Comparative analysis of the structure and function of adenovirus virus-associated RNAs

Ma, Y., Mathews, M. B. (November 1993) Comparative analysis of the structure and function of adenovirus virus-associated RNAs. J Virol, 67 (11). pp. 6605-17. ISSN 0022-538X (Print)

URL: http://www.ncbi.nlm.nih.gov/pubmed/8411363

Abstract

The protein kinase DAI is an important component of the interferon-induced cellular defense mechanism. In cells infected by adenovirus type 2 (Ad2), activation of the kinase is prevented by the synthesis of a small, highly ordered virus-associated (VA) RNA, VA RNAI. The inhibitory function of this RNA depends on its structure, which has been partially elucidated by a combination of mutagenesis and RNase sensitivity analysis. To gain further insight into the structure and function of this regulatory RNA, we have compared the primary sequences, secondary structures, and functions of seven VA RNA species from five human and animal adenoviruses. The sequences exhibit variable degrees of homology, with a particularly close relationship between the VA RNAII species of Ad2 and Ad7 and notably divergent sequence for the avian (CELO) virus VA RNA. Apart from two pairs of mutually complementary tetranucleotides which are highly conserved, homologies are limited to transcription signals located within the RNA sequence and at its termini. Secondary structure analysis indicated that all seven RNAs conform to the model in which VA RNA possesses three main structural regions, a terminal stem, an apical stem-loop, and a central domain, although these elements vary in size and other details. The apical stem is implicated in binding to DAI, and the central domain is essential for inhibition of DAI activation. One of the pairs of conserved tetranucleotides (CCGG:C/UCGG) provides further evidence for the existence of the apical stem, but the other conserved pair (GGGU:ACCC) strongly suggests a revised structure for the central domain. In two functional assays conducted in vivo, the VA RNAI species of Ad2 and Ad7 were the most active, their corresponding VA RNAII species displayed little activity, and the single VA RNAs of Ad12 and simian adenovirus type 7 exhibited intermediate activity. Correlation of the structural and functional data suggests that the VA RNAII species adopt a structure different from those of the other VA RNA species and may play a different role in the life cycle of the virus.

Item Type: Paper
Uncontrolled Keywords: Adenoviruses, Human/ genetics Base Sequence Comparative Study Genes, Viral Hydrogen Bonding Molecular Sequence Data Nucleic Acid Conformation RNA, Viral/ genetics Research Support, U.S. Gov't, P.H.S. Sequence Alignment Species Specificity Structure-Activity Relationship Viral Structural Proteins/genetics
Subjects: bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > DNA, RNA structure, function, modification > RNA expression
organism description > virus > adenovirus
CSHL Authors:
Communities: CSHL labs
Depositing User: Matt Covey
Date: November 1993
Date Deposited: 15 Apr 2016 20:12
Last Modified: 15 Apr 2016 20:12
Related URLs:
URI: https://repository.cshl.edu/id/eprint/32526

Actions (login required)

Administrator's edit/view item Administrator's edit/view item
CSHL HomeAbout CSHLResearchEducationNews & FeaturesCampus & Public EventsCareersGiving