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Since the advent of computing, humans have sought computer input technologies
that are expressive, intuitive and universal. While diverse modalities have been
developed, including keyboards, mice and touchscreens, they require interaction
with a device that can be limiting, especially in on-the-go scenarios. Gesture-based
systems use cameras or inertial sensors to avoid anintermediary device, but tend to

performwell only for unobscured movements. By contrast, brain-computer or
neuromotor interfaces that directly interface with the body’s electrical signalling have
beenimagined to solve the interface problem’, but high-bandwidth communication
hasbeen demonstrated only using invasive interfaces with bespoke decoders designed
forsingle individuals®™*. Here, we describe the development of a generic non-
invasive neuromotor interface that enables computer input decoded from surface
electromyography (SEMG). We developed a highly sensitive, easily donned sSEMG
wristband and a scalable infrastructure for collecting training data from thousands of
consenting participants. Together, these data enabled us to develop generic SEMG
decoding models that generalize across people. Test users demonstrate a closed-loop
median performance of gesture decoding of 0.66 target acquisitions per secondina
continuous navigation task, 0.88 gesture detections per second ina discrete-gesture
task and handwriting at 20.9 words per minute. We demonstrate that the decoding
performance of handwriting models can be further improved by 16% by personalizing
SEMG decoding models. To our knowledge, thisis the first high-bandwidth neuromotor
interface with performant out-of-the-box generalization across people.

Interactions with computers are increasingly ubiquitous, but existing
input modalities are subject to persistent trade-offs between portabil-
ity, throughput and accessibility. While keyboard text entry, texting,
trackpads and mice are important, our aim is to enable computation
in settings in which these conventional methods are not feasible, for
example, seamless input to mobile computing with smartphones, smart
watches or smart glasses.

Aneuralinterface that can obviate trade-offs and provide seamless
interaction between humans and machines haslongbeen sought, but
hasbeenslow toemerge.Inrecentyears, intracortical neural interfaces
that directly interface with brain tissue have advanced the premise?®,
demonstrating translation of thoughtinto language at bandwidth rates
comparable with conventional computer input systems**. However,
existing high-bandwidth interfaces require invasive neurosurgery,
and the models that translate neural signals to digital inputs remain
bespoke.

Non-invasive approaches relying on recording of electroencepha-
logram (EEG)® signals at the scalp have offered more generality across
people, for example, for gaming’, but EEG can require lengthy setup,
and the low signal-to-noise ratio of these devices has limited their use®.

Regardless of the modality, issues of signal bandwidth, gener-
alization across populations and the desire to avoid per-person or

session-to-session calibration remain key technical hurdles inthe field
of brain-computer interfaces (BCls)** 2.,

To build an interface that is both performant and accessible, we
focused on analternative class of non-invasive neuromotor interfaces
based on reading out the electrical signals from muscles using elec-
tromyography (EMG). Myoelectric potentials are produced by the
summation of motor unit action potentials (MUAPs) and represent
awindow into the motor commands issued by the central nervous
system. Surface EMG (sEMG) recordings offer a high signal-to-noise
ratio by amplifying neural signals in the muscle®®, enabling real-time
single-trial gesture decoding. The nature of the SEMG signal lends itself
naturally to human-computer interface (HCI) applications because it
isnotsubject to problems that vex computer-vision-based approaches,
suchas occlusion, insufficient lighting or gestures with minimal move-
ment. Indeed, SEMG has been deployed for diverse applications in
clinical settings™", for diagnosis and rehabilitation', as well as pros-
thetic control*"%,

However, current EMG systems, including those for prosthetic
control”, have many limitations for wide-scale use and deployment.
Laboratory systems are generally encumbered with wires to external
power sources and amplifiers, and placed over uncomfortable locations
such as the target muscle belly. Commercially available EMG-based
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neuromotor interfaces have been historically challenging to control®,
relating to myriad technical issues such as poor robustness across
postures®, a lack of standardized data®, electrode displacement?®,
and alack of both cross-session® and cross-user generalization®.
Morerecently, deep learning techniques have shown some success at
addressing these limitations?, buta general lack of available EMG data
and low sample sizes are believed to limit their efficacy?.

To validate the hypothesis that SEMG can provide an intuitive and
seamless computer input that works in practice across a population,
we developed and deployed robust, non-invasive hardware for record-
ing SEMG at the wrist. We chose the wrist because humans primar-
ily engage the world with their hands, and the wrist provides broad
coverage of sEMG signals of hand, wrist and forearm muscles while
affording social acceptability**?. Our sEMG research device (SEMG-RD)
is adry-electrode, multichannel recording platform with the ability
to extract single putative MUAPs. It is comfortable, wireless, accom-
modates diverse anatomy and environments and can be donned or
doffed inafew seconds.

To transform sEMG into commands that drive computer interac-
tions, we architected and deployed neural networks trained on data
from thousands of consenting human participants. We also created
automated behavioural-prompting and participant-selection systems
toscale neuromotor recordings across alarge and diverse population.
We demonstrated the ability of our sSEMG-RD to drive computer inter-
actions such as one-dimensional (1D) continuous navigation (akin to
pointing a laser-pointer based on wrist posture), gesture detection
(finger pinches and thumb swipes) and handwriting transcription.

The sEMG decoding models performed well across people without
person-specific training or calibration. In open-loop (offline) evalu-
ation, our sEMG-RD platform achieved greater than 90% classifica-
tion accuracy for held-out participants in handwriting and gesture
detection,and an error of less than 13° s™ error on wrist angle velocity
decoding. On computer-based tasks that evaluate these interactionsin
closed-loop (online), we achieved 0.66 target acquisitions per second
in wrist-based continuous control, 0.88 acquisitions per second on
discrete gestures and 20.9 words per minute (WPM) with handwriting.

To our knowledge, this is the highest level of cross-participant per-
formance achieved by a neuromotor interface. Our approach opens
up directions of sSEMG-based HCl research and development while
solving many of the technical problems fundamental to current and
future BCl efforts.

Scalable sEMG recording platform

To build generic SEMG decoding models capable of predicting user
intent from neuromuscular signals, we developed a hardware and
software platform capable of quickly and robustly coupling the neu-
romotor interface with computers across adiverse population (Fig.1a).
Consenting participants (Methods) were seated in front of acomputer
while wearing the SEMG-RD at the wrist; the SEMG-RD is adry elec-
trode, multichannel recording device with a high sample rate (2 kHz)
and low-noise (2.46 pVrms), and is compatible with everyday use?*?
(Fig.1aand Methods). We fabricated the device in four different sizes
toensure coverage across arange of wrist circumferences. The device
streamed wirelessly over secure Bluetooth protocols and provided a
battery life of more than 4 h.

We optimized the sSEMG-RD for recording subtle electrical poten-
tials at the wrist (Extended Data Fig. 1). We manufactured the device
in four sizes, with a circumferential interelectrode spacing of 10.6,
12,13 or 15 mm, approaching the spatial bandwidth of EMG signals at
the forearm (-5-10 mm)?®, while minimizing the device’s form factor.
We placed the gap in electrodes to allow for tightening adjustments
along the ulnabone, where muscles are reduced in density. Together,
this enabled the sensing of putative MUAPs across the wrist during
low-movement conditions (Fig. 1b and Extended Data Fig. 2).

To collect training data for models, we recruited an anthropometri-
cally and demographically diverse group of participants (162-6,627
participants, depending on the task; Extended DataFig.3) to perform
three different tasks: wrist control, discrete-gesture detection and
handwriting. In all cases, the participants wore sSEMG bands on their
dominant-side wrist and were prompted to perform actions using
custom software run on laptops (Fig. 1c). For wrist control, the par-
ticipants controlled a cursor, the position of which was determined
from wrist angles tracked in real time using motion capture. During
thediscrete-gesture detection task, a prompter instructed participants
to perform nine distinct gestures witharandomized order and interg-
esture interval. During the handwriting task, the participants were
prompted to hold their fingers together (as if holding an imaginary
writing implement) and ‘write’ the prompted text. Further training
data protocol details are provided in the Methods.

We designed the data-collection system to facilitate supervised train-
ing of SEMG decoding models. During data collection, we recorded
both sEMG activity and the timestamps of labels on the prompter
using areal-time processing engine. We designed the engine to be
used during recording and model inference to reduce online-offline
shift (Methods). To precisely align prompter labels to actual gesture
times, which may vary due to a participant’s reaction time or compli-
ance, we developed a time-alignment algorithm that enabled post hoc
inference of gesture event times (Methods).

Examination of raw sSEMG traces revealed highly structured patterns
ofactivity (Fig.1d). Discrete gestures evoked patterned activity across
aset of channels that roughly corresponded to the position of flexor
and extensor muscles for the corresponding movement (Fig. 1d and
Extended DataFig.1c). Fine differencesin sSEMG power acrossinstances
of a given gesture performed during a session (Fig. 1e) highlight the
power of the platform in acquiring repeated time-aligned examples
for supervised learning and some of the challenges facing generaliza-
tion of EMG decoders.

Single-participant models do not generalize

Itis well known across BCI modalities that both across-session and
across-user generalization are difficult problems>"**?°, We wanted
to evaluate the difficulty of these generalizations for sSEMG decoders.
Inspection of the raw data revealed pronounced variability in the SEMG
for the same action across different participants and band donnings
(whichwereferto as sessions), reflective of variationsin sensor place-
ment, anatomy, physiology and behaviour that make generalization
challenging (Fig.2a,b). As an example of this variability, we found that
the cosine distances between waveforms of the same gesture across
sessions and users heavily overlapped with the distribution of distances
betweenwaveforms of different gestures (Extended Data Fig. 5a), and
intermingled even in a nonlinear embedding of gesture distances
(Fig. 2b), highlighting the challenge of the generalization problem.

To evaluate the ability of obtaining performant sSEMG decoders
across sessions for a given participant, we trained single-participant
models for 100 participants who had collected at least five sessions on
the discrete-gesture-classification task. For each participant, we held
out one session for evaluation and then trained models on two, three
or four of the remaining sessions (Methods). As an offline evaluation
metric, we used the false-negative rate (FNR), defined as the proportion
of prompted gestures for which the correct gesture was not detected
by the model.

Single-participant models trained and tested on the same participant
achieved offline performance that improved substantially with more
training data (Fig. 2c). By contrast, models trained on one participant
and then tested on another showed substantially worse performance
and benefited only mildly from anincreasing amount of training data
(Fig. 2d), indicating a greater domain shift across people compared
withacross sessions. For 98% of participants, the model trained ontheir
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Fig.1|Ahardware and software platform for high-throughputrecording
andreal-time decoding of SEMG at the wrist. a, Overview of SEMG data
collection. A participant wears the SEMG wristband, which communicates with
acomputer throughaBluetoothreceiver. The participantis prompted to
performdiverse movements of the hand and wrist. Awebcam captures their
hand and wrist, excluding the face. Between sessions within asingle day, the
participants remove and slightly reposition the SEMG wristband to enable
generalizationacross different recording positions. b, The SEMG wristband
consists of 48 electrode pins configured into 16 bipolar channels with the
sensing axis aligned with the proximal-distal axis of the forearm and the
remainder serving as shield and ground electrodes (top). A3D printed housing
encloses cabling and analogue amplifiers for each channel. Acompute capsule
digitizes the signal and streams sEMG data using Bluetooth. Inset: overlay of
62and72individual instances of two putative MUAPs evoked by subtle thumb
(blue) and pinky extension (pink) movements, respectively, fromasingle
SEMG channel (Methods). Bottom, a proton-density-weighted axial plane
magnetic resonance imaging (MRI) scan of the wrist; relevantbone and muscle
landmarks are labelled. The coloured dots indicate the approximate position of
electrodes, with an adjustable gap between electrodes placed over an area of

owndata performedbetter compared with all other single-participant
models (Extended Data Fig. 5b).

We wondered whether cross-participant generalization was difficult
because there was structure or clusters across people, or whether every
participantrequired arelatively unique single-participant model. The
former could motivate an approach where a set of models trained on
asmall population (within each cluster) could achieve a high level of
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low muscle density. ¢, Schematic of the prompters for the three tasks (Methods
and Extended DataFig.4). Inthe wrist task, the participants controlled acursor
using wrist movements tracked in real time with motion capture. In the discrete-
gesture task, gesture promptsscrolled fromright to left. Inthe handwriting
task, the participants wrote words presented onthe screen. d, Representative
sEMGssignals, high-pass filtered at 20 Hz, recorded during performance of
discrete gesturesrevealintricate patterns of activity across multiple channels
accompanying each gesture, with prompt timings above (for example, ‘middle’
indicates middle pinch, and the greenleft arrow indicates a leftward thumb
swipe). Channel colouring corresponds to electrode locationsinb. The black
arrows highlight activation of flexors and extensors during anindex-to-thumb
pinchandrelease, respectively. e, Representative examples of variability in
gestural sSEMG activations across gesture instances (thumb taps (top) and
downward thumb swipe (bottom)). The grey lines show theinstantaneous
high-pass-filtered SEMG power, summed across channels, for allinstances of a
gestureduring asingle band placement. The bold traces show the average. The
meanwas subtracted fromall traces, and the power was offset by 107 V2 to plot
onalogarithmicscale without visually exaggerating the baseline variance.

population coverage. The absence of overt structureina ¢-distributed
stochastic neighbour embedding (¢-SNE; Extended Data Fig. 5¢) of
the average model transfer FNR between participant pairs suggests
that there are no obvious participant clusters. Moreover, there are
no people who exhibit the ability to generate performant models for
other people, norare there any people for whom other people’s models
always perform well (Extended Data Fig. 5d).



a b
Participant 1 2 3 4 5 6 7

c Cross-session, d

within participant Cross-participant

2 x 107 Index pinch 100 - 100 4
107~ AR A e A A e s
Thumb swipe out o 80 80 1
< 2x107 I ©
= A \ N | 60 - 60 -
O S NI/ NIV A VO | N N \ _A 2
[0
§_ 05107 Thumb swipe down § 40 40
(0] I\ @
& e L o N AN ad N SN
= 107\]L S A N _/\ A L. 20 |
Thumb tap w
2x107 |
01— : ; 0-L— . .
107 ,J\_ e AL e Mo e A 2 3 4 2 3 4
200 ms t-SNE Number of training sessions
" f
e Model size (D) Model size (D) 9 i
12 8.4 x 10° 25 0.4 x 10° 60 Model size (D)
o o 4.4 x10° S o N o x 105 g 0=R 1.0 x 10°
< ’ & 20 4 ;¢~ ® 65x10¢ S 40 83 P 6
< 5 ‘ti\ o 6.5 x 10° (heterogenous) o L S 60.2 x 10
R S § 90 R
5 —_— _— 2 15 \i 5 \\!
: Rty S § “Fao 5 201 i 3
8 10- T2 ¥ 2 3
Q = _| ~ |5} ~
< @ 10 i 1] ~!
c k) S 10 S~
8 04 0.7 o 0.34 0.17 6 —0.36 -4.04 i\\
s f(N,D) = 0.0 + 10.3N"°% 4+ 0.02D0™ ;| ND) =35+ 114N 4 1.8D" ] fND) =21+ 26N + 360" 3.
9 T T 1 T T T T T T T T T T T T 1
20 40 80 120 40 80 160 320 640 1, 280 2, 800 4, 800 25 50 100 200 400 800 1,600 3,200 6,527

Number of training participants (N)

Fig.2|Generalization performance of single-participant and multi-
participantmodels. a, Cross-participant (columns) and cross-session variability
(lightlines) ingestural sSEMG for four discrete gestures (different rows and
colours) across seven participants. Four of the possible nine gestures are shown
for clarity. Thelight lines show the high-pass-filtered sSEMG power averaged
acrossallchannels and all gesture instances during a single band placement.
Theboldlines correspondtothe average across allband placements. b, --SNE
embedding of sSEMG activations (Methods) across participants for the four
different gesturesina. Gesture colour map asina, with shading reflecting
different participants (n=20).Eachdotreflects anindividual gestural instance.
c,d, Single-participant models trained and tested on the same participant (c) or
different participants (d). Generalization across sessions improves as more
training data are used. Generalization across participants remains poor even

Offline evaluation of generic models

To avoid the need to train and tune models for each individual,
we trained generic models that are able to generalize to entirely
held-out participants. To do this, we collected data from hundreds
to thousands of data-collection participants for each task. These
data were then used to train neural network decoding models. In
each case, we used preprocessing techniques and network archi-
tectures designed for processing multidimensional time series
(Methods and Extended Data Fig. 6): multivariate power frequency
(MPF) features and a long short-term memory (LSTM) layer for the
wrist task, a 1D convolution layer followed by an LSTM layer for the
discrete-gesture task, and MPF features and a conformer? for the
handwriting task, which we anticipated would require an architec-
turewithricher contextinformation (provided through the attention
mechanism).

