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Abstract

The transition from benign to malignant growth is a pivotal yet poorly understood step in cancer
progression that marks the shift from a pathologically inert condition to a clinically lethal disease.
Here, we integrate lineage tracing, single-cell and spatial transcriptomics to visualize the
molecular, cellular and tissue-level events that promote or restrain malignancy during the tumor
initiation in mouse models of pancreatic ductal adenocarcinoma (PDAC). We identify a discrete
progenitor-like population of KRAS-mutant cells that co-activates oncogenic and tumor-
suppressive programs—including p53, CDKN2A, and SMAD4—engaging senescence-like
responses and remodeling their microenvironment, ultimately assembling a niche that mirrors
invasive PDAC. KRAS inhibition depletes progenitor-like cells and dismantles their niche.
Conversely, p53 suppression enables progenitor cell expansion, epithelial-mesenchymal
reprogramming, and immune-privileged niche formation. These findings position the progenitor-
like state as the convergence point of cancer-driving mutations, plasticity, and tissue

remodeling—revealing a critical window for intercepting malignancy at its origin.

Introduction

Cancer progression is a multistep process fueled by the accumulation of genetic alterations that
reshape cell identity and reprogram the tumor microenvironment. Yet, clonal expansions
bearing oncogenic mutations rarely progress to cancer’, despite appearing frequently in
histologically normal tissues?®. These clones can persist for long periods as benign growths that
retain epithelial architecture*®. Only upon acquisition of additional genetic or epigenetic
changes do these lesions breach regulatory constraints, promoting cellular plasticity, local
invasion, and metastatic dissemination — features of lethal cancer. Despite its clinical
importance, the transition from benign to malignant growth remains poorly understood, in part

due to the difficulty of capturing and studying these early events in vivo.

Pancreatic ductal adenocarcinoma (PDAC) is an almost universally fatal malignancy”® that
exemplifies progression through well-defined benign and malignant states. It is nearly
universally initiated by activating mutations in KRAS®, which confer epithelial plasticity and drive
the formation of pancreatic intraepithelial neoplasia (PanINs) and other precursor lesions'®. The
dense stroma of PDAC, characterized by activated fibroblasts, immunosuppressive myeloid
cells, and cytotoxic T-cell exclusion, further shapes both tumor progression and therapeutic
response'’~"°. Although mutant KRAS is sufficient to initiate PDAC development and remains

necessary for progression and maintenance'®, we do not understand how genetic lesions, cell
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state changes, and microenvironmental remodeling converge to trigger the benign to malignant

transition.

Disruption of the TP53, CDKN2A and/or SMAD4 tumor suppressor pathways contribute to the
benign to malignant transition®'-2°, Among these, the gene encoding the sequence-specific

21,22, is

transcription factor p53, which governs diverse tumor-suppressive molecular programs
mutated and/or deleted most frequently (roughly 70% of cases)®. TP53 mutations are
uncommon in low-grade PanINs?* and dispensable for their formation in mouse models® and
humans 2. On the other hand, the frequency of TP53 inactivation increases in high-grade
lesions and carcinoma?, supporting the role for p53 in restraining malignant progression. Using
genetically engineered mice, we previously showed that Trp53 loss of heterozygosity (LOH)
facilitates the ordered accumulation of copy number alterations (CNAs) that are analogous to
those occurring in human PDAC?. Conversely, p53 restoration in advanced tumors induces
reversion to a more differentiated, PanIN-like state®. These findings suggest that p53
safeguards against PDAC progression by limiting genomic instability and opposing cell state
plasticity—but when, where, and how p53 and other tumor suppressors act during

premalignancy to restrain malignant transformation remains unresolved.

In addition to genetic lesions, inflammatory cues are critical modulators of PDAC evolution.
Chronic pancreatitis is a risk factor for PDAC?°, and inflammation accelerates neoplastic
progression in Kras-mutant mouse models®. In the normal pancreas, injury induces acinar-to-
ductal metaplasia (ADM), followed by regeneration and restoration of tissue homeostasis®'.
However, this regenerative process is subverted in the presence of oncogenic KRAS, resulting
in the establishment of heterogeneous ductal metaplasia, including acinar derived PanIN-like

30—

lesions®3, Interestingly, oncogenic KRAS activity in mouse models of PDAC results in the

formation of inflammatory niches in around neoplastic niches in the absence of experimentally-

34-36

induced inflammation , implying an inextricable link between oncogenic KRAS activity and

the remodeling of the pancreatic microenvironment.

Our prior work revealed that inflammation synergizes with oncogenic KRAS to promote
chromatin remodeling and the establishment of a subpopulation of premalignant cells
expressing the Nes, a marker of pancreatic epithelial progenitor cells*’=°. This progenitor-like
state exhibits high plasticity, as evidenced by permissive chromatin landscapes that suggest

that this state can transition into distinct premalignant and malignant states®”. In addition, this


https://paperpile.com/c/zRDPV6/tLRo+nucG+boO3+8qY6+W0Lb
https://paperpile.com/c/zRDPV6/ndmo+oBi2
https://paperpile.com/c/zRDPV6/CxJb
https://paperpile.com/c/zRDPV6/YlRP
https://paperpile.com/c/zRDPV6/sSwp
https://paperpile.com/c/zRDPV6/YlRP
https://paperpile.com/c/zRDPV6/zb1D
https://paperpile.com/c/zRDPV6/3fYP
https://paperpile.com/c/zRDPV6/zUxN
https://paperpile.com/c/zRDPV6/8QVw
https://paperpile.com/c/zRDPV6/Pw5J
https://paperpile.com/c/zRDPV6/2BU0
https://paperpile.com/c/zRDPV6/2BU0+KrT1+i74D+Pw5J
https://paperpile.com/c/zRDPV6/drIW+hJe5+VzZW
https://paperpile.com/c/zRDPV6/Urdb+VFEB+Hjx4
https://paperpile.com/c/zRDPV6/Urdb
https://doi.org/10.1101/2025.06.10.656791
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.06.10.656791; this version posted June 12, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

state closely resembles invasive cancer both in terms of transcriptional and chromatin
accessibility landscapes. This includes chromatin opening near cell-communication genes,
implying a functional interplay between epithelial plasticity and the surrounding niche. Strikingly,
this progenitor-like state arises rapidly after injury, while the malignant transition takes months,

suggesting that additional tumor-suppressive barriers delay disease progression.

Here, we use lineage tracing and conditional p53 mouse models to dissect how genetic
alterations, cell state transitions, and microenvironmental remodeling converge to drive early
PDAC progression. By integrating single-cell and spatial -omics with targeted perturbations, we
capture the dynamic interplay between epithelial plasticity and niche reprogramming during the
benign-to-malignant transition. We directly visualize and reconstruct how this transition is
orchestrated by spatially mapping the emergence, stabilization, and expansion of a plastic,
progenitor-like cell state uniquely capable of engaging—and ultimately evading—tumor-
suppressive mechanisms while assembling a supportive microenvironment for tumor evolution.
These insights illuminate a critical window of vulnerability in tumorigenesis and provide a
conceptual foundation for intercepting cancer at its inception by targeting the cell states and

intercellular communication networks that enable malignant transformation.

Results

Capturing p53-deficient cell states after spontaneous p53 loss of heterozygosity

To investigate cellular and molecular events underlying the benign-to-malignant transition in
pancreatic cancer, we employed the KP-°" model?’ that enables identification and isolation of
cells that undergo spontaneous loss of heterozygosity (LOH) of Trp53 (hereafter referred to as
p53) during tumor initiation. The model is derived from multi-allelic KPC (Kras®'?°, Trp53"*,
Ptf1a-Cre) embryonic stem cells that incorporate dual fluorescent reporters to track mutant Kras
and p53 status: mKate for lineage-tracing Kras-mutant epithelium and GFP for marking cells
that retain wild-type p53 (Fig. 1a). In this system, Kras-mutant epithelial cells that retain wild-
type p53 are mKate2/GFP double-positive, whereas cells undergoing spontaneous p53 LOH
become mKate2 single-positive due to co-deletion of a physically linked GFP reporter. In mice
lacking macroscopic PDAC (3-4 months old, hereby termed “pre-tumor” stage), p53-deficient
(mKate2+/GFP-) cells are rare, appearing as isolated cells, small apparently clonal clusters, or
as ‘microtumors’ histologically resembling advanced PDAC? (Fig. 1b,c). By isolating tissue

from mice well before the onset of detectable malignant tumors, this system facilitates
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visualization and characterization of epithelial cell states before and immediately after p53 loss,

as well as their interactions with the surrounding microenvironment.

Using single-cell RNA sequencing (scRNA-seq), we compared these rare single-positive cells
that underwent p53 LOH (pre-tumor p53-deficient, 1-3% of all mKate2+ cells) to their p53-
proficient double-positive counterparts (pre-tumor p53 proficient), and to single positive cells
isolated from full-blown tumors (tumor p53-deficient) (Fig. 1d, Fig. S1a—d and Methods).
Consistent with prior work, p53-proficient premalignant cells occupied heterogeneous
transcriptional states that departed from a normal acinar phenotype®”“° but were clearly distinct
from malignant PDAC cells, which formed distinct, tumor-specific clusters (Fig. 1e,f and Fig.
S1e-k). The p53-proficient fraction included cells undergoing acinar-to-ductal metaplasia (ADM)
(expressing Cpa1+, Krt19+), cells with neuroendocrine (Scg5+, Chga+, Chgb+) or tuft (Pou2f3+)
features, cells expressing gastric lineage markers characteristic of PanIN lesions and the
classical PDAC subtype (Dmbt1+, Muc6+, Tff1+, Tff2+, Anxa10+), and cells displaying
proliferation markers (Mki67+, Cdk1+) (Fig. 1e and Fig. S1e—k). Interestingly, a small subset of
cells expressed the progenitor-like program previously identified as defining a transient, cancer-
like cell state induced in Kras-expressing epithelium following tissue injury (e.g., Nes+, Msn+,
Hmga2+, Vim+)*" (Fig. 1e and Fig. S1e-k). Diffusion distance analysis (see Methods and Note
$1) revealed that among all pre-tumor p53 proficient cells, the progenitor-like population is
transcriptionally closest to PDAC (Fig. 1f) — and thus a likely transitional intermediate in the
benign-to-malignant transition.

P-°" model and demonstrated that

We previously applied single-cell DNA sequencing to the K
p53 loss is accompanied by a progressive and selective accumulation of genomic copy number
alterations (CNAs) as cells acquire the genomic and histological features of invasive disease?’.
Reasoning that the gradual acquisition of CNAs in p53-deficient (mKate2 single-positive cells)
could serve as a timestamp of a cell’s trajectory toward malignancy, we inferred CNAs from
scRNA-seq data as a surrogate for underlying genomic instability. As expected, most pre-tumor
p53-deficient cells occupying premalignant transcriptional states had quiet genomes, aside from
loss of chromosome 11, indicating that these cells underwent p53 LOH but had not yet acquired
genomic instability or a malignant phenotype (Fig. 1e,g and Fig. S2a). At the other extreme,
some p53-deficient cells displayed rampant genomic instability (rearranged genomes) and
transcriptional profiles resembling PDAC. These microtumors are likely clonal expansions of

malignant cells that are below the detection threshold for ultrasound or gross pathology but are
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evident upon detailed histological examination®” (Fig. S2b). Notably, such microtumors also

expressed the progenitor state marker HMGAZ2 (Fig. S2b).

Some p53-deficient cells within the pre-tumor pancreata exhibited an intermediate level of
genomic rearrangement, consistent with a transitional state in which p53 LOH occurred but the
additional genetic alterations required for full malignancy were still being acquired. Notably,
many of these cells occupied the progenitor-like state (Fig. 1h and Fig. S2¢) and some shared
distinguishing karyotypic changes with highly rearranged, malignant-appearing cells from the
same mouse—for example, harboring loss of chr4 (CdknZ2a), loss chr11 (p53) and gain of chr2,
while retaining diploid status in other chromosomes altered in microtumor cells from the same
sample (e.g., chr5, chr6, chr10, chr13, chr14) (Fig. S2c). Together, these data point to the

highly plastic, progenitor-like state, as a likely precursor for malignant tumors.

Rare progenitor-like premalignant cells exhibit peak activity of oncogenic and tumor
suppressive programs

Our single cell data define a window to interrogate the molecular events that precede or
immediately follow p53 inactivation during early tumorigenesis. To identify how spontaneous
p53 loss impacts the distinct premalignant subpopulations, we compared expression of
canonical p53 targets between p53-proficient and deficient cells within each transcriptionally-
defined premalignant state. Surprisingly, p53 inactivation had minimal impact on canonical p53
targets in most premalignant cell types, with one notable exception—progenitor-like cells (Fig.
2a, Fig. S3a and Methods). In p53-proficient contexts, this subpopulation expressed the highest
levels of p53 targets, including genes involved in cell cycle arrest (e.g., Cdkn1a, Ccng1), DNA
repair (e.g., Mgmt) and apoptosis (e.g., Bbc3, Bax, Pmaip1). These transcripts were
downregulated in the corresponding p53-deficient cells, confirming their p53 dependence.
Spatial mapping of these features using single molecule fluorescence in situ hybridization
(smFISH) revealed that individual Msn-positive progenitor-like cells were dispersed throughout
glandular structures of the premalignant pancreas, suggesting that this p53-active cell state
arises independently during spontaneous tumorigenesis, and does not expand clonally in a p53

proficient setting (Fig. 2b). Thus, despite uniform Kras®'?"

mutation across the epithelial
compartment and loss of acinar identity®’, p53 activity is heterogeneous and confined to

progenitor-like cells—the subpopulation most transcriptionally related to PDAC (Fig. 2c).
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Strikingly, in addition to p53 activation, progenitor-like cells exhibited the highest engagement of
the two other major tumor suppressive programs in PDAC?®: CDKN2A*" and SMAD4*? (Fig. 2d
and Fig. S3b-d). Specifically, progenitor-like cells significantly upregulated Cdkn2a relative to
other premalignant cells (Fig. S3c,d), and inspection of splice junctions in sequencing reads
indicated that transcripts encoding both p19*%* and p16™K** were induced (Fig. S3e), indicating
that both tumor suppressive programs encoded by the Cdkn2a locus were engaged'®4'.
Additionally, gene set enrichment analysis identified the TGFB pathway as significantly
upregulated in progenitor-like cells as compared to other premalignant subpopulations, an effect
that was also observed when using a curated list of SMAD4-dependent TGFB-induced genes
that have been established as SMAD4-dependent*® (Fig. S3b—d). Therefore, all three tumor
suppressive programs that are commonly lost during PDAC progression are engaged in the

progenitor-like state.

Regardless of p53 status, progenitor-like cells preferentially upregulated gene expression
programs associated with malignant PDAC, including KRAS signaling, glycolysis, and epithelial-
mesenchymal transition (EMT)*“4¢ (Fig. 2d and Fig. S3b-d). The simultaneous engagement
of tumor-promoting and tumor-suppressive pathways is reminiscent of oncogene-induced
senescence, a potent tumor suppressive program involving p53 and p16™“2that can be
triggered by aberrant RAS signaling*~°. Consistent with this, progenitor-like cells were

enriched for senescence-associated transcriptional signatures (Fig. 2d and Fig. S3b-d).

To determine whether analogous cell states exist in the human pancreas, we reanalyzed
scRNA-seq data from pancreatic epithelial cells obtained at warm autopsy from cancer-free
individuals®. This dataset includes cells that encompass a spectrum of epithelial states,
including normal acinar cells and ADM/duct-like populations. Projection of murine progenitor-like
signatures onto these data revealed transcriptional alignment with a rare subset of ADM- and
duct-like epithelial cells, which exhibited upregulation of hallmark PDAC programs — including
KRAS signaling, glycolysis, and EMT- as well as p53 transcriptional signatures (Fig. 2e,f and
Fig. S3f,g). While KRAS mutational status could not be inferred from these datasets, our
analyses support the presence of an epithelial subpopulation in the human pancreas of cancer-
free individuals that mirrors the progenitor-like state observed in mice. Together, these data
highlight a conserved premalignant cell state in which oncogenic and tumor-suppressive

programs intersect, revealing a potential battleground for malignant transformation.
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Adoption of progenitor-like identity is coupled with morphological reorganization of
premalignant lesions

We and others previously identified progenitor-like cells as a highly plastic subpopulation with
elevated cell-cell communication potential that expands following caerulein-induced
pancreatitis in Kras-mutant mice®*%°, These cells are rare in 12-27-week-old mice not
subjected to injury (Figs. 1e, 3b and Fig. S1k), but transiently accumulate upon acute
pancreatitis, reaching up to 60% of the epithelium, before progressively declining over 3 weeks
(Fig. 3a,b)*’. The expansion of the progenitor-like subpopulation coincides with other tissue
remodeling events, including loss of acinar identity in the epithelial compartment and formation
of a fibrotic niche in the stroma. Notably, as shown above, progenitor-like cells exhibit
transcriptional features of senescence (see Fig. S3c,d)—a state known to contribute to tissue
remodeling through secretory programs and bidirectional signaling® . These observations
suggest that progenitor-like cells are not merely passive products of KRAS activation, but

active participants in constructing the premalignant niche.

To study the spatiotemporal dynamics of premalignant lesions in response to pancreatic injury,
we leveraged our ability to generate large and synchronous cohorts of KC (LSL-Kras®'?; Ptf1a-
Cre) mice derived by injection of multiallelic mMESCs into early embryos®-*°. In addition, our
models enable selective tracing of Kras-mutant epithelial cells by fluorescent reporters (mKate2
and GFP), allowing their identification and isolation during tumor initiation. Tissues were
collected for histological analysis either 2 days or 3 weeks after the first caerulein injection (see
Fig. 3a), time points that capture both the accumulation and depletion of progenitor-like cells

in response to inflammation (Fig. 3b).

Consistent with our results from dissociated single-cell analyses (PMID: 37167403), progenitor-
like cells accumulated within 48h of injury-induced pancreatitis, as evidenced by upregulation of
MSN, HMGAZ2, or both proteins (Fig. S4a), as well as the tumor suppressor proteins p53 and
p19°7F (Fig. S4a,b). Lesions enriched with progenitor-like cells (termed progenitor lesions)
formed disorganized epithelial structures, in contrast with the rosette-like and luminal epithelial
morphologies of premalignant tissue lacking this cellular state (Fig. 3c and Fig. S4a). More
interestingly, progenitor lesions were morphologically diverse: within the same mouse,
progenitor-like cells can appear as small, isolated clusters; as dominant tissue lesions

separated by stroma; or as mixed lesions suggestive of transitional states (Fig. 3c). This variety
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of morphologies may represent snapshots of progressive epithelial identity loss during the

earliest stages of oncogenic KRAS-driven transformation.

To systematically define the early morphological, molecular, and compositional underlying the
emergence of progenitor lesions and their associated microenvironments (“progenitor niches”),
we performed spatial transcriptomics using the Xenium In Situ platform (10x Genomics), which
enables single cell resolution within intact tissue. Guided by prior scRNAseq data and smFISH
37.40) analyses in the premalignant pancreas (Fig. S5), we designed a custom 480-gene panel
enriched for epithelial markers to resolve premalignant heterogeneity, while also capturing
stromal and immune features and and key signaling and communication pathways® implicated
in early tumorigenesis, including MAPK, p53, YAP, TGFf, and interferon (Table S4 and
Methods). Applying this approach to KC mice (Ptf1a-Cre; LSL-KrasG12D) at early (1-2 days, n
=10 mice) and late (3 weeks, n = 5 mice) timepoints following caerulein-induced injury enabled
spatial profiling across a continuum of progenitor lesions. For each of the 3,833,679 cells
analyzed, we obtained precise spatial context and a phenotypic profile based on gene
expression. Despite the targeted nature of the panel, we successfully applied established
scRNA-seq analysis methods,— including UMAP embedding, clustering, cell type annotation,

and diffusion component analysis—to resolve cell states (Fig. 3d-f).

Treating spatial and transcriptional data as complementary yet integrated dimensions allowed
us to connect cell phenotypes with their native spatial context in the premalignant state. This
analysis successfully discriminated a rich diversity of cell states and their spatial patterning
across different length scales: from macroscopic tissue landmarks (e.g. lymphatics, lobular
zones) to microscopic structures (e.g, epithelial lesions and blood vessels), and fine-grained
gradients (e.g. fibroblast layering) (Fig. S6). The concordance between transcriptional state and
spatial arrangement supports the notion that collective self-organization underlies the

morphological and transcriptional patterning of the premalignant pancreas.

Initially focusing on the epithelial compartment, we recovered the major subpopulations

37,40 (

previously identified by scRNA-seq Figs. 1e and 3d,e and Methods). These data revealed

continuous transcriptional gradients connecting these states, consistent with dynamic transitions
between premalignant cell subpopulations (Fig. 3e). To characterize such gradients, we applied

56,57

diffusion component analysis and identified the continuous axis connecting gastric- and

progenitor-like states as the dominant axis of transcriptional variation in these data (hereby
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termed gastric-progenitor DC) (Fig. 3f and Methods). Gene expression changes along this axis
revealed sequential programs marked by early Msn induction, followed by Hmga2, and

culminating upregulation of Vim, a canonical mesenchymal cell marker (Fig. S4d).

