Genotype-environment mismatch of kelp forests under climate change.

Vranken, Sofie, Wernberg, Thomas, Scheben, Armin, Severn-Ellis, Anita, Batley, Jacqueline, Philipp, Bayer Emanuel, Edwards, David, Wheeler, David, Coleman, Melinda Ann (May 2021) Genotype-environment mismatch of kelp forests under climate change. Molecular Ecology. ISSN 0962-1083

URL: https://www.ncbi.nlm.nih.gov/pubmed/34018645
DOI: 10.1111/mec.15993

Abstract

Climate change is increasingly impacting ecosystems globally. Understanding adaptive genetic diversity and whether it will keep pace with projected climatic change is necessary to assess species' vulnerability and design efficient mitigation strategies such as assisted adaptation. Kelp forests are the foundations of temperate reefs globally but are declining in many regions due to climate stress. A lack of knowledge of kelps' adaptive genetic diversity hinders assessment of vulnerability under extant and future climates. Using 4245 single nucleotide polymorphisms (SNPs), we characterised patterns of neutral and putative adaptive genetic diversity for the dominant kelp in the southern hemisphere (Ecklonia radiata) from ~1000 km coastline off Western Australia. Strong population structure and isolation-by-distance was underpinned by significant signatures of selection related to temperature and light. Gradient forest analysis of temperature-linked SNPs under selection revealed a strong association with mean annual temperature range suggesting adaptation to local thermal environments. Critically, modelling revealed that predicted climate-mediated temperature changes will likely result in high genomic vulnerability via a mismatch between current and future predicted genotype-environment relationships such that kelp forests off Western Australia will need to significantly adapt to keep pace with projected climate change. Proactive management techniques such as assisted adaptation to boost resilience may be required to secure the future of these kelp forests and the immense ecological and economic values they support.

Item Type: Paper
Subjects: diseases & disorders > climate change
organism description > plant
CSHL Authors:
Communities: CSHL labs > Siepel lab
SWORD Depositor: CSHL Elements
Depositing User: CSHL Elements
Date: 21 May 2021
Date Deposited: 26 May 2021 14:47
Last Modified: 26 May 2021 14:47
Related URLs:
URI: https://repository.cshl.edu/id/eprint/40168

Actions (login required)

Administrator's edit/view item Administrator's edit/view item
CSHL HomeAbout CSHLResearchEducationNews & FeaturesCampus & Public EventsCareersGiving