Holste, D., Grosse, I., Herzel, H. (October 2001) Statistical analysis of the DNA sequence of human chromosome 22. Physical Review E, 6404 (4). ISSN 1063-651X
Preview |
PDF (Paper)
Grosse Physical Review E 2001.pdf - Published Version Download (438kB) | Preview |
Abstract
We study statistical patterns in the DNA sequence of human chromosome 22, the first completely sequenced human chromosome. We find that (i) the 33.4 x 10(6) nucleotide long human chromosome exhibits long-range power-law correlations over more than four orders of magnitude, (ii) the entropies H-n of the frequency distribution of oligonucleotides of length n (n-mers) grow sublinearly with increasing n, indicating the presence of higher-order correlations for all of the studied lengths 1 less than or equal to n less than or equal to 10, and (iii) the generalized entropies H-n(q) of n-mers decrease monotonically with increasing q and the decay of H-n(q) with q becomes steeper with increasing n less than or equal to 10, indicating that the frequency distribution of oligonucleotides becomes increasingly nonuniform as the length n increases. We investigate to what degree known biological features may explain the observed statistical patterns. We find that (iv) the presence of interspersed repeats may cause the sublinear increase of H-n with n, and that (v) the presence of monomeric tandem repeats as well as the suppression of CG dinucleotides may cause the observed decay of H-n(q) with q.
Actions (login required)
Administrator's edit/view item |