The gastric-progenitor diffusion component (DC) provided a framework to quantify the
morphological, compositional and molecular changes in premalignant lesions as epithelial cells
acquired progenitor-like features. By ordering epithelial cells along this axis and analyzing the
spatial distribution of epithelial nuclei (see Methods), we observed progressive loss of luminal
architecture (Fig. 3g,h), reduced epithelial density accompanied with immune and stromal cell
infiltration (Fig. 3g,i), and lesion shrinkage culminating in isolated progenitor-like cells
embedded within stroma (Fig. 3g,j). These spatially-resolved analyses map how transcriptional
reprogramming toward a progenitor-like state coincides with epithelial disorganization and niche
remodeling during early lesion development (Fig. 3k). Together, these findings demonstrate that
epithelial cells undergoing progenitor-like reprogramming progressively lose epithelial
organization and adopt mesenchymal traits (Fig. S4c), defining a continuum of premalignant
remodeling marked by transcriptional plasticity and early features of invasiveness—hallmarks of

cancer cell dissemination in PDAC mouse models®®.

Progenitor niches resemble cancer niches

To elucidate how progenitor-like cells reshape their microenvironment, we extended our spatial
analyses beyond the epithelium to investigate the surrounding stromal and immune
compartments. PDAC is characterized by a profoundly remodeled microenvironment comprised
of activated fibroblasts and immunosuppressive myeloid cells that suppress cytotoxic T-cell
infiltration and limit therapeutic efficacy'®. Myofibroblastic cancer-associated fibroblasts
(myCAFs), defined by Acta2, Postn, Tnc, and Tgfb1 expression®, contribute to extracellular
matrix (ECM) deposition and promote tumor-supportive inflammation®. In parallel, monocytes
and tumor-associated macrophages (TAMs) expressing markers such as Arg1, Spp1, and I/1b,
are known to contribute immune suppression in PDAC and other malignancies®'*. Notably,

65,66

these features mirror cellular programs engaged in wound repair and can arise early in

36,67,68

tumorigenesis , possibly as a regenerative response to incipient cancer cells.

To reconstruct the dynamics of niche formation, we leveraged the asynchronous nature of
tissue remodeling captured in our spatial datasets. Each tissue section contained epithelial cells

spanning the gastric-to-progenitor continuum, surrounded by diverse stromal and immune
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populations (Fig. S4d and Fig. S6). This spatial heterogeneity was not randomly distributed:
epithelial cells within a given spatial neighborhood typically occupied similar positions along the
gastric—progenitor axis, forming coherent regional patterns. We formalized these spatial
neighborhoods by defining multicellular “niches” as all cells within a 60-um radius of an epithelial
cell ‘anchor’ (Fig. 4a,b). Calculating the average gastric-progenitor DC of niche epithelial cells,
we positioned these niches along a pseudotime continuum of progenitor-like state acquisition
(Fig. 4c), analogous to single-cell trajectory inference®®®%"°. This framework allowed us to
connect changes in epithelial transcriptional identity with progressive microenvironmental

remodeling, revealing niche dynamics from static tissue snapshots.

To examine how the microenvironment evolves across this continuum, we first assessed cell
type composition within spatial neighborhoods. This conventional approach revealed only
modest differences across the gastric—progenitor axis (Fig. S7a), underestimating the
differences between the niches that surround distinct premalignant subpopulations. However,
when we instead compared the transcriptional profiles of microenvironmental cells at either end
of the niche continuum, we observed stark differences in niche composition: niches dominated
by gastric-like epithelial cells were predominantly surrounded by Shh-responsive Gli1+
myofibroblasts’’ and Maf+"2, whereas niches dominated by progenitor-like cells were embedded
in @ microenvironment enriched for ltgax+ (CD11c+) monocytes/macrophages and activated
myCAFs expressing the injury-associated ECM component Tnc”® (Fig. 4d and Fig. S7b-e).
These findings prompted us to move beyond discrete cell types to a cell-state based framework

for mapping continuous microenvironmental changes along the niche continuum.

To resolve how the microenvironment changes along the gastric-progenitor continuum, we
embedded all non-epithelial cells in UMAP space based on their transcriptomic profiles, and
visualized their densities (Fig. 4e, bottom) as a function of the average gastric-progenitor DC of
epithelial cells in their respective niche (Fig. 4e, top). This continuous, state-based framework
revealed gradual and coordinated remodeling of the fibroblast and myeloid compartments, with
progressive enrichment of /tgax+ monocyte/macrophages and myCAFs expressing ECM and
TGFB-related genes (e.g., Postn, Tgfb1, Tnc) (Fig. 4f). Notably, myofibroblasts expressing the
Ccn1and Ccn2, two members of the matricellular CCN family induced by YAP signaling, TGFb,
and hypoxia, among other forms of stress’*, were enriched around progenitor-like cells with
advanced mesenchymal features (Fig. S7¢), which localized to the periphery of pancreatic

lobules (Fig. S6), indicating zonation of progenitor-like niches along the epithelial-mesenchymal
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plasticity axis. Therefore, niche remodeling is a progressive, spatially organized process tightly

coupled to epithelial dedifferentiation.

Shifts along the gastric-progenitor niche continuum involved gradual, compartment-specific
gene expressing changes (Fig. 4f), reinforcing the progressive, rather than binary, nature of
niche remodeling. Analysis of dissociated single-cell datasets from injured KC mice revealed
that the dominant axis of transcriptional variation in fibroblast or myeloid cells mirrored the
changes along the niche trajectory (Fig. 4f, S7d,e), indicating that spatial context is a major
source of transcriptional heterogeneity in the premalignant pancreas. This analysis also
revealed that myeloid cells in progenitor niche expressed markers of immune suppressive

61,62,64

subpopulations, including Spp7+, Arg71+ and ll1b+ cells , While fibroblasts upregulated
activation markers (Acta2, Timp1, Tgfb1, Tnc) and had features of senescent myofibroblasts
(Cdkn2a+, Cdkn2b+, Plaur+) previously linked to PDAC progression®. Together, these spatially
resolved trajectories reconstruct a pseudo-temporal sequence of niche remodeling culminating
in the formation of the progenitor niche— a multicellular community defined by the presence of
ARG1+ macrophages and TNC+ myofibroblasts (Fig. 4h) that is reminiscent of the
desmoplastic and immune suppressive microenvironment of malignant PDAC'". Importantly,
histologically advanced lesions spontaneously arising in the KP-°" model exhibited similar
stromal composition (Fig. 4h), implicating progenitor-like cells act as early architects of the

malignant niche during sporadic tumorigenesis.

Given that progenitor-like cells display features of senescence (see Fig. S3c-d)—a state

implicated in both tissue repair and fibrosis’>"®

—we hypothesized that their emergence reflects
an aberrant wound-healing response co-opted by oncogenic KRAS. Consistent with this
possibility, we noted widespread induction of a wound-healing response signature across
stromal and immune compartments in the progenitor niche (Fig. 4g). Among the most
upregulated genes were those encoding secreted factors such as Pgdfb and Tnfrsf12a —

mediators of inflammation and fibrosis’”"¢—

alongside coordinated activation of the plasminogen
pathway (e.g.m Plaur, Plat, Plau, Serpine1) (Fig. S7f). These findings suggest that progenitor-
like cells initiate a conserved, multi-lineage wound-healing program that, when sustained in the

context of oncogenic signaling, drives the assembly of tumor-permissive niches.

Concerted activation of inter-cellular communication modules define the progenitor

niche
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The tight spatial and transcriptional coupling of distinct cell states within the progenitor niche
suggested a coordinated assembly process driven by intercellular signaling. The first generation
of computational approaches for inferring ligand-receptor interactions from single cell data, such
as CellPhoneDB and NicheNet, relied on correlating ligand and receptor expression in

dissociated single-cell data’®®°

, Without accounting for spatial context. Given that the physical
proximity of signaling partners is often important for functional signaling, we used spatial
transcriptomics to impose an additional constraint: requiring cells expressing cognate ligands

and receptors to be colocalized within the same niche—to define communication potential”®.

We built upon our previously developed method Calligraphy, a computational approach that
leverages the modular organization of communication genes for the discovery and prioritization
of cell-cell interactions in single cell data®’. We quantified cell-type specific expression of
communication genes at the niche level, followed by computation of gene-gene covariance
matrices (see Methods), and found that communication genes exhibited compartment-specific
modular organization in our spatial data (Fig. 5a and Fig. S8a), consistent with our prior work®’.
The added spatial dimension of our data allowed us to identify communication modules
associated with the progenitor niche. Within each compartment, we found at least one
communication module with enriched expression in the surroundings of progenitor-like cells,
indicating that spatially coordinated signaling may contribute to the emergence of these

multicellular communities.

Inspection of cognate ligand-receptor pairs between communication modules from distinct
cellular compartments operating in the progenitor niche revealed signaling axes spanned
multiple modalities, including juxtacrine signaling (e.g., epithelial Jag? — fibroblast Notch3); ECM
production coupled to receptor upregulation (e.g., fibroblast Postn and Tnc — epithelial /tgb3 and
Sdc1); and paracrine interactions (e.g, epithelial Pdgfb — fibroblast Pdgfrb; myeloid Nrg1 —
epithelial Itgb3), potentially mediating MAPK activation in receiving cells®! (Fig. S8b). In
contrast, ligand—-receptor pairs expressed in spatially segregated compartments (e.g., epithelial
Lif — fibroblast or myeloid Lifr) (Fig. S8b) lacked communication potential and may reflect

emergent spatial patterning shaped by antagonistic interactions®?.

To identify signaling interactions most likely to drive progenitor niche formation, we prioritized
receptor-ligand pairs that not only co-localized within the niche but also increased in abundance

along the gastric—progenitor axis. Such differentially engaged signaling axes are strong
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candidates for mediating state-specific changes underlying emergence of the progenitor niche.
For example, we observed progressive and coordinated upregulation of cognate ligand—
receptor pairs along the average gastric—progenitor DC axis, including myeloid //18 — epithelial
I118rap and epithelial Csf2 — myeloid Csf2rb (Fig 5b,c). Importantly, spatial covariation is not
strictly required to determine signaling potential: selective upregulation of a ligand or receptor in
one compartment—paired with broad expression of its cognate partner—may also imply
spatially constrained communication potential. For example, Tgfb1 is selectively upregulated in
epithelial, fibroblast, and myeloid cells of the progenitor niche (Fig. 5d), potentially activating
TGF signaling within adjacent epithelial populations that ubiquitously expresses Tgfbr1 and
Tgfbr2 (Fig. S8c)—a pattern consistent with the enrichment of TGFf transcriptional signatures in

progenitor-like cells (Fig. S3b).

Together, these findings support a model in which progenitor niches arise through a self-
organizing circuit of spatially-constrained, reciprocal intercellular signaling. Oncogenic KRAS
activation leads to the emergence of progenitor-like epithelial cells which express a distinctive
set of signaling ligands and receptors that contribute to the communication potential of this
premalignant subpopulation and its microenvironment. These stromal populations, in turn,
engage in feedback signaling—via ligand production or extracellular matrix remodeling—that
may stabilize and sustain the progenitor-like state, reinforcing the spatial and transcriptional
architecture of the niche (Fig. 5e). The net result of these self-reinforcing circuits is the

coordinated assembly of a cancer-like ecosystem that may promote cancer initiation.

Oncogenic Kras inhibition dismantles the progenitor niche

The highly coordinated nature of progenitor niche assembly raised the possibility that perturbing
a single key component could destabilize the entire system. Given that oncogenic KRAS drives
expression of communication modules that define the progenitor state (Fig. S8d)*’, we
hypothesized that this population orchestrates niche formation by rewiring intercellular
communication. Moreover, because progenitor-like cells exhibited heighted KRAS activity (see
Fig. 2d), we hypothesized that the maintenance of this state and broader niche architecture

might depend on persistent oncogenic KRAS signaling.

To test the cell state and tissue-wide consequences of removing this signal, we subjected
treated KP-°" mice to acute pancreatitis, followed by a 48 hour pulse of MRTX113%, a mutant

KRAS®'?P_specific small molecule inhibitor (Fig. 6a and Methods). This short-term perturbation
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enabled us to determine the immediate effects of perturbing KRAS signaling without directly
targeting their microenvironment. Histological evaluation confirmed target engagement, as
evidenced by the reduced phospho-ERK (p-ERK) levels in the epithelial compartment (Fig.
S9a). Strikingly, this treatment triggered a rapid depletion of HMGA2+ progenitor-like cells
without ablating the entire premalignant epithelium (Fig. 6b). Single cell transcriptional profiling
coupled with differential abundance analysis using Milo®*, revealed that progenitor-like cells
were the most depleted upon acute oncogenic KRAS inhibition. In addition, gastric chief-like and
pit-like cells— characterized by gene expression signatures of PanIN and the classical PDAC
subtype*’— were also depleted, albeit to a lesser extent (Fig. 6f, Fig. S9b,c). These results
demonstrate that the maintenance of the progenitor-like state is exquisitely dependent on

persistent oncogenic KRAS signaling.

Our scRNA-seq profiling revealed other informative changes. For example, ADM cells remained
but showed transcriptional changes consistent with acinar recovery (Fig. $9d-,e), likely
representing the initial phase of restoration of a normal pancreas histology that results from
chronic oncogenic KRAS inhibition'®®°. Moreover, we observed coordinated downregulation
KRAS driven transcriptional programs, p53 target genes, and Cdkn2a expression (Fig. S9f),
changes largely attributable to depletion of the progenitor compartment (Fig. 6b and Fig. S9g).
Notably, rare residual progenitor-like cells retained high expression of these programs,
suggesting incomplete KRAS inhibition or alternative mechanisms for sustaining tumor
suppressive responses (Fig. S9g). Therefore, sustained oncogenic KRAS signaling is essential
for maintaining progenitor-like epithelial states that also engage tumor suppressive responses in

the injured pancreas.

To assess how depletion of the progenitor-like population impacts surrounding tissue, we
applied the Xenium platform to MRTX1133-treated (n=4) and untreated (n=4) tissues collected
48h after the first inhibitor dose, analyzing a total of 2,686,667 cells. Spatial analysis revealed
widespread shifts in cellular states across compartments, including the expected loss of
progenitor-like cells (Fig. 6¢c and Fig. S10a) accompanied by striking depletions in Tnc*
myofibroblasts and /tgax® macrophages/monocytes, otherwise enriched in the progenitor niche
(Fig. 6e). To systematically quantify these changes, we adapted Milo® to our spatial framework
(Fig. S10b and Methods), assessing how progenitor-like cell depletion triggered by MTRX1133
treatment altered the abundance microenvironment state associated with the progenitor niche.

This analysis confirmed that the microenvironment cells most tightly associated with progenitor-
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like cells — Thc+ myofibroblasts and /fgax+ macrophages/monocytes — were preferentially
depleted upon oncogenic KRAS inhibition (Fig. 6d and Fig. S10c,d), whereas populations
excluded from progenitor niches, such as Gli1+ myofibroblasts, became enriched (Fig. 6f and
Fig. S10c). Although other premalignant subpopulations, including gastric pit and chief-like
cells, were also affected (Fig. 6f and Fig. S9b,c), the predominant effect of MRTX1133
treatment was the collapse of the progenitor niche itself (Fig. 6d—f). These data imply that
progenitor-like cells actively shape their environment and that targeted depletion of this state is

sufficient to collapse the entire niche.

P53 naturally collapses the progenitor niche

Although oncogenic KRAS inhibition rapidly dismantles the progenitor niche, this injury induced
tissue state also resolves naturally if inflammation subsides (see Fig. 3b)*’. Because progenitor-
like cells activate tumor suppressive programs, including those governed by p53, we examined
how p53 inactivation influences progenitor-like cell dynamics and niche architecture using a
conditional mouse model that permits spatial and temporal control of endogenous p53
expression® (Fig. 7a). Specifically, the KC"**®* model is derived from multiallelic ES cells and

features Cre-dependent activation of oncogenic Kras®'?"

and a mKate-coupled reverse
tetracycline transactivator (rtTA), enabling epithelial-specific induction of tetracycline-responsive
transgenes encoding either a GFP-linked p53-targeting shRNA (shp53) or a non-targeting
shRNA control (targeting renilla luciferase, hereby referred to as shCtrl) upon doxycycline
treatment. This system affords synchronous p53 knockdown in pre-tumor p53 proficient cells
(mKate2+/GFP+) while avoiding confounders associated with chronic p53 inactivation in

traditional KPC models®.

We first examined how p53 modulates progenitor-like cell dynamics and cell state transitions
following injury. Following one week of doxycycline treatment to induce shRNA expression,
KCs"**3 and KCS'°™ mice were treated with caerulein to induce pancreatitis and euthanized 3
weeks later for histological and molecular analysis. Reinforcing the notion that p53 selectively
targets this subpopulation, p53 suppression produced a marked expansion of HMGA2+
progenitor-like cells compared to controls (Fig. 7b and Fig. S11a,b). Furthermore, beyond
simply promoting progenitor-like cell persistence, scRNA-seq analysis revealed that p53
inactivation led to emergence of a distinct cell state displaying more mesenchymal features,

such as increased expression of Vimentin (Vim) (Fig. 7c and Fig. S11a,b). We refer to the state
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present in both p53 wild-type and p53-suppressed tumors as progenitor 1, and the

mesenchymal-like state arising specifically upon p53 loss as progenitor 2.

Differential gene expression analysis revealed that in addition to acquiring mesenchymal
features, progenitor 2 states cells activated inflammatory responses and oncogenic programs,
including interferon signaling, Yap signaling, and glycolysis (Fig. 7c—f, and Fig. S11e,f).
Furthermore, diffusion component analysis revealed that these features of the progenitor 2
subpopulation emerged progressively along the gastric-progenitor axis as a continuation of the
gastric-progenitor diffusion component (Fig. 7c,d). These results suggest that p53 loss
facilitates the progression of a molecular program that is initiated by oncogenic KRAS signaling

in progenitor-like cells.

To disentangle direct effects of p53 loss from those driven by shifts in cell state composition, we
performed a more focused analysis (Fig. S11c—e). Across all progenitor-like cells, p53
suppression broadly downregulated canonical p53 targets and epithelial identity genes (e.qg.,
Cdh1, Epcam) (Fig. S11c); however, when restricting comparisons to clusters occupying
comparable positions along the gastric—progenitor axis, only p53 target gene repression
persisted (Fig. S11d and Methods). Therefore, p53 loss has two separable effects: it disables
its canonical transcription program and licenses further plasticity that enables epithelial cells to

adopt more mesenchymal cell states.

We next asked how p53 loss influences the composition of the progenitor niche using the
Xenium platform (9 tissues from KC*"**® mice and 5 tissues from KC*"?" mice, 4,611,972 cells
total). While stromal cell type abundances were similar globally between p53-proficient and
deficient tissues three weeks post-injury (Fig. S12a), this masked substantial spatial
heterogeneity (Fig. S12b,c). Knockdown of p53 caused progenitor niches to form expansive,
contiguous lesions that spanned entire pancreatic lobes, a pattern that was absent from controls
(Fig. 8S12c¢). These large tissue domains produced the most striking changes in

microenvironment composition.

In the fibroblast compartment, Thc+ activated myCAFs localized near progenitor-like cells
regardless of p53 status (Fig. 7g,h), but their abundance did not scale with progenitor-like cell
expansion (Fig. S12a). In contrast, myCAFs expressing the members of the matricellular CCN

family Ccn1 and Ccn2 were increased in progenitor niches’*#¢. Their expansion upon p53
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knockdown is consistent with their association with rare Vim+ progenitor-like cells in KCs"*"
mice (Fig. S6 and Fig. S7c). Notably, p53-deficient progenitor-like cells upregulated multiple
ECM components, as well as the mechanosensing gene Piezo2 (Fig. S11e), suggesting that
this premalignant subpopulation actively responds to, and potentially reshapes, the fibrotic

microenvironment of the premalignant pancreas.

The most profound effects of p53 loss were in the myeloid compartment, where the expansion
of progenitor-like cells was accompanied by the accumulation of /tgax 7Cd274"9" (PD-L1"s)
macrophages (Fig. 7g,h). Single-cell and spatial transcriptomic analyses confirmed that these
PD-L1"9" cells constitute a distinct cell state (Fig. S12d,e), whose abundance increased sharply
once progenitor-like cells exceeded a threshold and then scaled proportionally with niche size
(Fig. S12f). Single-cell profiling revealed that, compared to their Cd274°" counterparts,

Itgax 1Cd274"9" monocytes/macrophages upregulated immunosuppressive genes (e.g., Arg1,
Spp1, Marco) 528487 as well as markers of the alternative macrophage activation state (e.g.,
Chil3, Ms4a8a) %, and downregulated MHC class Il components (e.g., H2-Eb1, H2-Aa, Cd74)
(Fig. S12g). These observations suggest that p53-deficient progenitor cells drive the expansion

and evolution of an immune-privileged niche.

Taken together, these findings demonstrate that either KRAS inactivation or p53 engagement is
sufficient to dismantle the progenitor-like population and its associated niche. While oncogenic
KRAS activity promotes epithelial-mesenchymal plasticity and microenvironmental
remodeling—hallmarks of the regenerative phase of wound healing—p53 activation restrains
these processes, collapsing the progenitor niche and mimicking the resolution of tissue repair.
Beyond its well-established role in restraining genomic instability?’*°!, these results position
p53 as a critical barrier to both cell-intrinsic and microenvironmental plasticity at a key inflection

point between benign and malignant states.

Discussion

By directly visualizing the cellular and molecular events that promote or restrain the benign-to-
malignant transition, our study identifies a progenitor-like cell state as the pivotal target of
oncogenic and tumor-suppressive forces during early pancreatic tumorigenesis. We show that
this transiently emergent population—induced by oncogenic Kras in the context of tissue
injury—engages tumor suppressive pathways governed by p53, CDKN2A, and SMAD4,

triggering senescent-like programs and activating intercellular communication programs that
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remodel the surrounding environment. Likely through reciprocal signaling across epithelial,
fibroblast, and immune compartments, progenitor-like cells assemble a multicellular niche with
hallmarks of invasive cancer. Malignant progression ensues when this progenitor-like state
escapes tumor-suppressive surveillance, enabling immune evasion, persistent epithelial
plasticity, and stromal co-option. These findings position the progenitor-like state as a
gatekeeper of malignant transformation and define a discrete window during which targeting the
signaling circuits and cell states that support niche assembly may allow for effective cancer

interception.

