are proposed to limit the access of therapies to neoplastic cells and blunt treatment efficacy. Indeed, several agents that target the PDA tumor microenvironment promote concomitant chemotherapy delivery and increased antineoplastic response in murine models of PDA. Prior studies could not determine whether chemotherapy delivery or microenvironment modulation per se were the dominant features in treatment response, and such information could guide the optimal translation of these preclinical findings to patients. To distinguish between these possibilities, we used a chemical inhibitor of cytidine deaminase to stabilize and thereby artificially elevate gemcitabine levels in murine PDA tumors without disrupting the tumor microenvironment. Additionally, we used the FG-3019 monoclonal antibody (mAb) that is directed against the pleiotropic matricellular signaling protein connective tissue growth factor (CTGF/CCN2). Inhibition of cytidine deaminase raised the levels of activated gemcitabine within PDA tumors without stimulating neoplastic cell killing or decreasing the growth of tumors, whereas FG-3019 increased PDA cell killing and led to a dramatic tumor response without altering gemcitabine delivery. The response to FG-3019 correlated with the decreased expression of a previously described promoter of PDA chemotherapy resistance, the X-linked inhibitor of apoptosis protein. Therefore, alterations in survival cues following targeting of tumor microenvironmental factors may play an important role in treatment responses in animal models, and by extension in PDA patients.

Item Type: Paper
Subjects: diseases & disorders > cancer
diseases & disorders > cancer > drugs and therapies > chemotherapy
diseases & disorders > cancer > drugs and therapies
diseases & disorders > cancer > cancer types > pancreatic cancer
CSHL Authors:
Communities: CSHL labs > Tuveson lab
Depositing User: Matt Covey
Date: 23 July 2013
Date Deposited: 20 Sep 2013 13:55
Last Modified: 22 Dec 2017 16:25
PMCID: PMC3725120
Related URLs:
URI: https://repository.cshl.edu/id/eprint/28587

Actions (login required)

Administrator's edit/view item Administrator's edit/view item
CSHL HomeAbout CSHLResearchEducationNews & FeaturesCampus & Public EventsCareersGiving