Deepnose: Using artificial neural networks to represent the space of odorants

Tran, NB, Kepple, DR, Shuvaev, SA, Koulakov, AA (January 2019) Deepnose: Using artificial neural networks to represent the space of odorants. In: 36th International Conference on Machine Learning, ICML 2019.

Abstract

© 36th International Conference on Machine Learning, ICML 2019. All rights reserved. The olfactory system employs an ensemble of odorant receptors (ORs) to sense odorants and to derive olfactory percepts. We trained artificial neural networks to represent the chemical space of odorants and used this representation to predict human olfactory percepts. We hypothesized that ORs may be considered 3D convolutional filters that extract molecular features and, as such, can be trained using machine learning methods. First, we trained a convolutional autoencoder, called DeepNose, to deduce a low-dimensional representation of odorant molecules which were represented by their 3D spatial structure. Next, we tested the ability of DeepNose features in predicting physical properties and odorant percepts based on 3D molecular structure alone. We found that, despite the lack of human expertise, DeepNose features often outperformed molecular descriptors used in computational chemistry in predicting both physical properties and human perceptions. We propose that DeepNose network can extract de novo chemical features predictive of various bioactivities and can help understand the factors influencing the composition of ORs ensemble.

Item Type: Conference or Workshop Item (Paper)
CSHL Authors:
Communities: CSHL labs > Koulakov lab
SWORD Depositor: CSHL Elements
Depositing User: CSHL Elements
Date: 1 January 2019
Date Deposited: 19 Apr 2021 17:26
Last Modified: 19 Apr 2021 17:26
Related URLs:
URI: https://repository.cshl.edu/id/eprint/39821

Actions (login required)

Administrator's edit/view item Administrator's edit/view item
CSHL HomeAbout CSHLResearchEducationNews & FeaturesCampus & Public EventsCareersGiving