This work was enabled by methodological innovations that directly visualize early malignant
progression in situ. Genetically engineered models that mark spontaneous p53 loss captured

21,9293 '\while high-resolution spatial transcriptomics technologies®*

sporadic tumor initiation
reconstructed the multicellular ecosystems surrounding progenitor-like cells. Anchoring spatial
analysis on transitional epithelial states and mapping continuous gene expression trajectories
revealed coordinated shifts in epithelial plasticity, niche remodeling, and tissue architecture
along a path to malignancy. Transcriptional gradients in premalignant cells guided the dissection
of dynamic and progressive remodeling events that assemble the progenitor niche — a cancer-
like environment characterized by immunosuppression and activated wound healing programs.

%6.69.95-99 nrovide an

These analyses, analogous to pseudotime construction in dissociated data
inferred timeline of niche-state transitions and establish a generalizable framework for
investigating how cell state transitions orchestrate tissue-scale organization in regeneration,

fibrosis, and early tumor evolution.

Using these methods, we pinpoint when, where, and how key oncogenic and tumor-suppressive
forces act during malignant progression. Surprisingly, the major tumor suppressor pathways
implicated in PDAC—p53, CDKN2A, and SMAD4—are not broadly engaged across the
premalignant epithelium, but instead converge on a discrete progenitor-like population that
displays high KRAS signaling and is transcriptionally poised for transformation. Single-cell
analyses of other premalignant tissues*>#"1%-92 have identified senescent-like/transitory cells
resembling the progenitor populations described herein, suggesting that targeting progenitor-like
programs may be a conserved tumor suppressive mechanism. Intriguingly, the selective
engagement of tumor suppressors in the highly plastic progenitor-like state echoes the long-

6INK4A (

standing finding that p53 and p1 encoded in the CDKN2A locus) suppress induced

103-107

pluripotency —the ultimate example of cellular plasticity. Viewed through this lens, our
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study provides direct visual evidence that p53’s tumor suppressive function stems from its role
as a guardian of plasticity, facilitating the resolution of regenerative or progenitor-like states that,
if unchecked, promote maladaptive remodeling and tumorigenesis. Our data suggest that the
decision between benign persistence and malignant progression occurs within the narrow

window defined by the emergence, activation, and resolution of the progenitor-like state.

We further revealed the potential for bidirectional communication between the premalignant
epithelial cells and their microenvironment within the progenitor niche. This signaling appears
enabled by concerted upregulation of communication modules across compartments—TGFp
signaling, ECM/ECM receptor communication, and immune cytokine- mediated heterotypic
crosstalk. The modular and reciprocal nature of these interactions suggest that positive
feedback loops stabilize the progenitor niche, mirroring systems-level architectures that mediate
regenerative and developmental transitions'®. Supporting this model, acute KRAS inhibition not
only depletes progenitor-like cells but simultaneously dismantles their niche, leading to rapid
loss of immunosuppressive macrophages and activated myofibroblasts. These findings reveal
that malignant progression is not driven by epithelial transformation alone, but by the emergent

properties of a multicellular ecosystem.

These insights converge on a broader principle: the malignant potential of progenitor-like cells is
shaped by the interplay between genetic lesions, epithelial plasticity, and microenvironmental
remodeling. Prior studies have shown that oncogenic KRAS derails normal regenerative
programs, driving chromatin remodeling that induces a highly plastic progenitor state with
heightened cell-cell communication potential*’—features that mimic physiological wound
healing but become pathologically sustained in cancer'®. In this context, the progenitor-like
state functions as both a target of tumor suppressive engagement and a hub where persistent
KRAS signaling impedes wound resolution, such that targeting oncogenic KRAS activity or
engaging p53 transcriptional programs allows resolution to proceed. These results align with
emerging evidence that p53 restrains exaggerated injury responses in other epithelial

100,110,111

tissues and support a model in which p53 and KRAS co-modulate both cell-intrinsic

programs and tissue-scale dynamics to govern cancer risk.

This study reveals that oncogenic KRAS inhibition and p53 activation converge on depleting a
progenitor-like state that would otherwise seed a tumor-permissive niche, marking a decisive

point in malignant progression. While p53 restricts this state, its loss enables persistence,
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progression towards advanced mesenchymal states, and immune evasion, rendering the niche
susceptible to transformation. These findings help contextualize the activity of KRAS inhibitors
in advanced PDAC, where they preferentially eliminate basal/mesenchymal-like populations and

remodel the tumor microenvironment, in some instances enhancing responsiveness to

112-

immunotherapy''?~""°. Our data suggest that these effects reflect, in part, collapse of the

progenitor-like state and restoration of regenerative resolution, thereby permitting immune
surveillance. Given the strong association between TP53 mutations and aggressive, treatment-
refractory cancers, targeting p53-mutant tumors has long been a central goal in oncology. Our
data argue that interception efforts should target not only initiating mutations but also the
specific cell states and multicellular ecosystems in which p53 operates. By revealing how p53
naturally suppresses malignant progression, our findings suggest that eliminating the
progenitor-like states it constrains may represent a tractable and broadly applicable therapeutic

strategy—one that phenocopies p53 function without requiring its restoration.
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FIGURE LEGENDS
Figure 1. Capturing spontaneous loss of p53 throughout the premalignant-to-malignant

spectrum. a. KP-°H

mouse model. Loss of GFP linked to the only wild-type p53 copy in the cell
reports p53 loss of heterozygosity. b. Sampling strategy to characterize progression from
premalignant to malignant states. c. Representative fluorescence image of a pre-tumor stage

pancreas section. Arrowheads point to rare cells that lost GFP fluorescence upon p53 LOH. d.
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Force-directed layout (FDL) of single-cell transcriptional data from sorted Kras®'?®

epithelial
cells, colored by mouse stage and p53 status. e. Projection of transcriptional signatures of major
subpopulations identified in premalignant pancreas. Multiple transcriptional signatures were
used to annotate cell type (Methods). ADM, acinar-to-ductal metaplasia. f. Diffusion distance
from pre-tumor p53-proficient or p53-deficient cells to the closest cancer-like cell. g. Single-cell
karyotypes of pre-tumor p53-deficient cells inferred from scRNA-seq (Methods). Rows represent
individual cells and columns represent genes, ordered by genomic position. Colors represent
inferred loss or gain of genomic material. Chr, chromosome. h. FDL of pre-tumor p53-deficient

cells, colored by genomic state.

Figure 2. p53 is maximally active in rare premalignant cells during tumor initiation. a.
Expression of known p53 targets and markers of progenitor-like cells in pre-tumor p53-proficient
and deficient cells, as a function of cell state. b. Representative smFISH image of pre-tumor
stage pancreas, probing for p53 targets and the progenitor-like state marker Msn. ¢. FDL of

Kras®'?P

-positive epithelial cells along PDAC progression, colored by p53 average expression of
p53 canonical targets shown in (a). d. Expression of tumor-suppressive and oncogenic gene
signatures in pre-tumor p53-proficient cells or tumor p53-deficient cells (PDAC). p53 canonical
signature derived from p53 targets in Fig. 2a. Other signatures shown are: p53 curated targets
(Fisher)''®; p53 TSAG, tumor suppression—associated genes'"; p53-restoration®®; Cdkn2a
mRNA; TGFB-dependent SMAD4 targets''®; HALLMARK EMT, epithelial-to-mesenchymal
transition'®; senescence UP®2; UP in mouse PDAC (this work, see Methods); Kras/Fosl1*?;
Kras injury®®; glycolysis/warburg (curated list, see Methods). e. UMAP of cells from healthy
human pancreas and PDAC tissue in®, colored by progenitor-like signature. PDAC cells and
acinar cells are grayed out to facilitate visualization of duct-like and ADM cells from donors with
and without cancer. Box highlights cells that exhibit highest progenitor-like signatures. f.
Expression of tumor-suppressive and oncogenic signatures in pancreatic epithelial cells with
and without donors. Different rows of ADM/duct-like cells correspond to PhenoGraph clusters.
Colors represent z-score of average signature scores in each column. Box highlights the two

PhenoGraph clusters with highest progenitor-like signatures in cells from donors without cancer.

Figure 3. Transcriptional and morphological states undergo coordinated changes
in the premalignant epithelium. a. Experimental timeline for tissue collection after inducing
caerulein-induced pancreatitis in KC mice. b. Fraction of progenitor-like epithelial cells in
scRNA-seq data as a function of treatment condition and time. c. Representative images of
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smFISH staining for the progenitor-like marker Msn. The three fields of view are from the same
tissue. Scale bars, 50 um. d,e. Spatial representation (d) or single-cell transcriptional
embedding (e) of Xenium data annotated by signatures of major premalignant subpopulations. f.
Projection of gastric—progenitor diffusion component in transcriptional embedding of single-cells
derived from Xenium data. g. Representative fields of view of premalignant epithelial lesions in
Xenium data. Segmented nuclei are pseudo-colored by their gastric—progenitor DC value, using
the colormap in (f). h—j. Distributions of lumen score (h), epithelial fraction in local spatial
neighborhood (i) and lesion size (j) as a function of gastric—progenitor DC in epithelial cells (see
Methods for details on the definition and quantification of morphological parameters). k.

Schematic of the changes in lesion morphologies along the gastric-progenitor DC continuum.

Figure 4. Continuous cellular and molecular remodeling events during the assembly of
the progenitor niche. a. Representative section of premalignant pancreas harvested 2 days
post-injury, analyzed using the Xenium platform and colored by cell type. b. Projection of
gastric—progenitor DC in premalignant cells. Epithelial cells not categorized as gastric-like or
progenitor-like are outlined in dark blue, but not pseudo-colored. ¢. Niches, comprising all cells
within a 60-um radius of a central anchor epithelial cell, are ordered by the average gastric—
progenitor DC of their constituent epithelial cells. d. Location of individual mMRNA molecules
associated with select myofibroblasts and monocyte/macrophage subpopulations in niches
depicted in (c). e. Contour plots denote the density of niche epithelial cells in select bins along
the average gastric-progenitor DC (top) and corresponding shifts in the density of
microenvironment cells (bottom). f. Average niche expression of select genes in (left) epithelial,
(middle) fibroblast or (right) myeloid immune cells along the average gastric-progenitor DC.
Niches are ordered by average gastric—progenitor DC value, divided into 100 equal bins. Dotted
lines indicate DC value at which epithelial cells begin expressing progenitor-like markers.
Communication genes associated with progenitor niches are highlighted in red. g. Average
expression of wound-healing response genes (GO Biological Processes) from our Xenium
panel. Each dot represents a single biological replicate (n=15 mice). Values denote the average
z-scored expression of wound-healing genes in the specified cellular compartments, in either
gastric or progenitor niches. P-values, two-tailed Wilcoxon Rank Sums Test . h.
Immunofluorescence staining for cellular states enriched in the progenitor niche, as a function of

PDAC progression. Scale bars, 100 pym.
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Figure 5. Intercellular communication modules define the progenitor niche. a.
(Top) Gene-gene correlation matrix of communication gene niche expression in distinct cellular
compartments. (Middle) Average expression of communication genes in canonical gastric of
progenitor niches. (Bottom) Communication modules identified through graph-based community
detection'?. Boxes highlight communication modules associated with the progenitor niche in
each compartment (see Methods). b-d. (Top) Each dot is a single mRNA detected in a specific
cellular compartment. Scatter plots show colocalization of cognate ligand-receptor pairs from (b)
IL-18, (c) GM-CSF signaling, or (d) Tgfb1 produced in different cellular compartments (see Fig.
S8c for markers of progenitor-like cells and associated niche cells in the same tissue region).
(Bottom) Niche expression of cognate ligands and receptor pairs from (b) IL-18, (c) GM-CSF, or
(d) TGFB signaling. Each dot denotes the average niche gene expression of the specified
communication genes in a specific bin along the gastric-progenitor niche continuum. e.
Schematic of multicellular interaction circuits enabled by engagement of communication

modules in the progenitor niche.

Figure 6. Consequences of acute oncogenic Kras inhibition in the premalignant
pancreas. a. Timeline of acute oncogenic Kras inhibition in the premalignant pancreas. b.
Representative images and quantification of HMGAZ2 staining in KP-°" mice treated with vehicle
(n=3) or MRTX1133 (n = 4). Tissue was collected 2 days after the first inhibitor or vehicle dose.
Scale bars, 50 um. Each dot in quantification corresponds to an individual mouse; bar
corresponds to average value. c. Two-dimensional density representation of Xenium single-cell
gene expression data from mice treated with vehicle (n = 2) or MRTX1133 (n = 4). Purple
contours, density of transcriptional states in the vicinity of progenitor-like epithelial cells; pink
contours, density after MRTX1133 treatment. d. Differential abundance analysis of
transcriptional neighborhoods of fibroblasts or myeloid cells in MRTX1133-treated compared to
vehicle-treated samples. Each dot represents a transcriptional neighborhood as defined by
MiloR® (see Methods). Color represents the enrichment of progenitor-like cells in the spatial
vicinity of cells in the transcriptional neighborhood. Significantly enriched or depleted
transcriptional neighborhoods are outlined in black. e. Representative images and quantification
of TNC staining in KP*°" mice treated with vehicle (n = 3) or MRTX1133 (n = 4). Tissue was
collected 2 days after the first inhibitor or vehicle dose. f. Representative images of Xenium data
from vehicle or MRTX1133 treated mice. Each dot is a cell centroid, and colors represent select

cell states. Scale bars, 250 um. b,e. Scale bars, 50 um. Each dot in quantification corresponds
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to an individual mouse; bar corresponds to average value. P-value, Two Tailed Wilcoxon Rank

Sums test.

Figure 7. Consequences of p53 knockdown in the premalignant pancreas. a. Mouse model
for doxycycline-inducible knockdown of p53 in the premalignant pancreatic epithelium. b.
Representative images and quantification of HMGAZ2 staining 3 weeks post-pancreatitis in
shp53 (n = 11) or shRen (n = 10) mice. ¢. Two-dimensional density representation of single-cell
transcriptomes from shRen (n = 4) or shp53 (n = 5) Kras®'?+ pancreatic epithelial cells. d.
Randomly sampled shp53 or shRen cells (top) and average score of expression signatures in
shRen or shp53 cells (bottom) binned along the gastric—progenitor DC (bins <10 cells are not
plotted). e,f. Representative images and quantification of VIM staining 3 weeks post-pancreatitis
in shp53 (n = 10) or shRen (n = 10) mice. g. Xenium-based quantification of microenvironment
subpopulations associated with the progenitor niche, as a function of the fraction of progenitor-
like cells in the tissue. Each dot is a single biological replicate. h. Representative images of
Xenium data from KCS"Re" or KCS"P5® mice 3 weeks post pancreatitis. Each dot is a cell centroid,
and colors represent select cell states. Side panels show the abundance of Ccn2+
myofibroblasts or ltgax+/Cd274"%" macrophage/monocytes in their associated sample. Scale
bars, 500 um. b,e. Scale bars, 50 um. Each dot in quantification corresponds to an individual

mouse; bar corresponds to average value. P-value, Two-tailed Wilcoxon Rank Sums test.

Supplementary Figure S1. Annotation of spontaneous tumorigenesis single cell data.
(Related to Main Figure 1). a,b. Projection of cells from pre-tumor (a) or tumor (b) stage
samples into force directed layouts of scRNA-seq data. Each dot is a single cell colored by
sample of origin. c. Representative FACS plot showing frequency of mKate2+/GFP+ (p53
proficient) or mKate2+/GFP- (p53 deficient) cells harvested from 4.5 months old KP-°" mouse.
d. Projection of GFP mRNA expression in individual Kras®'?°+ epithelial cells visualized in a
force-directed layout. e. Expression of transcriptional signatures from major premalignant cell

states derived from Burdziak, Alonso-Curbelo et al.®”

in premalignant cells from pre-tumor stage
mice. p53-deficient cells from PDAC samples, or microtumor clusters are grayed-out. f.
Expression of transcriptional signatures from major premalignant cell states in premalignant cell
clusters from pre-tumor stage mice. Clusters were identified using PhenoGraph (k=30).
Signatures were computed as the average z-scored expression of signature genes in each cell.
Scores were then averaged over all cells from a single cluster. Average signatures were

standardized over all PhenoGraph clusters for cluster annotation and visualization. g.
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Visualization of diffusion component 2 (DC2) in force directed layout. DC2 captured continuity
between gastric-like and progenitor-like premalignant cells. h. Distribution of number of cells
along DC2. Dashed line represents the DC2 threshold value used to identify progenitor-like
cells. i. Discretization of the gastric-progenitor continuum using threshold DC2 threshold
identified in (h). j. Expression of marker genes for distinct premalignant states and PDAC in
distinct subpopulations of Kras®'?P+ epithelial cells. Dot size represents the fraction of cells in
the specified cell state that express the gene. Color represents the average gene expression in
cells that express the gene. k. Distributions of premalignant states as a function of sample and

p53 status.

Supplementary Figure S2. Identification of microscopic PDAC in pre-tumor stage mice.
(Related to Main Figure 1). a. Inferred karyotypes from single cell transcriptomes. Each row in
karyotype matrices corresponds to a single cell, and columns correspond to genes ordered by
chromosomal location. Colors represent estimates of copy number change. Cells are grouped in
distinct blocks based on PDAC development stage (pre-tumor vs tumor), p53 status (proficient
vs deficient), and the extent of karyotype changes. Within each block, cells are grouped by
sample of origin, and clustered by karyotype profile. Dashed lines relate cells from the same
sample of origin in different karyotype classes. b. Representative immunofluorescence images
of microscopic PDAC detected in KP-°" mice. Slides were stained for mKate2 and GFP to
assess p53 genetic status, as well as the progenitor state marker HMGA2. c. Karyotype profiles
of p53 deficient cells in a mouse harvested at the pre-tumor stage. A subset of cells show
karyotype and transcriptional profiles consistent with PDAC (microtumor cells). Another subset
shows karyotype and transcriptional profiles consistent with progenitor-like and other
premalignant states. Boxes highlight groups of individual cells with premalignant transcriptional
profiles that share a subset of karyotype changes present in microtumor cells. ¢. Projection of
individual p53 deficient cells from a single sample, colored based on their karyotype status. Pink
cells with dark outline denote premalignant-like cells with a subset of karyotype changes shared

with microtumor cells.

Supplementary Figure S3. Progenitor-like signatures in individual mouse and human
samples (Related to Main Figure 2). a. Expression of canonical p53 targets and progenitor
state markers as a function of p53 status. Each row documents summarized expression within
individual samples. Parenthesis show the number of cells aggregated in each row. b. Gene set

enrichment analysis computed using log> fold changes in gene expression between p53
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proficient progenitor-like cells and other p53 proficient premalignant cells, as estimated by
differential gene expression analysis (see Methods). c. Expression of representative genes
upregulated in progenitor-like cells, corresponding to tumor suppressive and oncogenic
signatures shown in Main Fig. 2d. d. Fraction of isoform-specific Cdkn2a reads in pre-tumor p53
proficient samples. e. Distribution of oncogenic and tumor suppressive signature scores shown
in Main Fig. 2d in p53 proficient cells, as a function of cell state (progenitor-like or other). e.
Average z-scored expression of representative genes from oncogenic and tumor suppressive
signatures associated with the progenitor-like state in human-derived single cell data from
Carpenter, Elhossiny, Kadiyala, et al.®. Rows in the middle block correspond to PhenoGraph
clusters of ADM/duct-like cells (see Methods). Box highlights PhenoGraph clusters with the
highest expression of progenitor-like signatures in Main Fig. 2f. e. Projection of individual cells
from human pancreatic samples in UMAP. ADM/duct-like cells are outlined. Cells in
PhenoGraph clusters with highest progenitor-like signatures are colored based on donor of

origin.

Supplementary Figure S4. Identification of progenitor-like lesions upon pancreatic injury
(Related to Main Figure 3). a. Staining of progenitor-like markers in tissue section from a 6
weeks old pre-tumor stage KP-°" mouse 2 days post pancreatitis. Data was collected using the
Lunaphore COMET multiplex immunofluorescence platform. White box highlights a progenitor
lesion. Side fields of view show overlays of individual progenitor markers with counterstains for
premalignant epithelial (GFP) and nuclei (DAPI). b. Immunofluorescence staining and
quantification of p53 protein levels in 6-7 weeks old KC*"**" mice 2 days post pancreatitis.
Images show staining for MSN to identify progenitor lesions (left) and staining for p53 in an
adjacent lesion (right). Cyan and magenta outlines highlight epithelial lesions manually identified
as either MSN- or MSN+, respectively, based on comparison between adjacent tissue sections,
blinded for p53 staining. ¢. Immunofluorescence staining of the mesenchymal marker VIM in

KCsMRe" mice harvested 3 weeks post pancreatitis.

Supplementary Figure S5. Use of reference single cell dataset and smFISH staining for
determining expression thresholds for Xenium panel design (Related to Main Figures 3
and 4). a. Distribution of gene expression in single cell reference datasets. Each dot represents
a meta-cell computed using SEACells'®' (see Methods). Expression values are plotted in linear
scale. Genes are ordered by their highest expression in any SEACell. Dashed lines represent

expression thresholds that guided selection of markers to include in our Xenium panel (see
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Methods). b. Representative smFISH staining of genes shown in (a) in the premalignant
pancreas. Regions of interest, highlighting positive cells, are shown in high resolution below

each tissue image. Scale bars 20 pym.

