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Abstract
Background: While the C. elegans genome is extensively annotated, relatively little information is
available for other Caenorhabditis species. The nematode genome annotation assessment project
(nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction
software in C. elegans, and to apply this knowledge to the annotation of the genomes of four
additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated
in nGASP, and submitted 47 prediction sets across 10 Mb of the C. elegans genome. Predictions
were compared to reference gene sets consisting of confirmed or manually curated gene models
from WormBase.

Results: The most accurate gene-finders were 'combiner' algorithms, which made use of
transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from
other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in
second. There was a tie for third place between gene-finders that used multi-genome alignments
and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their
specificity was 42%, which is nearly the same accuracy reported for combiners in the human
genome. C. elegans genes with exons of unusual hexamer content, as well as those with unusually
many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly
conserved orthologs posed the greatest difficulty for gene-finders.

Conclusion: This experiment establishes a baseline of gene prediction accuracy in Caenorhabditis
genomes, and has guided the choice of gene-finders for the annotation of newly sequenced
genomes of Caenorhabditis and other nematode species. We have created new gene sets for C.
briggsae, C. remanei, C. brenneri, C. japonica, and Brugia malayi using some of the best-performing
gene-finders.
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Background
The promise of comparative genomics among the nema-
todes has motivated sequencing in Caenorhabditis elegans,
C. briggsae, C. brenneri, C. remanei, and C. japonica [1-3].
While the C. elegans genome has been extensively anno-
tated, relatively little information is available for the other
Caenorhabditis genomes [4]. In addition, the genome of
the distantly related nematode Brugia malayi was recently
published [5], and those of many other nematodes are
currently being sequenced such as Pristionchus, Haemon-
chus, Meloidogyne, and Trichinella. An essential step in the
analysis of these genomes will be to identify and annotate
their protein-coding genes, but it is not known which
gene prediction systems perform best on nematode
genomes. To address this issue, the nematode genome
annotation assessment project (nGASP) was launched to
assess the accuracy of protein-coding gene prediction soft-
ware in C. elegans, and then to apply this knowledge to
annotating other Caenorhabditis genomes.

The nGASP project parallels recent computational predic-
tion initiatives including CASP for protein structure pre-
diction [6], GASP for Drosophila gene prediction [7], and
EGASP for human gene prediction [8]. Scientists working
in the field of computational gene prediction were invited
to participate in nGASP. Participants were provided with
training and test sets, each comprising ten non-overlap-
ping 1-Mb genomic sequence regions, representing ~10%
of the C. elegans genome. We also provided auxiliary data
to the participants to use for training their gene-finders.
The auxiliary data included multi-genome alignments
between C. elegans, C. briggsae and C. remanei, and align-
ments of ESTs, mRNAs and proteins to the C. elegans
genome.

nGASP was conducted in two phases. The first phase of
the competition was open to all gene prediction programs
and was divided into three categories: category 1 predic-
tions were based on genomic sequence alone (ab initio
gene-finders); category 2 was open to gene-finders that
use nucleotide level multi-genome alignments; and cate-
gory 3 predictions encompassed gene-finders that take
advantage of alignments of expressed sequences such as
proteins, ESTs, and assembled mRNAs. After the first
phase of the competition was complete, we posted the
output of each of the predictors to the nGASP web site
http://dev.wormbase.org/ngasp. We then began phase
two of the competition, which was open to 'combiners'
(category 4), defined as gene prediction systems that use
gene models created by other annotation software, and
any of the data used as input for the phase one gene-find-
ers. To assess the accuracy of the submitted predicted gene
sets, we quantified their sensitivity and specificity in pre-
dicting coding regions by using the metrics from GASP [7]
and EGASP [8]. Here, we describe the performance of the

most accurate gene-finders in C. elegans, identify some
common features of C. elegans genes that the majority of
gene-finders find hard to predict correctly, and discuss the
choice of gene predictors for the annotation of the newly
sequenced genomes of other nematode species.

Results and discussion
Submitted gene sets
Seventeen groups worldwide participated in nGASP, and
submitted 47 prediction sets for 10 Mb of the C. elegans
genome (Table 1). Several groups submitted predicted
gene sets for more than one category, or more than one
entry per category generated by running their programs
under different parameter sets. The submitted gene sets,
and the details of the parameters used to make them, are
available on the nGASP ftp site ftp://ftp.wormbase.org/
pub/wormbase/nGASP/.