Previous studies on large language models® and vision transform-
ers* have shown that performance shows power-law scaling with the
amountof training data and the model size. To investigate whether such
scaling holds for sSEMG decoding, we examined the offline decoding
performance of models trained on data from varying numbers of par-
ticipants (Fig. 2e-g). Across all tasks, we observed reliable performance
improvements as afunction of theincreasing number of participantsin
thetraining corpus. Consistent with other domains, empirical perfor-
mance follows a power law both as a function of parameters and data
quantity, with the parameters of the scaling relationship shared across
architecture sizes (Methods). The largest models showed promising
offline performance.

Number of training participants (N)

Number of training participants (N)

when more training data are used. Statistical analysis was performed using
two-sided Wilcoxon signed-rank tests; all pairwise comparisons are significant;
P<107°.n=100single-participant models. The boxes show the median (centre
line) and lower and upper quartiles (box limits), and the whiskers extend to +1.5 x
interquartile range. e-g, The decoding error of models trained to predict wrist
angle velocity (e), classify nine discrete gestures (f) and classify handwritten
characters (g) asafunction of the training set size. Data are the mean +s.e.m.
decodingerror evaluated onatestset of held-out participants (n =22 for wrist,
100 for discrete gestures and 50 for handwriting) (Methods). The dashed lines
andinsetequations show fitted scaling curves (Nis measured in units of hundreds
of participants and D in millions of parameters). For discrete gestures, the open
circlerepresents varying numbers of sessions per participant (Methods).

Online evaluation of generic models

Ultimately, closed-loop performance of our sEMG decoding models
is the critical evaluation that confirms their viability as a computer
interface. For eachtask, closed-loop evaluation was performed on naive
participants who had not previously had meaningful experience using
any sEMG decoder on thattask (n =17 (wrist), n = 24 (discrete gestures)
and n =20 (handwriting)). The core tasksinvolved using the wrist-angle
decoder to continuously control a 1D cursor to acquire targets, the
discrete-gesture decoder to navigate and performactionsinadiscrete
lattice, and the handwriting decoder to write out prompted phrases
thatwere thenvisualized on the screen (Fig. 3a—c; the evaluation tasks
are described in the Methods; see Supplementary Videos 1-3 for rep-
resentative performance, and Extended Data Fig. 7 for a depiction of
the task dynamics). For each task, the participants performed three
distinct blocks of trials to allow for characterization of learning (50 tri-
als per block for wrist, 10 trials for discrete gestures and handwriting),
withthe first block always being a practice block that allowed them to
adapt to the controller.

For all of the tasks, we observed learning effects, whereby the par-
ticipants improved with experience. During the practice block, the
supervisor gave verbal coaching—for example, “swipe faster” or “write
more continuously”’—as needed to improve participant’s performance.
The participants were typically able to perform each task on their own
after theinitial practice block but, for the discrete gestures and hand-
writing tasks, we found that coaching during the evaluation block was
valuable for a subset of participants on trials that they struggled to
complete (Methods).
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Fig.3|GenericSEMG decoding models enable closed-loop controlindiverse
interactions. a-c, Schematics of the three closed-loop tasks. a, Horizontal
cursor (wrist): the participants control a cursor (red circle) toacquire atarget
(greenrectangle) inarow of possible targets (grey rectangles). b, Discrete grid
navigation: the participants use thumb swipe gestures to navigate, and perform
activationgestures prompted by coloured shapes. ¢, Textentry: the participants
handwrite prompted text. (Methods, Extended DataFig. 7and Supplementary
Videos1-3).d,e, The performance of n =17 naive test participants using the
wrist decoder in the horizontal cursor task.d, The mean target-acquisition
time (excluding the 500 ms hold) in each task block. e, The mean dial-in time
intrialsinwhichthe cursor prematurely exited the target before completing
thehold. Inset: the fraction of trials with premature exits. The dashed red and
orangelinesinpanelseand d show the median task performance with the ground
truthwrist angles measured by motion capture (n =162, with no previous task
exposure) and with the native MacBook trackpad (n =17, with previous task
exposure), respectively (Methods). f-h, The performance of n =24 naive test
participants using the discrete-gesture decoder in the grid navigation task.

f, The fraction of prompted gesturesin each block for which the first detected
gesture matches the prompt (first-hit probability). g, The mean gesture

Every participant was able to complete every trial of the three tasks.
Forwrist control, all of the participants were able to successfully navi-
gate toeachtarget and stay on the target for 500 ms to acquire it. Per-
formance was characterized by time to target acquisition (Fig. 3d) and
dial-intime, which measures the time taken to acquire the target after
having exited it prematurely (Fig. 3e; definitions are provided in the
Methods). We found learning effectsin which participantsimprovedin
bothofthese metrics from the practice block to the evaluationblocks,
and the majority of them subjectively reported that the cursor moved
inthe intended direction >80% of the time (Extended Data Fig. 8e).

For discrete gestures, all of the participants were able to complete
the task by navigating with the swipe gestures and performing the
activation gestures (thumb tap, index pinch and hold, middle pinch
and hold) whenrequired. Performance onthe discrete-gesture task was
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completionratein eachtask block. The dashed redlinesin panels fand g show
the median task performance of adifferent set of n =23 participantsusinga
gaming controller (Methods). h, Confusion rates (normalized to expected
gestures) in evaluation blocks, averaged across participants. Early release
denotesahold of lessthan 500 ms.1i,j, The performance of n =20 naive test
participants using the handwriting decoder on the text entry task.i, The
online CERineachblock.j, The WPMin each block. The dashed red line shows
themedian WPM of adifferent set of n =75 participants handwriting similar
phrasesinopenloop withouta pen (Methods). For each participant, the online
CERand WPM are calculated as the median over trials in each block. For all
panels, statistical analysis was performed using two-tailed paired sample
Wilcoxonsigned-rank tests; *P < 0.05, **P < 0.005; not significant (NS),
P>0.05.Theboxes show the median (centre line) and lower and upper quartiles
(boxlimits), and the whiskers extend to +1.5 x interquartile range. The printed
numbers show the median and outliers are marked with open circles. Foreach
baselinedevice, the dashed lines show the median over participants and the
shading shows the 95% confidence intervals estimated using the reverse
percentile bootstrap with 10,000 resamples.

characterized by ameasure of how often the first detected gesture fol-
lowing a prompt matched the prompted gesture (Fig. 3f) as well as how
long it took to complete each prompted gesture (Fig. 3g). The confusion
matrix across discrete gestures is shownin Fig. 3h. Note that errorson
thistask (reflected inboth confusions and first-hit probabilities) are a
combination of model decoding errors as well as behavioural errors,
whereby the participant performed the wrong gesture. Thisis evident
inthe fact that confusions were also present when performing this task
using agaming controller rather thanansEMG decoder (Extended Data
Fig.8b-d).Index and middle holds were sometimes released too early
(thatis, the detected release followed the detected presslessthan 0.5 s
later), and thiswas indicated in the confusion matrix as an ‘early release’.

The performance of the closed-loop handwriting decoder was evalu-
ated by participants entering prompted phrases and was characterized



by the online character error rate (CER; Fig. 3i) and speed of text entry
(Fig. 3j). Improvements from practice to evaluation blocks indicate that
participants were able to use the practice trials to discover handwriting
movements that were effective for writing accurately with the decoder.

Foreach oftheseinteractions, we also provide performance metrics
for a baseline interface that does not rely on decoding sEMG (dashed
horizontal linesin each panel). For 1D continuous control, we find that
aMacBook trackpad and motion capture ground-truth wrist-based
controllead toimproved median acquisitiontimes of 0.68 sand 0.96 s,
respectively, compared with 1.51 s for the SEMG wrist decoder. For dis-
crete grid navigation, usingaNintendo Joy-Con game controller showed
amedian gesture completion rate of 1.45 completions per second ver-
sus 0.88 with the sSEMG discrete-gesture decoder. For prompted text
entry, the participants performed open-loop handwriting onasurface,
without a pen, at 25.1 WPM, higher than the 20.9 WPM achieved with
the SEMG handwriting decoder (and below 36 WPM achievable with
mobile phone keyboard). While our sEMG decoders therefore have
roomtoimproverelative tothesebaseline devices, they are sufficiently
performanttoreliably complete each task, while not requiring the use
of hand-encumbering devices or external instrumentation.

Representations learned by the discrete-gesture model

Todevelop anintuition about how the generic SEMG decoders function,
we visualized the representations learned by the intermediate layers
ofthe discrete-gestures decoder. The network architecture consisted
of a1D convolutional layer, followed by three recurrent LSTM layers
(Fig. 4a) and, finally, a classification layer.

Tointerpret the convolution layer, we visualized representative spati-
otemporalfilters (Fig. 4b) alongside putative MUAPs (Fig. 4c) detected
using the wristband during low-movement conditions (Extended Data
Fig. 2). The filters appear to form a coarse basis set spanning the sta-
tistics of MUAPs; specifically, Fig. 4d,e shows the general similarity in
temporal frequency content and spatial envelope between the putative
MUAPs and emergent convolutional filters (Extended Data Fig. 9).

To examine the intermediate LSTM representations, we visualized
the changing representational geometry across layers. We analysed
the representations of four properties: gesture category, participant
identity, band placement and gesture-evoked sEMG power (a proxy
for behavioural variability over executions of the same gesture).
Figure 4f-h shows LSTM hidden-unit activity at each layer evoked by
snippets of SEMG activity triggered on discrete-gesture events, col-
oured by one of the four aforementioned properties. By examining the
dominant principal components (PCs), we observed atrend of gesture
category becoming more separable deeper in the network as the rep-
resentations of each gesture become more tightly clustered and less
or equally sensitive to nuisance variables (participant identity, band
placement and power). Withincreasing depthin the network, gesture
category accounted for anincreasing proportion of the variance in the
representation of each layer (Fig. 4i and Methods). In summary, the
network learns tosolve this task by progressively shapingits representa-
tion of the sSEMG to be more and more invariant to nuisance variables.

Personalizing handwriting models improves
performance

While generic models allow a neuromotor interface to be used with little
tonosetup, performance can beimproved for a particular individual by
personalizing the generic model to data from that participant. Person-
alization has shown benefits to accuracy for related problemsin auto-
matic speech recognition inlanguage models* and acoustic models®
aswell as speech enhancement®. We explored personalization for the
handwriting task through the fine-tuning of all of the generic model’s
parameters using additional supervised datafromaset of 40 held-out
participants not included in the training data of the generic model.

For each participant, we held out three sessions of data (Methods)
and then trained personalized models for 300 epochs without early
stopping on varying amounts of data from their remaining sessions
(Fig. 5a).

Fine-tuning generic modelsimproved their average offline CER for all
amounts of additional data and for all numbers of pretraining partici-
pants (Fig. 5b). Even for generic models trained on 6,400 participants,
usingjust 20 min of personalizationdataresultedinal6%improvement
in the median performance (Fig. 5¢). In all cases, more personaliza-
tion dataled to further reductionsin the average per-user CER across
the personalized participants. However, across all generic models, as
the generic model was pretrained with data from more participants,
the absolute and relative improvement in CER from personalization
decreased (Fig. 5c), indicating that there are diminishing returns to
personalizing already performant generic models.

Personalizing models is therefore an alternative to expanding the
generic corpus size todecrease amodel’s CER onthe target participant
(Fig.5d). For example, for the model pretrained onthe smallest corpus
of 25 participants (or 1,900 min), personalization with 20 min of data
fromthe target participant was equivalent to training a generic model
with 14,000 min of additional data from other participants—7x as much
dataasinthe original pretraining corpus. However, as more datafrom
other participants are added, the effective enhancement of the generic
training corpus achieved through personalization diminishes. Adding
14,000 min of pretraining datais equivalent to 20 min of personaliza-
tiondatafor the 25 participant model and only about 1 min for the 200
participant model.

While personalizationimproved performance on the target partici-
pant, model performance improvements from personalization caused
the modelto overfit to the target participant and did not transfer across
participants. For the most performant generic model trained (6,527 par-
ticipants, 60.2 million parameters), personalizing on one participant
and evaluating on another participant generally had anegative impact
on performance when compared to the generic model performance
(Fig. Se). Personalization on the same participantimproved the perfor-
mance in 88% of the participants and led to arelative improvement of
8.35+2.36% (median + s.e.m. over participants), whereas datafrom one
participant used to personalize another participantimproved perfor-
manceononly 7% of such participant pairs and led to an average relative
decrease of 8.86 + 0.53% (median + s.e.m., taken across each evaluation
participant after averaging across personalized models; Methods).

Personalization disproportionately improved the performance of
poorly performing participants across all generic models (Fig. 5f). For
example, for generic models pretrained with 6,527 participants, per-
sonalization provided larger relative gains for participants with higher
generic model CER (Fig. 5f) and more moderate gains or occasional
regressions for those with already low CERs. In Extended Data Fig. 10,
we show that these regressions can be mitigated with early stopping
during fine-tuning, albeit at the cost of increased data required for
validation.