Supplementary Figure S6. Spatial patterning of transcriptional heterogeneity in distinct
cellular compartments of the premalignant pancreas (Related to Main Figures 3-5). (Left
panels) Representative images of spatial organization of transcriptional clusters identified in
maijor cellular compartments in Xenium data (see Methods). Each dot represents a single cell
centroid, and cells are colored based on transcriptional state. The tissue shown is derived from
a KC*"R*" mouse, 3 weeks post-pancreatitis. (Middle panels) UMAP visualization of
transcriptional clusters depicted in left panels. (Right panels) Xenium-based quantification of

representative marker genes for transcriptional clusters identified in each cellular compartment.

Supplementary Figure S7. Molecular and compositional properties of the progenitor
niche (Related to Main Figure 4). a. Distribution of coarse cell types in niches as a function of
the average gastric-progenitor DC in the niche (see Main Text and Methods) in Xenium samples
from mice with Kras mutant, p53 proficient pancreatic epithelium (pre-tumor KCs"Re" or KP-°H),
pooling tissue samples 2 days and 3 weeks post injury. b. Expression of select mMRNA markers
of microenvironment states associated with gastric or progenitor niches. Each dot is an mRNA.
Circles represent niches highlighted in Main Fig. 4d. c. Frequency of select cell populations as a
function of average gastric—progenitor DC in niche epithelial cells. Bold lines, median fraction;
shaded areas, interquartile range. d-e. Analysis of gene expression heterogeneity in (d)
monocyte/macrophages and (e) myofibroblasts from genome-wide dissociated single cell data.
Data was collected from 2 mice with Kras mutant, p53 proficient pancreatic epithelium (KCs"Ren
or KC*"**3 without doxycycline induction of shp53), 3 weeks post pancreatitis. Cells are aligned
and grouped in 50 bins along the major axis of variation within each cellular compartment, as
defined by diffusion component 1 (DC1). (Top panels) Expression of genes measured in our
Xenium panel and depicted in Main Fig. 4f, preserving the order of rows for ease of comparison.
Bottom panels include expression of genes not measured in our Xenium panel that inform
broader expression programs activated in the progenitor niche. f. Average expression of wound-
healing response genes (GO Biological Processes) with highest upregulation in progenitor
relative to gastric niches, in different cellular compartments. Each dot represents a single

biological replicate (n=15 mice). Values denote the average z-scored expression of wound-
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healing genes in either gastric or progenitor niches. P-values, two-tailed Wilcoxon Rank Sums
Test .

Supplementary Figure S8. Concerted upregulation of cognate ligand-receptor pairs in the
progenitor niche (Related to Main Figure 5). a. Expression of representative cognate ligand-
receptor pairs with coordinated changes in expression as a function of the average gastric-
progenitor DC in the niche. Each dot is the averaged z-scored niche expression of the specified
genes in their corresponding cellular compartment (Methods). The color and size of the dots
corresponds to the relative frequency of gastric or progenitor-like cells in the niche. b.
Expression of markers associated with the progenitor niche in epithelial, immune and
fibroblasts. Each dot is an individual mRNA, colored depending on the producer cell type. ¢. Log
normalized niche expression of Tgfbr1 and Tgfbr2 in gastric (navy) or progenitor-like (red)
niches, as a function of cellular compartment. Dashed lines denote 0 expression. d. Dot plot of
dissociated single cell expression data in pancreatic epithelial cells. First row: acinar cells from
uninjured mice®’; second row: ADM cells 2 days post pancreatic injury in the context of WT
Kras®’; third row: KrasG12D+ cells outside of the progenitor-like state, harvested 3 weeks post-
injury (this work); fourth row: KrasG12D+ progenitor-like state harvested 3 weeks post-injury
(this work). Dot size represents the fraction of cells that express a given mRNA in the group. Dot

color represents the level of expression in positive cells within the group.

Supplementary Figure S9. Consequences of acute oncogenic Kras inhibition in
premalignant cells (Related to Main Figure 6). a. Representative images and quantification of
p-ERK staining in KP-°" mice treated with vehicle or MRTX-1133d. Median p-ERK signal 2 days
after vehicle (n = 3) or MRTX1133 treatment (n = 4). b. Force-directed layout visualization of
single cell transcriptomic data from Kras®'?°+/p53 proficient pancreatic epithelial cells derived
from MRTX1133 (n=3) or vehicle (n=3) treated mice during injury-induced pancreatitis. Panels
show two-dimensional density maps of premalignant states (left) or treatment condition (right).
c. Differential abundance testing for differences between MRTX1133 or vehicle-treated mice
using MiloR3. Each dot is a transcriptional neighborhood of single cells. The size of the dots
scales with SpatialFDR. Outlined dots show transcriptional neighborhoods that were
differentially abundant between conditions (SpatialFDR < 0.1). Transcriptional neighborhoods
are grouped and colored by the most abundant cell state in the neighborhood. d. Differences in
the expression of transcriptional signatures in ADM cells as a function of treatment (MRTX1133

vs vehicle). The log: fold change in gene expression between conditions, as estimated by
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differential gene expression analysis using diffxpy (https://github.com/theislab/diffxpy), was used

as the ranking variable for gene set enrichment analysis. All signatures shown are enriched or
depleted with FDR < 0.1. Top up- and down-regulated pathways from unbiased analysis are
shown. e. Expression of representative genes for select gene sets identified in (d) as a function
of treatment. Each row represents a biological replicate, denoting the number of cells in the
group in parenthesis. f. Differences in the expression of oncogenic and tumor suppressive
signatures shown in Main Fig. 6¢, as a function of treatment (MRTX1133 or vehicle, n=3 mice
each). Dots represent individual biological replicates. Expression signatures were computed as
the average z-scored expression of signature genes in individual cells. Signatures were then
averaged across all cells in a biological replicate for a final sample-level score. P-values result
from rank sums test . g. Expression of oncogenic and tumor suppressive signatures in single
cell data from MRTX1133 (n=3 mice) or vehicle (n=3 mice) treated KP-°" mice. Cells were

aggregated by condition, or cell state. Parentheses indicate the total number of cells per group.

Supplementary Figure S10. Consequences of acute oncogenic Kras inhibition in
premalignant niches (Related to Main Figure 6). a. Representative Xenium images of whole
tissue sections from vehicle (left) or MRTX1133 (right) pre-tumor stage KP-°" treated mice.
Each dot is a single cell centroid colored by select cell states that demarcate differences
between gastric and progenitor niches. b. Integration of niche-level analysis with differential
abundance testing (i) For each cell, we calculate the fraction of epithelial cells annotated as
either progenitor-like or gastric-like in their niche. The plot highlights two fibroblast cells that
differ in the fraction of progenitor-like cells in their vicinity. The progenitor enrichment score is
defined as the log ratio of the fraction of progenitor-like cells in the niche and the fraction of
progenitor-like cells in the tissue. (ii) Systematic quantification of the progenitor enrichment
score results in a tissue map that reflects continuous spatial variation in the abundance of
progenitor-like cells in the tissue. Fibroblasts in the image are colored by their progenitor
enrichment score. (iii) Construction of transcriptional neighborhoods as implemented in MiloR.
For each cell in a Milo neighborhood, we extract epithelial cells in their niche (bottom). (iv) We
use the fraction of progenitor-like cells relative to other epithelial cells in the niche of cells
identified in (iii) to compute a progenitor enrichment score for every Milo neighborhood (see
Methods). c. Two-dimensional density representation of Xenium single-cell gene expression
data from mice treated with vehicle (n = 2) or MRTX1133 (n = 4). Purple contours, density of

transcriptional states in the vicinity of progenitor-like epithelial cells; gold contours, density of
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states depleted after MRTX1133 treatment; royal blue contours, density of states enriched after
MRTX1133 treatment.

Supplementary Figure S11. Transcriptional consequences of p53 loss in the context of
oncogenic Kras activation and pancreatic injury (Related to Main Figure 7). a.
Immunofluorescence-based quantification of the number of HMGA2+ (left) or VIM+ (right)
epithelial cells in KCS"%® or KC"“"" mice 3 weeks post-pancreatitis. Each represents a single
mouse, bars are grouped by cohort, matching pooled data in Fig. 7a,e. b. scRNA-seq based
quantification of progenitor-like cells or Vim+ progenitor-like cells as a function of p53
knockdown status, 3 weeks post-pancreatitis. Each dot is a single biological replicate. p-value
results from Two-tailed Wilcoxon Rank Sums Test. c-e. (Left) Force-directed layouts of
Kras®'?P+ pancreatic epithelial cells derived from KC*'°"' (n=4 mice) or KC*"*** (n=5 mice)
samples, 3 weeks post caerulein-induced pancreatitis. Box highlights progenitor-like clusters.
Cells are colored by p53 knockdown status (a,b) or by cell state (c). (Right) expression of
canonical p53 targets and epithelial markers in progenitor-like clusters. Each row represents a
biological replicate. The number of cells in each group is denoted in parenthesis. a. All
progenitor-like cells in individual biological replicates were aggregated to summarize gene
expression regardless of progression along an epithelial-mesenchymal plasticity axis. b. The
PhenoGraph cluster that accumulates in KC"P*3, but is rare in KC"° was excluded from
aggregation. c. KC"**® cells were aggregated as a function of PhenoGraph cluster assignment
(termed progenitor1 and progenitor2). d. Differences in the expression of transcriptional
signatures in progenitor-like cells from KCS""** mice as a function of treatment (progression
along the epithelial-mesenchymal plasticity axis). Differential gene expression analysis using

diffxpy (https://github.com/theislab/diffxpy) was used to estimate log2 fold changes in gene

expression between progenitor 1 and progenitor 2 shp53 cells—as defined by PhenoGraph
clustering. The log2 fold change in gene expression was used as the ranking variable for gene
set enrichment analysis. All signatures shown are enriched or depleted with FDR < 0.1. e.
Expression of representative genes of select signatures enriched in progenitor2 vs progenitor1
cells, as identified in (d). Columns represent individual biological replicates, grouped by

premalignant cell state. Parentheses denote the number of cells per group.

Supplementary Figure S12. Tissue remodeling upon p53 knockdown in the context of
oncogenic Kras and pancreatic injury (Related to Main Figure 7). a. Frequency of cell

states in epithelial, myeloid cells and fibroblasts, as a function of p53 proficiency in the
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premalignant epithelium: shp53 (n=9) or ctrl samples (n=5). All samples were harvested 3
weeks post-pancreatic injury. Each dot denotes a single biological replicate. P-values, Two-
tailed Wilcoxon Rank Sums Test. b. Representative Xenium data of epithelial composition in
control or p53 knockdown tissue. Each dot is a single cell centroid, colored by cell state. c.
Visualization of progenitor niches in our entire collection of KC"*" and KC*"*** tissues collected
3 weeks post-pancreatitis. Each dot is a single cell colored by cell state. Boxes denote regions
highlighted in (b). d. UMAP visualization of macrophage/monocyte cells in dissociated single
cell data from the premalignant pancreas. Cells were harvested from mice with p53 knockdown
in the premalignant epithelium or (n=2) or control (n=2), 3 weeks post-injury. Cells are colored
by condition of origin. e. Visualization of gene expression of select markers of myeloid
subpopulations. Each cell is pseudocolored by the collective expression of specified markers.
(top) log-normalized expression, (bottom) MAGIC imputed counts (kNN with k=30, kernel width
=10, t=1). f. Distribution of the abundance of ltgax+/Cd274"" cells (fraction of myeloid),
conditioned on the abundance of progenitor-like cells (fraction of epithelial) in the niche. Red
line denotes. Axes are presented in log scale (left) or linear scale (right). g. Subset of genes
differentially expressed in ltgax+/Cd274"" vs Itgax+/Cd274°" cells. The first gene group shows
differentially-expressed genes highlighted due to known roles in immune regulation and tissue
injury. The second and third groups show the top 10 upregulated and downregulated genes in
ltgax+/Cd274"" cells.

SUPPLEMENTARY MATERIALS

Note S1. Construction of diffusion operator and computation of diffusion maps.

Table S1. Metadata of scRNA-seq produced in this study.
Table S2. smFISH probe metadata (Related to Fig. S5)

Table S3. Embedding of TME subsets in injury induced tumorigenesis dissociated scRNA-seq
(Related to Fig. S7 and Fig. S12)

Table S4. Custom 10x Xenium library design with annotations of cellular compartment or

biological processes probed by each gene.
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Table S5. Xenium sample information and embeddings (Related to Fig. 3, Fig. 4, Fig. 5, Fig. 6,
Fig. 7).

Table S6. Compartment- and condition-specific embeddings for Xenium samples.

Table S7. Statistics on mixed cell states in Xenium data (Related to Fig. S6)

Table S8. Gene censoring in Xenium data (Related to Fig. 4, Fig. 5, Fig. S7, Fig. S8)

Data S1. Custom probes for detection of GFP and mKate2 reporters in FFPE-based scRNA-

seq.

Data S2. Oligonucleotides used for probing select mMRNA expression using smFISH.

Data S3. Gene signatures used in this study.

Data S4. Source data for immunofluorescence.
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Figure 1. Capturing spontaneous loss of p53 throughout the
premalignant-to-malignant spectrum.
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Figure 2. p53 is maximally active in rare premalignant cells during tumor initiation.
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Figure 5. Intercellular communication modules define the progenitor niche.
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Figure 6. Consequences of acute oncogenic Kras inhibition in the premalignant pancreas.


https://doi.org/10.1101/2025.06.10.656791
http://creativecommons.org/licenses/by/4.0/

b 3 weeks post-inju
a4 Pancreas-specific inducible : P d .

p53 knockdown shCtrl shp53

inv preprint doi: https://dg -]
(which was not certified by peer

[iiae 5700

[che s or R e T

p = 0.0004

2, 202§. [The copyright holder for this preprint
se to display the preprint in perpetuity. It is made
se. o

L_INgl O shp53 o
e G 5 é
W DAPI B GFP(Kras®'?+) [J HMGAZ2 (progenitor state marker) Q u-:&
[
scRNA-seq of Kras®'?°+ epithelial cells d ®
. . shCHrl-| g S -
. | - .. - -.‘
progenitor 2 _ shps3 ,‘ : = ‘. :
== shCtrl (n=4) shCtrlJ
2 ==Shp53 (n=5) pS3 program shp53 - 0
tor 1
progenitor shotrl]
YAP signature shp53 | o
gastric-progenitor shCtrl- 'g
diffusion component EMT shp53 | 8
o N
tuft shCitrl ()
D neuroendocrine IFNy response 553 | ®
gastric-like 5.4 dont shCtrl o
pe5-dependent o 53 | ©
Glycolysis/Warburg ShCtr7 ! 0
DM yeoy 9 shp53
Cells ordered by gastric-progenitor
diffusion component
e g - i -
0.013 3 weeks post-injury 3 weeks post-injury 3 weeks post-injury
= 0 Ctrl B shp53 B Ctrl B shp53 B Ctrl B shp53
8 0.5] [ ] 0.30 [J
o Fos Fos 2Z02s °
8 %3 £5° 8 Bge .
- O 50.3 < S04l 2 2020
= 2 g20 o © EE L
© E%544 5 ) ~ 6 0.15
= eV ® Q0.2 [ J Ss
o < O S o (@) 2 .20.10
© S e 9 S5 ' 3
+ © 0.1 ® 9 © 3o 3 8005 o
= £ Poe £ |® 2e- o
> 0. 0,8 0.00
shCtrl shp53 .0 01 02 03 04 .0 01 02 03 04 00 01 02 03 04
Progenitor-like cells Progenitor-like cells Progenitor-like cells
f h (epithelial fraction) (epithelial fraction) (epithelial fraction)
— S FRAEES ri e =
RN Con2+ myCAF
T
o
=
[
5]
Vo]
Qo
=
[

TRV

| ltgax+/Cd274"" TAM }
aria.

Epithelial Myeloid
1 Progenitor-like ~ wmyCAF Tnc  # TAM [tgax
1 Gastric/Duct-like ® myCAF Ccn2 - TAM Maf

# Normal duct » myCAF Gli1 GrMDC
ADM myCAF Igf2

W DAPI B GFP(Kras®'?P+)
O VIM (mesenchymal marker)

¥ progenitor
1 other epithelial

Neuroendocrine

Figure 7. Consequences of p53 knockdown in the premalignant pancreas.


https://doi.org/10.1101/2025.06.10.656791
http://creativecommons.org/licenses/by/4.0/

Pre-tumor p53 proficient

a.

Pre-tumor stage

b. .
bioRxiv preprint doi:PRIFEIHRAIDIGNLD. 1101/2025.06.10.656791; thisIpEERNPIoBMEH June 12, 2025. The copyrighy fgider T
peer review) is the author/funder, who has

(which was not certified by

p53 proficient

g

M Sample 0 (n=2,585 cells)
[l Sample 1 (n=3,365 cells)
[l Sample 2 (n=3,194 cells)
[E Sample 3 (n=1,503 cells)
Il Sample 4 (n=6,299 cells)
[[J Sample 5 (n=2,076 cells)

e.

p53 deficient

-l Sample 1 (n=88 cells)
-l Sample 2 (n=558 cells)

-l Sample 4 (n=614 cells)
-] Sample 5 (n=212 cells)

available under aCC-BY

Tumor stage

p53 deficient

[l Sample 6 (n=2,869 cells)
[[] Sample 7 (n=2,791 cells)
[l Sample 8 (n=2,600 cells)
l Sample 9 (n=3,467 cells)

B Sample 10 (n=2,295 cells)
Sample 11 (n=2,036 cells

ional license.

} This work

Burdziak*,
Alonso-Curbelo*,
et al. (2023)

Neuroendocrine signature Tuft signature Acinar signature Gastric signature
L o L s . —_— P
00 05( 0 2 ¢ -05 00 05(
Average y Average *?3 .1 Average '?
&, 80 ¢ °% |, zscore &g o

C

g@gxiv a license to display the pré;

A

LT

Cycling signature

—
00 25
Average
Z-score

KP'°H mouse (4.5 months old)

thisgageprint
print in perpetuity. It isimade

T
10?2

GFP (a.fu.)
GFP mRNA
expression F 6
42
=
3
o
o
28
0

Progenitor-like signature

—
g 477
). R Average "’ﬁ
¥ ¢ A z-score s g . A&
oo ® °g
it

& R |
f. 9. Diffusion component 2 h. Density along i Final cell state
Tfa"S;riF:‘i‘t’Sra; Cluster-based assignment of cell state - 7 E:' diffusion component /| W Progenitor-like
A 15 § %}f 100 ‘ %}? O Gastric-like| ¢
Progenitor-like es A o 80 : 6 8 F. o
i il i QO ® S © ° e ) 9 ) M ::D @ o
Gastric-like w 1 88 & " »g0 ! AN -4 f{ o
Cycling - o0& @ ! Threshold VBeh g‘% )
. (o7 540 i 280 LR
Neuroendocrine 058 0 ' ZZ B («/
RN ] ! 2 . 5%,
ADM | zs 20 ! e e
e (T T T TTT T T T : e e LU AT
2 RN R
519 2 9 0 1122013251421231126 . DC2 g o
like
J- Fraction of cells * © @ @@ Mean expression k. Pre-tumor
ingroup (%) 20 60 100 ingroup 0 2 T — —
p53 proficient  p53 deficient Pre-tumor cells
Neuroendocrine{ © @ @ |® ® o - - o o o ° 1.0
Tuft { . .|lo 0o @0 O@O - ° 0o 0 o o o ° [[] Neuroendocrine
ADM{ - - o . ®@°c0-c0@00 o o o o o |- 08 [ Tuft
Gastric-like . . 00000 o o o o oo o s 06 B ADM
Gastric-pit - X X J - @@ o - . o o 8 M Gastric-like
Gastric-chief - 0@ - -cocoo0e@ - - o oo ° 2 04 M Cycling
Cycling o 000000 000@@0|0 - oo O o M Progenitor-like
Progenitor-like - . o @® O 0o 00 0o o - . ®o0@0 00 0.2
Cancer 1 o @@ 00 o0 0@ o 0 @0 0000 O °
QYU TP -V - TFZTVNONDTRINOI-TOLONT T ENT S g% g O~ N®OMYT W ~ NYW
SOP0§ 2 X -5 ET0SsTELOOXxXe 80 NGSEQag D POV OVVO DO QOO O
[ S N e o LS S ok SX33IZI2ESSEL 3 S ooocoo ©oooo
”°§E<0Emg § & SICag33748¢ EEEEEE EEEE
S < S 38883 83383

Supplementary Figure S1. Annotation of spontaneous tumorigenesis single cell data. (Relat-

ed to Main Figure 1).
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Supplementary Figure S3. Progenitor-like signatures in individual mouse and human sam-
ples (Related to Main Figure 2).
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Supplementary Figure S6. Spatial patterning of transcriptional heterogeneity in distinct cellu-
lar compartments of the premalignant pancreas (Related to Main Figures 3-5).
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Supplementary Figure S7. Molecular and compositional properties of the progenitor niche
(Related to Main Figure 4).
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Supplementary Figure S8. Concerted upregulation of cognate ligand-receptor pairs
in the progenitor niche (Related to Main Figure 5).
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Supplementary Figure S9. Molecular and compositional changes in the premalignant
pancreas upon acute oncogenic Kras inhibition (Related to Main Figure 6).


https://doi.org/10.1101/2025.06.10.656791
http://creativecommons.org/licenses/by/4.0/

a. K2 Vehicle K2 MRTX1133

preprint doi: https://doilorg/100.11
ot certified by peer review) is

O 3

is version posted June 12, 2025. The copyright holder for this preprint
ranted bioRxiv a license to display the preprint in perpetuity. It is made
0 International license.

