Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data

Rudin, C. M., Poirier, J. T., Byers, L. A., Dive, C., Dowlati, A., George, J., Heymach, J. V., Johnson, J. E., Lehman, J. M., MacPherson, D., Massion, P. P., Minna, J. D., Oliver, T. G., Quaranta, V., Sage, J., Thomas, R. K., Vakoc, C. R., Gazdar, A. F. (March 2019) Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer, 19 (5). pp. 289-297. ISSN 1474-175x

Abstract

Small cell lung cancer (SCLC) is an exceptionally lethal malignancy for which more effective therapies are urgently needed. Several lines of evidence, from SCLC primary human tumours, patient-derived xenografts, cancer cell lines and genetically engineered mouse models, appear to be converging on a new model of SCLC subtypes defined by differential expression of four key transcription regulators: achaete-scute homologue 1 (ASCL1; also known as ASH1), neurogenic differentiation factor 1 (NeuroD1), yes-associated protein 1 (YAP1) and POU class 2 homeobox 3 (POU2F3). In this Perspectives article, we review and synthesize these recent lines of evidence and propose a working nomenclature for SCLC subtypes defined by relative expression of these four factors. Defining the unique therapeutic vulnerabilities of these subtypes of SCLC should help to focus and accelerate therapeutic research, leading to rationally targeted approaches that may ultimately improve clinical outcomes for patients with this disease.

Item Type: Paper
Subjects: bioinformatics
diseases & disorders > cancer
diseases & disorders
bioinformatics > genomics and proteomics > genetics & nucleic acid processing
bioinformatics > genomics and proteomics
diseases & disorders > neoplasms
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification
organism description > animal
organism description > animal > mammal
organism description > animal > mammal > rodent > mouse
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types
organism description > animal > mammal > rodent
diseases & disorders > cancer > cancer types > small cell lung cancer
bioinformatics > genomics and proteomics > genetics & nucleic acid processing > protein structure, function, modification > protein types > transcription factor
diseases & disorders > cancer > cancer types
CSHL Authors:
Communities: CSHL labs > Vakoc lab
CSHL Cancer Center Program > Cancer Genetics and Genomics Program
Depositing User: Matthew Dunn
Date: 29 March 2019
Date Deposited: 09 Apr 2019 15:20
Last Modified: 02 Feb 2024 20:29
PMCID: PMC6538259
Related URLs:
URI: https://repository.cshl.edu/id/eprint/37772

Actions (login required)

Administrator's edit/view item Administrator's edit/view item