Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain

Nakamuta, S., Yang, Y. T., Wang, C. L., Gallo, N. B., Yu, J. R., Tai, Y., Van Aelst, L. (December 2017) Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain. J Cell Biol, 216 (12). pp. 4313-4330. ISSN 0021-9525

[thumbnail of Paper]
Preview
PDF (Paper)
Van Aelst 2017.pdf - Published Version

Download (3MB) | Preview

Abstract

Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS.

Item Type: Paper
Subjects: bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types > DOCK proteins
organs, tissues, organelles, cell types and functions > cell types and functions > cell types > interneurons
organs, tissues, organelles, cell types and functions > cell types and functions > cell types > interneurons
organs, tissues, organelles, cell types and functions > cell types and functions > cell types > interneurons
CSHL Authors:
Communities: CSHL Cancer Center Program > Signal Transduction
CSHL labs > Van Aelst lab
CSHL Cancer Center Program > Cellular Communication in Cancer Program
Depositing User: Matt Covey
Date: 4 December 2017
Date Deposited: 15 Nov 2017 17:05
Last Modified: 26 Oct 2020 18:33
PMCID: PMC5716287
Related URLs:
URI: https://repository.cshl.edu/id/eprint/35657

Actions (login required)

Administrator's edit/view item Administrator's edit/view item