Epithelial Fibroblast Myeloid

1 Progenitor-like  #myCAF Thc s TAM ;‘t/?ax

1 Gastric/Duct-like ® myCAF Ccn2 - TAM Maf

# Normal duct » myCAF Gli1 GrMDC
ADM . myCAF Igf2

“ Neuroendocrine

b. @ Annotated spatial data @ Progenitor-like enrichment C. Xenium TME Glit+

myCAF
itor-like ® other epi )
qprogeﬁm z[)rloslasto e ept depleted enriched Maf+
: : L — TAM
Yy d
5
a Inhbb+
P @ Tnes MYCAF
oS GrMDC myCAFR
Progenitor enrichment Piezo2+
KNN graph of fibroblasts @ g o) oozt

in transcriptional space in Milo neighborhood

transcriptional

neighborhood === Enriched in progenitor niche

Depleted upon Kras®'?° inhibitor

single cell | === Enriched upon Kras®'?® inhibitor
O

Progenitor-like enrichment
depleted mm==——enriched

Epithelial
cells in @
niches @

@ Progenitor-like @ Other epithelial

Supplementary Figure S10. Molecular and compositional
changes in the premalignant pancreas upon acute oncogenic
Kras inhibition (Related to Main Figure 6).


https://doi.org/10.1101/2025.06.10.656791
http://creativecommons.org/licenses/by/4.0/

o

3 weeks post-injury 3 weeks post-injury b. 3 weeks post-injury
immunofluorescence immunofluorescence scRNA-seq

s not certified by peer
M shp53

s/ FO'

R

N ~

U'I%U'I
LS
()

W shpS3  available|under aGLEBY4.0 Internatigrmldice st
° b 0.0275

o
8

o '0.0275

50

o
(2]
L

(Kras®'?°+ epithelial fr:
o
: 2 !
Vim+ progenitor-like ci

=
o
S]
.
o
o
\

40- o
30+
20+

o
M)
.
o
M)
.

\,
(&
VIM positive cells / FOV
(e}
progenitor-like ce

N
(&}
|
[}
S
i
(Kras®'?+ epithelial fra

o

>

.

o

HMGA?2 positive cell
()
o

o
:
o
‘
o
o
:
o
o
:
4
5

Twoowmw ww wn RS
= < { =4 = == | =3 = et = e
1 2 3 4 1 2 3 4
KCs" cohort KCs" cohort

[ = c

(n = 120)
(n=136)
(n=961)
(n=361)
(n=303)
(n=164)
(n=584)
(n=641)
(n = 986)

Average
z-score

o
-1 0

shCtrl

plasticity
progenitor-like

shp53

genotype

Bbc3
Bax
Zmat3
Cdh1
Epcam-
Cldn3
Cldn4
Cldné6
Cldn7
Dsc2
Krt18
Krt19

T
3
Wshp53 =

Cdkn1a

p53 targets Epithelial markers

(n=120) ]
(n =136)
(n=961)
L (n=361)
M (n=303)
(n=164)
(n=584)
(n=641)
| (n=0986)

shCtrl

progenitor-like

shp53

o/ genotype

1

@ shCtrl

Average
z-score

mshp53

-1

-

M (n = 303)
(n = 164)
(n = 584)
(n =641)
(n = 986)

progenitor-like

shp53

progenitor 2 progenitor 1

shp53

M progenitor 1 @ progenitor 2
e —

shp53 Average

UP in shp53 progenitor 2 p53 targets Epithelial markers
vs shp53 progenitor 1

Epithelial Mesenchymal Transition 2
Myogenesis ‘g

Interferon Gamma Response o
UV Response Dn
Angiogenesis

Hypoxia

Apoptosis

TNF-alpha Signaling via NF-kB
Notch Signaling

IL-2/STAT5 Signaling
Xenobiotic Metabolism

shp53
progenitor 1

Adipogenesis o
{ [=}
0 1 2 3 z
GSEANES “8’,
s
) ©
Average
z-score i ;o )
e = Epithelial Mesenchymal Inflammatory
-1 o1 Transition signatures

Supplementary Figure S11. Transcriptional consequences of p53 loss in
the context of oncogenic Kras activation and pancreatic injury (Related to
Main Figure 7).
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Supplementary Figure S12. Tissue remodeling upon p53 knockdown in the context of onco-
genic Kras and pancreatic injury (Related to Main Figure 7).
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Table S1. Metadata of scRNA-seq produced in this study

Mouse Hash cell Counts per |Detected genes (10x Related
sample_id condition strain Source |id batch [count |cell (mean) |per cell (mean) |version (figures
254 2RH_Panl |Pre-tumor p53 This unhash Fig1
NPM_GFPh proficient 1 KPLOH work |ed 2 3,365 (16018.8 3394.7 v2 Fig2
254 2RH_Panl
NPM_Kate_CD |Pre-tumor p53 This unhash Fig1
45 1_31 deficient 1 KPLOH work |ed 2 88 24659.8 4055.1 v2 Fig2
254 RH_Panl [Pre-tumor p53 This unhash Fig1
NPM_GFPh proficient 2 KPLOH work |ed 2 3,194 (14828.8 3226.6 v2 Fig2
254 RH_Panl
NPM_Kate_CD |Pre-tumor p53 This unhash Fig1
45 1 4 deficient 2 KPLOH work |ed 2 558 29470.9 4567.4 v2 Fig2
53 _LHRH_PD [Tumor p53 This unhash Fig1
ACreg_KATE |deficient 7 KPLOH work |ed 2 2,791 |27471.2 4529.8 v2 Fig2
53_NH_PanIN |Pre-tumor p53 This unhash Fig1
PM_GFPh proficient 0 KPLOH work |ed 2 2,585 |17438.3 3368.7 v2 Fig2
9268_PHLH_P [Tumor p53 This unhash Fig1
DAC_SP deficient 8 KPLOH work |ed 2 2,600 |26649.4 39911 v2 Fig2
9268_RH_Panl |Pre-tumor p53 This unhash Fig1
NPM_DP proficient 3 KPLOH work |ed 2 1,503 |17330.8 3446.4 v2 Fig2

KPC PMID:

Ag-Lung-Mets- | Tumor p53 (p53R172 371674 |unhash Fig1
Kate deficient 10 H) 03 ed 1 313 52329.3 5582.6 v2 Fig2

KPC PMID:

Ag-PDAC-PT- |Tumor p53 (p53R172 |371674 |unhash Fig1

Kate deficient 10 H) 03 ed 1 1,982 |28501.5 4136.7 v2 Fig2
PMID:

DAC_D020_p5 [ Tumor p53 371674 [unhash Fig1

_Epi deficient 11 KPfC 03 ed 1 2,036 |33921.8 4312.8 v2 Fig2
PMID:

DACC963_mK [Tumor p53 371674 |unhash Fig1

ate_plus deficient 9 KPfC 03 ed 1 1,491 |36368.8 4655.5 v2 Fig2
PMID:

DACC963LIVE [Tumor p53 371674 |unhash Fig1

Rmet deficient 9 KPfC 03 ed 1 1,701 |37370.6 4762.5 v2 Fig2
PMID:

DACC963PT_ |Tumor p53 371674 [unhash Fig1

Kate_plus deficient 9 KPfC 03 ed 1 275 37863.3 4567.3 v2 Fig2

Tumor p53 This unhash Fig1

PDAC-SP3 deficient 6 KPLOH work |ed 2 2,869 |24434.5 3809.4 v2 Fig2

Pre-tumor p53 This unhash Fig1

pre_dp_2 proficient 5 KPLOH work ed 8 2,076 (21085.8 3786.5 v3 Fig2

Pre-tumor p53 This unhash Fig1

pre_sp_2 deficient 5 KPLOH work ed 8 212 74262.0 6335.4 v3 Fig2

Preclinical_DP |Pre-tumor p53 This Fig1

_batch1 proficient 4 KPLOH work  |A0301 |7 344 8150.3 2308.9 v3 Fig2

Preclinical_DP |Pre-tumor p53 This Fig1

_batch1 proficient 4 KPLOH work  |A0302 |7 5,708 [9682.7 25455 v3 Fig2
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Preclinical_DP |Pre-tumor p53 This undefin Fig1
_batch1 proficient 4 KPLOH work ed 247 17517.8 2054.1 v3 Fig2
Preclinical_SP |Pre-tumor p53 This Fig1
_batch1 deficient 4 KPLOH work  |A0301 10 13578.9 3044.5 v3 Fig2
Preclinical_SP |Pre-tumor p53 This Fig1
_batch1 deficient 4 KPLOH work  |A0302 590 22675.5 4108.6 v3 Fig2
Preclinical_SP |Pre-tumor p53 This undefin Fig1
_batch1 deficient 4 KPLOH work ed 14 79336.1 5400.3 v3 Fig2
p489c_shRen_

pS3exp_caer_ |control Injury, 3 This

3weeks weeks KCshCtrl |work B0301 1,718 [13095.7 3137.3 v3 Fig7
p489c_shRen_

pS3exp_caer_ |control Injury, 3 This

3weeks weeks KCshCtrl |work B0302 1,608 ([13598.9 3222.2 v3 Fig7
p489c_shRen_

pS3exp_caer_ |control Injury, 3 This undefin

3weeks weeks KCshCtrl [work ed 221 27018.1 2794.2 v3 Fig7
shRen_caer_3 [control Injury, 3 This

weeks_repeat |weeks KCshCtrl  |work B0304 3,742 |[13175.0 3246.6 v3 Fig7
shRen_caer_3 [control Injury, 3 This

weeks_repeat |weeks KCshCtrl  |work B0305 2,840 (14041.6 3309.8 v3 Fig7
shRen_caer_3 [control Injury, 3 This undefin

weeks_repeat |weeks KCshCtrl |work |ed 867 29102.1 2213.6 v3 Fig7
p489c_shp53_ [p53 knockdown, This

caer_3weeks |Injury, 3 weeks |KCshp53 |work B0303 3,034 (94591 2725.9 v3 Fig7
p489c_shp53_ [p53 knockdown, This

caer_3weeks |Injury, 3 weeks |KCshp53 |work B0304 3,225 (94144 271141 v3 Fig7
p489c_shp53_ (p53 knockdown, This undefin

caer_3weeks |Injury, 3 weeks |KCshp53 |work ed 359 17922.5 2117.9 v3 Fig7
shpS53_caer_3 [p53 knockdown, This

weeks_repeat |Injury, 3 weeks [(KCshp53 |work B0304 2,513 [12226.5 3195.0 v3 Fig7
shpS53_caer_3 [p53 knockdown, This

weeks_repeat |Injury, 3 weeks [(KCshp53 |work B0305 2,965 (11728.2 3084.0 v3 Fig7
shpS53_caer_3 [p53 knockdown, This

weeks_repeat |Injury, 3 weeks [(KCshp53 |work B0306 2,593 ([12316.6 3210.1 v3 Fig7
shpS53_caer_3 [p53 knockdown, This undefin

weeks_repeat |Injury, 3 weeks [KCshp53 |work ed 222 30944.2 2667.9 v3 Fig7
JR-

2281_Krasi_ca |p53 proficient, This

er_epi MRTX1133 KPLOH work B0304 2283 (14560.0 3145.1 v3 FigS9
JR-

2281_Krasi_ca |p53 proficient, This

er_epi MRTX1133 KPLOH work B0305 1654 |14762.2 3025.1 v3 FigS9
JR-

2281_Krasi_ca |p53 proficient, This

er_epi MRTX1133 KPLOH work B0306 2514 [13502.7 3155.1 v3 FigS9
JR-

2281_Krasi_ca |p53 proficient, This Undefi

er_epi MRTX1133 KPLOH work  |ned 48 5927.0 1441.3 v3 FigS9
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JR-
2281_Ctrl_caer|p53 proficient, This
_epi Vehicle KPLOH work  |B0304 (9 3062 [13402.9 3078.8 v3 FigS9
JR-
2281_Ctrl_caer|p53 proficient, This
_epi Vehicle KPLOH work  |B0305 (9 2618 |13152.1 3017.2 v3 FigS9
JR-
2281_Ctrl_caer|p53 proficient, This
_epi Vehicle KPLOH work  |B0306 (9 2680 |14234.8 3207.8 v3 FigS9
JR-
2281_Ctrl_caer|p53 proficient, This Undefi
_epi Vehicle KPLOH work ned 9 26 7430.4 2074.7 v3 FigS9
control, 3 weeks |KCshp53 |This FigS7
JR-sp-28-02  [post-injury (dox off)  |work BCO01 |Flex1 121,181 |2641.0 924.9 FLEX FigS12
p53 knockdown,
3 weeks post- KCshp53 |[This FigS7
JR-sp-17-01 injury (doxon) |work BCO03 |Flex1 18,593 |2236.0 1102.2 FLEX FigS12
control, 3 weeks |KCshRen |This FigS7
JR-sp-19-09  [post-injury (doxon) |work BCO002 |Flex1 17,098 |1520.0 850.9 FLEX FigS12
p53 knockdown,
3 weeks post- KCshp53 |[This FigS7
JR-sp-28-07  |injury (doxon) |work BCO04 |Flex1 16,443 |2647.8 980.7 FLEX FigS12
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Table S2. smFISH probe metadata (Related to Fig. S5)

2025. The copyright holder for this preprint
to display the preprint in perpetuity. It is made

Gene Readout |chan Number (Num
filename codename date symbol id nel readout_probe readout |probes
LOH20210524_GFP_RS00 |LOH2021052 ATCCTCCTTCAATACA
15_x2_opool.fa 4 20210524 |GFP RS0015 Cy5 TCCC 4 28
LOH20210524_RIKALLELE |LOH2021052 ACACTACCACCATTTC
_RS0083_x0_opool.fa 4 20210524 |RIKALLELE |RS0083 Cy7 CTAT 1 89
LOH20210524_PTPRC_RS|LOH2021052 ACTCCACTACTACTCA
0095_x1_opool.fa 4 20210524|PTPRC RS0095 Cy7 CTCT 2 92
LOH20210524_CDKN1A_R|LOH2021052 ACCCTCTAACTTCCAT
S0109_x0_opool.fa 4 20210524|CDKN1A RS0109 Cy5 CACA 1 82
Almu20211213_PancholFN
_ITGAX_RS0109_x0_opool |Almu2021121 ACCCTCTAACTTCCAT
fa 3_PancholFN | 20211213|ITGAX RS0109 Cy5 CACA 1 92
LOH20210524_VIM_RS017|LOH2021052 ACCACAACCCATTCCT
5_x0_opool.fa 4 20210524 |VIM RS0175 Cy5 TTCA 1 86
LOH20210524_ANXA10_R |LOH2021052 TTTCTACCACTAATCA
S0237_x1_opool.fa 4 20210524|ANXA10 RS0237 Cy7 ACCC 2 56
LOH20210622_CDKN2A_R|LOH2021062 ACCCTTTACAAACACA
S0247_x2_opool.fa 2 20210622|CDKN2A RS0247 Cy5 CCCT 4 30

Pancreas202
Pancreas20220830_Cassa |20830_Cassa
ndraDirena_revisions_high [ndraDirena_r
Expressors_SPP1_RS0247 |evisions_high ACCCTTTACAAACACA
_x2_opool.fa Expressors 20220830|SPP1 RS0247 Cy5 CCCT 2 55
LOH20210524_MUC6_RS0|LOH2021052 ACCCTTTACAAACACA
247 _x1_opool.fa 4 20210524|MUC6 RS0247 Cy5 CCCT 2 92
LOH20210622_KRT19_RS |LOH2021062 TCCTATTCTCAACCTA
0255_x1_opool.fa 2 20210622|KRT19 RS0255 Cy7 ACCT 2 67
LOH20220302_newMaligna |LOH2022030
ncyMarkers_RBPJL_RS030|2_newMalign TATCCTTCAATCCCTC
7_x0_opool.fa ancyMarkers | 20220302|RBPJL RS0307 Cy7 CACA 1 88
LOH20210524_CPA1_RSO0 |LOH2021052 ACATTACACCTCATTC
332_x1_opool.fa 4 20210524 |CPA1 RS0332 Cy5 TCCC 2 70
LOH20210622_MKI67_RS0|LOH2021062 TTCTCCCTCTATCAAC
384_x0_opool.fa 2 20210622|MKI67 RS0384 Cy7 TCTA 1 92
LOH20230507_microenviro
nment_nreadout_2_spacer
_A_PLAUR_ENSMUSTO000 |LOH2023050
00002284_RS0406_possibl |7_microenviro ACCCTTACTACTACAT
e_oligos.fasta nment 20230507 |PLAUR RS0406 Cy5 CATC 2 45
LOH20230608_progenitor_
nreadout_1_spacer A_HM
GA2_ENSMUST000001596
99 RS0406_possible_oligo [LOH2023060 ACCCTTACTACTACAT
s.fasta 8_progenitor | 20230608 HMGA2 RS0406 Cy5 CATC 1 100
LOH20211213_OIS_TFF1_|LOH2021121 TCCTAACAACCAACTA
RS0451_x2_opool.fa 3_0IS 20211213|TFF1 RS0451 Cy7 CTCC 4 28
Senescence20210901_PE
CAM1_RS0468_x0_opool.f [Senescence2 TCTATCATTACCCTCC
a 0210901 20210901 |PECAM1 RS0468 Cy7 TCCT 1 92
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Pancreas20220830_Cassa
ndraDirena_revisions_high

Pancreas202
20830_Cassa
ndraDirena_r

Expressors_FN1_RS0468_ |evisions_high TCTATCATTACCCTCC

x1_opool.fa Expressors 20220830|FN1 RS0468 Cy7 TCCT 92
LOH20230507_microenviro

nment_nreadout_3_spacer

_A_LCN2_ENSMUSTO0000 |LOH2023050

0192241_RS0468_possible |7_microenviro TCTATCATTACCCTCC

_oligos.fasta nment 20230507 |LCN2 RS0468 Cy7 TCCT 39
LOH20211213_OIS_LIF_R |LOH2021121 TATTCACCTTACAAAC

S0548_x0_opool.fa 3_0IS 20211213|LIF RS0548 Cy5 CCTC 92
LOH20230515_microenviro

nment_nreadout_1_spacer

_A_TNC_ENSMUSTO00000 |LOH2023051

107372_RS0548_possible_ |5_microenviro TATTCACCTTACAAAC

oligos.fasta nment 20230515|TNC RS0548 Cy5 CCTC 100
Senescence20210901_AC ([Senescence2 AAACACACACTAAACC
TA2_RS0578_x0_opool.fa |0210901 20210901|ACTA2 RS0578 Cy3B ACCC 92
LOH20230608_progenitor_

nreadout_1_spacer_A_ON

ECUT2_ENSMUST000001

75965_RS0578_possible_o [LOH2023060 AAACACACACTAAACC

ligos.fasta 8_progenitor | 20230608| ONECUT2 |RS0578 Cy3B ACCC 100
LOH20210622_MDM2_RS |LOH2021062 AACTCATCTCAATCCT

0584_x1_opool.fa 2 20210622|MDM2 RS0584 Cy3B CCCA 89
LOH20230608_progenitor_

nreadout_1_spacer_A_ITG

B4_ENSMUSTO0000010646

1_RS0584_possible_oligos. |LOH2023060 AACTCATCTCAATCCT

fasta 8_progenitor | 20230608|ITGB4 RS0584 Cy3B CCCA 100
LOH20210622_BAX_RS06 |LOH2021062 TATCTCATCAATCCCA

39 _x2_opool.fa 2 20210622|BAX RS0639 Cy3B CACT 32
Kal20221005_TGFB1_RS0 TATCTCATCAATCCCA

639_x2_opool.fa Kal20221005 | 20221005|TGFB1 RS0639 Cy3B CACT 56
Senescence20210901_AD

GRE1_RS0708_x0_opool.f [Senescence2 TCCAACTCATCTCTAA

a 0210901 20210901|ADGRE1 RS0708 Cy3B TCTC 92
LOH20210628_MSN_RS07 |LOH2021062 AATACTCTCCCACCTC

30_x0_opool.fa 8 20210628|MSN RS0730 Cy3B AACT 92
LOH20220302_newMaligna |LOH2022030

ncyMarkers_PIEZO2_RS07 |2_newMalign ATAAATCATTCCCACT

63_x0_opool.fa ancyMarkers | 20220302(PIEZO2 RS0763 Cy3B ACCC 92
LOH20230608_progenitor_

nreadout_2_spacer A F3_

ENSMUSTO00000029771_R

S0793_possible_oligos.fast [LOH2023060 ACCCAACACTCATAAC

a 8_progenitor | 20230608|F3 RS0793 Cy3B ATCC 54
LOH20220411_CCN2_RS1 |LOH2022041 ACCTTTCTCCATACCC

047_x0_opool.fa 1 20220411|CCN2 RS1047 Cy3B AACT 84
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Table S3. Embedding of TME subsets in injury induced tumorigenesis dissociated scRNA-seq (Related
to Fig. S7 and Fig. S12)

# cells in Explained
object id Parent object Filter Subpopulation filter subset #PCs |variance |Related figure
control and
shp53 Intermediate
all_cells NA samples NA 73,315 100 53% processing
control fibroblasts (Dpt, Col1a1, Pdgfra, Intermediate
fibroblast_ctrl |all cells samples Pdpn) 9,576 86 36% processing
iCAF and myCAFs based on
iCAF_myCAF control public signatures (PMID: Intermediate
_ctrl fibroblast_ctrl samples 31197017) 8,915 88 36% processing
control myCAFs based on public
myCAF_ctrl  |iCAF_myCAF_ctrl |samples signatures (PMID: 31197017) 6,291 83 32% Fig. S7d
Public signature: (PMID:
control 35427180) Ptprc, Csf1r, Adgre1, Intermediate
myeloid_ctrl |all cells samples H2-Ab1, Cd68, Lyz2, Itgam, Mertk|5,538 76 39% processing
myeloid_Maf control PhenoGraph clusters expressing
_Itgax_ctrl myeloid_ctrl samples either Maf or Itgax 4,505 87 42% Fig. S7e
control and |Public signature: (PMID:
shp53 35427180) Ptprc, Csf1r, Adgref,
myeloid_all [all cells samples H2-Ab1, Cd68, Lyz2, Itgam, Mertk| 10,446 61 34% Fig. S12
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Table S5. Xenium sample information and embeddings (Related to Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7).

