Analysis of calcium channels in single spines using optical fluctuation analysis

Sabatini, B. L., Svoboda, K. (November 2000) Analysis of calcium channels in single spines using optical fluctuation analysis. Nature, 408 (6812). pp. 589-593. ISSN 0028-0836

Abstract

Most synapses form on small, specialized postsynaptic structures known as dendritic spines(1). The influx of Ca2+ ions into such spines-through synaptic receptors and voltage-sensitive Ca2+ channels (VSCCs)-triggers diverse processes that underlie synaptic plasticity(2). Using two-photon laser scanning microscopy(3), we imaged action-potential-induced transient changes in Ca2+ concentration in spines and dendrites of CA1 pyramidal neurons in rat hippocampal slices(4). Through analysis of the large trial-to-trial fluctuations in these transients, we have determined the number and properties of VSCCs in single spines. Here we report that each spine contains 1-20 VSCCs, and that this number increases with spine volume. We are able to detect the opening of a single VSCC on a spine. In spines located on the proximal dendritic tree, VSCCs normally open with high probability (similar to0.5) following dendritic action potentials. Activation of GABA(B) receptors reduced this probability in apical spines to similar to0.3 but had no effect on VSCCs in dendrites or basal spines. Our studies show that the spatial distribution of VSCC subtypes and their modulatory potential is regulated with submicrometre precision.

Item Type: Paper
Uncontrolled Keywords: G-PROTEIN MODULATION DENDRITIC SPINES CA2+ CHANNELS PYRAMIDAL NEURONS VOLTAGE DEPENDENCE NMDA RECEPTORS TRANSIENTS CURRENTS RELEASE INFLUX
Subjects: organs, tissues, organelles, cell types and functions > sub-cellular tissues: types and functions > calcium channel
organs, tissues, organelles, cell types and functions > cell types and functions > cell types > dendritic cells > dendritic spines
organs, tissues, organelles, cell types and functions > cell types and functions > cell types > dendritic cells > dendritic spines
organs, tissues, organelles, cell types and functions > cell types and functions > cell types > dendritic cells > dendritic spines
organs, tissues, organelles, cell types and functions > tissues types and functions > hippocampus
organs, tissues, organelles, cell types and functions > cell types and functions > cell types > neurons > pyramidal neurons
organs, tissues, organelles, cell types and functions > cell types and functions > cell types > neurons > pyramidal neurons
organs, tissues, organelles, cell types and functions > cell types and functions > cell types > neurons > pyramidal neurons
CSHL Authors:
Communities: CSHL labs > Svoboda lab
Depositing User: Matt Covey
Date: November 2000
Date Deposited: 31 Jan 2014 20:37
Last Modified: 31 Jan 2014 20:37
Related URLs:
URI: https://repository.cshl.edu/id/eprint/29350

Actions (login required)

Administrator's edit/view item Administrator's edit/view item