Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals

Rubin, C. T., Capilla, E., Luu, Y. K., Busa, B., Crawford, H., Nolan, D. J., Mittal, V., Rosen, C. J., Pessin, J. E., Judex, S. (November 2007) Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci U S A, 104 (45). pp. 17879-84.

[thumbnail of Paper]
Preview
PDF (Paper)
Vittal PNAS 2007b.pdf - Published Version

Download (923kB) | Preview
URL: https://www.ncbi.nlm.nih.gov/pubmed/17959771
DOI: 10.1073/pnas.0708467104

Abstract

Obesity, a global pandemic that debilitates millions of people and burdens society with tens of billions of dollars in health care costs, is deterred by exercise. Although it is presumed that the more strenuous a physical challenge the more effective it will be in the suppression of adiposity, here it is shown that 15 weeks of brief, daily exposure to high-frequency mechanical signals, induced at a magnitude well below that which would arise during walking, inhibited adipogenesis by 27% in C57BL/6J mice. The mechanical signal also reduced key risk factors in the onset of type II diabetes, nonesterified free fatty acid and triglyceride content in the liver, by 43% and 39%, respectively. Over 9 weeks, these same signals suppressed fat production by 22% in the C3H.B6-6T congenic mouse strain that exhibits accelerated age-related changes in body composition. In an effort to understand the means by which fat production was inhibited, irradiated mice receiving bone marrow transplants from heterozygous GFP+ mice revealed that 6 weeks of these low-magnitude mechanical signals reduced the commitment of mesenchymal stem cell differentiation into adipocytes by 19%, indicating that formation of adipose tissue in these models was deterred by a marked reduction in stem cell adipogenesis. Translated to the human, this may represent the basis for the nonpharmacologic prevention of obesity and its sequelae, achieved through developmental, rather than metabolic, pathways.

Item Type: Paper
Uncontrolled Keywords: mesenchymal stem cells obesity therapeutics diabetes vibration
Subjects: organs, tissues, organelles, cell types and functions > organs types and functions > apidogenesis
diseases & disorders > nutritional and metabolic diseases > diabetes
organism description > animal > mammal > rodent > mouse
diseases & disorders > nutritional and metabolic diseases > obesity
CSHL Authors:
Communities: CSHL labs > Mittal lab
Depositing User: CSHL Librarian
Date: 6 November 2007
Date Deposited: 03 Nov 2011 15:41
Last Modified: 08 Nov 2017 22:08
PMCID: PMC2077057
Related URLs:
URI: https://repository.cshl.edu/id/eprint/23128

Actions (login required)

Administrator's edit/view item Administrator's edit/view item
CSHL HomeAbout CSHLResearchEducationNews & FeaturesCampus & Public EventsCareersGiving