Procedure for evaluation of gene-finding accuracy
The 10-Mb of test DNA sequence consisted of ten non-
overlapping 1-Mb genomic regions of the C. elegans
genome (Table 2). The gene predictions submitted to
nGASP were evaluated using two reference gene sets
drawn from WormBase (release WS160): (i) ref1, a 'sensi-
tivity/accuracy' set consisting of genes from the test
regions that were supported by full-length cDNAs across
their entire coding region, and (ii) ref2, a 'full set' that
contained all manually curated genes from the test regions
(see Methods). The ref2 set includes both confirmed and
unconfirmed gene models. Most of the unconfirmed gene
models were initially based on predictions from the Gen-
efinder software (P. Green, unpublished), but most of
these have since been changed by manual curators on the
basis of experimental data. nGASP differed from the Dro-
sophila GASP [7] and human EGASP [8], in that curated
gene structures for C. elegans were already publicly availa-
ble, but participants were requested to not consult Worm-
Base, GenBank or other databases for the curated gene
models in the test regions.

We assessed sensitivity (Sn) using the ref1 reference and
specificity (Sp) using the ref2 reference. Here sensitivity is
defined as the proportion of real features (coding nucle-
otides, exons or genes) that have been correctly predicted
in a particular gene set, while specificity is the proportion
of predicted features in that gene set that correspond to
real features. Note that the metric Sp is referred to as the
positive predictive value or precision by statisticians, but
consistent with previous work in the gene prediction field
[7-9] we use the term 'specificity'. For each submitted gene
set, we assessed its ability to accurately predict protein
coding regions at the base, exon, isoform and gene levels,
following the sensitivity and specificity definitions above,
which were also used by EGASP [8]. The least stringent
metrics were base level sensitivity and specificity, which
Page 2 of 13
(page number not for citation purposes)

http://dev.wormbase.org/ngasp
ftp://ftp.wormbase.org/pub/wormbase/nGASP/
ftp://ftp.wormbase.org/pub/wormbase/nGASP/


BMC Bioinformatics 2008, 9:549 http://www.biomedcentral.com/1471-2105/9/549
measure whether a gene predictor is able to correctly clas-
sify a base as coding. Exon level metrics measure the abil-
ity of a gene prediction system to identify the exact left
and right borders of the protein-coding regions of exons
in the reference sets. By 'exon', we mean the protein-cod-
ing part of an exon (also known as the CDS, or coding
sequence). Isoform level accuracy is the most stringent
test. One C. elegans gene can produce several alternative
spliced transcripts. For the purposes of nGASP we consid-
ered only the protein-coding portion of a transcriptional
isoform, and scored a correctly predicted isoform if the

protein-coding portions of all its exons were predicted
accurately and no extra full or partially protein-coding
exons were predicted. The gene level assessment of accu-
racy was intermediate in stringency between the exon and
isoform levels. To be scored correct at the gene level, a
gene predictor had to call at least one of the gene's iso-
forms correctly.

Results from evaluation of gene-finding accuracy
The best submitted gene prediction sets had base level
sensitivity in excess of 99% and specificity of more than

Table 1: Participating groups and submitted gene sets.

Participating group Program name Number of gene sets submitted in each 
category

Blasiar et al, Saint Louis, USA GESECA (D. Blasiar, unpublished) cat4:1

Borodovsky et al, Atlanta, USA GeneMark.hmm [24] cat1:1

Brent et al, Saint Louis, USA N-SCAN [25] cat2:1

Durbin et al, Cambridge, UK GENOMIX [26] cat4:2

Guigó et al, Barcelona, Spain GeneID1 [27], SGP2 [28] GeneID: cat1:1, cat4:2; SGP2: cat2:1

Korf et al, Davis, USA SNAP [29] cat1:1

Krogh et al, Copenhagen, Denmark Agene [30] cat1:1

Liang et al, Cold Spring Harbor, USA Gramene (Liang et al, unpublished) cat3:2, cat4:1

Pereira et al, Pennsylvania, USA Evigan [31], CRAIG [32] CRAIG: cat1:1; Evigan: cat4:1

Rätsch et al, Tübingen, Germany MGENE (Schweikert et al, submitted) cat1:3, cat2:2, cat3:3

Roos et al, Pennsylvania, USA GLEAN [33] cat4:1

Salzberg et al, Maryland, USA JIGSAW [14], GlimmerHMM [14] GlimmerHMM: cat1:1; JIGSAW: cat4:2

Schiex et al, Toulouse, France EUGENE [34] cat1:1, cat2:1, cat3:2, cat4:4

Solovyev et al, University of London and Softberry 
Inc, New York, USA

Fgenesh, Fgenesh++, Fgenesh++C [13] Fgenesh: cat1:1; Fgenesh++: cat3:1; Fgenesh++C: 
cat4:1