Overall, these results highlight clear trends and trade-offs for per-
sonalization, facilitating the rational design of data collection. We
expect that personalization will provide apractical solution for enhanc-
ing the average per-user performance when further scaling generic
data collection to achieve a target performance level is prohibitive.
Moreover, personalization can effectively address the long tail of users
experiencing poor performance with the generic model, as it ensures
considerable relative performance improvements for these users.

Discussion

Here, weintroduce an easily donned/doffed wrist-based neuromotor
interface capable of enabling adiverse range of computer interactions
fornovel users. We developed ascalable data-collection framework and
collected a large training corpora across diverse participants (Fig. 1).
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Fig.4|Thediscrete-gesture decoderlearnsrepresentations thatare
physiologically grounded. a, Schematic of network architecture. Convld
denotesalD convolutionallayer. The final linear readout and intermediate
normalization layers are not shown (Methods). b, Representative convolutional
filter weights (16 input channels x 21 timesteps) from the first layer of the
trained model. ¢, Example heat maps of the normalized voltage across all 16
channels for putative MUAPs recorded with the SEMG wristband (Methods and
Extended DataFig. 2) after high-pass filtering (Methods). d,e, The frequency
response of the channel with maximum power (d) and the root meansquare
(RMS) power per channel (e), both normalized to their respective peaks, for
each example convolutional filter (blue lines) and putative MUAP (orange lines)
frombandc, respectively (see also Extended DataFig.9). For comparison,

the dashed black lines show these curves calculated over an entire recording
session, averaged over tenrandomly sampled sessions from the model

We used supervised deep learning to produce generic SEMG models
(Fig. 2) that overcome issues that have long stymied generalization
in BCIs and sEMG systems. The resulting SEMG decoders enabled
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training set. For d, we used the mean temporal frequency response over all

16 SEMG-RD channels. The sharp frequency response cut offat 40 Hzis from
high-passfiltering (Methods). f-h, Principal component analysis projection of
LSTMrepresentations of 500 ms sSEMG snippets aligned withinstances of each
discrete gesture, from three participants held out fromthe training set, each
with three differentband placements. Each row shows the representation
ofeach LSTM layer. Each column shows the same data, coloured by discrete
gesture category (f), participantidentity and band placement (g) or sSEMG RMS
power (h) atthetime of the gesture. i, The proportion of total variance accounted
for by each variable, for eachlayer (n = 50 test participants; Methods). Statistical
analysis was performed using two-tailed paired sample t-tests; ***P < 0.001.
Theerrorbars (barely visible) show the 95% Student’s ¢ confidence interval
forthe mean.

continuous control, discrete input and text entry in closed-loop evalu-
ations without the need for session- or participant-specific data or
calibration (Fig. 3). A dissection of intermediate representations in
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Fig.5|Personalization of generic SEMG handwriting modelsimproves
performance. a, Schematic of the supervised handwriting decoder
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right). The green and purple font denotes correct and incorrect character
predictions, respectively.b, The mean performance (n =40 test participants)
of models pretrained on varying numbers of participants (red line) and fine-
tuned on varying amounts of personalization data for each test participant
(shades of blue). The dashed lines show power law fits (Methods). ¢, The relative
reductionin offline CER that personalization provides beyond a given generic
model, for varying amounts of pretraining participants and personalization
data. Thedashed lines show the relative improvements calculated from the
power law fitsinb.d, Therelative increasein the number of pretraining
participants that matches CER reduction from fine-tuning on varying amounts

the discrete-gesture neural-network decoder highlighted its ability
to disentangle nuisance parameters related to band placement and
behavioural style (Fig. 4). Finally, we demonstrated improvements
to handwriting decoding performance with additional personaliza-
tiondata (Fig. 5). Together, this work defines a framework for building
generic interaction models using non-invasive biological signals.

Related workin HCland BCI
The work presented here sits at the nexus between HCI and BCI.
The HCI community has placed significant emphasis on advancing
gestural input for various technology applications by deploying
machine-learning-backed solutions for differing sensing modalities
such as computer vision (for example, Kinect, Meta Quest) inertial
measurement units®?%, SEMG****°, bio-acoustic signals*, electri-
calimpedance tomography*, electromagnetic signals* and ultra-
sonic beamforming**. The most direct antecedent of our work uses
the discontinued commercial SEMG Myo armband (worn on the
forearm) for gesture detection, and wrist movement®, in datasets
with more than 600 participants**¢. However, to date, SEMG-based
approaches have typically been offline or necessitated within-session
or participant-specific calibration, limiting their real-world use*.
Our non-invasive SEMG work has intimate connections to BCI.
EEG-based BCI systems (notably, spellers) can achieve impressive
bitrates of 100-300 bits per minute*® (versus 528 bits per minute for

1 0,
Relative improvement (%) Generic character error rate (%)

of personalization data (Methods), for generic models with varying amounts
of pretraining participants. A value of lindicates doubling the number of
pretraining participants. The dashed lines show therelativeincreases calculated
fromthe powerlawfitsinb. e, Therelative reductionin offline CER (beyond the
60.2-million-parameter 6,527-participant pretrained generic model) achieved
foreachtest participant (rows) by personalizing on 20 min of datafromevery
other test participant (columns), sorted by the diagonal values. f, The relative
reductionin CER achieved for each test participant (n = 40) by fine-tuning on
20 min of personalization data, asafunction of the pretrained generic model
CER for that test participant (60.2-million-parameter model), across various
numbers of pretraining participants. Improvements from personalizationare
correlated with the CER of the pretrained generic model. We show the range of
Pearson correlation coefficients across numbers of pretraining participants and
the median Pvalue (two-sided test); the maximum Pvalue over all fits is 0.0035.

our handwriting decoder). However, EEG performance generally lags
behind other BCImodalities due to issues with signal quality, interpreta-
tionandlack of standardized hardware or software®. As aresult, efforts
have been focused on small models and relatively small datasets (for
example, <50 users®).

Intracortical BClI offers higher signal-to-noise ratio, but has been
limited to single-participant studies due to nonstationarities inrecord-
ings and over sessions**'2?°, While the field of BCl is transitioning to
neural network decoders***%2, it remains focused on solving these
calibration issues, which are largely a function of limited data. Given
that SEMG signals derive from the summed activity of motor unit firing,
itis possible that sSEMG-decoding methods such as those described
here can guide methods development for intracortical BCI systems.
Thelarge-scale approaches demonstrated here may provide direction
to the larger BCl field, such as BrainGate** or Neuralink®.

Comparison to HClI baselines

To contextualize the absolute performance of our sSEMG decoders,
we compared their performance to both common input methods and
those using similar gestures as our sEMG decoders use: a MacBook
trackpad and motion capture ground truth wrist angles for 1D continu-
ous control, aJoy-Con game controller for discrete grid navigation and
open-loop prompted handwriting for text entry. In each case, these
baseline devices outperform our sEMG decoders.
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However, we note that these baseline interfaces cannot fulfil the same
role as an always-available SEMG wristband, as they require cumber-
some equipment: tracking wrist angles requires multiple calibrated
cameras, using alaptop trackpad or a gaming controller encumbers
the hand, and handwriting requires a pen, paper and a surface. For
tasks in which constant availability is important (such as on-the-go
scenarios), the reductionsin current decoder performance may there-
fore be acceptable.

Regardless, we expect further improvements in sEMG decoding
through continued development of user familiarity/skill over time,
improved models (including through personalization), post-processing
and hardware innovations for superior sensing. We also note that the
gestures used with our sSEMG decoders are novel, and we found that
coaching typicallyimproved sEMG decoder performance (Methods).
We expect user proficiency to grow with increased familiarity with the
SEMG-RD and underlying gestures.

Future directions

Our sEMG decoder enables direct intentional motor signal detection
from the muscle, thereby opening directions in novel and accessible
computer interactions. For example, such a decoder could be used to
directly detect an intended gesture’s force, which is generally unob-
servable with existing camera or joystick controls. While we dem-
onstrated accurate, fully continuous control over only one degree
of freedom, it is also likely that joint control of multiple degrees of
freedomis achievable through additional, separate biomimetic map-
pings such as adding ulnar/radial deviation of the wrist for vertical
control. Moreover, the sensitivity of SEMG to detect signals as sub-
tle as putative individual MUAPs (Fig. 1b and Extended Data Fig. 2)
enables the creation of extremely low-effort controls—an important
innovation with a potential impact for people with a diverse range of
motor abilities or ergonomic requirements. Explorations of inter-
actions in neuromotor signal space—as opposed to gesture space—
may enable entirely new forms of control, for example, by exploring
the limits of novel muscle synergies or interaction schemes that
directly depend on individual motor unit recruitment or firing-rate
control.

As aresearch platform, the sSEMG-RD and associated software tool-
ing could enable study of the effects of neurofeedback on motor unit
activity for novel human-machine interactions®*, the learning of novel
motor skills” or the limits and mechanisms of motor unit control*,

Finally, in the clinic, the ability to design interactions that require
only minimal muscular activity, rather than performance of a specific
movement, could enable viable interaction schemes for those with
reduced mobility, muscle weakness or missing effectors entirely*’,
as well as the development of effective closed-loop neurorehabili-
tation paradigms®. It is unclear whether the generalized models
developed here and trained on able-bodied participants will be able
to generalize to clinical populations, although early work appears
promising®. Personalization can be applied selectively to users for
whom the generic model works insufficiently well due to differences
in anatomy, physiology or behaviour. However, all of these new
applications will be facilitated by continued improvements in the
sensing performance of future SEMG devices, increasingly diverse
datasets covering populations with motor disabilities, and potentially
combining with other signals recorded at the wrist, such as IMU or
biosignals.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-025-09255-w.
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Methods

Hardware

sEMG-RD. The sEMG devices consisted of two primary subcompo-
nents: a digital compute capsule and an analogue wristband (Exten-
ded Data Fig. 1). The digital compute capsule comprised the battery,
antenna for Bluetooth communication and a printed circuit board that
contained amicrocontroller, an analogue-to-digital converterand an
inertial measurement unit. The analogue wristband comprised discrete
links that each housed a multilayer rigid printed circuit board that
contained the low-noise analogue front-end circuits and gold-plated
electrodes. We manufactured the sSEMG-RD device in four sizes. The
analogue frontend applied 20-Hz high-pass and 850-Hz low-pass filters
to the data.

These printed circuitboards wereinserted into Nylon12 PA3D printed
housings and then strung together with a multilayer flexible printed
circuitboard along with astrain-relieving fabric. An elastic nylon cord
was routed continuously between the links and was tied together at
the wristband gap to form a clasp and tensioning mechanism. Finally,
the digital compute capsule was connected to the analogue wristband
through aconnector on the flexible printed circuit board and fastened
together with screws for mechanical stability. The device underwenta
biocompatibility testing process to ensure its safety. The band is easily
donned at the wrist with the only requirements being that the compute
capsuleis onthe dorsal side and the gap is near the ulnabone.

Data collection

MRl scan. To visualize the position of the SEMG-RD’s electrodes relative
to wristanatomy, we collected a high-resolution anatomical MRIscan
(Siemens Magnetom Verio 3T) from a consenting participant’s right
forearm. We collected axial scans along the forearm, beginning from
justdistal tothe wrist and endingjust distal to the elbow. The scan was
collected pursuant to an IRB governed study protocol conducted by
Imperial College London.

Participant experience. All data collection was done at either Meta’s
internal data-collection facilities or at third-party vendor sites. Study
recruitment and participant onboarding was performed accordingto
protocol(s) approved by an external IRB (Advarra). All studies began
by providing the participants with information about the study proto-
coland asking them to review and sign an IRB-reviewed consent form
before beginning the study. The participants were provided with the
opportunity to ask questions before their participation and were able
to discontinue their participation at any time. On-site research admin-
istrators monitored participants during the study protocol(s) toensure
participant well-being. The participants were financially compensated
for their time participating in the study.

Collection at scale. The participants visited data-collection and labo-
ratory facilities to perform the study protocols. On a given day, there
were up to 300 participants who partookinastudy. Once a participant
was in the facility, measurements of the wrist and hand were taken,
including the forearm circumference and wrist circumference. Next,
we fitted them with an appropriately sized band to collect SEMG data;
small, 130-148 mm; medium, 148-169 mm; large, 169-193 mm; and
extralarge,193-220 mm.

All of the participants received general coaching in the form of a
studyintroduction, in-person demonstration of the correct andincor-
rect movements, and general supervision of participant compliance
by research assistants. Study sessions lasted around 2-3 h (including
rests and briefing). All responses and information provided during the
study were collected and stored using de-identification technique(s)
inasecure database.

While all collection occurred in controlled environments, train-
ing and testing datasets demonstrated large variance along band

placement, sweating, skin condition, demographic diversity, local
climate and other axes.

Prompted study design. All of our tasks were framed as supervised
machinelearning problems. For the handwriting and discrete-gesture
recognition tasks, we relied on prompting to obtain approximate
ground truth for our data, rather than direct instrumentation using
physical sensors. While prompt labels depend on participant compli-
ance, we found that instrumentation imposed constraints on what
couldbeexplored, as dedicated sensors need to be built for each indi-
vidual modelling task. Furthermore, the use of sensors such as gloves
or pressure sensitive pads limited the ecological validity of the signal,
as physical sensors canrestrict the movement range, poses and condi-
tions examined.

For the wrist task, we used motion capture to continuously track the
participant’s wrist angle (see below). In this case, we used a mixture of
open-loop prompting (as for the discrete-gesture and handwriting
tasks) and closed-loop interactions, in which participants performed
cursor control tasks in which the cursor’s position was determined
from their wrist angles tracked in real time (see below).

Training and evaluation protocols were implemented in a custom,
internal software framework that took advantage of the abilities of Lab.
js,anestablished open-source web-based study builder®’. This frame-
work orchestrated both the presentation of task-specific prompter
applications and the recording of annotations from these applications.
The framework was developed using TypeScript and the task-specific
prompters were built on the React framework.

We created the overview figure of our data-collection approachin
Fig.1lausing a photographtaken at our data-collection facility as a ref-
erence, whichwas thentraced and edited in Procreate, with additional
colour and graphical elements added in Adobe Photoshop.

Real-time data-collection system. Data collection for our studies was
performed using aninternal framework for real-time data processing
that supports data collection, offline model training, and benchmark-
ing and online evaluation. At its core, the framework offers an engine
for defining and scheduling a data-processing graph. Onthe periphery,
it provides well-defined APIs for real-time performance monitoring
andinteraction with consumer applications (for example, prompting
software, applications for stream visualization).

For data collection, our internal platform served as the host for
recording real-time signals and annotations to a standardized data
format (that is, HDF5). For offline model training and benchmarking,
our internal platform provides an API for batch processing of data
corpora. This helps to generate featurized data from the recorded
raw-signals and apply modelinference for offline evaluation. To ensure
online and offline parity, the internal platform also supports running
the same sequence of processing steps on real-time signals for online
evaluation.

