Time series gene expression profiling and temporal regulatory pathway analysis of BMP6 induced osteoblast differentiation and mineralization

Luo, W. J., Friedman, M. S., Hankenson, K. D., Woolf, P. J. (May 2011) Time series gene expression profiling and temporal regulatory pathway analysis of BMP6 induced osteoblast differentiation and mineralization. BMC Systems Biology, 5 (82). ISSN 1752-0509

[thumbnail of Paper]
Preview
PDF (Paper)
Luo BMC Systems Biology 2011.pdf - Published Version

Download (3MB) | Preview

Abstract

Background: BMP6 mediated osteoblast differentiation plays a key role in skeletal development and bone disease. Unfortunately, the signaling pathways regulated by BMP6 are largely uncharacterized due to both a lack of data and the complexity of the response. Results: To better characterize the signaling pathways responsive to BMP6, we conducted a time series microarray study to track BMP6 induced osteoblast differentiation and mineralization. These temporal data were analyzed using a customized gene set analysis approach to identify temporally coherent sets of genes that act downstream of BMP6. Our analysis identified BMP6 regulation of previously reported pathways, such as the TGF-beta pathway. We also identified previously unknown connections between BMP6 and pathways such as Notch signaling and the MYB and BAF57 regulatory modules. In addition, we identify a super-network of pathways that are sequentially activated following BMP6 induction. Conclusion: In this work, we carried out a microarray-based temporal regulatory pathway analysis of BMP6 induced osteoblast differentiation and mineralization using GAGE method. This novel temporal analysis is more informative and powerful than the classical static pathway analysis in that: (1) it captures the interconnections between signaling pathways or functional modules and demonstrates the even higher level organization of molecular biological systems; (2) it describes the temporal perturbation patterns of each pathway or module and their dynamic roles in osteoblast differentiation. The same set of experimental and computational strategies employed in our work could be useful for studying other complex biological processes.

Item Type: Paper
Uncontrolled Keywords: mesenchymal stem-cells bone morphogenetic proteins kinase signaling pathways growth-factor-i transgenic mice osteogenic differentiation set enrichment immune-system c-myb notch
Subjects: bioinformatics
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification
bioinformatics > genomics and proteomics > genetics & nucleic acid processing
bioinformatics > genomics and proteomics
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function > gene expression
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function > gene regulation
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function > gene regulation
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function
CSHL Authors:
Communities: CSHL labs > Lowe lab
Depositing User: Matt Covey
Date: 23 May 2011
Date Deposited: 06 Feb 2013 21:04
Last Modified: 06 Feb 2013 21:04
PMCID: PMC3126716
Related URLs:
URI: https://repository.cshl.edu/id/eprint/27158

Actions (login required)

Administrator's edit/view item Administrator's edit/view item