Using deep long-read RNAseq in Alzheimer's disease brain to assess medical relevance of RNA isoform diversity

Heberle, Bernardo Aguzzoli, Brandon, J Anthony, Page, Madeline L, Nations, Kayla A, Dikobe, Ketsile I, White, Brendan J, Gordon, Lacey A, Fox, Grant A, Wadsworth, Mark E, Doyle, Patricia H, Williams, Brittney A, Fox, Edward J, Shantaraman, Anantharaman, Ryten, Mina, Goodwin, Sara, Ghiban, Elena, Wappel, Robert, Mavruk-Eskipehlivan, Senem, Miller, Justin B, Seyfried, Nicholas T, Nelson, Peter T, Fryer, John D, Ebbert, Mark TW (December 2023) Using deep long-read RNAseq in Alzheimer's disease brain to assess medical relevance of RNA isoform diversity. bioRxiv. (Submitted)

[thumbnail of 2023.08.06.552162v2.full.pdf] PDF
2023.08.06.552162v2.full.pdf - Submitted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (9MB)
URL: https://www.ncbi.nlm.nih.gov/pubmed/37609156
DOI: 10.1101/2023.08.06.552162

Abstract

Due to alternative splicing, human protein-coding genes average over eight RNA isoforms, resulting in nearly four distinct protein coding sequences per gene. Long-read RNAseq (IsoSeq) enables more accurate quantification of isoforms, shedding light on their specific roles. To assess the medical relevance of measuring RNA isoform expression, we sequenced 12 aged human frontal cortices (6 Alzheimer’s disease cases and 6 controls; 50% female) using one Oxford Nanopore PromethION flow cell per sample. Our study uncovered 53 new high-confidence RNA isoforms in medically relevant genes, including several where the new isoform was one of the most highly expressed for that gene. Specific examples include WDR4 (61%; microcephaly), MYL3 (44%; hypertrophic cardiomyopathy), and MTHFS (25%; major depression, schizophrenia, bipolar disorder). Other notable genes with new high-confidence isoforms include CPLX2 (10%; schizophrenia, epilepsy) and MAOB (9%; targeted for Parkinson’s disease treatment). We identified 1,917 medically relevant genes expressing multiple isoforms in human frontal cortex, where 1,018 had multiple isoforms with different protein coding sequences, demonstrating the need to better understand how individual isoforms from a single gene body are involved in human health and disease, if at all. Exactly 98 of the 1,917 genes are implicated in brain-related diseases, including Alzheimer’s disease genes such as APP (Aβ precursor protein; five), MAPT (tau protein; four), and BIN1 (eight). As proof of concept, we also found 99 differentially expressed RNA isoforms between Alzheimer’s cases and controls, despite the genes themselves not exhibiting differential expression. Our findings highlight the significant knowledge gaps in RNA isoform diversity and their medical relevance. Deep long-read RNA sequencing will be necessary going forward to fully comprehend the medical relevance of individual isoforms for a “single” gene.

Item Type: Paper
Subjects: Investigative techniques and equipment
Investigative techniques and equipment > assays
Investigative techniques and equipment > assays > RNA-seq
CSHL Authors:
Communities: CSHL labs > McCombie lab
SWORD Depositor: CSHL Elements
Depositing User: CSHL Elements
Date: 11 December 2023
Date Deposited: 18 Jan 2024 18:25
Last Modified: 18 Jan 2024 18:25
PMCID: PMC10441303
Related URLs:
URI: https://repository.cshl.edu/id/eprint/41404

Actions (login required)

Administrator's edit/view item Administrator's edit/view item
CSHL HomeAbout CSHLResearchEducationNews & FeaturesCampus & Public EventsCareersGiving