Offline training data corpora

Wrist corpus. The wrist decoder training corpus included simultane-
ousrecordings of SEMG and ground truth flexion-extension wrist angle
(measured with motion capture) from 162 participants, 96 of whom
recorded 2 sessions (both sessions from each of these participants were
included in the same train or test split to which they were assigned).
To track flexion-extension and ulnar-radial deviation wrist angles, we
placed twolight (16 g) 3D printed rigid bodies on the back of the hand
andonthedigital compute capsule of the SEMG-RD. Each of these rigid
bodies had three retroreflective markers attached, which together
defined a3D planethat wastrackedin3Dinreal time (60 Hz) with<1 mm
resolution using 18-30 PrimeX 13 W cameras (OptiTrack). We used
the relative orientation of these two planes to calculate the flexion-
extension and ulnar-radial deviation wrist angles. Only the flexion-
extension angle was used for training and evaluating wrist decoders.



Eachsession consisted of an open-loop stage, a calibration stage and
aclosed-loop stage, inwhich the participants controlled a cursor that
determined its position from these two wrist angles. Throughout all
stages, the participants were instructed to keep their hand in a ‘laser
pointer’ posture, with aloose fist in front of the body, thumb on top
and elbow at approximately 90°.

Inthe open-loop stage, the participants performed centre-out wrist
deflections in eight possible directions (four cardinal directions and
four intercardinal directions) following a visual prompt (Extended
Data Fig. 4a), for a total of 40 repetitions (5 per direction) in a pseu-
dorandomized order.

Inthe closed-loop stage, the participants were asked to perform two
taskstothebest of their abilities: a cursor-to-target task and asmooth
pursuittask. In both tasks, the flexion-extension and radial-ulnar devia-
tionwrist angles were normalized by their range of motion (measured
ina calibration stage), centred by the neutral position (measured by
prompting the user to hold a neutral wrist angle), and then respec-
tively mapped to the horizontal and vertical position of a cursor on
the screen, in real-time (60 Hz). This mapping consisted of simply
scaling the (normalized and centred) wrist angles by a constant gain,
g.. Toencourage both small and large wrist movements, two different
gainswere used: g, = 2.0 pixels per normalized radian (half of range of
motion) and g, = 4.0 pixels per normalized radian (quarter of range of
motion). Gains larger than 1.0 were required for every user to be able
toreach the corners of the workspace.

Inthe cursor-to-target task, the participants were prompted to move
the cursortooneof the equally sized rectangular targets presented on
the screen. During each trial, one of the targets was highlighted, and
the participant was instructed to move the cursor towards that target.
The target was acquired when the cursor remained within the target
for 500 ms. Once atarget was acquired, the rectangular target disap-
peared, and one of the remaining targets was prompted, initiating the
nexttrial,inarandomsequence. Once all of the targets were acquired,
anew set of targets was presented. Three different target configura-
tions were used: horizontal (10 targets presented side-by-side along
the horizontal axis, with the cursor confined to this axis; Extended Data
Fig.7a), vertical (10 targets presented one on top of the other along the
vertical axis, with the cursor confined to this axis) and 2D (25 targets
presentedin a5 x 5square grid; Extended Data Fig. 4b). These three
configurations were presented in this orderinablock structure. In the
horizontal target configuration block, the participants had to acquire
all 10 horizontal targets, and repeat this 10 times, for a total of 100
trials. Thefirst Srepetitions (50 trials) were performed with the lower
cursor gain and the last 5 repetitions (50 trials) were performed with
thehigher cursor gain. The vertical target configuration block followed
the same structure, and the 2D target configuration block consisted
of 4 repetitions (for a total of 100 trials), with the first 2 performed
with the lower cursor gain and the last 2 with the higher cursor gain.

Finally, in the smooth pursuit task, the participants were instructed
to move the cursor to follow a moving target on the screen as closely
as possible (Extended Data Fig. 4c). Eachtrial consisted of al-minran-
dom target trajectory, generated by taking a random combination of
0.1Hzto 0.25 Hz sinusoids (with randomly sampled phases) along the
horizontal and vertical axes. The participants performed a total of four
trials, the first two of which were performed with the lower cursor gain
and the last two with the higher cursor gain.

Only datawithinthese task stages (open-loop, cursor-to-target and
smooth pursuit) were used for model training and offline evaluation.
All dataoutside of these stages were excluded from the model training
and test sets. We also excluded datafrom the cursor-to-target task with
the vertical target configuration, as the flexion-extension wrist angle
was mostly constant during this task.

Discrete-gesture corpus. The discrete-gesture training corpus was
composed of datafrom 4,900 participants. As noted in the main text,

there were nine prompted gestures:index and middle finger presses and
releases, thumb tap and thumb left/right/up/down swipes. Each session
consisted of stages in which combinations of gestures were promp-
ted at specific times (Extended Data Fig. 4d,e). These combinations
usually included the full set of trained gestures but, insome stages, were
restricted to specific subsets (for example, pinches only, thumb swipes
only). During data collection for these stages, the participants were
askedto hold their hand and armin one of arange of postures (handin
front, palm facingin/out/up, handinlap, armhanging by side, forearm
pronated inwards) or to translate/rotate their arms while completing
gestures. Inaround 10% of stages, instead of prompting specific timing,
the participants were asked to complete sequences of 3-5 gestures at
their own pace. About one-third of the training corpus was composed of
arange of null datain which participants were either asked to generate
specifically timed null gestures (such as snaps, flicks) or to engage in
more loosely prompted longer-form null behaviours (such as typing
on akeyboard). On average, gestures occur in around 6% of samples.
The gestures were unevenly distributed, with thumb gestures being
more frequent. Given that an event has occurred, individual gesture
probabilities range from around 9% to 13%. When considering the entire
datasetincluding null cases, the probability of correctly guessing any
specific gesture falls below 1%.

Handwriting corpus. The handwriting recognition corpus comprised
sEMG recordings from a total of 6,627 participants. The data were col-
lectedinshort blocks, during which the participants were prompted
to write a series of randomly selected items, including letters, num-
bers, words, random alphanumeric strings or phrases (Extended Data
Fig.4f,g). The participants were prompted with spacesinserted both
implicitly and explicitly between words. In implicit space prompt-
ing, the participants advance from one word to the next naturally as
with pen and paper writing. In explicit space prompting, prompts
with a right dash character would be presented after each word, in-
structing the participants to perform a right swipe with their index
finger that would later be remapped to a space. This can constrain the
modelling problem, avoiding the need for the model to infer spaces
implicitly by relying on factors such as the linguistic context of the
text being written. We sampled phrases from a dump of Simple Eng-
lish Wikipedia inJune of 2017, the Google Schema-guided Dialogue
Dataset®® and the Reddit corpus from ConvoKit®, after filtering to
remove offensive words and phrases. Each participant contributed
varying amounts of data, but approximately 1 h and 15 min each on
average. Each block was performed in one of three randomly cho-
sen postures: seated writing on a surface, seated writing on their
leg as the surface or standing writing on their leg. Note that we did
not have ground truth information about the fidelity with which
participants wrote these prompts but, for a subset of participants,
handwriting was performed with a Sensel Morph touch surface de-
vice. Visual examinations of a subset of the Sensel recordings sug-
gested that approximately 98% of prompted characters were executed
successfully.

SEMG preprocessing

Putative motor unit action potential waveform estimation. Figure 1b
shows the spatiotemporal waveforms of MUAPs evoked by subtle con-
tractions of the thumb and pinky extensors in one participant. For
each digit, the participant selected the sSEMG channel with maximum
variance during sustained contractions based on visual inspection of
theraw signals. Down-selecting to one channel enabled greater acuity
for visual biofeedback during data collection. Subsequently, the par-
ticipant was prompted to alternate between resting and performing
sustained contractions of the chosen digit for three repetitions while
receiving visual feedback about the raw SEMG signal on the selected
channel. Each rest and movement prompt was 10 s long with 1sinter-
prompt intervals. The participant used the visual feedback on the
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selected channel to titrate the amount of generated force torecruitas
few motor units as possible with each contraction®*®,

We estimated the MUAP spatiotemporal waveforms W (W e R,
where Listhe number of samples (40) and Cis the number of channels
(16)) for each digit using a simple offline spike-detection algorithm.
ThesEMG traces werefirst preprocessed by filtering withasecond-order
Savitzky-Golay differentiator filter with awidth of 2.5 ms (5samples).
The filtered SEMG was rectified toimprove the alignment of detected
MUAPs, averaged over channels, then smoothed with a2.5 ms Gaussian
filter to obtainalD sEMG envelope. Spikes were detected by peak find-
ing on the SEMG envelope using scipy.signal.find_peaks with promi-
nence=0.5(ref. 66). MUAPs were extracted using a20-ms-long window
across all SEMG channels, centred on each peak. The waveforms shown
inFig.1bwere obtained from the selected channel for thumb extension
(12; blue) and pinky extension (14; pink) using all MUAPs detected
during the second prompted movement period; no attempt was made
to cluster MUAPs into different units. For visualization, the opacity of
each trace was scaled as 1/(1 + |a;,— median(a)|), where a; is the peak-
to-peak amplitude of the ith MUAP and a is the amplitudes of all
detected MUAPs for each contraction.

MPF features. The wrist and handwriting generic SEMG decoders used
custom features extracted from the raw sEMG; we refer to this feature
setas MPF features. To obtain these features, we first rescaled the SEMG
by 2.46 x107%, to normalize the s.d. of the noise to 1.0 (this value was
determined empirically). Motivated by the need to remove motion
artifacts®”, we then applied a40 Hz high-pass filter (fourth-order But-
terworth) tothe sEMGrecordings sampled at 2 kHz. We then extracted
the squared magnitude of the cross-spectral density with a rolling
window of TSEMG samples and a stride of 40 samples (20 ms). We used
T=200 samples (100 ms) for the wrist decoder and T=160 samples
(80 ms) for the handwriting decoder. The cross-spectral density was
chosento preserve cross-channel relationshipsinthe spectral domain.
We estimated the magnitude of cross-spectral density by first taking
the outer product (over channels) of the discrete Fourier transform of
the signal (64 sample (32 ms), stride of 10) with its complex conjugate.
We then binned the result into 6 frequency bins (0-62.5, 62.5-125,
125-250,250-375,375-687.5,687.5-1,000 Hz). We summed this product
over each frequency bin, and took the square of the absolute value of
the sum over frequencies. This produced a set of 6 symmetric and posi-
tive definite 16 x 16 square matrices that update every 40 samples, for
an output frequency of 50 Hz. Building on robust results in the EEG
space for this class of features, we applied a log-matrix operation on
each of these matrices®, Finally, the diagonal and the first three off-
diagonals (rolled over the matrix edge to account for the band being
circular) were preserved and half-vectorized for each matrix, and
then concatenated across the 6 frequency bins, producing a single
384 (6 x 4 x 16) dimensional vector for each 80 ms window. Animple-
mentation for both the cross spectral density estimation and taking
the matrix logarithm can be foundin the pyRiemann Python toolbox®.

Discrete-gesture time alignment. As all discrete-gesture data col-
lection was performed by prompting participants, we had access to
only approximate timing of the gesture execution (that is, the time at
which the participant was prompted to perform the gesture). However,
training sSEMG decoding models to infer when the participant performs
agesturerequired more precise alignment of labels with the signal to
be effective. While a task like handwriting used an alignment free loss
(thatis, connectionist temporal classification, CTC) and would be app-
licable in this task as well, forced-alignment enabled us to gain much
finer control over the latency of the detections produced by our models,
whichwas critical for practical use of discrete gestures as controlinputs.

When gestures were wellisolated, thatis, when the intergestureinter-
val was greater than the uncertainty of the timing, existing solutions
fromtheliterature could bereadily deployed on sEMG data, leading to

robust inference of gesture timing’®. However, realistic data collection
involved rapid sequence of gestures in close succession, which made
identification of timing of individual gestures a challenging problem
andrequired adedicated solution. We therefore developed anapproach
toinfer the precise timing of the gestures.

Our approach was to infer the timing of all gestures in a sequence,
defined as a series of consecutive gestures for which uncertainty
bounds overlap. We did this by searching for the sequence of gesture
timings that best explained the observed data according to a genera-
tive model of our MPF features.

First, for the purposes of this timing adjustment stage, we defined
the generative model for a set of K gesture instances as the sum of
gesture-specific templates centred at corresponding event times, ¢,,
with additive noise:

x(6)= Zlk( o P(t=t) +n(t)

where x(t) is our features over time, ¢,(¢) is a prototypical spatiotem-
poral waveform for gesture of index k (thatis, the gesture template for
the class of gesture corresponding to event k) and n(¢) is a noise term.
We note that this generative model is only valid for ballistic gesture
execution and power-based features. We also note that templates are
shared across executions of the same gesture type, but specifictoeach
participant and band placement.

We define the generative inference as the joint optimization of ges-
ture templates and times at which each gesture occurred. For each
recording, we solved this through aniterative algorithm: we first esti-
mated the templates based on prompted times, then inferred times-
tamps of the gesture sequence, and repeated with new inferred event
times until convergence (that is, when the timestamp updates across
iterations of the EM algorithm were smaller than a tolerance value).

Templates were estimated by an EMG analogue of the regression-
based estimator of the event-related potential (rERP), to disentangle
overlapping contributions of gestures performed inafast sequence’.
Timings were obtained by the following optimization problem:

ming o | KO-, | ¢(-c))dt

We optimized this numerically throughabeam searchalgorithm, sub-
jecttoadditional ad hoc constraints that bounded how far the adjusted
times could deviate from the prompted times based on priors from the
data-collection protocol.

Direct application of the above procedure produced timestamps that
were referenced to the session template, and there was an indetermi-
nacy as to the timing offset within the gesture, which can vary due to
initial conditions. To better standardize alignment of template timing
across individuals, we performed a global recentring step at the end
of timestamp estimation. Specifically, we found the time of maximal
correlationbetween the session template (that s, for aparticular par-
ticipant) and a global template (grand average of all templates across
participants).

Gesture-trigged sEMG activations. To inspect the structure of
SsEMG activations across gestures and participants (Fig. 2b), we used
EMG covariance features. Specifically, we concatenated the 0-,1-and
2-diagonals of the sSEMG covariance matrix over a300 ms window cen-
tred on each gesture, yielding a48 x 60-dimensional feature space. To
produce the embeddings, we ran ¢-SNE in two dimensions with perplex-
ity 35onthe flattened feature space.

Single-participant discrete-gesture modelling
Training details. To train the single-participant models for the discrete-
gesture classification task, we selected 100 participants who had



completed at least five sessions of data collection and selected five
of those sessions. We then randomly picked four of these sessions for
training and the remaining held-out session for testing. From these four
sessions we randomly created nested subsets of two, three and all four
sessionsto trainthree different models for each participant. Given the
limited amount of training data per model, we used the MPF features
and asmall neural network as described below.