Num
genes
xenium mouse Counts| detected
batch slide id slide name mouse id strain treatment timepoint per cell per cell
JR-2885 [0004279_Region_1|JR0025 JR-sp-04-03 KCshCtrl |injury 2d post-injury 81.6 56.4
JR0104_section
JR-2885 [0004279_Region_2 |1 JR-sp-12-23 KPLOH |injury 1d post-injury 118.3 68.5
JR0104_section
JR-2885 [0004279_Region_3 |2 JR-sp-12-24 KPLOH |injury 1d post-injury 1121 66.4
JR-2885 [0004329_Region_1|JR0O077 JR-sp-09-05 KCshCtrl |injury 3w post-injury 103 62.5
JR-2885 [0004329_Region_2 |JR0O033 JR-sp-04-02 KCshCtrl |injury 3w post-injury 100.4 60.6
JR-2885 [0004329_Region_3 |JR0081 JR-sp-09-03 KCshp53 |injury 3w post-injury 112.4 65.1
injury +
JR-3090 [0011178_Region_1 |JR-sp-15-04 JR-sp-15-04 KPLOH |MRTX1133 2d post inhibitor 95.3 58.3
injury +
JR-3090 [0011178_Region_2 |JR-sp-15-09 JR-sp-15-09 KPLOH |MRTX1133 2d post inhibitor 97.4 58.8
injury +
JR-3090 [0011181_Region_1 |JR-sp-15-06 JR-sp-15-06 KPLOH |MRTX1133 2d post inhibitor 82.8 52.7
injury +
JR-3090 [0011181_Region_2 |JR-sp-15-02 JR-sp-15-02 KPLOH |MRTX1133 2d post inhibitor 96.2 58.6
JR-2918 [0015409_Region_1|JR0079 JR-sp-09-01 KCshp53 |injury 3w post-injury 96.9 59.9
JR-2918 [0015409_Region_2 | JR0026 JR-sp-04-07 KCshp53 |injury 2d post-injury 93.7 59.4
JR-2918 [0015409_Region_3 |JR0O080 JR-sp-09-02 KCshp53 |injury 3w post-injury 91.9 57.4
JR-2918 [0015409_Region_4 | JR0034 JR-sp-04-10 KCshp53 |injury 3w post-injury 97.1 59.2
JR-2918 [0015409_Region_5 |JR0027 JR-sp-04-08 KCshp53 |injury 2d post-injury 93.2 60.4
JR-2918 {0015410_Region_1 |DACE616 DACE616 KCshCtrl |injury 2d post-injury 92.5 59.5
JR-2918 [0015410_Region_2 |JRO078 JR-sp-09-06 KCshCtrl |injury 3w post-injury 84.4 53.5
JR-2918 [0015410_Region_3 |JR0024 JR-sp-04-01 KCshCtrl |injury 2d post-injury 81.3 55.7
JR-2918 [0015410_Region_4 |DACE617 DACE617 KCshCtrl |injury 2d post-injury 95 60.4
JR-3083 [0027845_Region_1|JR0039 JR-sp-06-09 KCshCtrl |injury 1d post-injury 106.4 62.5
JR-3083 [0027845_Region_2 | JR0040 JR-sp-06-10 KCshCtrl |injury 1d post-injury 115.5 66.6
JR-3083 [0027845_Region_3 |JR-sp-15-05 JR-sp-15-05 KPLOH |injury + Vehicle [2d post vehicle 113.3 65
JR-3083 [0027846_Region_1|JR0042 JR-sp-06-04 KCshp53 |injury 1d post-injury 84.5 541
JR-3083 [0027846_Region_2 |JR0041 JR-sp-06-03 KCshp53 |injury 1d post-injury 113.5 65.7
JR-3083 [0027846_Region_3 | JR-sp-15-07 JR-sp-15-07 KPLOH |injury + Vehicle [2d post vehicle 112 65.4
JR-3177 {0028094_Region_1 |JR-sp-19-09 JR-sp-19-09 KCshCtrl |injury 3w post-injury 88.5 57.5
JR-3177 {0028094_Region_2 |JR-sp-19-10 JR-sp-19-10 KCshCtrl |injury 3w post-injury 95.6 59.5
JR-3433 [0042536_Region_1 |JR-sp-28-25 JR-sp-28-25 KCshp53 |injury 3w post-injury 78 52.7
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JR-3433 [0042536_Region_2 | JR-sp-28-08 JR-sp-28-08 KCshp53 |injury 3w post-injury 84.8 54.6
JR-3311 [0042569_Region_3 |JR0019 JR-sp-02-17 KPLOH |Spontaneous |pre-tumor 60.2 43.4
JR-3433 [0042724_Region_1 |JR-sp-17-01 JR-sp-17-01 KCshp53 |injury 3w post-injury 80.6 52.5
JR-3433 [0042724_Region_2 | JR-sp-28-07 JR-sp-28-07 KCshp53 |injury 3w post-injury 85.4 55.4
JR-3433 [0042724_Region_3 | JR-sp-28-06 JR-sp-28-06 KCshp53 |injury 3w post-injury 89.2 57.1
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Table S6. Compartment- and condition-specific embeddings for Xenium samples.

Number of

Conditions samples |Number |Fraction [Number |Variance |Total

Compartment included included |of genes |of genes |of PCs |explained |cells Related figures
Non-perturbed

TME samples 15 415 0.86 127 75% 6,489,818 |Fig. S6
Non-perturbed

Epithelial samples 15 394 0.82 100 75% 3,217,585 |All Xenium
Non-perturbed

Immune Myeloid samples 15 389 0.81 98 75% 1,844,178 |All Xenium
Non-perturbed

Immune Lymphoid samples 15 385 0.8 87 75% 636,172 | All Xenium
Non-perturbed

Fibroblast samples 15 387 0.8 100 75% 2,862,709 |All Xenium
Non-perturbed

Mural Cells samples 15 369 0.76 85 75% 285,767 All Xenium
Non-perturbed

Endothelial samples 15 380 0.79 104 75% 814,550 All Xenium
Non-perturbed

Epithelial - control samples |samples 15 399 0.83 96 75% 1,388,199 [(Fig. 3 and Fig. 4

Progenitor and gastric-like |Non-perturbed Fig. 3, Fig. 4, Fig.

cells - control samples samples 15 392 0.81 93 75% 838,581 5, Fig. S4, Fig. S8
MRTX1133 or

Kras inhibitor experiment |vehicle treated

TME samples 6 390 0.81 108 75% 1,216,079 |Fig. 6, Fig. S10
MRTX1133 or

Kras inhibitor experiment |vehicle treated

Epithelial samples 6 370 0.77 93 75% 925,367 |Fig. 6, Fig. S10
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Table S7. Statistics on mixed cell states in Xenium data (Related to Fig. S6)

Number of
Mix type cells % in dataset
mixed_myeloid_stroma 166,979 1.7
mixed_epithelial_stroma 70,906 0.72
mixed_endothelial_immue_stroma (33,375 0.34
mixed_lymphoid_other 22,790 0.23
mixed_mural_fibroblast 8,310 0.08
mixed_lymphoid_myeloid 3,338 0.03
mixed_mural_immune 2,750 0.02
mixed_mural_other 1,233 0.012
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Table S8. Gene censoring in Xenium data (Related to Fig. 4, Fig. 5, Fig. S7, Fig. S8)

Number of Fraction Number of

Fraction genes that positive genes that Number of

positive passed threshold in passed genes that

threshold dissociated any dissociated passed both
Compartment |(dissociated) [threshold subpopulation |threshold thresholds
Epithelial 1% of cells 373 0.0794 326 318
Immune myeloid |1% of cells 296 0.0797 233 211
Fibroblast 1% of cells 347 0.1199 294 277
Immune B 1% of cells 225 0.0789 251 194
Immune
T,NK,ILC 1% of cells 259 0.1184 220 194
Mural cells 1% of cells 304 0.0797 242 227
Endothelial cells |1% of cells 322 0.0788 273 258
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Note S1

Construction of the diffusion operator and diffusion maps

Throughout this work, we make use of diffusion maps as a latent representation of single-cell
expression data that is analogous to a non-linear version of principal components. A diffusion
map captures dominant directions of diffusion along a single-cell manifold, understood as a
random walk in which cells are allowed to reversibly transition between similar transcriptional
states. We follow the computation of diffusion maps as previously described'.

Let M™™ be a matrix representing the log-normalized expression of m genes in n cells. We
define the k-nearest neighbor graph (kNN) G™ " as a sparse matrix such that G; ; is the
Euclidean distance in principal component space between celli and cell; when cell; belongs to
the k-nearest neighbors of cell, and G; ; = 0 for every other cell; in the data.

We compute the cell—cell affinity matrix A™*™ by applying an adaptive Gaussian kernel to the
kNN matrix:

Ai,j:e h

where h varies for each cell, and is defined as the distance to its k' closest cell (we use k' = 10
for a kNN graph with k = 30). The width h of the Gaussian kernel determines the rate at which
A; j decays as a function of distance. Thus, an adaptive width allows controlling for
heterogeneity in cell density along the single cell manifold.

To compute the diffusion operator T"*", we symmetrize the cell-cell affinity matrix, set the
diagonal to 0, and normalize by row, resulting in a row stochastic matrix. T; ; can be interpreted
as the transition probability from cell; to cell;. Further exponentiation of the diffusion operator
results is diffusion, a random walk over the kNN graph that results in long-range connectivities
between single cells based on short-scale phenotypic transitions.

Although Euclidean distances on PC space captures cell-cell similarities at the local level, and
is routinely used to construct a kNN graph during manifold estimation, they fail to capture
distances over long ranges due to non-linearities in the phenotypic manifold. Diffusion
distance—intuitively understood as the result of a diffusion process or a random walk over the
kNN graph—captures long-range cell-cell connectivities while respecting such non-linearities. A
diffusion map results from the eigen-decomposition of the diffusion operator. The right
eigenvectors of such decomposition, termed diffusion components, provide a new
representation of the data that can be used to approximate diffusion distance. Ordering
eigenvectors by their corresponding eigenvalue, and keeping the top L eigenvectors allows
estimation of the diffusion distance between two cells:

L

=1

Where 1, is the top I eigenvalue of the diffusion operator, 1, it's associated eigenvector, and t
is the number of diffusion steps (t = 3 in our analysis). Because the 0" right eigenvector of the
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diffusion operator is a constant vector, we exclude this from the diffusion map, following work
from Haghverdi and colleagues®.
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METHODS
I. Experimental Methods
MOUSE MODELS

All animal experiments were performed in accordance with protocols approved by the Memorial
Sloan Kettering Institutional Animal Care and Use Committee (approval number: 11-06-018).
Mice were maintained under specific pathogen-free conditions, and provided with food and
water ad libitum. In all experiments with PDAC models, tumors did not exceed a volume
corresponding to 10% of body weight (typically 12—15-mm diameter). Mice were evaluated daily
for signs of distress or end-point criteria, and immediately euthanized if they presented signs of
cachexia, weight loss beyond 20% of initial weight or breathing difficulties, or if they developed
tumors of 15 mm in diameter. Animals were housed on a 12 h light—12 h dark cycle under
standard temperature (18-24 °C) and humidity (40-60%).

Mouse model genetics

The KP-°" model'? allows the identification and isolation of cells that undergo spontaneous p53
loss of heterozygosity (LOH) during pancreatic cancer initiation. This model is derived from
multi-allelic ES cells and harbors Ptf1a-Cre; LSL-Kras®'?’; p53"™VT glleles that predispose mice
for spontaneous cancer development. Embryonic expression of Ptf1a-Cre in pancreatic
epithelial progenitor cells leads to Cre-dependent excision of the LSL (lox-STOP-lox) cassette
upstream of mutant Kras®'?”, and deletion of one copy of p53. Oncogenic KRAS activity in the
pancreatic epithelium leads to the formation of premalignant lesions® and eventual PDAC
development'2 upon loss of the remaining wild-type copy of p53 in premalignant cells (p53-
LOH).

The KP-°" model harbors fluorescent proteins that trace the lineage of cells that experienced
Cre activity, as well as cells that have undergone p53-LOH. This model includes the Rosa26-
CAGGS-LSL-rtta-IRES-mKate2 (RIK) allele®, in which Cre-dependent excision of the LSL
cassette leads to constitutive polycistronic production of the reverse tetracycline transcriptional
activator (tTA3) and mKate2. Both proteins serve as proxies for oncogenic Kras®'?’ activation
in epithelial cells (detected through mKate2 immunofluorescence), single molecule fluorescence
in situ hybridization (smFISH) or transcriptomics. Furthermore, upon doxycycline administration,
rtTA3 expression allows selective induction of transgenes downstream of a promoter harboring
the tetracycline-regulated element. This genetic configuration thus allows both detection and
perturbation of premalignant cells in vivo.

Lastly, the KP-°" model harbors the doxycycline-inducible TRE-GFP-shRen.713 allele, which
produces GFP and a short-hairpin RNA (shRNA) targeting Renilla luciferase (shRen) upon
doxycycline administration. We have used this allele extensively as a non-targeting negative
control® to account for non-specific effects of sShRNA-expression and interaction with the RNAI
machinery in a cell. In the context of the KP-°" model, this allele serves the unique purpose of
reporting for the genetic status of p53 in vivo. The TRE-GFP-shRen allele is located in the
Col1a1 safe-harbor locus in mouse chromosome 11, in cis with the single p53"" allele (due to
how we designed our breeding scheme). Given the selective pressure for homozygous p53 loss
during PDAC development, and the fact that p53-LOH events most frequently occur through
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whole chromosome or large segmental deletion events’, loss of GFP serves as a proxy for p53-
LOH in this model.

All cohorts in this study were derived from multiallelic mESCs harboring the genetic
configuration described above (KPfCRC shRen clone YMZ). While this model uniquely allows
tracing and isolation of cells that underwent spontaneous p53-LOH events in vivo, we have also
used these mESCs to study p53-proficient cells in the premalignant pancreas due to their high
efficiency in generating experimental mice.

KCs""NA models harbor the same genetic configuration of the KP-°" model, with the exception

that they have p53"™T alleles. We use two variants of this model: KC"“"" harbors the TRE-
GFP-shRen.713 allele, serving as a non-targeting negative control (shRen), and KC""*3 harbors
the TRE-GFP-shp53.1224 allele® targeting shp53. We used these models to investigate the
consequences of inducible p53 knockdown in vivo. All KCS"RNA mice in this study were
generated using multiallelic mMESCs (KC*"“"": clone p48-9c shRen.713 ¢2; KC*"**3: clone p48-9¢
shp53.1224 #6)°.

The identity of the ESCs and ESC-derived mice were authenticated by genomic PCR using a
common Col1a1 primer paired with an shRNA-specific primer:

- Col1al: 5" -CACCCTGAAAACTTTGCCCC-3"

- shRen.713: 5’ -GTATAGATAAGCATTATAATTCCTA-3" (~250 bp band)

- shp53.1224: 5’ -TGTATTACACATGTACTTGTAGTGG-3" (~210 bp band)

The presence of the RIK allele in mMESCs was confirmed using PCR with the following primers:
- 5’ -GGTGAGCGAGCTGATTAAGG-3’

- 5'-TTTTGCTGCCGTACATGAAG-3’ (~200 bp band)

In addition, we confirmed shp53 and shRen expression at the single-cell level by aligning reads
to the unique sequences that distinguish TRE-GFP-shp53 and TRE-GFP-shRen alleles:
>TGM shRen unique
TGCTGTTGACAGTGAGCGCAGGAATTATAATGCTTATCTATAGTGAAG
CCACAGATGTATAGATAAGCATTATAATTCCTATGCCTACTGCCTCGG

>TGM shp53 unique
TGCTGTTGACAGTGAGCGCCCACTACAAGTACATGTGTAATAGTGAAG
CCACAGATGTATTACACATGTACTTGTAGTGGATGCCTACTGCCTCGG

Cohort generation

ESC-derived chimeric male mice were generated by injecting KP-°", KCS"“"" or KCs"?*3
backgrounds at the 8-cell or blastocyst stage, as previously described®, enabling the
synchronous creation of large cohorts of mice bearing all alleles for modeling PDAC initiation
and progression. Cohorts were generated by the Mouse Genetics Core Facility at Memorial
Sloan Kettering Cancer Center (MSK) or the Rodent Genetic Engineering Core at New York
University. Only mice with coat-color chimaerism of over 95% were included for experiments.

shRNA induction
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To induce shRNA expression, KCS"“" and KCS""** mice were switched to a doxycycline diet (200
mg kg, Harlan Teklad) at 4-5 weeks of age, one week before inducing pancreatitis. KP-°"
mice were switched to doxycycline diet at 4-5 weeks of age to allow doxycycline dependent
induction of the GFP transgene that reports the presence or absence of the wild-type p53 allele
in this model.

For KC"**3 collection cohort 4 (Fig. S11a), a subset of mice were switched to doxycycline diet
and the remaining animals were fed normal chow (used in Fig. 7b,e). p53 knockdown led to an
increase in progenitor-like cells and expansion of their niche in this comparison. These results
not only corroborate previous findings, but also provide an orthogonal negative control, as they
show that differences in the abundance of progenitor-like cells track with p53 knockdown, as
opposed to the specific mESC strain used to generate cohorts.

KP-°" mice from batches 2, 7 and 8 (see Table S1 for details on sample metadata) were
administered 625 mg kg™ doxycycline diet (Harlan Teklad) following prior practices in our lab".
The remaining cohorts were treated with low dose doxycycline (200 mg kg™') to minimize the
potential effects of antibiotic treatment on the microbiome. No differences in the spectrum or
dynamics of premalignant states were observed as a function of doxycycline dose.

TREATMENTS

Injury-induced pancreatitis

To assess the spectrum and dynamics of premalignant states and tissue remodeling events in
the in the context of oncogenic KRAS activation in the premalignant epithelium, we subjected 5—
6-week-old male mice with eight-hourly intraperitoneal injections of 80 ug kg™ of caerulein
(Bachem) for two consecutive days (16 injections total), as previously described’. Caerulein
dose was adjusted to body weight at the beginning of each day of treatment. We harvested the
pancreata at two phases of the injury response: an acute phase, corresponding to the peak of
inflammation (days 1 and 2 after the 9th caerulein injection), or a long-term response (3 weeks
post-caerulein treatment).

Oncogenic KRAS inhibition

The KRAS®'?P_gpecific small molecule inhibitor MRTX11332 allowed us to interrogate the
consequences of acute removal of Kras signaling in premalignant cells without directly affecting
the tumor microenvironment (Fig. 6, Fig. S9 and Fig. $10).

Formulation for in vivo use

We formulated MRTX1133 for in vivo use, as previously described®. To prepare the vehicle for
drug administration, we first dissolved Captisol (MedChemExpress, HY-17031) at a 20% w/v
concentration in sterile water. Next, we mixed the 20% Captisol solution with 100 mM citrate
buffer pH 5.0 (Teknova, Q2443) in a 1:1 ratio, resulting in a final vehicle solution of 10%
Captisol, 50 mM citrate buffer pH 5.0. To prepare the stock solution of MRTX1133, we diluted
MRTX1133 powder in the vehicle solution to a final concentration of 3 mg mL™. We stored
vehicle and MRTX1133 formulations at 4°C protected from light for up to 1 week.

Dosing
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We fed mice with MRTX1133 at the maximum tolerated dose of 30 mg kg™ through
intraperitoneal injection (200 pL for a 20-g mouse). Controls were dosed with an equivalent
volume of vehicle based on weight. Dosing was twice a day, with an inter-dose interval of 10-12
h. We randomized MRTX1133 and vehicle-treated mice to control for differences in the social
structure of individual cages, as well as inter-cage heterogeneity in average mouse size.

Experimental design

We used 5-week-old male KP-°" mice generated through mESC injections as experimental
cohorts. For mice profiled with scRNA-seq, we started dosing of MRTX1133 or vehicle
concurrently with caerulein treatment, euthanizing mice within 4 h of the last MRTX1133 or
vehicle dose (fifth dose, 2 days after the first dose). For mice profiled with the Xenium spatial
transcriptomics, we started MRTX1133 or vehicle dosing 2 days after the first caerulein dose,
euthanizing mice 2 days after the first dose of MRTX1133 or vehicle. These two experimental
protocols aimed to assay the role of oncogenic KRAS signaling in inducing or maintaining the
progenitor-like state upon acute pancreatitis. In practice, both protocols had equivalent
outcomes in terms of the spectrum of premalignant lesions at end-point: depletion of progenitor-
like, gastric pit-like and gastric chief-like cells, as well as shifts in the state of acinar-to-ductal
metaplasia (ADM) cells, with progenitor-like cells being the subpopulation with strongest
dependency on persistent oncogenic KRAS (Fig. 6c and Fig. S9c).

SAMPLE COLLECTION
Table S1 provides details of sScRNA-seq samples collected for this study.

