S6K1 Alternative Splicing Modulates Its Oncogenic Activity and Regulates mTORC1

Ben-Hur, V., Denichenko, P., Siegfried, Z., Maimon, A., Krainer, A., Davidson, B., Karni, R. (January 2013) S6K1 Alternative Splicing Modulates Its Oncogenic Activity and Regulates mTORC1. Cell Reports, 3 (1). pp. 103-115. ISSN 22111247

URL: http://www.ncbi.nlm.nih.gov/pubmed/23273915
DOI: 10.1016/j.celrep.2012.11.020

Abstract

Ribosomal S6 kinase 1 (S6K1) is a major mTOR downstream signaling molecule that regulates cell size and translation efficiency. Here, we report that short isoforms of S6K1 are overproduced in breast cancer cell lines and tumors. Overexpression of S6K1 short isoforms induces transformation of human breast epithelial cells. The long S6K1 variant (Iso-1) induced opposite effects. It inhibits Ras-induced transformation and tumor formation, while its knockdown or knockout induces transformation, suggesting that Iso-1 has a tumor-suppressor activity. Furthermore, we found that S6K1 short isoforms bind and activate mTORC1, elevating 4E-BP1 phosphorylation, cap-dependent translation, and Mcl-1 protein levels. Both a phosphorylation-defective 4E-BP1 mutant and the mTORC1 inhibitor rapamycin partially blocked the oncogenic effects of S6K1 short isoforms, suggesting that these are mediated by mTORC1 and 4E-BP1. Thus, alternative splicing of S6K1 acts as a molecular switch in breast cancer cells, elevating oncogenic isoforms that activate mTORC1.

Item Type: Paper
Subjects: bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification
bioinformatics > genomics and proteomics > genetics & nucleic acid processing
bioinformatics > genomics and proteomics
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function > genes: types
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function > genes: types > oncogene
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types > splicing factor
CSHL Authors:
Communities: CSHL labs > Krainer lab
CSHL Cancer Center Program > Gene Regulation and Cell Proliferation
Depositing User: Matt Covey
Date: January 2013
Date Deposited: 31 Jan 2013 21:20
Last Modified: 19 Jul 2021 13:20
PMCID: PMC5021319
Related URLs:
URI: https://repository.cshl.edu/id/eprint/26899

Actions (login required)

Administrator's edit/view item Administrator's edit/view item
CSHL HomeAbout CSHLResearchEducationNews & FeaturesCampus & Public EventsCareersGiving