Architecture. The single-participant discrete-gesture model took as
input the MPF features. The network architecture consisted of (a) one
fully-connected (FC) layer with Leaky ReLU activation function followed
by (b) cascaded time-depth separable (TDS) blocks’across time scales
and (c) threemore FClayersto produce alogit value for each of the nine
discrete gesturesto be predicted. For (b), we used two TDS blocks per
time-scale: at each scale s, an AveragePool layer with kernel size 2° was
applied tothe output of (a) and fed toa TDS block with dilation 2°. The
output was then added to the output of scale s - 1 (if it existed) and
passed through another TDS block with dilation 2°as the output of scale
stobeusedbythe nextscales +1(if it exists) or subsequent layers. We
used 6scales(s=0, ..., 5),and the feature dimension was set to 256 for
all TDS blocks and all but the very last FC layer.

Optimization. We used the standard Adam optimizer with the following
learning rate schedule: the learning rate increased linearly from O to
1x107% over a five-epoch warm-up phase, then underwent a one-time
decayto5 x 10™*after epoch 25, and remained constant thereafter. Each
model was trained for 300 epochs to avoid under- or over-fitting for
single-user models, based on previous empirical observations. Abinary
cross-entropy loss was used as with the generic model.

Offline evaluation. To evaluate the performance of eachmodel on the
given held-out sessions, we followed the same procedure described
under the ‘Discrete gestures’ part of the ‘Generic sSEMG decoder model-
ling’ section. Inbrief, we triggered gesture detections on the correspond-
ingmodel probability crossing a threshold of 0.35, filtered all detected
gestures through debouncing and state machinefiltering, and then used
the Needleman-Wunsch algorithm to match each ground-truth label
with a corresponding model prediction. We then quantified perfor-
mance using the FNR, defined as the proportion of ground-truth labels
for which either the matched model predictionis incorrect or there is
no matched model prediction. We calculated the FNR independently
for each gesture and then took the average over the nine gestures. We
used FNRrather than CLER (the metric used for generic models) owing
tothevery smallnumber of events detected for some poorly perform-
ing models, which lead to a large number of labels without a matched
model prediction, which are ignored by the CLER metric.

Generic SEMG decoder modelling

Related deep learning architectures and approaches. The three
HClI tasks described here—continuous wrist angle prediction, dis-
crete action recognition and the transcription of handwriting into
characters—represent related but distinct time-series modelling and
recognition tasks. Machine learning and, specifically, deep learning
approaches have become extremely popular solutions to these prob-
lems, including convolutional models™, recurrent neural networks™
and streaming transformers>’.

As an example of the similarity between our tasks and established
machinelearning problems, consider the relationship between hand-
writing recognition fromsEMG and automatic speech recognition (ASR)
fromaudio waveforms. Both tasks map continuous waveform signals
(with dimensionality equal to the number of microphones or sSEMG
channels) at a fixed sample rate, to a sequence of tokens (phonemes
or words for ASR, characters for our sSEMG-RD). Components of our
modelling pipeline have analoguesin ASR, including feature extraction,
data augmentation, model architecture, loss function, decoding and

language modelling. As noted below, each of these modelling pipeline
components required substantial domain-specific modification for
sEMG models.

For feature extraction, ASR typically uses log mel filterbanks; we
used our analogous MPF features (see the section ‘MPF features’), as
discussed below. For data augmentation, we used the ASR technique
of SpecAugment”, which applies time- and frequency-aligned masks
to these spectral features during training. A popular model architec-
ture for ASR is the Conformer®, which provides the advantages of
attention-based processing in a form that is compatible with causal
time-series modelling. We found that this method worked well for
SEMG-based handwriting recognition as well. A popular loss function
for ASRis CTC, which allows neural networks to be trained from wave-
forms and their textual transcriptions, without the need for a precise
temporal alignment. As we similarly had pairs of sSEMG recordings and
transcriptions without precise temporal alignment, we also used CTC to
train our models. When decoding models at test time, ASR typically uses
abeam search” to approximate the full forward-backward algorithm
lattice” while still incorporating predictions from a language model,
biasing decoding towards more likely character and word sequences.
Experimentation presented in this work used ‘greedy’ CTC decoding,
although beam decoding with language modelling in our decoders
would have been possible”.

Inaddition to ASR, we drew from an established literature of machine
learning approaches for EEG and EMG analysis that explores different
signal featurizations and both classical and deep learning architec-
tures. Inthe case of EMG, more expressive raw sEMG or time-frequency
decomposed features (for example, Fourier or Wavelet features) have
been shown to achieve stronger performance than coarser temporal
statistics like RMS power8°®!, In the case of EEG, MPF features®® have
proven to be a simple and robust featurization achieving state of the
art, or near state of the art, performance for many tasks'. In agreement
with theliterature, we find that MPF features offer clear advantages on
the wrist classification task over RMS power (Extended DataFig. 6). As
MPF features are computed across a sliding window of 100 ms, whichis
comparableto thetemporal extent of our discrete gestures, we chose
toinstead use raw EMG features for the discrete-gestures task.

Both EMG interfaces and BCIs have been approached with a variety
of different learning architectures in the literature, including both
classical machine learning approaches (for example, random forest,
supportvector machine) and deep-learning-based approaches®. While
the choice of modelling approachis problem dependent, in general, for
large datasets, deep learning approaches outperform more classical
machine learning techniques®.

Wrist

Totrain wrist decoders, we trained a neural network to predictinstan-
taneous flexion-extension wrist angle velocities measured by motion
capture (see the ‘Wrist corpus’ section above). We consistently held
outafixed set of 10 participants for validation and 22 participants for
testing, and varied the number of training participants from 20 to130.

Architecture. The wrist decoder network architecture took asinput our
custom MPF features of the sSEMG signal. These features were passed
througharotational-invariance module, which comprised a fully con-
nected layer with 512 hidden units and LeakyReLU activation. This
module was applied to sSEMG channels that were discretely rotated by
+1, 0 and -1 channels, and the resulting outputs were then averaged
over the rotation process. This output was then passed through two
LSTM layers of 512 hidden units each, a LeakyReLU activation, and a
final linear layer producing a1D output. For the smaller network archi-
tecture reported in Fig. 2e, we used only 16 hidden units in the initial
MLP and LSTM, and only1rather than2 LSTM layers. A forward pass of
the larger architecture required 1.2 million floating point operations
(FLOPs) per output sample.
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Optimization. We trained each network with the Adam optimizer for
amaximum of 300 epochs, with a learning rate of 1 x 10, We used an
L1lossfunctionand abatch size 0of1,024, with each sampleinthebatch
consisting of 4 (contiguous) seconds of recordings. We evaluated the
test performance of the training checkpoint with the lowest L11oss of
the validation data. Training the largest model on the largest training
set took 36 s per epoch, for atotal of 3 hon asingle NVIDIA A10G Ten-
sor Core GPU.

Discrete gestures

To train discrete-gesture models, we segmented training data from
participants into groups of 40, 80, 160, 320, 640, 1,280, 2,800 and
4,800 participants. For each group, we tested the generalization per-
formance of models on offline data from the same set of 100 held-out
participants. For validation, another set of held-out users was used;
we used arandom set of 16 users for the training groups of size 40 and
80. For larger groups, 10% of the training users were used for valida-
tion. Each dataset used in training, validation and testing contained
recordings from only a single session per participant. For the larg-
est model, denoted with a separate marker in Fig. 2f, we used 4,800
training participants and we included multiple sessions of data when
available (that is, many participants collected multiple repeats of the
open-loop training protocol). This last point was not included in the
fitting procedure for the scaling law, but this model was used in the
closed-loop evaluations.

Discrete-gesture labels were obtained from the gesture prompts by
first aligning them to the EMG using the algorithm described above
in the ‘Discrete-gesture time alignment’ section. To facilitate gesture
detection, we then shifted these labels forward in time by 100 ms to
provide the model witha1l00 mslonger context of SEMG signal before
making a prediction. These shifted labels were used both in model
training and for offline evaluation.

For offline evaluation, we first converted the logits outputted by
the model into discrete-gesture predictions. Gesture predictions
were triggered whenever the probability for any gesture went above
the threshold value, set to 0.35 (based on a hyperparameter search
using the validation set). These predictions were then filtered using
three steps: debouncing, event matching and state-machine filter-
ing.Indebouncing, whenever a gesture was predicted within 50 ms of
another gesture, the second gesture was removed. The sole exception
was release events, which were not debounced when preceded by a
different gesture, to ensure the inclusion of quick index/middle taps
(that s, a press immediately followed by a release). In event match-
ing, we matched ground-truth labels to model predictions using the
Needleman-Wunsch algorithm for sequence alignment®. We included
the constraint that ground-truth labels and model predictions can
only be matched if their offset falls within a tolerance window of =50
to +250 ms (centred at the aforementioned +100 ms label shift). This
provided us with asequence of ground-truth events and a correspond-
ingsequence of matching predicted events. The predicted events were
then further processed with astate-machinefilter, inwhich predicted
release gestures were removed if the previous gesture in the ground
truth sequence was not the expected press gesture (thatis, index press
forindexrelease and middle press for middle release). State-machine
filtering was done to avoid penalizing the model for mistaken release
predictions that would not influence online performance, where
releases were only used for index/middle holds, which first had to be
triggered by apress (see the ‘Discrete gestures’ part of the ‘Online evalu-
ation’ section below). Following this state-machine filtering step, we
performed event matching again to match the ground truth gestures
with the state-machine-filtered model predictions.

Giventhissequence of ground truth gestures and matching predic-
tions, we evaluated model performance with the classification error
rate (CLER), defined as the proportion of ground-truth labels for which
the matching prediction is incorrect. In calculating this metric, we

ignored any ground-truth labels without a matching model prediction
toreduce sensitivity to false negatives that can occur from participant
noncompliance and for consistency with online metrics for which no
prompt-based ground truthis available. We calculated CLER indepen-
dently for each gesture and then aggregated these into a single value
by taking the average of the nine per-gesture CLERs.

Architecture. The discrete-gesture network architecture took asinput
rescaled and high-pass filtered sEMG signal. SEMG was rescaled by
2.46 x107¢ filtered through a 40 Hz high-pass filter (fourth-order But-
terworth, as was done for the MPF features used for the other models;
see the ‘MPF features’ section) and then passed through a sigmoidal
function (f(x) =x/(u + |x|)) toreduce the effect of outliers, with = 32
(found to be performant through a hyperparameter sweep). The net-
work architecture consisted of a 1D convolutional layer (with a stride
of 10 to downsample the input from 2 kHz to 200 Hz), followed by a
dropout layer with dropout probability 0.1, alayer norm layer, three
LSTM layers with dropout probability 0.1in between them, a second
layer normlayer andafinal linear readout layer with a sigmoid nonlin-
earity on top to predict the probability of each of the nine gestures
(index/middle finger press and release, thumb tap and thumb left/
right/up/down swipe). For the smaller model, the dimensions of the
convolutional layer and the number of hidden units in the recurrent
blocks were set to 128. For the larger model, they were set to 512. A
forward pass of the larger architecture required 353,300 FLOPs per
outputsample.

Optimization. Networks were trained using the Adam optimizer. To
mitigate divergence during training, gradient clipping was applied
throughout. We additionally used alearning rate scheduler that linearly
ramped up the learning rate from 5 x 107 to 5 x 10~ over the first S epo-
chs, and then decayed it by a factor of 0.5 every 25 epochs thereafter.
For the smaller model, a larger learning rate was used: the maximum
learning rate was ramped up from10~¢to 10 and then decayed in the
same way. For allmodels, we used a batch size of 512. Training was done
using a multilabel binary cross-entropy loss, whereby each gesture is
independently evaluated against its own absence. Each model was
trained for afixed wall clock duration equal to the timeit took the larg-
estmodel toreach convergence. Final checkpoints were selected based
on the model that yielded the highest validation score, defined as a
proxy of the CLER metric that can be run online. This proxy CLER is
obtained by computing the argmax of the model output probabilities
and comparing themagainst atemporal window (50 ms before-150 ms
after) around each ground truth event. Training the largest model on
the largest training set took 10 min per epoch, for atotal of 12 honan
NVIDIA A10G Tensor Core GPU.

Handwriting

To train handwriting models, we used the CTC loss as described pre-
viously’. Notably, we used characters instead of phonemes for this
purpose. The characters predicted included all lower-case letters [a-z],
numbers [0-9], punctuation marks [,.?''], and four gestures for text
input control [space,dash,backspace,pinch]. When spaces were explic-
itly prompted with aright dash during datacollection to performaright
index swipe gesture, model targets were both a <dash>and <space>,
for example, “hello<dash><space>there”. In prompts where spaces
were implicitly prompted, the model target was simply <space>, that
is, “hello<space>there”. Moreover, we integrated a greedy implemen-
tation of the FastEmit regularization technique®*. This regularization
approach effectively reduced the streaming latency of our models by
penalizing sequences of ‘blank’ outputs.

Nine training corpora were generated, each containing a vary-
ing number of participants ranging from 25 to 6,527 in a geometric
sequence (excluding the last point). Each corpus was a superset of
the previous corpus’s participants, ensuring that participants in



the 25-participant corpus are also present in the 50-participant and
100-participant corpora, and so on. The participants were uniformly
sampled without replacement from the entire corpus, preserving the
distribution of data quantity per participant found in the full corpus.
We used 100 held-out participants to create our evaluation corpora,
which remained constant throughout our investigation. The validation
corpus comprised data from 50 participants and was used for hyperpa-
rameter selection and early stopping during model training. The test
corpus contained data from 50 participants and served for the final
evaluation of each handwriting model’s generalization performance.
We also used asubset of these 50 test participants for our personaliza-
tion corpus (see the ‘Personalization experiments’ section).

Two primary data-augmentation strategies were used. The first
involved SpecAugment”, which applies time- and frequency-aligned
masks to spectral features during training. The second strategy
involved rotational augmentation, randomly rotating all channels by
either -1, 0 or +1 position uniformly. This meant that channel signals
were shifted one channel to the left, remained unshifted or were all
shifted to the right, respectively.

For evaluating the model’s offline performance for each user, we
used the WPM and CER aggregated over all prompts collected for that
user, for instance:

2, edit_distance;
CER=c—————,
2, prompt_length,
where edit_distance;is the Levenshtein distance between the prompt
and the model output for prompt i and prompt_length; is the length
of the prompt.