Experimental endpoints

Pre-tumor stage KP-°" mice were euthanized at 3—4 months of age. Lack of a macroscopic
tumor mass was assessed by palpation before euthanasia, and confirmed by gross histology
upon dissection. Tumor stage KP-°" mice were euthanized upon confirmation of the presence
of a macroscopic tumor mass by palpation; two animals at 3 months of age, and one at 8
months. Mice subjected to acute pancreatitis in time course and p53 perturbation cohorts were
euthanized at 1 day, 2 days or 3 weeks after the second day of the pancreatitis protocol. Mice
treated with MRTX1133 or vehicle were euthanized 2 days after the first treatment dose.

Tissue dissociation for single-cell analyses

For scRNA-seq and bulk RNA-seq collection, we isolated lineage-traced (mKate2+/GFP+ or
mKate2/GFP-) epithelial cells from pancreatic tissues from KP-°", or KCS""A mjce by FACS
sorting, as previously described”'°. Specifically:

1. Pancreata were finely chopped with scissors and incubated in digestion buffer containing
1 mg mL" collagenase V (Sigma-Aldrich, C9263), 2 U mL™ Dispase (Life Technologies,
17105041) dissolved in HBSS with Mg?* and Ca*" (Thermo Fisher Scientific, 14025076)
supplemented with 0.1 mg mL" DNase | (Sigma, DN25-100MG) and 0.1 mg mL""
soybean trypsin inhibitor (STI) (Sigma, T9003), in gentleMACS C Tubes (Miltenyi Biotec)
for 42 min at 37°C using the gentleMACS Octo Dissociator.

2. Digested samples were washed with PBS and further digested with a 0.05% solution of
Trypsin-EDTA (Thermo Fisher Scientific, 15400054) diluted in PBS for 5 min at 37 °C.
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Trypsin digestion was neutralized with FACS buffer (10 mM EGTA and 2% FBS in PBS)
containing DNase | and STI.

3. Samples were washed in FACS buffer containing DNAse and STI, and filtered through a
100-um strainer.

4. Samples were blocked with anti-mouse CD16/CD32 with Fcblock (BD Biosciences, Cat#
553141; Clone 2.4G2) for 7 min at 4°C, followed by incubation with APC-conjugated
CD45 antibody (Biolegend, Cat# 103111; Clone 30-F11, 1:200, 10-min incubation).

5. Cells were washed once in FACS buffer containing DNase | and STI, filtered through a
40-um strainer and resuspended in FACS buffer containing DNase | and STI and 300
nM DAPI as a live-cell marker. Cells were sorted on BD FACSAria | or BD FACSAria lll
(Becton Dickinson) for mKate2+/GFP+ (Kras®'?°+ p53-proficient epithelial cells) or
mKate2+/GFP- (Kras®'?"+ p53-deficient epithelial cells), excluding DAPI+ and CD45+
cells. FACS-sorted cells were collected in 2% FBS in PBS (see Fig. S1c for a
representative example of FACS gates for isolating epithelial cells from a pre-tumor
stage KP°" mouse).

6. For scRNA-seq, cells were resuspended at 1000 cells uL™" in 0.04% BSA 1X PBS
solution with RNAse inhibitor (Thermo Fisher Scientific, AM2684; 1 U uL™ or 1:40
dilution from stock). In the case of pre-tumor p53-deficient cell isolation, the low
frequency of this subpopulation (200-2000 cells per mouse) limited our ability to
resuspend and process sorted cells directly from the sorter. To allow downstream
processing of this rare and important cell population, we spiked-in CD45+ cells isolated
from the same mouse to reach a threshold of 30,000 cells, resuspending in a final
volume of 30 pL for downstream processing.

For p53 perturbation and acute oncogenic KRAS inhibition experiments, we modified this
isolation protocol to accommodate pooling of biological replicates in the same encapsulation
and sequencing runs via cell hashing, minimizing both costs and batch effects. Following from
step 2 above:

3. For every sample that would be subjected to cell hashing, we used DNAse-free buffers
from this point on, reasoning that the presence of DNAse could hamper our ability to
recover DNA barcodes.

4. Samples were resuspended in 1 mL ACK-lysis buffer and incubated for 5 min at room
temperature to deplete red blood cells, and washed the ACK lysis buffer with 20 mL
HBSS.

5. We blocked samples with TruStain Fc block Plus (Biolegend, 156603; clone S17011E,
1:100) for 7 min at 4°C, followed by incubation with a sample-specific TotalSeq cell
hashing antibody (Biolegend, 155832, 155833, 155835, 155837, 155839, 155841,
clones M1/42; 30-F11). We incubated cell hashing antibodies at a 1:50 dilution for 30
min.

6. We washed samples 3 times with DNAse-free FACS buffer + STI, followed by filtering
through a 40-um strainer and FACS-based isolation of mKate2+/GFP+ cells (Kras®'??+
pancreatic epithelial cells expressing shp53 or shCtrl).

7. To prepare cells for scRNA-seq, we pooled samples from the same experimental
conditions into the same tube, and resuspended cells at a 1000 cells uL™'. This strategy
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ensured our ability to interpret differences between conditions even if deconvolution of
biological replicates failed. In practice, we didn’t experience problems with downstream
deconvolution of biological replicates in these data.

Preparation of tissues for histology

For immunofluorescence and Xenium-based analyses, tissues were fixed overnight in 10%
neutral buffered formalin (Richard-Allan Scientific), and embedded in paraffin. Formalin fixed
paraffin embedded (FFPE) blocks were stored at room temperature, or more recently at 4°C as
we started profiling RNA from these tissues using spatial transcriptomic technologies.

For smFISH-based analyses, we followed the fixation protocol by Farack and Itzkovitz'".
Specifically, we fixed tissue in 4% PFA (Fisher / Electron Microscopy Sciences, 15710) 1X PBS
at 4°C for 3 h, followed by overnight incubation in 4% PFA, 1X PBS, 30% w/v sucrose solution,
verifying that tissues sank to the bottom of the tube before further processing. We washed
tissues with 1X PBS and thoroughly dried them with a kimwipe before OCT embedding. We
incubated tissues for 30 min to 1 h incubation in OCT at 4°C, since we observed that this
decreases the likelihood of tissue detachment during sectioning as compared to immediate
freezing. Lastly, we completed embedding by placing tissues in a mold, fully covering with OCT,
and placing on dry ice for freezing. We stored frozen OCT blocks at -80°C.

SINGLE-CELL RNA SEQUENCING

Fresh dissociated samples

Cells were resuspended in 1X PBS and BSA (0.04%) and checked for viability using 0.2% (w/v)
Trypan Blue staining (Countess Il). All sequencing experiments were performed on samples
with a minimum of 80% viable cells. Single-cell encapsulation and scRNA-seq library prep of
FACS-sorted cell suspensions was performed on the Chromium instrument (10x Genomics)
following the user manual (Reagent Kit 3’ v2 or v3). Each sample loaded onto the cartridge
contained approximately 5,000 cells (non-hashed samples) or 15,000 cells (hashed samples) at
a final dilution of ~500 cells pl”'. Transcriptomes of encapsulated cells were barcoded during
reverse transcription and the resulting cDNA was purified with DynaBeads, followed by
amplification per the user manual. Next, the PCR-amplified product was fragmented, A-tailed,
purified with 1.2X SPRI beads, ligated to sequencing adapters and indexed by PCR. Indexed
DNA libraries were double-size purified (0.6—0.8X) with SPRI beads and sequenced on an
lllumina sequencer (R1 — 26 cycles, i7 — 8 cycles, R2 — 70 cycles or higher) to a depth of >50
million reads per sample (>13,000 reads per cell) at MSK’s Integrated Genomics Operation
Core Facility.

Dissociated nuclei from FFPE samples

FFPE samples were preprocessed using a prototype Singulator™ system. Each sample was
automatically processed in a NIC+™ cartridge (S2 Genomics, 100-215-389) through two 10-min
deparaffinization steps using Deparaffinization Reagent (S2 Genomics), followed by rehydration
through successive 1 mL ethanol washes (100%, 100%, 70%, 50%, and 30%). This was
followed by two PBS washes. The sample was then centrifuged at 1,000 g for 3 min and
resuspended in 0.5 mL of Nuclei Isolation Reagent (NIR, S2 Genomics, 100-063-396)
containing 0.1 U L' RNase inhibitor (Protector™, Millipore Sigma, 3335399001). All
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subsequent solutions contained RNase inhibitor at the same concentration. The sample was
dissociated into single nuclei in a second NIC+ cartridge using “FFPE Nuclei Isolation” protocol,
using 0.5 mL of NIR for 12 min of lysis, followed by a 2-mL wash with Nuclei Storage Reagent
(NSR, S2 Genomics, #100-063-405). The single-nucleus suspension was centrifuged at 500 g
for 5 min, resuspended in NSR, and counted using 0.2% (w/v) Trypan Blue staining on a
Countess Il instrument. This was followed by a second centrifugation at 850 g for 5 min.

Nuclei were then resuspended in 1 mL of Fixation Buffer (4% formaldehyde in 1x Fix & Perm
Buffer, 10x Genomics, PN-2000517) and incubated at 4°C for 16—24 h. To stop the fixation,
nuclei were centrifuged at 850 g for 5 min at room temperature and quenched with 1 mL of
Quenching Buffer (1x Quench Buffer, 10x Genomics, PN-2000516). Fixed nuclei were then
stained with 1 ug mL™" DAPI and sorted for DAPI-positive nuclei.

Up to 300,000 nuclei were processed per hybridization according to 10x Genomics
recommendations. Each hybridization was performed in 40 pL of hybridization mix, containing
10 uL of Mouse WTA probes (10x Genomics, PN-2001275) and 2.5 uL of custom probes
targeting eGFP and mKate2 for a final concentration of 2 nM per probe. Custom probes were
designed following the 10x Genomics technical note on probe design, with particular attention to
GC content (see Data S1 for probe sequences). Hybridizations were carried out at 42°C for 16—
24 h.

Following hybridization, samples were diluted in Post-Hybridization Wash Buffer and counted.
For each experiment, an equal number of nuclei from each hybridization reaction was pooled to
ensure equal sample representation. The pooled nuclei were then washed four times in Post-
Hybridization Wash Buffer for 10 min at 42°C. After washing, nuclei were resuspended in Post-
Hybridization Resuspension Buffer, filtered through a 30 um Miltenyi Biotec filter, and counted to
determine the appropriate volume for loading onto the Chromium X instrument.

GEM encapsulation was performed following the 10x Genomics Flex GEM-X (PN-1000782)
protocol, using their guidelines for cell and reagent volumes per well based on the desired cell
recovery. After loading the Chip FX and running it on the Chromium X, GEMs were recovered
and processed according to the manufacturer’s instructions. Following GEM processing, the
resulting product was pre-amplified and indexed to generate the sequencing library. All libraries
were sequenced on an lllumina NovaSeq X+ (R1 — 28 cycles, i5 — 10 cycles, i7 — 10 cycles, R2
— 90 cycles) using standard dual indexing and demultiplexing. Raw BCL files were processed
with Cell Ranger (9.0.0), and the resulting FASTQ files were quantified using a custom probe
set reference for the mouse genome (GRCm39) within the Cell Ranger pipeline.

Table S1 provides details of the dissociated samples collected as part of this study.

SPATIAL PROFILING

Table S5 describes detailed information regarding the 10x Xenium spatial transcriptomics
samples that we collected as part of this study. Data S4 contains source data and sample
metadata of tissues analyzed with immunofluorescence.
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Immunofluorescence

Immunofluorescence was conducted on 5-um sections of FFPE blocks. Following
deparaffinization and antigen retrieval (citrate buffer pH 6.0, Fisher / Vector Biolabs, H-3300-
250), slides were blocked with 5% BSA 1X PBS for 1 h at room temperature, followed by
overnight incubation with primary antibodies. Following primary incubation, we washed slides 3
times for 10 min with 1X PBS, and incubated with secondary antibodies diluted in blocking
buffer for 1h. We washed slides for 10 min with 1X PBS 1 ug mL™" DAPI, followed by two
additional washes and mounting. Images were imaged with a Nikon T2i Eclipse system
equipped with a 20X Plan APO objective (Nikon, MRD00205) equipped and an ORCA-
FusionBT sCMOS camera. For quantification of HMGA2, VIM and TNC, we collected full tissue
scans using the Nikon Elements image acquisition software.

For quantification of P53 levels, we stained adjacent tissue sections for the progenitor state
marker MSN or P53, as well as GFP as a proxy for Kras®'?°+/p53-proficient cells. We selected
and acquired fields of view based on the presence of MSN+ and MSN- lesions and
subsequently acquired the corresponding regions of interest in the p53-stained slide. We
acquired images using a 20X Plan APO objective and the Crest X-Light V2 LFOV25 Spinning
Disk Confocal attached to our Nikon T2i Eclipse microscope, collecting fields of view of 2000 x
2000 px.

We used the following primary antibodies: GFP (Abcam, ab13970; RRID:AB_300798, 1:1000),
RFP (Evrogen, AB233; RRID:AB_2571743, 1:1000), HMGAZ2 (Cell Signaling Technology,
8179S; clone D1A7, RRID:AB_11178942, 1:500), Moesin (Proteintech, 26053-1-AP;
RRID:AB_2880353, 1:100), E-cadherin (BD Biosciences, 610181; RRID:AB_397580, 1:500),
Vimentin (Cell Signaling Technology 5741; RRID:AB_10695459, 1:500), mKate2 (generated in-
house, #4007; rat isotype, 1:250), p19 (SantaCruz, sc-32748; RRID:AB_628071 1:100),
Tenascin-C (R&D systems, MAB2138; RRID:AB_2203818, 1:250), p53 (Leica Biosystems, P53-
CM5P; RRID:AB_2744683, 1:250), Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (Cell
Signaling Technology, 9101; 1:250). We used the following secondary antibodies as part of this
study: Donkey Anti-Mouse 1gG Alexa Fluor 750 (Abcam, ab175738; 1:250), Donkey anti Rabbit
IgG Alexa Fluor 555 (Invitrogen, A31572; 1:500), Donkey anti-Rat IgG Antibody, Alexa Fluor
647 (Thermo Fisher Scientific, A78947; 1:500), Donkey anti-Chicken IgY Alexa Fluor 488
(Thermo Fisher Scientific, A78948; 1:1000), Donkey Anti-Chicken IgY Alexa Fluor 647 (Sigma-
Aldrich, AP194SA6; 1:1000), Donkey anti Mouse 1gG Alexa Fluor 488 (Thermo Fisher Scientific,
A21202; 1:1000), Donkey anti-Rabbit IgG Alexa Fluor Plus 647 (Invitrogen; A32795, 1:500),
Donkey anti-Rat IgG Alexa Fluor Plus 555 (Invitrogen, A48270; 1:500).

Multiplexed Immunofluorescence using Lunaphore COMET

The Lunaphore COMET platform allowed us to probe for multiple markers of the progenitor-like
state in the same tissue slide, overcoming limitations of isotype incompatibility between markers
(e.g., MSN and HMGAZ2 antibodies are both derived from rabbit hosts). Tissue sections (5 um)
were trimmed from a FFPE block and placed at the center of a clean glass slide. The slide was
air dried and baked at 42°C for 3 h and stored in a desiccator. Epredia PT Module was used to
deparaffinize and retrieve epitopes (Epredia Dewax and HIER Buffer L). The slide was then
washed twice with 1X Multistaining buffer (BU0O6) and loaded onto the COMET. Appropriate
volumes of primary antibodies, secondary antibodies, 5 yg mL™ DAPI (Thermo Fisher Scientific,
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D3571), Multistaining buffer, Quenching buffer (BUO8-L), Imaging buffer (BU09), and Elution
buffer (BUO7-L) were freshly made and loaded into the fluidics compartment of the instrument.
Fields of view (FOVs) of 12 mm x 12 mm were captured in a tiled fashion, only where the tissue
was auto detected. The primary antibodies were used at the following dilutions: 1:1000 GFP
(Abcam, ab13970), 1:300 HMGA2 (8179S, CST), 1:100 Moesin (ProteinTech, 26053-1-AP),
1:100 p19 (SantaCruz, sc-32748). The secondary antibodies were used at the following
dilutions: 1: 100 Donkey anti-Rabbit AlexaFluor Plus 555 (Thermo Fisher Scientific, A32794),
1:200 Donkey anti-Rabbit AlexaFluor Plus 647 (Thermo Fisher Scientific, A32795), 1:200
Donkey anti-Rat AlexaFluor Plus 647 (Thermo Fisher Scientific, A48272), 1:200 Goat anti-
Chicken AlexaFluor Plus 647 (Thermo Fisher Scientific, A32933).

Multiplexed Inmunofluorescence using Leica CellDive

We used the Leica CellDive imaging system to conduct multi-IF experiments through cycles of
staining, imaging and bleaching of fluorescent stains. This allowed us to probe for multiple
microenvironment markers in the same tissue section while bypassing limitations of isotype
incompatibilities, and leveraging the computational removal of autofluorescence in this imaging
system. We imaged 5-um FFPE sections following the manufacturer’s protocol. Briefly, after a
2-step antigen retrieval process, slides were blocked with 3% BSA, stained with DAPI, and
imaged unstained to acquire background autofluorescence (AF). Samples were then stained
and imaged using DAPI, Cy3, Cy5, and FITC channels on the CellDive (Leica) instrument with
CellDive image acquisition and processing software. Each FOV was imaged in each staining
round, followed by AF removal, registration with baseline DAPI, and stitching. Unconjugated
primary antibodies were used in the first staining round, followed by secondary antibody
staining: GFP (Abcam, ab13970; RRID:AB_300798, 1:1000), HMGA2 (Cell Signaling
Technology, 8179S; clone D1A7, RRID:AB_11178942, 1:500) and Tenascin-C (R&D systems,
MAB2138; RRID:AB_2203818, 1:250). After imaging, dye inactivation was performed using 0.1
M Na2CO3 3% H20- solution for 15 min at room temperature, followed by 1 h blocking with
rabbit serum (Sigma-Aldrich, R9133) at room temperature and washing with 1X PBS-T, before
starting the next round of AF imaging and staining. Subsequent rounds of staining were
conducted with primary antibodies conjugated to a fluorophore, and included the
immunosuppressive myeloid cell marker ARG1 (Cell Signaling Technology, 35298; AlexaFluor
555 conjugated, 1:100). All rounds of imaging and slide storage were done in a solution of PBS
with 50% glycerol. Staining quality and fluorescence removal were verified after each round.
The fully stitched images were imported into HALO® image analysis software (Indica Labs) for
visualization.

Single-molecule FISH

Coverslip preparation for smFISH

Coverslips were prepared as described'?. Briefly, 40-mm—diameter #1.5 coverslips (Bioptechs,
0420-0323-2) were cleaned in batches by arranging in a wafer boat (Entegris, A23-0215) and
immersing in a 1:1 mix of 37% HCI and methanol at room temperature for 30 min. Coverslips
were then washed twice with Milli-Q water, and once with 70% ethanol, followed by gentle
drying with nitrogen gas. Cleaned coverslips were coated with a silane layer to allow
stabilization of a polyacrylamide gel during smFISH staining, following published protocols'*:
they were submerged in 0.1% (vol/vol) triethylamine (Millipore, TX1200) and 0.2% (vol/vol)
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allyltrichlorosilane (Sigma, 107778) in chloroform for 30 min at room temperature, washed once
with chloroform, washed once with 100% ethanol and dried using nitrogen gas. Coverslips were
stored long-term in a desiccated chamber.

To prepare for staining individual samples, silanized coverslips were coated with 0.1 mg mL™
Poly-D lysine (Thermo Fisher Scientific, A3890401) at room temperature for 1 h in a 6-cm tissue
culture plate. They were then washed once with 1X PBS, and 3 times with nuclease-free water.
Coverslips were lifted after each wash, using either tweezers or a needle, to ensure that both
sides of the coverslips were exposed to the solution. Coverslips were left to dry for at least 2 h
in a tissue culture hood before proceeding to tissue sectioning.

Tissue sectioning, fixation and permeabilization

Tissue section preparation was conducted following a published protocol''. Briefly, 10-um tissue
sections were cut using a cryostat and mounted into poly-D lysine coated coverslips, then
placed face-up on a 6-cm tissue culture dish for all subsequent wash and incubation steps.
Coverslips were dried for 5-10 min at 50°C, and placed on dry ice until all samples were
sectioned. Next, plates with coverslips were transferred to ice, and treated with 3 mL 1X PBS to
melt the OCT, and fixed at room temperature with 4% PFA 1X PBS for 10 min. Coverslips were
then washed three times with 1X PBS, and treated with ice-cold 70% ethanol and maintained at
4°C overnight for permeabilization.

|11

Pre-staining treatment of permeabilized tissues

After overnight ethanol incubation, coverslips were rehydrated with 1X PBS on ice for 10 min.
To bleach endogenous fluorescence of lineage reporters, tissues were exposed to a bleaching
solution of 3% hydrogen peroxide (Fisher, H325-500), 1:600 37% HCI (vol/vol) 1X PBS, and
placed under a heat lamp for 1 h'*. They were then washed twice with 1X PBS and once with
2X SSC. Next, they were treated with pre-warmed (37°C) digestion solution containing 20 ug
mL™" proteinase K (Sigma, 3115836001) in 2X SSC, and incubated at 37°C for 10 min. This step
enhances the permeabilization of probes in an optimized protocol for RNA staining in pancreatic
tissue'’. To remove proteinase K, coverslips were washed 3 times with 2X SSC. To prepare
coverslips for hybridization, they were treated with pre-hybridization solution, composed of 30%
formamide (Thermo Fisher Scientific, AM9344) in 2X SSC and incubated for at least 3 h at
37°C, as previously described'".

