Structural and mechanistic insights into Dis3L2–mediated degradation of structured RNA

Matos, Rute G, Garg, Ankur, Costa, Susana M, Pereira, Patrícia, Arraiano, Cecília M, Joshua-Tor, Leemor, Viegas, Sandra C (August 2025) Structural and mechanistic insights into Dis3L2–mediated degradation of structured RNA. bioRxiv. ISSN 2692-8205 (Submitted)

Abstract

The RNase II/RNB family of exoribonucleases is present in all domains of life and includes three main eukaryotic members, the Dis3-like proteins (Dis3, Dis3L1, Dis3L2). At the cellular level, Dis3L2 is distinguished by the unique preference for uridylated RNA substrates and the highest efficiency in degrading double-stranded RNA. Defects in these enzymes have been linked to some types of cancers and overgrowth disorders in humans. In this work, we used the Dis3L2 protein from the model organism Schizosaccharomyces pombe (SpDis3L2) to better understand the mechanism of action of Dis3-like exoribonucleases, and to elucidate how single amino acid substitutions in these proteins can affect the biochemical properties of the enzymes, potentially contributing to the molecular basis of the related human diseases. We determined the crystal structure of SpDis3L2 bound to a U13 RNA, in which the protein displays a typical vase-like conformation, accommodating 6 nucleotides of the RNA 3’-end. Furthermore, we constructed two SpDis3L2 protein variants, harbouring single amino acid substitutions mimicking the ones already found in human patients, to test their catalytic activity in vitro. We highlight the A756R SpDis3L2 variant, which loses the ability to degrade double-stranded RNA substrates and accumulates intermediary degradation products when degrading single-stranded RNA substrates. As such, A756 seems to be a key residue responsible for the normal cellular function of Dis3L2, specifically regarding its important role in the degradation of structured RNA substrates.

Item Type: Paper
Subjects: bioinformatics
bioinformatics > genomics and proteomics > genetics & nucleic acid processing
bioinformatics > genomics and proteomics
Investigative techniques and equipment
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types > enzymes
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types > enzymes > ribonuclease
CSHL Authors:
Communities: CSHL labs > Joshua-Tor lab
SWORD Depositor: CSHL Elements
Depositing User: CSHL Elements
Date: 2 August 2025
Date Deposited: 08 Aug 2025 12:01
Last Modified: 08 Aug 2025 12:01
Related URLs:
URI: https://repository.cshl.edu/id/eprint/41931

Actions (login required)

Administrator's edit/view item Administrator's edit/view item