Probabilistic modeling of personalized drug combinations from integrated chemical screen and molecular data in sarcoma

Berlow, N. E., Rikhi, R., Geltzeiler, M., Abraham, J., Svalina, M. N., Davis, L. E., Wise, E., Mancini, M., Noujaim, J., Mansoor, A., Quist, M. J., Matlock, K. L., Goros, M. W., Hernandez, B. S., Doung, Y. C., Thway, K., Tsukahara, T., Nishio, J., Huang, E. T., Airhart, S., Bult, C. J., Gandour-Edwards, R., Maki, R. G., Jones, R. L., Michalek, J. E., Milovancev, M., Ghosh, S., Pal, R., Keller, C. (June 2019) Probabilistic modeling of personalized drug combinations from integrated chemical screen and molecular data in sarcoma. BMC Cancer, 19 (1). p. 593. ISSN 1471-2407 (Public Dataset)

[thumbnail of 2019.Berlow.Sarcoma.pdf]
Preview
PDF
2019.Berlow.Sarcoma.pdf - Published Version

Download (7MB) | Preview

Abstract

BACKGROUND: Cancer patients with advanced disease routinely exhaust available clinical regimens and lack actionable genomic medicine results, leaving a large patient population without effective treatments options when their disease inevitably progresses. To address the unmet clinical need for evidence-based therapy assignment when standard clinical approaches have failed, we have developed a probabilistic computational modeling approach which integrates molecular sequencing data with functional assay data to develop patient-specific combination cancer treatments. METHODS: Tissue taken from a murine model of alveolar rhabdomyosarcoma was used to perform single agent drug screening and DNA/RNA sequencing experiments; results integrated via our computational modeling approach identified a synergistic personalized two-drug combination. Cells derived from the primary murine tumor were allografted into mouse models and used to validate the personalized two-drug combination. Computational modeling of single agent drug screening and RNA sequencing of multiple heterogenous sites from a single patient's epithelioid sarcoma identified a personalized two-drug combination effective across all tumor regions. The heterogeneity-consensus combination was validated in a xenograft model derived from the patient's primary tumor. Cell cultures derived from human and canine undifferentiated pleomorphic sarcoma were assayed by drug screen; computational modeling identified a resistance-abrogating two-drug combination common to both cell cultures. This combination was validated in vitro via a cell regrowth assay. RESULTS: Our computational modeling approach addresses three major challenges in personalized cancer therapy: synergistic drug combination predictions (validated in vitro and in vivo in a genetically engineered murine cancer model), identification of unifying therapeutic targets to overcome intra-tumor heterogeneity (validated in vivo in a human cancer xenograft), and mitigation of cancer cell resistance and rewiring mechanisms (validated in vitro in a human and canine cancer model). CONCLUSIONS: These proof-of-concept studies support the use of an integrative functional approach to personalized combination therapy prediction for the population of high-risk cancer patients lacking viable clinical options and without actionable DNA sequencing-based therapy.

Item Type: Paper
Subjects: bioinformatics
diseases & disorders > cancer
diseases & disorders
bioinformatics > computational biology > algorithms
organism description > animal
organs, tissues, organelles, cell types and functions > cell types and functions > cell types > cell line
organs, tissues, organelles, cell types and functions > cell types and functions > cell types > cell line
organs, tissues, organelles, cell types and functions > cell types and functions > cell types > cell line
organs, tissues, organelles, cell types and functions > cell types and functions > cell types
organs, tissues, organelles, cell types and functions > cell types and functions > cell types
organs, tissues, organelles, cell types and functions > cell types and functions > cell types
organs, tissues, organelles, cell types and functions > cell types and functions
bioinformatics > computational biology
bioinformatics > computational biology > algorithms > machine learning
organism description > animal > mammal
organism description > animal > mammal > rodent > mouse
organs, tissues, organelles, cell types and functions
therapies > personalised therapy
organism description > animal > mammal > rodent
diseases & disorders > cancer > cancer types > sarcoma
CSHL Authors:
Communities: CSHL labs > Maki lab
Depositing User: Matthew Dunn
Date: 17 June 2019
Date Deposited: 29 Jul 2019 13:21
Last Modified: 01 Feb 2024 20:33
PMCID: PMC6580486
Related URLs:
Dataset ID:
URI: https://repository.cshl.edu/id/eprint/38164

Actions (login required)

Administrator's edit/view item Administrator's edit/view item