Architecture. The handwriting network architecture took our cus-
tom MPF features of the SEMG signal as input. These features were
passed through arotational-invariance module, exactly as described
for the wrist decoder above. The channel rotation in this module was
performed in addition to the channel rotation data augmentation
described above. The signal was then passed through a conformer°
architecture consisting of 15layers. Each layer encompassed 4 attention
heads and used a time-convolutional kernel with a size of 8. Through-
out the conformer layer convolutional blocks, a stride of 1 was used,
except forlayers 5and 10, where the stride was set to 2. To ensure that
the model functioned in a streaming manner, a modified conformer
architecture was used. This adaptation is similar to the approach out-
lined previously®, but with adjustments to ensure causality. Specifi-
cally, self-attention is solely applied to a fixed local window situated
directly before the current time step. In our networks, the size of this
attention window was 16 for the initial 10 conformer layers and then
decreased to 8 for the subsequent 5 layers. Finally, the outputs from
the conformer blocks were subjected to average pooling across chan-
nels. They were then passed through alinear layer, which projected the
output to match the size of the character dictionary. A softmax function
was applied thereafter. During decoding, the model’s best estimate at
each output time step was greedily followed, and repeating characters
inthe prediction were removed to reduce the output.

In our investigation, we explored various trainable model param-
eter counts. We manipulated the parameter count of our models by
adjusting the feed-forward dimension and input dimension within our
conformer architecture. Importantly, we upheld aconsistent1:2 ratio
between the input dimension and the feed-forward dimension in the
conformer blocks. A forward pass of the larger architecture required
801.7 million FLOPs per output sample.

Optimization. The training of our conformer architecture was executed
using AdamW as the optimization algorithm. This process spanned a
maximum of200 epochs and involved alearning rate setat 6 x 10~ for
thelmillion parameter model and 3 x 10~ for the 60 million parameter

model, both with a weight decay of 5 x 1072 A cosine annealing learn-
ing rate schedule was implemented, featuring a warm-up period last-
ing 1,500 steps and a minimum learning rate of 0. Our chosen batch
size was a total of 512 across 32 processes each with a batch size of 16,
wherein each sample within the batch represented a prompt that was
zero-padded to match the length of the longest prompt within that
batch. To prevent gradient explosion, we applied gradient clipping
withanormthreshold of 0.1throughout the training process. The train-
ing length was chosen to ensure that models trained would converge
atall training corpus scales by visually inspecting past experimenta-
tion of similar experiments. Other hyperparameters such as learning
rate, weight decay, learning rate schedule and gradient clipping were
determined based on previous hyperparameter searches optimizing
performance on the 50 participant validation corpus. Lastly, we as-
sessed the test performance of the training checkpoint corresponding
tothe lowest validation CER. Training the largest model on the largest
training set took 33 min per epoch, for atotal of 4 days17 hon 4 NVIDIA
A10G Tensor Core GPU running a distributed data parallel pipeline.

Generic decoder scaling laws

Fitted function. InFig. 2d-f, we show the fits of the genericerror scaling
with the number of training participants. The fits follow a functional
form taken from the large language model literature®, where the error
isafunction of both modelsize (D, in number of parameters) and data
quantity (N, in number of participants):

Er=e+Ay/N+ A, /D

where all fitted parameters are positively bounded. It is generally
understood that the e term in this equation is the irreducible error of
the task and the second and third terms both contribute to the error
reductionas Nand D areincreased, respectively. Note that there exist
diminishing return regimes if either Nor D are increased individually,
as the other term fixes the asymptotic error floor. Also note that the
definitions of Nand D are swapped relative to ref. 31.

Fitting procedure. A single set of parameters fits all of the observed
pointsin each graph, with the exception of the heterogeneous data-
pointinthe discrete-gesture experiments that we keep held outbecause
ofits training corpus distinction with the rest of the points. The fitted
parameters were obtained by minimizing the meansquared logarithmic
error (MSLE) using the L-BFGS-B optimization algorithm® along with
200 iterations of the basin hopping strategy®. The initial guess and the
bounds for the fitted parameters are shown in Supplementary Table 1.

Online evaluation

Task participants and structure. For online studies, we recruited
participants who had no prior experience with the sEMG task being
studied and, in the majority of cases, had no previous experience with
SEMG. Demographicinformation about these participants is provided
in Extended Data Fig. 8f-i.

All closed-loop experiments were structured into three blocks: prac-
ticeblock, evaluation block1and evaluation block 2. During the practice
block, the participants were explicitly instructed to explore performing
therequired gestures/movements in different ways to understand how
to best performthe task. During the evaluation blocks, the participants
were instructed to be as fast and accurate as possible.

Coaching. During the practice block of online experiments, we pro-
vided explicit verbal and demonstrative coaching to guide the partici-
pantstowards styles of movement that were known to be well-suited for
the given sSEMG decoder. For the wrist decoder and discrete-gestures
decoder, coaching was provided for about 20-25% of participants, who
did not perform the gestures as expected; for example, by pronating
their forearmwhile flexing their wrist, or by performing thumb swipes
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tooslowly. For the handwriting decoder, we found thatinitial coaching
was given to the majority (around 80%) of participants as they tended
to write individual characters slowly and deliberately, a style that did
not always trigger the SEMG decoder. We explicitly instructed these
participants to write faster and more smoothly, asif they were writing
with a pen. For some participants, it was also useful to explore a few
different postures to facilitate writing in this style despite the lack
of apen and paper. During the evaluation blocks, further coaching
was only provided when necessary if the participant was stuck on a
given trial, for example, if a participant could not complete a given
gesture in the discrete grid navigation task or could not write a given
word or character in the handwriting task. We found that this was only
necessary foraminority of participants with the discrete gestures and
handwriting decoders. For the wrist decoder, we also instructed users
to make quick wrist deflections whenever they observed significant
driftbetween the decoder’s predictions and their perceived wrist angle.
Such quick deflections tended to fix this drift and allow the participant
to proceed at higher performance. Any time spent on thisis subsumed
inthe acquisition time and dial-in time metrics.

Wrist. To evaluate continuous closed-loop control with the wrist de-
coder, users first completed a calibration procedure (rapid wrist flex-
ions and extensions) to determine their minimum and maximum wrist
angle velocities predicted by the decoder, v, Umax- MOdel outputs, v,,
were then normalized to these values using anormalization function, ,,
and scaled by a constant velocity gain, g,, and handedness normaliza-
tion parameter, h. To estimate the cursor position, we integrated the
velocity starting fromx, = 0 at the start of the session to determine the
unbounded horizontal cursor position, X;, and the cursor position
bounded by the edges of the workspace, x;:

~ 24

X.=x,_{+h=v

t t-1 t
n,

X, =min(max(x;, -1), 1)
1, = Umax®Wy) + V(1= O(v,))

where O(-) isthe Heaviside function. We used gain g, = 0.75 normalized
pixels per radian (determined empirically to work well for comfortable
closed-loop control) and set i =1if the SEMG wristband is on the right
hand (so that wrist flexion/extension maps to left/right, respectively)
and -1ifitis on the left hand (so that wrist flexion/extension maps to
right/left, respectively). The second equation ensured that the hori-
zontal cursor position, x,, was bounded to the left and right edges of
the workspace, -1and 1.

Before engaging in the online evaluation task, the minimum and
maximum wrist angle velocities obtained from the calibration proce-
dure were verified by asking the user to move the cursor in an empty
workspace. If they were unable to hit the edges of the workspace, the
calibration procedure was repeated to get a better estimate of Ui, Unax-
This was necessary for 3 out of 17 participants.

We evaluated cursor-control performance using the same horizontal
cursor-to-target task described under the ‘Wrist corpus’ section above.
Inbrief, ineach trial, the participant was prompted to move the cursor
toloutof10 equally sized rectangular targets presented on a horizon-
tal grid, with the outer edges of the leftmost and rightmost targets
touching the left and right edges of the workspace (+1). A target was
acquired by hovering overitfor 500 ms (Fig. 3a, Extended Data Fig.7a
and Supplementary Video 1). Once all 10 targets were acquired, a new
set of 10 targets was presented, and each one was prompted inarandom
sequence. This was repeated 5 timesin each block, for a total of 50 tri-
als per block, where one trial corresponds to one target presentation
and acquisition. The cursor position was continually decoded from
sEMG throughout the session and never reset between trials or blocks.

We first quantified performance using the acquisition time per trial,
whichisthe time takento acquire the target, notincluding the 500 ms

hold time. In other words, the acquisition time is the trial duration
minus the 500 ms hold time. All trials with acquisition times below
200 mswere discarded (29 out of 2,550 trials, or 1.1%), as this is below
typical human reaction times®, Such trials sometimes occurred when,
by chance, the next prompted target happened to be immediately
next to the current cursor position and the cursor happened to be
moving in that direction. Figure 3d shows the mean acquisition time
over all non-discarded trails in each block, for each participant. Note
thatthisaverageis over trials with varying starting distances from the
target. In Extended Data Fig. 8a, we further examine performance in
this task using Fitts’ law throughput®, which accounts for trial-to-trial
differences in reach distances and has been previously used in HCI*®
and BCl settings®.

Anadditional measure that we used to quantify performance was the
dial-intime (Fig. 3e), which is a measure of precise control around the
target, adapted from the BCl literature®. Dial-in time was measured as
the time from the first target entry to the last target entry, not includ-
ingthe 500 mstarget hold time. Figure 3e shows the mean dial-in time
over allnon-discarded trialsin which the cursor prematurely exited the
target before completing the 500 ms hold time (thatis, trialsin which
the dial-in time was greater than 0).

Discrete gestures. To evaluate the discrete-gesture decoder, we used
adiscrete grid navigation task inwhich each of the thumb swipes (left/
right/up/down) was used to move a yellow circular character, named
Chomper, along a discrete grid (Fig. 3b, Extended Data Fig. 7b and
Supplementary Video 2). Movements were prompted with a series of
targets indicating the direction in which Chomper should move and,
every few steps, the participant was prompted to perform one of the
three ‘activation’ gestures: thumb tap, index hold or middle hold.

Agivengesture detectionwas triggered whenever the model output
probability of agiven gesture rose above a threshold value of 0.5. Asin
the offline setting, these gesture detections were filtered by debouncing
and state machine filtering. The only differences with the offline setting,
were that the state machine (1) removed release gestures preceded by
any event other than the corresponding press and (2) synthetically
addedacorrespondingrelease gesture whenever a press event was fol-
lowed by any event other than the corresponding release. Index/middle
holds were defined as a press followed by arelease at least 500 ms later.

We defined a ‘trial’ as a randomly sampled sequence of targets and
activation prompts requiring 8 thumb swipes and 5 activations. If the
model detected athumb swipe inthe wrong direction, Chomper would
move in the detected direction and the participant would therefore
be prompted to swipe in the opposite direction to move Chomper
back to its previous position. The total number of prompted thumb
swipe gestures in each trial could therefore vary depending on how
many times the wrong thumb swipe direction was detected. Incorrect
activation gesture detections would be indicated to the participant,
butwould notalter Chomper’s position. If, onanindex or middle hold
prompt, therelease followed the press less than 500 ms later, this was
classified as an ‘early release’ error. The participants performed ten
trials in each block and were explicitly instructed to favour accuracy
over speed when performing the task.

Completion rate (Fig. 3g) was defined as the minimum number of
discrete gestures required to complete atrial (8 thumb swipes + S acti-
vations =13 gestures) divided by the time required to complete atrial.
Mistakenly making additional gestures that were counterproductive to
completing the trial added to the time required, but did not increase
the number of required gestures. To calculate the confusion matrix for
each participant, we counted the number of times that each gesture was
detected when a given gesture was expected. To get a proportion, we
then divided this by the total number of gestures executed when that
given gesture was expected. Figure 3h shows the average confusion
matrix across all participants, using the trials in the two evaluation
blocks only. The first hit probability (Fig. 3f) was calculated by taking



the proportion of prompted gestures in which the first executed ges-
ture was the expected one. For both the first hit probability and the
confusion matrix metrics, we included the 13 prompted gestures in
each trial as well as any additional prompted thumb swipes resulting
from swipingin the wrong direction.

Note that, to complete the discrete-gesture task, the participant
was required to perform all gestures correctly. Therefore, before this
task began, all of the participants were screened to confirm that each
gesture worked for them; however, no participants had prohibitive
issues with any gesture.

Handwriting. To evaluate the handwritten character decoderinaclosed
loop, we used a handwriting task in which, in each trial, the participants
were prompted to handwrite a five-word phrase randomly sampled
from the Mackenzie corpus®. Characters ([a-z], [0-9], [space], [,.?"!_])
and a single gesture ([space]) were decoded online with the decoder
and displayed to the participant in real time (Fig. 3c, Extended Data
Fig.7cand Supplementary Video 3). The participants were instructed
to ensure that the decoded phrase was understandable before submit-
ting itand moving on to the next trial. If the participant produced any
incorrect characters, they could use the backspace key on the keyboard
to erase errors and then rewrite them. Trials were completed when the
participants made their best attempt to write the prompted phrase and
thensubmitted the written text by pressing akey onthe computer key-
board using their non-dominant hand. Each block consisted of ten trials.

In our analysis, we report the median CER and WPM over all trialsin
each block. For each trial i, we calculate the CER according to a previ-
ous study*:

edit_distance;

CER;= max{prompt_length,, output_length}’

where edit_distance;is the Levenshtein distance between the prompt
and the model output submitted by the userin trial i, prompt_length;is
thelength of the promptand output_length;is the length of the model
output. The maximum between these two is used in the denominator
to ensure that the CER;is between 0 and 1. For WPM, we assume an
average of 5 characters per word (including spaces), so we determine
the number of words in each prompt by counting the total number of
written characters and dividing this by 5. We measured the prompt
duration with the time elapsed between the first and last character
emission from the model during that trial, to remove any time spent
reading the promptor clicking the submitbutton toadvance onto the
next prompt.

For each user and block in Fig. 3i,j, we calculate the CER;and WPM
independently for each trial and report the median over trials. Note
that this online CER metric is therefore not directly comparable with
the offline CER metric reported in Fig. 2g, which was calculated by
aggregating errors over all prompts (see the ‘Handwriting’ part of the
‘Generic SEMG decoder modelling’ section). Computing the median
over trials was necessary for quantifying online performance due to
the presence of outlier trials with poor performance (for example,
duetoaccidentally pressing the submit button before completing the
prompt), which had an outsize influence on the aggregate number of
errorsineachblock due to the small sample size of ten trials per block.

Generic SEMG decoder baselines

Wrist. As baseline performance for the sSEMG wrist decoder (Fig. 3d,e
(dashed red line)), we used horizontal cursor-to-target task perfor-
mance from the wrist corpus, inwhich the cursor was controlled by the
ground truth wrist angle tracked through motion capture (see the ‘Wrist
corpus’section). This offers abehaviourally controlled comparison for
our EMG model because it uses the same instructed wrist movement.
The cursor position was determined by scaling the normalized and
centred ground truth flexion/extension wrist angle by a constant gain.

For our baseline, we use the cursor-to-target task with the horizontal
target configuration and a gain of 2.0, as we found performance was
slightly higher than with the larger gain of 4.0.

