Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett's esophagus

Streppel, M. M., Lata, S., Delabastide, M., Montgomery, E. A., Wang, J. S., Canto, M. I., Macgregor-Das, A. M., Pai, S., Morsink, F. H., Offerhaus, G. J., Antoniou, E., Maitra, A., McCombie, W. R. (January 2014) Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett's esophagus. Oncogene, 33 (3). pp. 347-57. ISSN 0950-9232

Abstract

The incidence of Barrett's esophagus (BE)-associated esophageal adenocarcinoma (EAC) is increasing. Next-generation sequencing (NGS) provides an unprecedented opportunity to uncover genomic alterations during BE pathogenesis and progression to EAC, but treatment-naive surgical specimens are scarce. The objective of this study was to establish the feasibility of using widely available endoscopic mucosal biopsies for successful NGS, using samples obtained from a BE 'progressor'. Paired-end whole-genome NGS was performed on the Illumina platform using libraries generated from mucosal biopsies of normal squamous epithelium (NSE), BE and EAC obtained from a patient who progressed to adenocarcinoma during endoscopic surveillance. Selective validation studies, including Sanger sequencing, immunohistochemistry and functional assays, were performed to confirm the NGS findings. NGS identified somatic nonsense mutations of AT-rich interactive domain 1A (SWI like) (ARID1A) and PPIE and an additional 37 missense mutations in BE and/or EAC, which were confirmed by Sanger sequencing. ARID1A mutations were detected in 15% (3/20) high-grade dysplasia (HGD)/EAC patients. Immunohistochemistry performed on an independent archival cohort demonstrated ARID1A protein loss in 0% (0/76), 4.9% (2/40), 14.3% (4/28), 16.0% (8/50) and 12.2% (12/98) of NSE, BE, low-grade dysplasia, HGD and EAC tissues, respectively, and was inversely associated with nuclear p53 accumulation (P=0.028). Enhanced cell growth, proliferation and invasion were observed on ARID1A knockdown in EAC cells. In addition, genes downstream of ARID1A that potentially contribute to the ARID1A knockdown phenotype were identified. Our studies establish the feasibility of using mucosal biopsies for NGS, which should enable the comparative analysis of larger 'progressor' versus 'non-progressor' cohorts. Further, we identify ARID1A as a novel tumor-suppressor gene in BE pathogenesis, reiterating the importance of aberrant chromatin in the metaplasia-dysplasia sequence.

Item Type: Paper
Subjects: diseases & disorders > cancer
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification
diseases & disorders
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function > genes: types
Investigative techniques and equipment > assays > next generation sequencing
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function > genes: types > tumor suppressor
CSHL Authors:
Communities: CSHL Cancer Center Shared Resources > Animal Services
CSHL Cancer Center Shared Resources > Bioinformatics Service
CSHL Cancer Center Shared Resources > DNA Sequencing Service
CSHL Cancer Center Shared Resources > Flow Cytometry Service
CSHL Cancer Center Shared Resources > Microarray Service
CSHL Cancer Center Shared Resources > Microscopy Service
CSHL labs > McCombie lab
CSHL Cancer Center Program > Cancer Genetics
Depositing User: Matt Covey
Date: 16 January 2014
Date Deposited: 18 Feb 2014 20:21
Last Modified: 14 Oct 2015 20:46
PMCID: PMC3805724
Related URLs:
URI: https://repository.cshl.edu/id/eprint/29498

Actions (login required)

Administrator's edit/view item Administrator's edit/view item