Stanke, Santa Cruz, USA AUGUSTUS [12] cat1:2, cat3:1

Brejová & Vinar, New York, USA ExonHunter [35] cat1:1, cat3:2

Yandell et al, Berkeley, USA MAKER (using SNAP) [36] cat3:2

1The GeneID gene set was submitted after the nGASP deadline. The research groups that participated in nGASP, the names of the software used to 
produce gene prediction sets, and the number of gene sets submitted in each of the nGASP categories by a research group, are given. There were 
four nGASP categories: category 1 predictions were made by ab initio gene-finders; category 2 predictions by gene-finders that use multi-genome 
alignments; category 3 predictions by gene-finders that take advantage of EST/mRNA or protein alignments; and category 4 predictions by gene 
prediction systems that use gene models created by other annotation software, and any of the data used as input for gene-finders in the other three 
categories. Here 'cat3:2' means that 2 gene sets in category 3 were submitted. In some cases a group submitted two gene sets produced by using 
different parameters of their software to the same nGASP category.
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93% (Table 3; Figure 1). This means that the best gene pre-
dictors are able to identify almost all the protein-coding
bases in the C. elegans genome and only occasionally pre-
dict that a non-coding base is coding. At the exon level,
the best submitted gene sets had sensitivities of more than
91% and specificities of more then 83%. Thus, although
most gene-finders identify most true coding bases cor-
rectly, they often do misidentify the boundaries of pro-
tein-coding exons. At the base and exon levels,
specificities were lower than sensitivities. This may reflect
a number of inaccurate gene models in the ref2 gene set,
which included gene models not fully supported by tran-
script evidence, and perhaps also reflects exons that are
missing from the ref2 gene set.

The ultimate goal of a gene predictor is to predict entire
genes correctly, including every alternative isoform. How-
ever, in practice gene-finders do not predict alternative
isoforms of a gene very well. At the isoform level, the best
gene sets had sensitivities of about 66% and specificities
of about 56%. That is, the best gene-finders each missed
about 34% of true C. elegans isoforms, indicating that
gene-finders still need improvements in predicting alter-
native splice forms. At the gene level, the best submitted
gene sets had sensitivities and specificities in excess of
80% and 58% respectively. That is, for 80% of genes in the
ref1 reference set, the best gene predictors called at least
one splicing isoform correctly across the entire length of
its protein-coding region.

The isoform level is the most stringent level of assessment.
However, given the low success of most gene-finders for

predicting alternative splicing, gene level accuracy is gen-
erally considered more important for the purpose of
annotating a newly sequenced genome such as that of
Caenorhabditis remanei. That is, it is considered more
important to predict at least one isoform of each gene cor-
rectly, rather than to predict all isoforms of one gene cor-
rectly and no isoforms of a second gene correctly. At the
gene level, the most accurate gene-finders were combiners
(Figure 1). Gene predictors that use alignments of ESTs,
mRNAs and proteins came in second place. Combiners
had higher sensitivity than algorithms that used expressed
sequence alignments at the gene level (medians: combin-
ers 78%, expressed sequence-based 68%, P = 0.04). How-
ever, in terms of specificity, there was no significant
difference in gene level accuracy between combiners and
gene predictors that used transcript and protein align-
ments (medians: combiners 42%, expressed sequence-
based 39%, P = 0.1). Thus, by using diverse data such as
expressed sequence alignments, multi-genome align-
ments and gene sets from different gene-finders, combin-
ers improved the sensitivity of their predictions above
those based on expressed sequence alignments alone. This
agrees with EGASP [8], which reported that combiners
had higher gene level sensitivities for human genes com-
pared to gene-finders that used expressed sequence align-
ments alone (medians: combiners 70%, expressed
sequence-based 64%) [8].

At the gene level, prediction algorithms that used
expressed sequence alignments had higher sensitivity
than ab initio gene predictors (medians: expressed
sequence-based 68%, ab initio 54%, P = 0.05), as well as

Table 2: The nGASP test and training genomic regions.

Type of nGASP region Criterion used for selecting region Coordinates in the C. elegans WS160 genome

Training High conservation, high gene density, autosomal II: 2000001–3000000
Training High conservation, high gene density, autosomal V: 9000001–10000000
Training High conservation, low gene density, autosomal III: 1000001–2000000
Training High conservation, low gene density, autosomal IV: 2000001–3000000
Training Low conservation, high gene density, autosomal I: 12000001–13000000
Training Low conservation, high gene density, autosomal V: 4000001–5000000
Training Low conservation, low gene density, autosomal I: 2000001–3000000
Training Low conservation, low gene density, autosomal II: 13000001–14000000
Training High conservation, low gene density, X-chromosome X: 3000001–4000000
Training High conservation, low gene density, X-chromosome X: 2000001–3000000
Test High conservation, high gene density, autosomal IV: 7000001–8000000
Test High conservation, high gene density, autosomal V: 12000001–13000000
Test High conservation, low gene density, autosomal IV: 1–1000000
Test High conservation, low gene density, autosomal I: 14000001–15000000
Test Low conservation, high gene density, autosomal V: 16000001–17000000
Test Low conservation, high gene density, autosomal II: 1–1000000
Test Low conservation, low gene density, autosomal IV: 14000001–15000000
Test Low conservation, low gene density, autosomal I: 1000001–2000000
Test High conservation, low gene density, X-chromosome X: 4000001–5000000
Test High conservation, low gene density, X-chromosome X: 8000001–9000000

The ten 1-Mb regions of the C. elegans genome provided to the nGASP participants for training their gene-finders, and ten 1-Mb test regions in 
which they were asked to make gene predictions for the nGASP assessment.
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Table 3: Evaluation of submitted gene sets.

