Roach, James P, Churchland, Anne K, Engel, Tatiana A
(January 2023)
Choice selective inhibition drives stability and competition in decision circuits.
Nature Communications, 14 (1).
p. 147.
ISSN 2041-1723
Abstract
During perceptual decision-making, the firing rates of cortical neurons reflect upcoming choices. Recent work showed that excitatory and inhibitory neurons are equally selective for choice. However, the functional consequences of inhibitory choice selectivity in decision-making circuits are unknown. We developed a circuit model of decision-making which accounts for the specificity of inputs to and outputs from inhibitory neurons. We found that selective inhibition expands the space of circuits supporting decision-making, allowing for weaker or stronger recurrent excitation when connected in a competitive or feedback motif. The specificity of inhibitory outputs sets the trade-off between speed and accuracy of decisions by either stabilizing or destabilizing the saddle-point dynamics underlying decisions in the circuit. Recurrent neural networks trained to make decisions display the same dependence on inhibitory specificity and the strength of recurrent excitation. Our results reveal two concurrent roles for selective inhibition in decision-making circuits: stabilizing strongly connected excitatory populations and maximizing competition between oppositely selective populations.
Item Type: |
Paper
|
Subjects: |
organs, tissues, organelles, cell types and functions > cell types and functions > cell types organs, tissues, organelles, cell types and functions > cell types and functions > cell types organs, tissues, organelles, cell types and functions > cell types and functions > cell types organs, tissues, organelles, cell types and functions > cell types and functions organs, tissues, organelles, cell types and functions > tissues types and functions > neural networks organs, tissues, organelles, cell types and functions > cell types and functions > cell types > neurons > neuronal circuits organs, tissues, organelles, cell types and functions > cell types and functions > cell types > neurons > neuronal circuits organs, tissues, organelles, cell types and functions > cell types and functions > cell types > neurons > neuronal circuits organs, tissues, organelles, cell types and functions > cell types and functions > cell types > neurons organs, tissues, organelles, cell types and functions > cell types and functions > cell types > neurons organs, tissues, organelles, cell types and functions > cell types and functions > cell types > neurons organs, tissues, organelles, cell types and functions |
CSHL Authors: |
|
Communities: |
CSHL labs > Engel lab |
SWORD Depositor: |
CSHL Elements
|
Depositing User: |
CSHL Elements
|
Date: |
10 January 2023 |
Date Deposited: |
23 Jan 2023 20:38 |
Last Modified: |
10 Jan 2024 21:01 |
PMCID: |
PMC9832138 |
URI: |
https://repository.cshl.edu/id/eprint/40800 |
Actions (login required)
|
Administrator's edit/view item |