Rapid Degradation of Caenorhabditis elegans Proteins at Single-Cell Resolution with a Synthetic Auxin

Martinez, M. A. Q., Kinney, B. A., Medwig-Kinney, T. N., Ashley, G., Ragle, J. M., Johnson, L., Aguilera, J., Hammell, C. M., Ward, J. D., Matus, D. Q. (January 2020) Rapid Degradation of Caenorhabditis elegans Proteins at Single-Cell Resolution with a Synthetic Auxin. G3 (Bethesda, Md.), 10 (1). pp. 267-280. ISSN 21601836 (ISSN) (Public Dataset)

URL: https://www.ncbi.nlm.nih.gov/pubmed/31727633
DOI: 10.1534/g3.119.400781


As developmental biologists in the age of genome editing, we now have access to an ever-increasing array of tools to manipulate endogenous gene expression. The auxin-inducible degradation system allows for spatial and temporal control of protein degradation via a hormone-inducible Arabidopsis F-box protein, transport inhibitor response 1 (TIR1). In the presence of auxin, TIR1 serves as a substrate-recognition component of the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF), ubiquitinating auxin-inducible degron (AID)-tagged proteins for proteasomal degradation. Here, we optimize the Caenorhabditis elegans AID system by utilizing 1-naphthaleneacetic acid (NAA), an indole-free synthetic analog of the natural auxin indole-3-acetic acid (IAA). We take advantage of the photostability of NAA to demonstrate via quantitative high-resolution microscopy that rapid degradation of target proteins can be detected in single cells within 30 min of exposure. Additionally, we show that NAA works robustly in both standard growth media and physiological buffer. We also demonstrate that K-NAA, the water-soluble, potassium salt of NAA, can be combined with microfluidics for targeted protein degradation in C. elegans larvae. We provide insight into how the AID system functions in C. elegans by determining that TIR1 depends on C. elegans SKR-1/2, CUL-1, and RBX-1 to degrade target proteins. Finally, we present highly penetrant defects from NAA-mediated degradation of the FTZ-F1 nuclear hormone receptor, NHR-25, during C. elegans uterine-vulval development. Together, this work improves our use and understanding of the AID system for dissecting gene function at the single-cell level during C. elegans development. Copyright © 2020 Martinez et al.

Item Type: Paper
Subjects: organism description > animal > C elegans
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types > auxin
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > genes, structure and function > gene expression
CSHL Authors:
Communities: CSHL labs > Hammell C. lab
CSHL Cancer Center Program > Gene Regulation and Inheritance Program
Depositing User: Adrian Gomez
Date: 7 January 2020
Date Deposited: 22 Jan 2020 19:44
Last Modified: 05 Nov 2020 22:38
PMCID: PMC6945041
Related URLs:
Dataset ID:
  • Supplemental material available at figshare: https://doi.org/10.25387/g3.10277960
URI: https://repository.cshl.edu/id/eprint/38920

Actions (login required)

Administrator's edit/view item Administrator's edit/view item
CSHL HomeAbout CSHLResearchEducationNews & FeaturesCampus & Public EventsCareersGiving