Gene set Category Base Exon Isoform Gene

Sn Sp Sn Sp Sn Sp Sn Sp

Agene 1 93.8 83.4 68.9 61.1 9.8 13.1 12.0 14.1

AUGUSTUS v1 1 97.0 89.0 86.1 72.6 50.1 28.7 61.1 38.4

AUGUSTUS v2 1 96.8 89.3 84.8 74.3 49.3 31.9 60.5 32.7

CRAIG 1 95.6 90.9 80.2 78.2 35.7 36.3 43.8 37.8

EUGENE 1 94.0 89.5 80.3 73.0 49.1 28.8 60.2 30.2

ExonHunter 1 95.4 86.0 72.6 62.5 15.5 18.6 19.1 19.2

Fgenesh 1 98.2 87.1 86.4 73.6 47.1 34.6 57.8 35.4

GeneID 1 93.9 88.2 77.0 68.6 36.2 22.8 44.4 25.1

GeneMark.hmm 1 98.3 83.1 83.2 65.6 37.7 24.0 46.3 24.5

GlimmerHMM 1 97.6 87.6 84.4 71.4 47.3 29.3 58.0 30.6

MGENE v1 1 97.2 91.5 84.6 78.6 44.6 40.9 54.8 42.3

MGENE v2 1 96.9 91.6 84.2 78.7 44.0 40.9 54.0 42.4

MGENE v3 1 96.9 91.6 84.2 78.6 43.5 40.5 53.4 44.8

SNAP 1 94.0 84.5 74.6 61.3 32.6 18.6 40.0 19.1

EUGENE 2 96.2 87.5 82.8 72.8 50.3 30.2 61.7 31.4

MGENE v1 2 97.7 90.9 85.8 78.4 51.6 41.2 63.3 42.5

MGENE v2 2 97.7 90.9 85.8 78.3 51.2 40.9 62.7 43.8

N-SCAN 2 97.4 88.1 83.5 70.8 39.2 27.7 48.1 28.4

SGP2 2 93.5 90.0 77.3 70.3 36.4 24.9 44.6 27.1

AUGUSTUS v1 3 99.0 90.5 92.5 80.2 68.3 47.1 80.1 51.8

EUGENE v1 3 97.3 85.3 88.5 72.2 55.7 33.7 68.4 34.2

EUGENE v2 3 98.5 85.1 92.1 70.3 60.8 31.5 68.8 36.1

ExonHunter v1 3 97.6 87.3 83.9 69.3 38.5 31.9 47.3 32.5

ExonHunter v2 3 93.7 92.0 81.2 76.9 37.2 39.7 45.6 40.5

Fgenesh++ 3 97.6 89.7 90.4 80.9 65.5 53.4 78.3 54.2

Gramene v11 3 98.2 95.4 88.5 71.8 41.7 19.6 48.7 37.2

Gramene v21 3 98.6 94.8 88.3 67.8 38.7 16.3 46.0 39.0
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higher specificity (expressed sequence-based 39%, ab ini-
tio 32%, P = 0.01). This demonstrates that use of expressed
sequence data leads to considerable improvements in the
accuracy of gene-finders for C. elegans. This mirrors the
findings of EGASP, which also reported higher gene-sen-
sitivities for gene-finders that used transcript or protein
alignments compared to ab initio gene-finders (medians:
expressed sequence-based 63%, ab initio 18%), as well as
higher gene-specificities (expressed sequence-based 55%,
ab initio 8%) [8].

There was a tie for third place between gene prediction
algorithms that used multi-genome alignments and ab ini-
tio gene-finders. The addition of multi-genome align-
ments to C. briggsae and C. remanei gave no statistically
significant improvement in accuracy over ab initio predic-
tions. This was surprising, as the EGASP project reported
that gene-finders that used multi-genome alignments
were more accurate than ab initio gene-finders for predict-
ing human genes, in terms of both gene level sensitivities
(medians: ab initio 18%, multi-genome 26%) and specifi-

