Klar, A. J., Fogel, S. (September 1979) Activation of mating type genes by transposition in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 76 (9). pp. 4539-43. ISSN 0027-8424 (Print)0027-8424 (Linking)
Preview |
PDF (Paper)
Klar PNAS 1979.pdf - Published Version Download (1MB) | Preview |
Abstract
Yeast Saccharomyces cerevisiae may express an a or alpha mating type. These cells types may be interconverted as a consequence of heritable genetic alteractions at the mating type locus (MAT). According to the more general controlling element model [Oshima, U. & Takano, I. (1971) Genetics 67, 327--335] and the specific cassette model [Hicks, J., Strathern, J. & Herskowitz, I. (1977) in DNA Insertion Elements, Plasmids and Episomes, eds. Bukhari, A. I., Shapiro, J.A. & Adhya, S. L.(Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), pp. 457--462], the regulatory information required for switching the MAT locus exists at two other loosely linked loci, HMa and HMalpha. Specifically, the HMa and HMalpha loci are proposed to carry silent alpha and silent a genes, respectively. According to these models, switching occurs when a replica of a silent gene replaces the resident information at the mating type locus and is thereby expressed. These models predict that mutations at the silent ("storage") loci would generate defective MAT loci subsequent to the switching process. Therefore, the behavior of HMalpha mutants during the mating type interconversion was investigated. The results demonstrate that defective MATa alleles are generated by switching the MATalpha locus in HMalpha mutants. Thus, the genetic information from HMalpha is transposed to the mating type locus. These results provide genetic evidence in support of these models.
Actions (login required)
Administrator's edit/view item |