BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma

Laubscher, Dominik, Gryder, Berkley E, Sunkel, Benjamin D, Andresson, Thorkell, Wachtel, Marco, Das, Sudipto, Roschitzki, Bernd, Wolski, Witold, Wu, Xiaoli S, Chou, Hsien-Chao, Song, Young K, Wang, Chaoyu, Wei, Jun S, Wang, Meng, Wen, Xinyu, Ngo, Quy Ai, Marques, Joana G, Vakoc, Christopher R, Schäfer, Beat W, Stanton, Benjamin Z, Khan, Javed (November 2021) BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma. Nature Communications, 12 (1). p. 6924. ISSN 2041-1723

[thumbnail of 2021.Laubscher.BAF_complexes.pdf] PDF
2021.Laubscher.BAF_complexes.pdf
Available under License Creative Commons Attribution.

Download (3MB)
URL: https://www.ncbi.nlm.nih.gov/pubmed/34836971
DOI: 10.1038/s41467-021-27176-w

Abstract

Rhabdomyosarcoma (RMS) is a pediatric malignancy of skeletal muscle lineage. The aggressive alveolar subtype is characterized by t(2;13) or t(1;13) translocations encoding for PAX3- or PAX7-FOXO1 chimeric transcription factors, respectively, and are referred to as fusion positive RMS (FP-RMS). The fusion gene alters the myogenic program and maintains the proliferative state while blocking terminal differentiation. Here, we investigated the contributions of chromatin regulatory complexes to FP-RMS tumor maintenance. We define the mSWI/SNF functional repertoire in FP-RMS. We find that SMARCA4 (encoding BRG1) is overexpressed in this malignancy compared to skeletal muscle and is essential for cell proliferation. Proteomic studies suggest proximity between PAX3-FOXO1 and BAF complexes, which is further supported by genome-wide binding profiles revealing enhancer colocalization of BAF with core regulatory transcription factors. Further, mSWI/SNF complexes localize to sites of de novo histone acetylation. Phenotypically, interference with mSWI/SNF complex function induces transcriptional activation of the skeletal muscle differentiation program associated with MYCN enhancer invasion at myogenic target genes, which is recapitulated by BRG1 targeting compounds. We conclude that inhibition of BRG1 overcomes the differentiation blockade of FP-RMS cells and may provide a therapeutic strategy for this lethal childhood tumor.

Item Type: Paper
Subjects: bioinformatics
diseases & disorders > cancer
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification
diseases & disorders
bioinformatics > genomics and proteomics > genetics & nucleic acid processing
bioinformatics > genomics and proteomics
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification
organs, tissues, organelles, cell types and functions > cell types and functions > cell functions > cell differentiation
organs, tissues, organelles, cell types and functions > cell types and functions > cell functions
organs, tissues, organelles, cell types and functions > cell types and functions > cell functions > cell proliferation
organs, tissues, organelles, cell types and functions > cell types and functions
organs, tissues, organelles, cell types and functions > cell types and functions > cell functions > differentiation
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types > enzymes
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function > genes: types
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types > enzymes > helicase
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function > genes: types > oncogene
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function > genes: types > oncogenes
organs, tissues, organelles, cell types and functions
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types
diseases & disorders > cancer > cancer types > rhabdomyosarcoma
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types > transcription factor
diseases & disorders > cancer > cancer types
CSHL Authors:
Communities: CSHL labs > Vakoc lab
CSHL Cancer Center Program
CSHL Cancer Center Program > Cancer Genetics and Genomics Program
SWORD Depositor: CSHL Elements
Depositing User: CSHL Elements
Date: 26 November 2021
Date Deposited: 06 Dec 2021 16:40
Last Modified: 13 Feb 2024 18:42
PMCID: PMC8626462
URI: https://repository.cshl.edu/id/eprint/40440

Actions (login required)

Administrator's edit/view item Administrator's edit/view item
CSHL HomeAbout CSHLResearchEducationNews & FeaturesCampus & Public EventsCareersGiving