MAKER (using SNAP) v1 3 92.9 88.5 80.7 66.3 41.3 19.6 50.7 47.6

MAKER (using SNAP) v2 3 92.6 91.1 80.5 69.5 40.8 23.2 50.1 28.0

MGENE v1 3 98.7 91.9 91.0 80.7 57.7 48.0 70.8 48.9

MGENE v2 3 98.9 87.9 91.9 75.9 62.6 38.7 76.9 39.5

MGENE v3 3 98.7 91.9 91.0 80.6 57.7 48.0 70.6 51.1

EUGENE v1 4 98.5 85.6 90.5 75.1 60.4 39.3 75.9 39.5

EUGENE v2 4 99.4 85.4 94.3 72.6 63.9 35.9 74.7 42.0

EUGENE v3 4 98.6 85.6 90.6 74.2 63.3 36.9 79.5 37.4

EUGENE v4 4 99.2 85.3 94.0 71.8 67.1 33.9 77.9 39.8

Evigan 4 99.3 89.6 91.1 82.3 64.2 52.4 80.7 52.7

Fgenesh++C 4 98.7 89.7 91.1 82.7 66.1 56.3 80.3 57.1

GeneID v1 4 99.3 91.5 93.0 83.8 63.9 53.3 78.3 57.7

GeneID v2 4 99.0 92.0 90.7 85.0 61.7 55.5 77.5 57.1

GENOMIX v1 4 97.1 88.6 86.2 77.4 52.4 39.0 65.9 42.2

GENOMIX v2 4 98.1 90.4 89.7 83.5 60.4 53.3 75.9 56.1

GESECA 4 98.8 82.8 87.6 66.8 45.1 25.9 52.6 27.4

GLEAN 4 98.9 87.3 88.3 75.4 51.4 37.0 64.7 37.6

Gramene1 4 97.5 80.9 82.7 48.7 22.4 6.1 27.3 30.3

JIGSAW v1 4 98.9 93.2 90.5 87.4 63.6 60.2 79.9 61.0

JIGSAW v2 4 98.9 91.7 89.9 83.0 62.0 51.1 77.9 52.0

1After the evaluations were complete, the GRAMENE developers discovered an error in their pipeline which incorrectly moved the end of the coding 
region by 3 bp in a significant fraction of their gene predictions, and this negatively affected the overall performance of GRAMENE.
The accuracy of the submitted gene sets evaluated using the reference gene sets ref1 and ref2. The sensitivity (Sn) results are given for reference 
set ref1, and the specificity (Sp) results are given for set ref2. The gene sets are divided according to nGASP category, where category 1 is ab initio 
gene-finders, 2 is gene-finders that used multi-genome alignments, 3 is gene-finders that used alignments of ESTs, mRNAS and proteins, and 4 is 
combiners.

Table 3: Evaluation of submitted gene sets. (Continued)
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cities (ab initio 8%, multi-genome 19%). This may reflect
the relatively high gene level accuracy of ab initio gene-
finders in C. elegans (medians: gene Sn 54%, Sp 32%),
compared to human (Sn 18%, Sp 8%) [8], probably due
to the compact nature of the C. elegans genome. In addi-
tion, it is possible that the evolutionary distances separat-
ing C. elegans, C. briggsae and C. remanei are less suited for
inference of protein coding genes from multi-genome
alignments than the corresponding set of vertebrate
genomes used in the EGASP study. Furthermore, a differ-
ence in the way that the reference sets were defined for
nGASP and EGASP could contribute to the observed dif-
ference in accuracy. For example, nGASP's use of different

reference sets to estimate sensitivity and specificity might
lead to different results compared to EGASP, which relied
on a single set of reference genes to calculate both sensi-
tivity and specificity.

In both nGASP and EGASP, the best gene-finders were
combiners. However, in nGASP the median gene level
sensitivity of combiners was 78% and specificity was 42%,
while in EGASP the median gene level sensitivity of com-
biners was 70% and specificity was 52% [8]. In C. elegans,
about 8% more of the true genes are predicted correctly,
but 10% fewer of the gene predictions made are structur-
ally correct. The lower specificity in C. elegans suggests that

Accuracy of the submitted gene setsFigure 1
Accuracy of the submitted gene sets. Plots of the specificity against sensitivity of the submitted gene sets, at the base level 
(A), exon level (B), isoform level (C) and gene level (D). The submitted gene sets are coloured by nGASP category, with ab ini-
tio (category 1) gene sets in red, gene-finders that used multi-genome alignments (category 2) in black, gene-finders that used 
transcript/protein alignments (category 3) in blue, and combiners (category 4) in green. The gene sets are labelled as follows: 
AU: AUGUSTUS, MG: MGENE, CR: CRAIG, AG: Agene, EU: EUGENE, FPC: Fgenesh++C, FP: Fgenesh++, FG: Fgenesh, GE: GeneID, 
GM: GeneMark.hmm, GX: GENOMIX, GS: GESECA, GN: GLEAN, GL: GlimmerHMM, GR: Gramene, JW: JIGSAW, MK: MAKER (using 
SNAP), MG: MGENE, NS: N-SCAN, SG: SGP2, SN: SNAP, EX: ExonHunter, EV: Evigan.
Page 7 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:549 http://www.biomedcentral.com/1471-2105/9/549
there are more real isoforms and/or real genes missing
from the C. elegans curated gene set, compared to the
human curated gene set. This could be due to the far
smaller amount of transcript data available for C. elegans
or more conservative manual curation of weakly sup-
ported isoforms or genes by the WormBase staff. Using the
average of the sensitivity and specificity as an overall met-
ric of accuracy, the C. elegans combiner gene sets were
slightly less accurate (median 59%) than the human com-
biner gene sets (median 61%). However, it should be
noted that some of the difference in accuracy between
nGASP and EGASP may be due to the different test sets
used.