For each metricin Fig. 3d,e, we calculate the mean over all 50 trials
foreach participantin the wrist corpus (n =162) and report the median
over participants. This pool of participants is non-overlapping with the
participants who performed the SEMG wrist decoder online evaluation
task. For those participants who recorded multiple datasets, we used
only the data from the first session and discarded the second session,
to eliminate learning effects from having been previously exposed to
the task. Note that performance may therefore be slightly lower than
it would be after more extensive practice, as in the case in the online
evaluation experiment where participants performed a practice block
of 50 trials before performing the evaluation blocks.

To contextualize wrist-based control performance with amore con-
ventional interface, we also measured performance on this task using
aMacBook trackpad. Inthis case, the cursor’s horizontal position was
set tothat of the native laptop mouse controlled by the trackpad, with
defaulttrackpad settings. The vertical position of the cursor was fixed
tothe height of the targets atall times. The same n =17 participants who
performed the wrist decoder online evaluation study subsequently
performed 50 trials of the same cursor-to-target game under trackpad
control, and we measured metrics over these 50 trials to obtain the
baseline values reported above. Note that participants therefore had
150 trials of experience with this task (while using the SEMG wrist angle
decoder) before performing it with the trackpad.

Discrete gestures. Asthe baseline performance for the discrete-gesture
decoder, we used performance on the discrete grid navigation task
using a commercially available Nintendo Switch Joy-Con controller.
This device enables us to evaluate the baseline performance without
an sEMG decoder while still requiring similar one-handed motions to
thoserequired by the discrete-gesture decoder. We mapped controller
buttons to the discrete gestures used in the task as follows: left/right/
up/down thumb swipes were replaced by analogous joystick move-
ments, thumb taps were replaced by pressing the ‘b’ button just above
the joystick, and index and middle press and release were replaced
by upper and lower bumper press and release, respectively. To avoid
simultaneous inputs, no other gestures were decoded after a button
pressuntil that button was released. Left/right/up/downjoystick move-
ments were detected any time the joystick x or y value exceeded 15%
of its maximum value. Once a joystick movement was detected, the
total distance travelled along the x and y axes was compared and the
direction of the movement was determined from the axis with greater
distance travelled. While all interactions were one-handed, the Joy-Con
controller was mounted in a commercially available Nintendo Switch
Joy-Congrip, to allow participants to hold the controller with two hands
if thisimproved their comfort.

A different set of n =23 participants performed this task, non-
overlapping with the participants who performed the sSEMG discrete-
gesture decoder online evaluation task. Apart from changes to
controller-specific prompts and instructions, the discrete grid navi-
gation task and performance metrics used were otherwise identical
tothose forthe sSEMG discrete-gesture decoder. The participants were
alsoscreened to confirm that each button worked for them, following
exactly the same procedure as for the EMG decoder. As baseline values
inFig. 3f,g, we used median performance in the last evaluation block,
which we found to be the block with highest performance (Extended
Data Fig. 8b,c).

Handwriting. To generate a baseline of handwriting speed, we calcu-
lated how fast people wrote during the ‘phrases’ portion of offline data
collectionused for training and testing the Handwriting model (see the
‘Handwriting corpus’ section). We used a set of n = 75 participants for
this purpose, non-overlapping with the participants who performed
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the sEMG handwriting decoder online evaluation task. Each of these
participants were prompted to handwrite a selection of phrases on top
ofaSensel Morphtouch surface device, without a pen. This device was
used to measure the time taken to write a prompt, by using the time
elapsed between the first touch on and last lift off the surface over the
duration of the prompt. Using only the prompt start and end times
resulted in alower WPM (21 WPM), reflecting the latency for a partici-
panttoinitiate writing after apromptappeared and to advance to the
next prompt once complete. For consistency with the WPM metric
used to evaluate the SEMG decoder, we counted the number of words
in a prompt by counting the total number of characters (including
spaces) and dividing by 5.

Discrete-gesture detection model investigation

Network convolutional filter analysis. To examine the initial Convld
layer of the trained discrete-gesture decoder, we first measured various
spatiotemporal properties of each of the Convld filter weights. Each
filteris aspatiotemporal weight matrix of shape 16 input channels x 21
timesteps. It produces one output feature by convolving each row
of the weight matrix with the corresponding SEMG-RD channel and
summing the outputs over the rows. Below, we refer to each row as an
input channel.

We first measured the RMS power of each input channel and identi-
fied the input channel with maximum power. We then measured the
temporal frequency response of this max input channel using adiscrete
Fourier transform and identified the peak frequency with strongest
magnitude response. We measured the bandwidth of the temporal
frequency response as the range of contiguous frequencies around
this peak that had a magnitude response within 50% of the peak. We
additionally counted how many input channels had RMS power within
50% of the max channel. The distributions of these metrics across all
Convld filters are shown in Extended Data Fig. 9.

We nextidentified the set of Convld filters that fell within the inter-
quartile range of these three metrics (peak frequency, bandwidth,
number of active channels), and randomly selected six filters with
different peak channels. These are the representative examples shown
inFig.4b,d,e. The six putative MUAPs shown in Fig. 4c were extracted
using the procedure described in the section ‘Putative motor unit
action potential waveform estimation’ and Extended Data Fig. 2,
and then the raw EMG signal in the central 10 ms of each snippet was
high-pass filtered with the same preprocessing procedure applied to
the discrete-gesture model training data (see the section ‘Architecture’
under ‘Generic sSEMG decoder modelling’). This allowed a direct com-
parison with the 10 ms convolutional filters trained on data preproc-
essed in this way. The same procedure for measuring RMS power and
frequency response was applied to the six putative MUAPs after this
preprocessing to obtain the curves shownin Fig. 4d,e.

Discrete-gesture detection network LSTM representation analysis.
To examine the LSTM representations of the trained discrete-gesture
decoder, we used recordings from 3 different sessions from each of 50
randomly selected users from the test set. From each of these record-
ing sessions, we randomly sampled forty 500 ms sSEMG snippets ending
at labels for each gesture class (after label timing alignment; see the
‘Discrete-gesture time alignment’ section), for a total of 40 x 9 =360
SEMG snippets per session. We then passed each of these snippets
through the trained discrete-gesture decoder, with the LSTM state
initialized to zeros, to obtain vector representations, X € R*2, of each
snippet. PC projections of the vectors from three randomly selected
users are plotted in Fig. 4f-h, in each case coloured by a different
property. Gesture-evoked SEMG power was measured as the RMS of
thelast 100 ms of each sEMG snippet. For each participant and gesture,
thiswas thenbinned into 20 bins with amatched number of snippets,
dividing the SEMG power into the categories plotted in Extended
DataFig. 8I.

To quantify the structure in these representations, we used the pro-
portion of variance in LSTM representations accounted by a given
variable, &

Vare[Ex[X|§1]/Vary[X].

The numerator is the variance in the mean representations of each
category of §, and the denominator is the total variance of the rep-
resentations. In each case, variance is calculated as the trace of the
covariance of the representations. For the discrete-gesture identity
and participant-identity analysis, we divided the 50 participants into
10 non-overlapping sets of 5 participants and calculated the proportion
of variance separately for each set. The curvesin Fig. 4i show the mean
and 95% confidence interval over these 10 sets. For the band placement
and gesture-evoked sEMG power curves, the proportion was calcu-
lated separately for each of the 50 participants, and the meanand 95%
confidenceinterval over participants was shown. For this analysis, the
SEMG power was binned as indicated above but into only 3 bins (low/
medium/high) rather than 20.

Personalized modelling

We studied the personalization of handwriting models with 40 par-
ticipants from the test corpus that were held out from the 6,527 par-
ticipants in the pretraining corpus. For each participant, we further
trained, that s, fine-tuned, a chosen generic handwriting model on a
fixed budget of datasolely taken from that participant’s sessions. The
resulting personalized model was then evaluated on held-out data from
the same participant on whom it was personalized. We considered
personalization databudgets of 1,2, 5,10 and 20 min. We repeated this
process for each of our 40 participants and reported the population
average of the personalized model performance.

Data. We created a training and testing set for each of our 40 personali-
zation participants by holding out three sessions for the test set, with
each session containing data collected in one of the three postures
(seated writing on a surface, seated writing on their leg and standing
writingontheir leg). The remaining sessions for that user wereincluded
inthe training set, subsampled to obtain the desired number of min-
utes of labelled SEMG recording. The subsampling was done through
random uniform sampling of the prompts from all of the sessions
inthe training set. Each subsample of the full training set was a super-
set of the preceding data budget size, ensuring that the prompts
in the 1 min budget were also present in the 2 min and 5 min budget,
andsoon.

Optimization. The optimization details closely resemble the proce-
durefollowed for generic training (see the ‘Handwriting’ section under
‘Generic SEMG decoder modelling’) with a few differences. We used a
cosine annealinglearningrate schedule without warmup. We also varied
the fine-tuning learning rate as a function of the number of pretrain-
ing participants used to pretrain the upstream generic model, such
that: LR(V) =1.24 x 107 x N°*2, with N being the number of pretrain-
ing participants. The learning rate relationship with generic pretrain-
ing participants was found through grid learning rate sweeps for the
models pretrained on 25,400 and 6,527 participants, then fitting a
power law to the population average performance minima found. We
did not use weight decay during fine-tuning. We fine-tuned the model
for300 epochs, atabatch size of 256, with no early stopping such that
the trainingis always 300 epochs.

Statistics. InFig. 5e, we found negative transfer of personalized models
across participants. To characterize each participant’s performance on
other fine-tuned models, we first computed the mean of each row with-
outthe diagonal. We then computed the median of the means along with
the s.e.m. This was compared with the median of the diagonal values.



In Extended Data Fig. 10, we added early stopping to the person-
alization procedure to disambiguate the contribution of increased
personalized data budget per user from an increase in the number of
fine-tuning iterations. We found very similar results with (Extended
Data Fig. 10) and without (Fig. 5) early stopping, except that a few of
the best performing users exhibited regressions from personalization
without early stopping. This verified that the benefits from including
more personalization datawere not dueto anincreasein trainingitera-
tions. Note that, in practice, early stopping would require additional
data from the participant to use for validation. Here we used the test
set for early stopping, so the results in Extended Data Fig. 10 should
be considered validation numbers.

Personalizationscaling laws

Fitted function. In Fig. 5b, we show the fits of the 60.2 million parameter
modelerror rate as afunction of the number of pretraining participants
for the generic model and for each personalization data budget. We
used a simple power law fit with respect to pretraining data quantity
(N, number of pretraining participants), such that:

Er=e+A/N“.

We did notinclude the contribution from model size, as we only fit-
ted observations fromasingle model size (the error from finite model
size was therefore absorbed into e).

Fitting procedure. The fitted parameters for each personalization
databudget were obtained by minimizing the MSLE using the L-BFGS-B
optimization algorithm® along with 200 iterations of the basin hopping
strategy®. The initial guess and the bounds for the fitted parameters
areshownin Supplementary Table 2.

Personalization equivalence calculations

Relative increase calculation. To determine the equivalent pretraining
participant budget needed to match a given personalization perfor-
mance, we needed a continuous estimate of generic model perfor-
mance as a function of the number of pretraining participants. For
this, we used logspace piecewise linear interpolation of the generic
performance values, which we denote by f,neic(N). Given the num-
ber of pretraining participants, N, and personalization minutes, m,
personalized models have an observed CER given by CER(NV,m). To
find the equivalent additional pretraining participants AN needed
to match performance between generic and personalized models
we set fyeneric(N + AN) = CER(N,m) and solve for AN using the Newton
conjugate-gradient method. This gives the points in Fig. 5d. Overlaid
onthe plotas dotted lines, we used the power law fit of the points cor-
responding to each number of personalization minutes in Fig. 5b to
infer continuous curves of equivalent fold-increase in pretraining data
required using the approach described above.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

We have publicly released 1,060 sEMG recordings from 300 partici-
pants spanning the 3 tasksin the study: 100 participants (74 h) of wrist
data, 100 participants (63 h) of discrete gestures data and 100 par-
ticipants (126 h) of handwriting data. Each participant was randomly
selected from the set of training users described in the study. We also
provide labels, gesture times and regression targets for these data-
sets. All data are anonymized and contain no identifying information.
The data are hosted online (https://fb-ctrl-oss.s3.amazonaws.com/
generic-neuromotor-interface-data).

Code availability

We have also published a GitHub repository (https://github.com/face-
bookresearch/generic-neuromotor-interface-data) withimplementa-
tions of the models described in the manuscript for wrist, handwriting
and discrete gesture tasks. We also provide aframework for training and
evaluating models on the data that we have released. Dataand code are
available under a Attribution-NonCommercial-ShareAlike 4.0 license.
Instructions for downloading the data, training models and evaluating
models can be found in the site’s README file.
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Extended DataFig.1|Schematic and anatomical interfacing of SEMG
ResearchDevice. a, The SEMG Research Device electrical system architecture.
The sEMG-RD uses 48 pogo-pinstyle round electrodesin order to provide good
comfortand contact quality. The 48 channels are configured into 16 bipolar
channels arranged proximo-distally, with the remainder electrodes serving as
eithershield orground. Eachelectrodeis 6.5 mmindiameter (gold plated
brass). For each differential sensing channel (16 in total), centre-to-centre
spacing between paired sensing electrodesis 20 mm. The sEMG-RD has low
noise analog sensors withinput-referred RMS noise of 2.46 pVrms, measured
duringbenchtop testing with differential inputs shorted to their mid-point
voltage. With analog sensors’ nominal gain value of190 and Analog to Digital
Converter’s (ADC) full-scale range of 2.5V, the SEMG-RD offers adynamic range
of approximately 65.5 dB. Each channelissampled at2000 Hz. The Inertial
Measurement Unit (IMU) functional block includes sensors of 3-axis
accelerometer, 3-axis gyroscope, and 3-axis magnetometer sampled at 100 Hz.
We note that the IMU was not utilized for any online or offline experiments
described in this manuscript. The microcontroller facilitates the transfer of
unprocessed datafromall ADCsand IMU directly to the bluetooth radio. No
skinpreparation or gels are needed for using the sSEMG-RD, because its analog

LEDs +
buttons

sensors have very high input-impedance —approximately 10 pF capacitance

in parallelwith10 TOhmresistance — providing excellent signal robustness
against large variations of electrode-skinimpedance among the population.
b, Computer-aided design rendering of the SEMG-RD. The mechanical
architecture consists of akinematic chain with flexible joints connecting

16 pods that house the pogo-pin style electrodes that comprise the SEMG
channels. This enables broad population coverage in maintaining consistent
quality contactbetween the dry electrode and skin. Since each differential
sensing channelis placed along the proximal-distal direction, the device
isable tomaintainsymmetry with respect to wrist anatomy and provide
generalizability acrossright and left hands, as long as the wearer keeps the gap
locationonthe ulnaside. c, Anatomical depiction of electrode locations
relative torelevant muscle and skeletal landmarks, adapted from a public
domainimage®. Pink overlays cover muscles that predominantly control the
wrist, blue overlays cover muscles lessinvolved in wrist control, red overlays
cover blood vessels and yellow overlays cover nerves. The green diamond
indicates the position of the electrode gap. Note the gap that arises between
channels 0 and 15, due to variation in wrist circumference and elasticity between
compartments, isaligned with the region of the wrist where the ulnais located.
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Extended DataFig. 2| Extraction and validation of putative MUAPs.