In the results shown in Table 3, we calculated the accuracy
of the phase 2 gene sets (combiners) in the 3' halves of the
phase 1 test regions, while we calculated the accuracy of
the phase 1 gene sets in the entire phase 1 test regions. To
investigate whether this introduced a bias, we also calcu-
lated the accuracy of the phase 1 gene sets in the 3' halves
of the phase 1 test regions. The sensitivity and specificity
of the phase 1 gene sets were 1.5% and 0.6% lower on
average in the 3' halves than in the entire phase 1 test
regions (paired Wilcoxon tests: P = 10-6, P = 10-5). The
source of this difference is not clear. However, as a result,
when we look only at the 3' halves of the phase 1 test
regions, the difference in accuracy between combiners and
phase 1 gene sets is slightly greater than that shown in
Table 3.

Factors affecting gene-finding accuracy
To understand which factors affect the accuracy of gene-
finders in C. elegans, we identified features of genes that
were not predicted correctly by the ab initio gene-finders,
gene-finders that used multi-genome alignments, and
gene-finders that used expressed sequence alignments.
The percentage of gene sets in which a true gene was pre-
dicted correctly (using the ref1 reference gene set) was
found to be correlated with nine features of genes (Figure
2):

(i) the lowest 'hexamer score' of any of the exons in the
gene (Spearman's  = 0.38, P < 10-16), using the score
based on the frequency of 6-bp words from Genefeatures
in the AceDB software [10],

(ii) the number of exons in the gene (  = -0.36, P < 10-16),

(iii) the length of the shortest exon in the gene (  = 0.30,
P = 10-11),

(iv) the length of the longest intron in the gene (  = -0.29,
P = 10-9),

(v) the strength of the translation start signal (  = 0.28, P =
10-9), as measured by Genefeatures,

(vi) the lowest score of any of splice sites in the gene (  =
0.25, P = 10-7), as measured by Genefeatures,

(vii) the percent identity with the C. briggsae ortholog at
the amino acid level (  = 0.22, P = 10-5), based on an align-
ment from the TreeFam database of gene families [11],

(viii) the maximum distance to a neighbouring gene (  = -
0.16, P = 0.0003), and

(ix) the number of isoforms in the gene (  = -0.11, P =
0.02).

That is, the C. elegans genes that are hardest for gene-find-
ers to predict correctly are those with an exon of unusual
hexamer content, lots of exons, a very short exon, a very
long intron, a weak translation start signal, a weak splice
site, a poorly conserved ortholog, as well as those that are
far from their nearest neighbours, and those with many
isoforms. We suggest that developers of gene-finding pro-
grams should concentrate on improving accuracy on these
types of genes. The correlation with these features tended
to be stronger for ab initio gene-finders than expressed
sequence-based gene-finders (Figure 2). For example, the
correlation with the lowest hexamer score for the exons in
a gene was higher for ab initio gene-finders than for
expressed sequence-based gene-finders (  = 0.42 and 0.22,
Z-test: P = 0.0005). We observed weak or nonexistent cor-
relations with other features that we examined, such as the
length of the longest exon in a gene (P > 0.05), length of
the shortest intron (P > 0.05), whether the adjacent genes
are on the same strand (P > 0.05), existence of embedded
genes with a gene's introns (  = -0.11, P = 0.01), whether a
gene is member of an operon (P > 0.05), whether neigh-
bouring genes are paralogs (inferred from TreeFam [11]; P
> 0.05), and whether the gene overlaps a simple repeat or
transposable element (P > 0.05).

There were 18 genes that were missed in all of the category
1, 2 and 3 gene sets, which must be the most difficult-to-
predict: C06G3.7 (trxr-1), C08G5.5, C33H5.14 (ntp-1),
C55F2.1, D1009.1, F18E9.3, R04E5.7, R04E5.8, T07D3.4,
T07F12.4, Y105E8A.7 (eat-18), Y43H11AL.1, Y48G8AL.7,
Y54E5B.1 (smp-1), Y55F3BR.6, ZC455.6, ZC477.1 (ssq-3),
and ZC8.4 (lfi-1). Several of these genes have unusually
long introns of > 1400 bp (Y43H11AL.1, Y48G8AL.7,
Y54E5B.1), unusually short exons of < 40 bp (D1009.1,
Y105E8A.7, ZC8.4), poorly conserved orthologs
(C08G5.5, R04E5.7, R04E5.8), lots of exons (F18E9.3,
T07D3.4), or are very far from one of their neighbours
(T07F12.4).
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New gene sets for C. remanei, C. brenneri, C. japonica 
and Brugia malayi
To judge which gene-finders in each category performed
best, we used the average of the gene level sensitivity and
specificity for a gene set as a metric of overall accuracy. In
collaboration with several of the nGASP contributors, we
are assembling new gene sets for C. elegans, C. briggsae, C.
brenneri, C. remanei, C. japonica and Brugia malayi using
the three best performing of the gene-finders that used
transcript/protein alignments: MGENE (Schweikert et al,
submitted), AUGUSTUS[12] and FGENESH[13]. The best per-
forming combiner, JIGSAW[14], is being used to combine
the MGENE, AUGUSTUS and FGENESH predictions into a sin-
gle nGASP gene set for each species that will form the basis
of curated gene sets for the new genomes and will be used
to improve curated gene models in C. elegans. All gene sets

will be available from ftp://ftp.wormbase.org/pub/worm
base/nGASP_gene_predictions/predictions/ and will also
be displayed in the genome browsers for these species at
http://www.wormbase.org.

Conclusion
This experiment establishes a baseline of gene prediction
accuracy in Caenorhabditis genomes, and is guiding the
choice of gene prediction systems for the annotation of
newly sequenced genomes for Caenorhabditis and other
nematode species. At present, combiners are more accu-
rate than other classes of gene prediction algorithms in C.
elegans. However, the accuracy of the combiners would
presumably benefit by increasing the accuracy of the com-
ponent gene prediction sets that they are given. We have
also identified features of C. elegans genes that are difficult

Factors affecting gene-finding accuracyFigure 2
Factors affecting gene-finding accuracy. Plots of gene-level sensitivity against features of genes that are correlated with 
gene-finding accuracy: (A) the lowest hexamer score of any of the exons in the gene, (B) the number of exons in the gene, (C) 
the length of the shortest exon in the gene, (D) the length of the longest intron in the gene, (E) the strength of the translation 
start signal, (F) the lowest score of any of splice sites in the gene, (G) the percent identity with the C. briggsae ortholog at the 
amino acid level, (H) the maximum distance to a neighbouring gene, and (I) the number of isoforms in the gene. In each plot, 
the submitted gene sets are coloured by nGASP category, with ab initio (category 1) gene sets in red, gene-finders that used 
multi-genome alignments (category 2) in black, and gene-finders that used transcript/protein alignments (category 3) in blue. 
The solid lines show the median sensitivities of the gene sets in a category, while the dashed lines show the maximum sensitiv-
ity of the gene sets in a category.
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to predict for ab initio gene-finders and gene-finders that
use transcript-, protein- and multi-genome alignments,
and hope that leaders in the gene prediction field will rise
to the challenge of improving accuracy on such genes.

Methods
Data provided to the nGASP participants
Genomic DNA sequence
To select the nGASP test and training regions, we divided
the WormBase WS160 C. elegans genome sequence into
102 non-overlapping regions of 1 Mb, and discarded
regions of less than 1 Mb from the high-coordinate ends
of the six chromosomes, leaving a set of 96 1 Mb regions.
Representative training and test regions were selected
from these regions based on gene density and conserva-
tion, following the strategy used to select the human
ENCODE regions [8]. We measured gene density in each
region by counting the number of curated genes, and
assessed conservation with C. briggsae by using the
number of bases covered by strong WABA [15] matches to
C. briggsae. Regions were classified as having high or low
gene density or conservation if their values lay in the top
or bottom 33% percentiles respectively. The test and train-
ing sets each consisted of ten 1 Mb regions that were ran-
domly chosen from the sets of regions with particular
combinations of high/low gene density and high/low
conservation (for example, we randomly chose two of the
high conservation, low gene density autosomal regions;
Table 2).

Auxiliary training data
We requested that gene-finders that had previously been
trained using a large fraction of C. elegans confirmed genes
or other data outside the supplied training sets be
retrained solely on the training set provided by the nGASP
project, namely:

(i) the coordinates of repeats found by RepeatMasker (A.
Smit, unpublished, http://www.repeatmasker.org) in the
training regions.

(ii) the coordinates of coding exons, introns and UTRs in
584 confirmed isoforms (CDSs) of 432 genes in the train-
ing regions. An isoform was considered as confirmed if it
was supported from start to end by mRNA, EST or OST
transcript data.

(iii) the coordinates of coding exons, introns, and UTRs in
1583 'unconfirmed' isoforms of 1461 genes in the train-
ing regions. These genes lacked any confirmed isoforms.

(iv) the DNA sequence for the 'cb1' assembly of the C.
briggsae genome.

(v) the DNA sequence for the 'pcap2' assembly of the C.
remanei genome.

(vi) a multi-genome alignment between C. elegans, C.
briggsae and C. remanei for the C. elegans training regions,
made using MLAGAN version 1.21 [16].