a-b, Toevoke putative MUAPs, one participant followed a series of prompts
instructing the execution of various low-force muscle contractions
interspersed with periods of rest. To facilitate generating sparse and spatially
focal EMG signals, the participant was provided visual feedback about the raw
EMG on amanually selected channel during prompted rest (a) and movement
(b) epochs. Eachepochlasted 10 sand was repeated three times. High-pass
EMG on all channels (top) and on the manually selected channel (12) for visual
feedback (middle) during a prompted rest epoch during data collection for
putative thumb extension MUAPs. Grey vertical scale barsindicate 20 pV.
MUAPs on any channel were detected using peak finding on the channel-
averagedrectified and smoothed EMG (see Methods). The timings of detected
MUAPs were used to construct aspike train capturing the activity of this multi-
unitactivity, whoseinstantaneous firing rate was computed by taking the
inverse of each event’sinterspike interval (ISI) in seconds (bottom). c, Mean
instantaneous firing rates (computed as the total number of detected MUAPs
over the epoch duration) during rest and movement epochs for each tested

movement (IF:index flexion; MF: middle flexion; PE: pinky extension; TAb:
thumb abduction; TE: thumb extension; WP: wrist pronation). Eachsample
corresponds to one prompt (rest or move) epoch. d, Coefficient of variation
(CoV) during the prompted movement periods. CoV was computed as the
standard deviation of interspike intervals (b; bottom) normalized by their
mean. e, Multi-channel waveforms for putative MUAPs extracted during the
prompted movement epochs for each action. For visualization, MUAPs for
each movement were normalized by the 99.95th percentile of the absolute
maximum (over samples and channels) of each MUAP. Thin lines correspond
toindividual MUAPs (total number detected indicated as n) and thick lines
correspond to the median waveform over MUAPs for each movement. Each
waveformis20 mslong. Vertical scale barsindicate 20 uV. f, MUAP spatial
profiles. The spatial profile foreach MUAP was constructed using the peak-to-
peak value of the waveform on each channel. The mean (solid line) and standard
error (shading; nearly within solid lines) of the spatial profiles are shown for
each movement. Angular locations represent approximate channellocations
around the wrist (indicators) and the radii represent the peak-to-peak value.
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Extended DataFig. 3| Anthropometricand demographicfeatures of

sEMG datasets. a, The number of participantsineach corpus. b-e, Histograms
of anthropometric characteristics of all participants (n =11,236): (b) wrist
circumference, (c) self-reported age, (d) BMI calculated from self-reported
heightand weight, and (e) self-reported height. Theirregularityin the
histogram of self-reported age is likely due to participants rounding their age to
nearby values. We measured wrist circumferences with astandard measuring
tapeatthe wristjust below the ulnar styloid process where the participants are

expected to dontheband. Values outside of the range 0f10-30 cm were
truncated. We calculated BMI as the weight (in kilograms) divided by height
(inmetres) squared. f-i, Distributions of the demographic characteristics
acrossall participants (n=11,236): (f) dominant handedness, (g) self-reported
proficiency at typing onacomputer keyboard, (h) self-reported gender, and
(i) armexercise frequency, chosen from one of the following options: Never
(never), Less than once per week (rarely), 1-2 times per week (occasionally),
more than twice per week (often).
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Current Stage: Seated on Surface

Please write the prompt shown below:

how was your day

Press any key to advance to the next prompt.

Extended DataFig. 4| Examples of prompting used to collect training data
for the three tasks. a, Time series of example prompter frames from the open-
loop task used to collect training data for the wrist decoder. The participant
was instructed to make wrist movements following a cursor (pink circle)
making centre-out movements. For the user to be able to preempt the direction
ofthe cursormovement, alineemanated out from the cursor toindicate the
directionit was going to move to before subsequently moving. b, Time series
of example prompter frames from the cursor-to-target closed-loop control
task used to collect training data for the wrist decoder, with the 2D target
configuration. Inthis task the participant was prompted to move the cursor to
ahighlighted target (light blue rectangle in panel labelled t,). When the cursor
(red) landed onthe target, ashort timer began, marked by the blackfill of the
cursorand black border of the target region (panel t;). In this trial, the cursor
was held onthe target for 500 msto complete the timer, so the target was
acquired and therefore disappeared as the next target was prompted (light
bluerectangleinpanelt,).c, Example prompter from the smooth pursuit
closed-loop control task used to collect training data for the wrist decoder.
Inthis task the participant was instructed to move the cursor (red) to follow a
target (black) movinginarandomly sampled smooth trajectory.d, Example
of prompting for open-loop task used to collect training data for the discrete
gesturerecognizer. Aseries of gestures tobe performed are depicted, with

middle

middle

zone,

exactly

096 527 19

to the 13th of

how was your day

colours andlabels correspondingto the gesture type. Gestures were separated
byblankintervalsin which no gesture was to be performed. Prompts scroll
fromtherightofthescreento theleft. Participants wereinstructed to perform
each gesture whenthe corresponding promptreached theindicatorline
(highlighted withanarrow) - either instantaneous gestures such as finger
pinches or thumb swipes that are depicted as single lines, or held gestures such
asindex and middle holds that are depicted as solid bars. Participants were
instructed torelease held gestures when the indicator line reached the end of
therectangle. Gestures that have already been prompted are shownin grey.

e, Detailed example of prompting during holds. At t,anindex hold gesture
promptappeared ontherightside of the screen, with the timeindicatorlinein
white. Att, the gesture promptreached the timeindicator, and the hold prompt
changed colour toindicate the hold should be performed by the participant.
Att,the hold wasnolonger selected by the indicator barand turned grey,
indicating that the participantshould release the hold. f, Example prompter
shown during the handwriting task. The screeninstructed the participant to
write “how was your day” with their hand on the surface of the table, while
seated. g, During the experimental session, different prompts, including
numbers and punctuation, were shown, ranging fromsingle characters to full
sentences. Besides writing on adesk surface, the participant was also asked to
performhandwriting on their leg while standing and on their leg while seated.
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Extended DataFig.5|sEMG event similarities and single-participant sSEMG
decoder generalization performance. a, Purple: cosine similarity between
individual sSEMG activations of agiven gesture and the sSEMG template
(event-triggered average) for that gesture. From left to right: cosine similarities
areplotted forallevents withinasingle session (single band placement), across
allsessions of asingle participant, or across all sessions fromall participants
from Fig.2a (100 sessions, 5 from each of 20 users). While similarity was
relatively high within asingle band placement, sEMG activationsbecame
progressively more distinct across different band placements and individuals.
Orange:same, except for the cosine similarity of one gesture compared to the
template foradistinct gesture. These were lower than similarity within the
same gesture, irrespective of whether the grouping was done over asingle
band placement or across the population. Differences shown across sessions,
participants and gestures are representative for all gestures and pairs of
gestures. Boxes show median, lower quartile, and upper quartile, with whiskers
extending to +1.5xIQR. b, For each held-outindividual, the fraction of other
single-participant modelsin the discrete gesture detection task (Fig.2c,d) that
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outperformthatindividual’'sownmodel (i.e. had lower FNR). For all except two
participants, none of the other single-participant models outperformed their
ownmodel. Alltheresultsin panels b-d are based onn =100 single-participant
models, each trained on 4 sessions from that participant. ¢, For each pair of
participants, we computed the FNR of each participant’smodel on data from
every other participant. We embedded the resulting distance matrix in 2D
using t-SNE. Qualitative inspection of t-SNE embeddings reveal no prominent
similarity structure.d, Scatter plot comparing each person’s model’s average
offline performance on every other participant’s data (donor FNR, x-axis)
against the average performance of other participant’s models on that person’s
held-outsession (receiver FNR, y-axis). The dashed line shows x=y. Thereis
notasignificant Pearson correlationbetween the donorandreceiver score
(r=0.11,p=0.26, two-sided test, n =100 participants). All models show high
FNR, and the lack of correlationindicates that the generalizability of agiven
participant’smodelto otherindividualsis not predictive of the other individual’s
model’s generalizability to that participant.
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Extended DataFig. 6 | Multivariate power frequency featuresimprove
wrist decoder performance over root meansquare power features.
Decodingerror of 4.4 M parameter wrist decoders trained to predict wrist
angle velocity from MPF EMG features (black) or root mean square power EMG
features (gold). Eachdot shows mean +/-SEM decoding error evaluatedona
fixed testset of held-out participants (n =22), following the same conventions
asinFig.2e. Asterisks below each pair of pointsindicate p <107, two-tailed
paired sample Wilcoxon signed-rank test. Root mean square power EMG
features were calculated by first rescaling and high-pass filtering the EMG
signalasinthe MPF features (see Methods) and then taking the root mean
square of each channelin arolling window of length 200 samples (100 ms)
strided by 40 samples (20 ms). Thereduced dimensionality of these features
(16 dimensions, as opposed to 384) implied asmaller number of input
dimensions to the fully connected layer in the rotational-invariance module,
which we compensated for by increasing the number of hidden dimensions
from512to 600 to keep the total parameter countat 4.4 M.
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Extended DataFig.7|Example screenshots of closed-loop evaluation
tasks. a, Screenshots from an example trial of 1D horizontal cursor control
task, inwhich the participant was prompted toreach to the rightmost target
(inpanellabelledt,, light blue rectangle). When the cursor (red) landed on
thetarget, the target was marked withablack borderand ashort timer began,
marked by the black fill of the cursor (middle panel, t,). In this trial, the cursor
was held onthetarget for 500 ms to complete the timer, so the target was
acquired and therefore disappeared as the next target was prompted

Phrase count: 10

example flashing

Time left: 104s

(right panel, t,). b, Screenshots from an example sequence in the discrete grid
navigation task, inwhich the participant was prompted to perform (fromleft to
right, marked as ty-t,): thumb swipe up, index hold, thumb swipe right, thumb
swiperight, middle hold. ¢, Screenshots froman example trial in the handwriting
task, inwhichthe participantis prompted to write the phrase “example flashing
red light means” (top) and the handwriting decoding model outputinresponse
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to the participant’s behaviorin the handwriting task (below).
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Extended DataFig. 8| Additional online evaluation metrics. a, MeanFitts’
law throughput on the 1D horizontal cursor control task. Throughput s
defined as the index of difficulty divided by acquisition time, with the index of
difficulty defined asin®: log,(1+d;/w), whered;isthedistancetothetargetat
thestartoftrialiand wis the target width. Eachbox shows the distribution
oftrial-averaged throughput over participants (n =17), following the same
conventionsasFig.3d,e. Throughputsignificantly improved from the practice
block to the evaluation blocks (p < 0.005, two-tailed Wilcoxon signed-rank
test), indicatinglearning effects consistent with theimprovementsin
acquisition time and dial-in time shown in the main text. Dashed red line and
shading shows median and 95% confidence interval of the performance ofa
differentset of n =162 participants controlling the cursor with ground truth
wrist angles measured viamotion capture (see Methods). Dashed orange line
and shading shows median and 95% confidence interval of the performance
ofthe same n =17 participants controlling the cursor with MacBook trackpad
(see Methods). For each baseline, confidence intervals for medians were
calculated using the reverse percentile bootstrap. b-d, Performance onthe
discrete grid navigation task with Nintendo SwitchJoy-Con controller (n =23
participants). (b) Fraction of prompted gesturesin eachblockinwhich the first
gesture detected by the model was the correct one (out of 130 total prompted
gesturesineachblock), asinFig. 3f. This value was used as the baseline in Fig. 3f.

wrist discrete hand-
gestures writing
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(c) Mean gesture completionrateineachtask block, asinFig.3g. This value
was used as the baselinein Fig.3g. (d) Discrete gesture confusion ratesin
evaluationblocks, averaged across participants, asin Fig. 3h. Confusion rates
areexpressed asapercentofinstancesinwhich the corresponding gesture
was expected (across rows). Note that, despite using acommercially available
and widely used controller, confusion rates remain non-zero, reflecting
behaviouralerrors. e, Distribution of subjective impressions about the
reliability of each EMG decoding model. Atthe end of each online evaluation
task, participants were asked to respond to a multiple choice question about
howreliably theirintended action was detected. For the discrete gestures task,
they were asked to answer this question separately for each of the thumb swipe
directions and “activation” gestures. f-i, Demographics of participants that
performed the online evaluation tasks for the wrist decoder (n=17), discrete
gestures decoder (n=24),and handwriting decoder (n =20): (f) self-declared
gender, (g) self-declared dominant hand, (h) self-declared age, (i) measured
wrist circumference. For allboxplots, boxes show median, lower quartile, and
upper quartile, with whiskers extending to +1.5xIQR. Any values beyond these
aremarked with open circles. One and two asterisks respectively indicate
p<0.05and p<0.005,and “ns” indicates “not significant” (p > 0.05); two-tailed
paired sample Wilcoxon signed-rank test.
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Extended DataFig.9|Spatiotemporal properties of all discrete gesture
decoder convolutionalfilters. a, Index of channel with max root mean square

(RMS) power (n =512 convolutionalfilters). Here and in all other panels in this
figure, the triangles at the top mark the values of the 6 example convolutional
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filters from Fig.4b (blue triangles) and the 6 example putative MUAPs from
Fig.4c (orange triangles). b, Number of channels with RMS power within 50%
ofthe peak channel. ¢, Peak frequency response of the channel with max RMS
power.d, Bandwidth of the channel with max RMS power (see Methods).
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Extended DataFig.10|Influence of early stopping during personalization.  the maintext, except withtheinclusion of early stopping during fine-tuning.
Inthisfigure, we employ early stopping during personalization to disambiguate b, Same as Fig. 5e of the main text, except with the inclusion of early stopping

therole of more personalization datafromincreased fine-tuningiterations as during fine-tuning. Compared with Fig. 5e, transfer of personalized models
wellasto mitigate regressions among the best-performing users. Specifically, to other participants yields overall smaller regressions likely because early-
we used mean CER on held out test data as aselection criteria for epoch-wise stopped models remain closer to the pre-trained model. ¢, Same as Fig. 5f of
early stopping. Aside from early stopping, the setup hereisidentical to thatin the main text, except with the inclusion of early stopping during fine-tuning.

Fig.5b,e,f) of the main text. Overall, results are very similar to Fig. 5 of the main Regressions exhibited by a few of the best performing users in Fig. 5fare now
text, indicating thattheincreasein personalizationdataisthe primarydriverof  absentdueto early stopping. We show the range of Pearson correlation
improved performance. Regressionsamong the best-performingusersarenow  coefficients for eachfitand the median p-value (two-sided test); maximum
absent. Note also that we do not have separate validation and test sets,sothese  p-value over allfitsis 0.020.

results should be understood as validation performance. a, Same as Fig. 5b of
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