(vii) the amino acid sequences of 42,496 proteins that
have BLAST[17] matches to the test or training regions,
excluding matches to proteins encoded by genes in the
test regions. The BLAST matches were made by running
BLAST with an E-value cut-off of 0.1 against proteins from
C. elegans (wormpep160), C. briggsae (brigpep160), Dro-
sophila melanogaster (FlyBase [18]), Saccharomyces cerevisiae
(SGD [19]), UniProt [20], and human (Ensembl [21] and
RefSeq [22]).

(viii) the nucleotide sequences of 20,141 C. elegans ESTs/
cDNAs that have BLAT matches to the test or training
regions.

(ix) the coordinates of the BLAST and BLAT matches in (vii)
and (viii) in the test and training regions.

Participants were allowed to use different data for train-
ing, and for making predictions in the test regions, accord-
ing to the nGASP category under which they were
submitting a gene prediction set. The repeat sequences (i)
and genes in the training regions (ii and iii) could be used
by all participants. Participants who submitted ab initio
(category 1) gene sets were not allowed to use any addi-
tional data for training or making gene sets. For gene-find-
ers that used multi-genome alignments (category 2),
participants could use the C. briggsae and C. remanei
assemblies (iv and v) and the MLAGAN multi-genome
alignment (vi). They also were allowed to generate a dif-
ferent multi-genome alignment using the tool(s) of their
choice. For gene predictors that used expressed sequence
alignments (category 3), participants could use the pro-
tein and transcript matches (vii, viii, ix), or they could
choose a different alignment algorithm to realign the pro-
tein and transcript sequences contained in these sets.

For combiners (category 4), participants could use any of
the auxiliary data allowed for categories 1–3, as well as the
gene predictions submitted for categories 1 through 3 dur-
ing nGASP phase one. Category 4 participants were also
supplied with the coordinates of coding exons, introns,
and UTRs in 386 confirmed isoforms of 242 genes in the
5' halves of each of the phase one test regions, which
could be used as an additional training set. Because of
this, combiners were evaluated using ref1 and ref2 gene
sets drawn from the 3' halves of each phase one test
region.

Submission of gene sets
The submitted gene prediction files were required to be in
GFF3 format (L. Stein, unpublished; http://song.source
forge.net/gff3.shtml), an extension of GFF (Gene Feature
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Format; R. Durbin and D. Haussler; http://
www.sanger.ac.uk/Software/GFF). The GFF3 files were
required to contain lines for gene, mRNA, CDS, and 5'
and 3' UTR features. The format of gene prediction files
submitted to nGASP was validated using a GFF3 format
validator (P. Canaran, unpublished; http://dev.worm
base.org/db/validate_gff3/validate_gff3_online).

Resources for assessing predictions: the reference gene sets
Predictions were compared to two different reference gene
sets based on data in WormBase WS160 [4]: (i) all con-
firmed isoforms in the test regions ('ref1'), and (ii) all iso-
forms in all genes in the test regions ('ref2'). Ref1
consisted of 605 isoforms from 493 different genes, and
ref2 consisted of 2250 isoforms from 1956 different
genes. For phase two, we evaluated combiners using the 3'
halves of each test region. The phase two ref1 and ref2 ref-
erence sets contained 313 isoforms from 249 different
genes, and 1130 isoforms from 966 different genes,
respectively.

We used ref1 to assess sensitivity and ref2 to assess specif-
icity. This is because the true-positive and false-negative

counts calculated by comparison to ref1 are more reliable
than those calculated using ref2, as the gene models in
ref1 are of higher quality. In contrast, the false-positive
counts calculated by comparison to ref2 are more reliable,
because a higher fraction of true genes are represented by
gene models in ref2.

Evaluation of accuracy of submitted gene sets
Two sets of evaluation software were written for nGASP.
The first (P. Flicek, unpublished) was based on the earlier
EGASP [8] evaluation software, but was extended to han-
dle the GFF3 format for nGASP. The second software (A.
Coghlan, unpublished) was written independently but
calculated the same accuracy statistics.

Data availability and visualisation
The nGASP test and training data, the submitted gene pre-
dictions and the command-line options and parameters
used to generate them, and the ref1 and ref2 reference
gene sets are available for download on the nGASP wiki
http://www.wormbase.org/wiki/index.php/nGASP and
on the nGASP ftp site ftp://ftp.wormbase.org/pub/worm
base/nGASP.

A screenshot from the nGASP genome browserFigure 3
A screenshot from the nGASP genome browser. This shows part of an nGASP test region on chromosome I, with the 
curated WormBase gene models and the ab initio (category 1) gene sets submitted to nGASP for that region.
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The submitted gene predictions and the reference gene
sets can be viewed in a genome browser based on
GBrowse [23] at http://dev.wormbase.org/ngasp/. Each
gene set is displayed in a different colour (Figure 3).
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