Staining with primary probes

Computational probe design is described below (Probe design for multiplexed smFISH).
Primary probes were diluted at a 100 nM final concentration per probe in 3H staining buffer,
composed of 30% formamide, 10% dextran sulfate (Sigma Aldrich, D8906-50G), 1 mg mL™
yeast tRNA (Thermo Fisher Scientific, 15401029) in 2X SSC". In addition, this staining solution
had a final concentration of 2 uM anchor probe, a 15-nt sequence of alternating dT and
thymidine-locked nucleic acid (dT+) with a 5-acrydite modification (Integrated DNA
Technologies), designed to anchor all polyadenylated RNAs to a polyacrylamide gel in
subsequent steps. Next, hybridization chambers were prepared by attaching parafilm on the
surface of a 6-cm tissue culture dish. Upon completion of pre-hybridization incubation, a 100-uL
droplet of hybridization solution and probes (100 nM per probe) was placed on the center of the
hybridization chamber, and coverslips were placed face down so that the hybridization solution
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uniformly covered the tissue, taking care of removing bubbles that may have formed in the
parafilm—coverslip interface. Hybridization chambers were placed on a 15-cm dish, with a wet
Kimwipe used as a humidity buffer, and incubated at 37°C for 36h—48 h.

Post-hybridization wash

Upon completion of incubation with primary staining solution, post-hybridization wash buffer
composed of 30% formamide in 2X SSC was prepared, and pre-heated to 37°C. Coverslips
were then washed face-up with post-hybridization wash buffer at 47°C for 30 min. This washing
step was repeated for a second 30-min incubation with fresh post-hybridization wash buffer.
Lastly, coverslips were transferred to 2X SSC solution and maintained at 4°C until the next step.

Gel embedding

Samples were embedded on a thin layer of polyacrylamide gel, to allow subsequent tissue-
clearing through digestion of protein and lipids. To prepare the workspace for gel embedding,
microscope glass slides (Premier, 6101) were washed with 70% ethanol and RNAse away
(Thermo Fisher Scientific, 21-402-178), placed on a benchtop, and covered with 0.5 mL gel slick
(Lonza, 50640), cleaning excess with a Kimwipe. The gel solution was composed of 4% (vol/vol)
of 19:1 acrylamide/bis-acrylamide (BioRad, 1610144), 60 mM Tris-HCI pH 8 (Invitrogen, 15568-
025), 0.3 M NaCl (Boston Bioproducts, R-244), supplemented with the polymerizing agents
ammonium persulfate (Sigma, 09913) and TEMED (Sigma, T7024) at final concentrations of

0.03% (wt/vol) and 0.15% (vol/vol), respectively, as described'. The solution was then

degassed using a vacuum chamber (Thermo Fisher Scientific, 53050609) until bubbles stopped
rising to the surface of the solution. Coverslips were rinsed twice with gel solution. A 100-uL
droplet of gel solution was placed on a glass slide, and coverslips were placed face-down on the
slide so that the gel solution spread evenly at the slide-coverslip interface. Polymerization was
completed in 2 h at room temperature, after which gel-embedded coverslips were lifted from the
glass slide with the aid of a razor-blade, and transferred to a 6-cm tissue culture dish with 2X
SSC.

Digestion

Gel-embedded samples were subjected to an overnight treatment with digestion solution, aimed
at clearing proteins and lipids from the samples, improving the signal to noise for RNA
detection. Digestion solution was composed of 2% SDS (Invitrogen, AM9822), 0.25% TritonX
(Acros organics, 327371000), 1:100 dilution of proteinase K (New England Biolabs, P8107S) in
2X SSC. Samples were incubated overnight in digestion solution at 37°C. Following overnight
digestion, samples were rinsed once with 2X SSC, transferred into a separate plate with 2X
SSC, and washed for 30 min with gentle agitation. The 2X SSC solution was replaced, for a
second 30-min wash.

Staining with secondary probes
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We used readout probes constituted by a 20-bp oligonucleotide conjugated to a fluorophore
(Alexa Fluor 488, Cy3B, Cy5 or Alexa Fluor 750) via a disulfide bond. Fluorescent conjugated
probes were purchased from Biosynthesis Inc. The secondary staining solution was composed
of 5% ethylene carbonate (Sigma Aldrich, E26258-100G) in 2X SSC, and supplemented by 3
nM of a secondary readout probe for each fluorescent color and 1 uM DAPI. Secondary staining
was conducted following the same procedure for the primary staining step with the exception
that it was conducted for 20 min at room temperature, covering samples with aluminum foil.
Following hybridization, samples were washed once with a 10% ethylene carbonate 2X SSC
solution for 20 min with gentle agitation, and three times with 2X SSC for 5 min per wash.

Iterative smFISH imaging

We prepared the following buffers for iterative smFISH imaging: (1) Wash buffer: 10% ethylene
carbonate 2X SSC, 2.5 mL per staining round; (2) Cleavage buffer: 10% TCEP (Sigma-Aldrich,
646547-10X1ML) 2X SSC, 3 mL per cleavage round. TCEP in the cleavage buffer allows
reduction of disulfide bond linking fluorophores to oligonucleotides in readout probes for rapid
extinction of fluorescent signal; (3) Imaging buffer: 10% glucose 2X SSC, supplemented with
catalase (Sigma-Aldrich, C3515; 17.5 ug mL™ final concentration) and glucose oxidase (Sigma-
Aldrich, G2133; 1.4 mg mL™" final concentration), 2 mL per imaging round. Imaging buffer was
stored under a layer of 1.5 mL mineral oil to minimize oxygen in solution during sequential
rounds of staining and imaging; (4) 2X SSC, 40-50 mL per experiment. Furthermore, we
prepared readout probe mixes for each round of staining. Readout probes were diluted to a final
3 nM concentration per probe, in 5% ethylene carbonate 2X SSC, supplemented with Murine
RNAse inhibitor (New England Biolabs, M0314S; 1:400 dilution). Buffers and readout probe
mixes were loaded into a custom-build fluidics control system™ that can interface with the NIS
Elements image acquisition software (v 5.31.02) using custom macros.

Coverslips were mounted in a commercial flow chamber (Bioptechs, FCS2) sandwiched
between a 0.75-mm-thick flow chamber gaskets (Bioptechs, 1907-100; DIE# F18524), a micro-
aqueduct slide (Bioptechs, 130119-5NC) and a second 0.75-mm-thick flow chamber gaskets
(Bioptechs, 1907-100; DIE# 449673-A), as described'®. We first cut the gel so that it would fit in
its entirety within the rectangular opening of the flow chamber gasket. We placed the flow
chamber for imaging on a Nikon Ti2 inverted microscope using the FCS2 stage adapter
(Bioptechs, 060319-2-2611), and used our fluidics system to flow in 20X SSC into the sample in
order to eliminate bubbles in the tubbing and chamber. Next, we flowed imaging buffer into the
sample and generated a low magnification map of the entire tissue using a 20X Plan APO
objective (Nikon, MRD00205). We then switch objectives to a high magnification 60X Plan APO
immersion oil objective (N.A. 1.4, W.D. 0.13 mm, F.O.V. 25 mm, Nikon, MRD01605) to resolve
individual mMRNAs. We used tape to minimize the movement of the plate-holder during
sequential rounds of imaging, which we found to be important to prevent positional drift
throughout the experiment.

Imaging cycles were conducted using the following parameters:

e Staining. Flow staining buffer for 4 min at a rate of 0.5 mL min™. Incubate for 20 min.
e Wash. Flow wash buffer for 5 min at a rate of 0.4 mL min™".
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e Imaging. Flow imaging buffer for 3 min 40 sec at a rate of 0.5 mL min™'. Take 7 z-stacks
per field of view, using a 1-um step size, for a coverage of -3 ym to 3 um around the
mid-plane, using perfect focus throughout the entire experiment.

e Cleavage. Flow cleavage buffer for 4 min at a rate of 0.5 mL min™". Flow cleavage buffer
for 10 min at a rate of 0.1 mL min™. Incubate for 10 min. Flow 2X SCC for 5 min at a rate
of 0.5 mL min™.

We collected images from FOVs without tissue or sources of bright autofluorescence that would
allow us to estimate non-uniform illumination and detection profiles in each fluorescent channel,
and correct for these in downstream image processing steps.

Spatial transcriptomics using Xenium

FFPE blocks were sectioned and processed according to 10x Genomics user guidelines
(CG000580, CG000582, CG000584). Briefly, 5-um tissue sections were trimmed from FFPE
blocks and placed within the fiducial frame of the Xenium slide (PN-1000460). The slides were
air dried, baked at 42°C for 3 h and stored in a desiccator. Tissues were then deparaffinized,
rehydrated and de-crosslinked using Xenium Sample Prep Reagents (PN-1000460). Tissues
were hybridized overnight using a custom probe set (480 gene panel). The probes were ligated
and amplified in situ. Tissues were quenched to remove autofluorescence and counterstained
with DAPI. Slides with their corresponding decoding file were loaded and imaged on the Xenium
instrument.

Table S5 details the samples we analyzed with the Xenium platform.

Il. Computational Methods
GENE EXPRESSION SIGNATURE DERIVATION FROM EXISTING DATA

Premalignant state signatures

To derive gene expression signatures for major premalignant subpopulations, we computed
pairwise differential gene expression between discretized premalignant states as defined by
Burdziak, Alonso-Curbelo and colleagues'®. We used the wald test in the diffxpy package
(v0.7.4, https://qgithub.com/theislab/diffxpy?tab=readme-ov-file) and library size as numeric
covariates. We identified upregulated genes using the following thresholds: gval < 0.05, log>
fold-change > 1, mean expression > 0.05, and defined a signature as the set of genes
upregulated in a specific subpopulation in every pairwise comparison between premalignant
states.

SMADA4-dependent TGFB induced genes

We reanalyzed published bulk RNA-seq data from SMAD4-proficient and SMAD4-deficient
PDAC organoids stimulated with TGFB or vehicle'®. We used the R DESeq2 package
(v1.32.0)"" to model gene counts as a function of treatment (TGF stimulation of vehicle) and
SMADA4 status (SMAD4-proficient or SMAD4-deficient). We identified genes that are
upregulated by TGF stimulation in a SMAD4-proficient context. Furthermore, we required that
upregulation was sensitive to SMAD4 status. We used the following thresholds to identify
upregulated genes: padj < 0.001 and log2FoldChange > 1.5, resulting in a gene signature of 88
genes.
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Glycolysis (Warburg) signature
This signature is composed of a curated list of glycolysis-related enzymes (Hk1, Hk2, Gapdh,
Pgk1, Eno1, Pkm, Ldha), including glucose, lactate and pyruvate transporters upregulated

during the Warburg effect (Slc16a1, Sic16a3, Slc2a1)'®, as well as the hypoxia master regulator

Hif1a.

Public transcriptional signatures
The following table specifies the sources of other signatures used in this study. Signatures are
provided in Data S3.
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senescence, dependent on p65 proficiency

Signature id Description Source
p53 Fisher Curated targets of the tumor suppressive transcription factor p53 28288132
p53 TSAG Effectors of p53-dependent tumor suppression that are also bound 33157015
by p53 in irradiated MEFs
p53 restoration Upregulated upon p53 restoration in PDAC cells in vitro 31534224
Senescence UP | Upregulated in IMR90 human fibroblasts upon Hras"'-induced 27099234
senescence
HALLMARK Genes defining epithelial-mesenchymal transition, as in wound 26771021
EMT healing, fibrosis and metastasis
Kras signaling/ Consistently upregulated genes in Kras mutant vs wild-type mouse 28220783
Fosl1 and human tumors
Kras injury Genes upregulated in Kras®'?P+ pancreatic epithelial cells, 33536616
compared to Kras"'T cells, both harvested 48h post-acute
pancreatitis in vivo
GOBP wound The series of events that restore integrity to a damaged tissue, GO:
healing following an injury 0042060
YAP signature Genes activated by YAP overexpression in human mammary cells 22078877
(MCF10A), and YAP overexpression in mouse liver tissues or in
immortalized mouse fibroblasts
IFNy response Genes up-regulated in response to IFNG (HALLMARK Gene Sets) 26771021
p65-dependent | Upregulated in IMR90 human fibroblasts upon Hras"'2-induced 27099234

PROCESSING AND ANALYSIS OF SINGLE-CELL DATA

Data preprocessing and quality control

MRNA count matrix generation and demultiplexing
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All scRNA-seq datasets were demultiplexed, barcode-corrected, aligned and UMI-corrected with
SEQC" using mouse genome mm10 and default parameters for samples generated using the
v2 (spontaneous tumorigenesis samples) or v3 (injury-induced tumorigenesis samples) 3’
scRNA-seq kit. We summed all counts from genes that share the same gene symbol.

For samples subjected to cell hashing, we demultiplexed using an in-house method known as
SHARP (https://qgithub.com/hisplan/sharp). Hash labels were assigned to either identify a cell as
belonging to a specific mouse or as a doublet or low-quality droplet. Doublet calls informed our
cluster-based doublet filtering (see below). We excluded non-doublet cells without an assigned
hash barcode from sample-specific analyses, but included them in condition-level analyses.
This is possible because cells from distinct conditions (experimental time point x genotype) were
sequenced independently, and our cell hashing strategy aimed to distinguish biological
replicates within a condition.

Empty droplet removal and ambient RNA subtraction

We removed empty droplets using the remove-background function of cellbender (v0.2.0)%°, with
expected_cells = 5000 for spontaneous tumorigenesis datasets, and 8000 for injury-induced
tumorigenesis datasets (based on the number of cells targeted for encapsulation, total-droplets-
included = 20,000, fpr = 0.01 (default), learning-rate = 0.0001 (default) and epochs = 150
(default). We excluded droplets with fewer than 100 mRNA counts as input into subsequent
quality control (QC) analyses, and used cellbender background-corrected count matrices for
downstream applications. Ambient RNA subtraction was important for mitigating the effect of
CD45+ cell spike-ins during the collection of rare pre-tumor p53-deficient cells, as revealed by
inspecting immune-related transcripts in epithelial cells (not shown). Unless otherwise stated,
we used the cellbender background-corrected count matrix for downstream analyses. We
aggregated counts from genes that share the same gene symbol through summation.
Preprocessed datasets published as part of our study contain raw and cellbender-corrected
counts in the same AnnotationData object for ease of comparison.

Low-quality cell removal

For each sample, we used an iterative clustering-based approach to identify and remove low
quality groups of cells. During each iteration, we applied scanpy (v1.9.1)*' to embed single-cell
transcriptomes and identify clusters using standard library size normalization
(sc.pp.normalize_per_cell), log transformation with pseudocount 1 (sc.pp.log1p), feature
selection (sc.pp.highly_variable, flavor = 'seurat’ and default parameters), dimensionality
reduction using PCA (n_comp = 100), kNN construction (sc.pp.neighbors, num_neighbors = 15)
and visualization with UMAP (sc.tl.umap). Next, we used PhenoGraph to identify single-cell
clusters®? (sc.external.tl.phenograph, clustering_algo = ‘leiden’) varying the parameter k during
kNN construction (k = 10, 30), resulting in cluster assignments with different levels of resolution.

We removed the groups of cells with lowest summary QC metrics per cluster at each iteration,
and stopped excluding when log_lib_size reached 7.5 and percent_mito fell below 20%. By
varying cluster resolution, we could identify small clusters of low-quality cells that would
otherwise be merged into large clusters. For some samples, we computed high-resolution
clusters using k = 5 during the last iteration of cluster-based QC. We found that two or three
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iterations of this procedure per sample was sufficient to satisfy our bounding criteria, and
removed all clusters with outlier QC metrics.

Doublet and contaminant identification

We used doubletdetection (v4.2, http://doi.org/10.5281/zenodo.2678041) with default
parameters to infer doublets, using raw counts as input. For samples subjected to cell hashing,
we consolidated computationally inferred doublets with doublets identified through the detection
of two hash ids. Using PhenoGraph cluster assignments with different resolutions (k = 5, 10,
30), we identified and recorded clusters in which at least 50% of cells were inferred as doublets.
At this preprocessing step, we only recorded doublets, but didn’t exclude them from the dataset.
We reasoned that maintaining these annotations would be helpful for cross-sample identification
of double-enriched clusters, as we have previously shown.

Although our single-cell data was derived from epithelial cells sorted by fluorescent protein
expression, we identified single-cell clusters corresponding to immune and stromal
contaminants. We used gene expression marker of major cellular compartments to identify
these clusters (Col1a1 for fibroblasts, Ptprc for immune cells, Pecam1 for endothelial cells, Des
for pericytes), in combination with the absence of epithelial markers (Epcam and Cdh1, as well
as mMRNAs corresponding to fluorescent proteins used during sorting, GFP and rtTA3-IRES-
mKate2). Similar to our strategy with doublet handling, we only annotated, but not excluded
these clusters at this stage of analysis in an effort to identify contaminants in other samples from
the same batch that are too rare to form a single cluster.

Gene exclusion for post-cleaning preprocessing

We excluded the following classes of genes for normalization and feature selection: (i) mMRNAs
corresponding to fluorescent proteins and shRNAs engineered into our mouse model, (ii)
mitochondrial and ribosomal transcripts, (iii) the INcRNA Malat1, the inclusion of which was
previously shown to distort single cell embeddings in our experimental system'. In excluding
these genes, we aimed to minimize variation stemming from quality control metrics or hard-
coded experimental conditions (e.g. inducible expression of a fluorescent protein). In addition,
we excluded genes expressed in less than 10 cells across all batches. While we excluded these
genes during single-cell embedding, we kept them in the count matrix, so that the information
they contained could be used in downstream analyses.

Within-batch data consolidation

As the final step of QC and preprocessing, we merged count tables and annotations of all
samples from the same batch. We merged AnnotationData objects using the concat function of
this class with join = ‘outer’ (include genes present in any sample) and fill_value = 0 (assume
that a gene not present in a sample has expression of 0). We computed within-batch single-cell
embedding and clustering using the strategy detailed for single sample filtering. We used
cluster-level doublet annotations of individual samples to exclude doublet-enriched clusters
(those in which >50% of cells were predicted to be doublets). Similarly, we removed clusters
enriched in cells annotated as contaminants.

Lastly, we used outlier detection and hard thresholding to exclude a small number of cells with
low QC metrics that were not identified using cluster-based exclusion. Specifically, we
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computed two QC metrics for each cell, log-transformed library size and log-transformed
number of detected genes (excluding ribosomal, mitochondrial, fluorescent protein and shRNA
mMRNA counts). Although correlated, these two metrics provide orthogonal information about
transcriptional complexity, as a cell may pass a library size-based threshold even when few
genes dominate its mRNA counts. To identify outliers whose QC metrics deviate from those of
their nearest neighbors, we used the LocalOutlierFactor function from the sklearn.neighbors
package (v1.0.2) with n_neighbors = 100 and contamination = 0.1 (number of assumed
outliers). In the final step, we excluded low-quality cells based on log-transformed library size <
7.5, fraction mitochondrial counts > 0.2, or number of detected genes < 300.

Preliminary tumor and premalignant annotations

After integrating samples within batches, we identified clusters that exhibited transcriptional and
genomic patterns consistent with being derived from PDAC (see Cell state annotation and Copy
number inference for details). Conducting these preliminary annotations within individual
batches was important for determining which cells to exclude from subsequent batch correction
vector calculations.

Analysis of KP-°" spontaneous tumorigenesis data

KP-°" dataset details

Our spontaneous tumorigenesis data from KP-°" mice charts PDAC progression through the
benign-to-malignant transition, and is composed of three conditions: (1) p53-proficient cells from
mice without a macroscopic tumor (pre-tumor p53-proficient), (2) p53-deficient cells from mice
without a macroscopic tumor (pre-tumor p53-deficient), and (3) p53-deficient cells from mice
with a macroscopic tumor (tumor p53-deficient). Tumor p53-deficient cells are derived from (i)
tumor-bearing KP-°" mice, isolated as GFP-/mKate2+ cells (see Mouse model genetics for
details) and (ii) samples from tumor-bearing mice from Burdziak, Alonso-Curbelo and
colleagues '°. For batch 8, we pooled multiple mice without hashing to minimize the time
between harvesting and sorting during single-cell isolation. While we lack cell-to-mouse
assignments in this sample, we note that pre-tumor cells generally do not cluster by biological
replicate (Fig. S1a). Table S1 summarizes the number of cells per sample in our spontaneous
tumorigenesis dataset.

Our prior data set'® did not include a reporter of p53 genetic status; thus, a subset of cells from
PDAC samples co-embedded with premalignant cells during integration. We also observed that
a small fraction of cells sorted as p53-deficient from the KP-°" model co-embedded with pre-
malignant cells and expressed GFP mRNA, implying that they were indeed p53-proficient. We
filtered out such contaminants from our dataset before embedding all samples. Note that most
premalignant contamination comes from primary tumors rather than metastases, supporting the
notion that these were non-cancer cells embedded within the tumor.

Sample ID Sample codename Source Primary or |No. cells in pre-
P P (PMID) metastasis |[malignant clusters
DAC_DO020_p5_Epi Tumor p53 deficient 11 37167403 |Primary 645

Ag-PDAC-PT-Kate Tumor p53 deficient 10 |37167403 |Primary 180
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53_LHRH_PDACreg_KATE |Tumor p53 deficient 7 |This work |Primary 14

DACC963PT_Kate plus Tumor p53 deficient 9 |37167403 |Primary 7

PDAC-SP3 Tumor p53 deficient 6 |This work |Primary 5
9268 PHLH_PDAC_SP Tumor p53 deficient 8 |This work |Primary 2

Ag-Lung-Mets-Kate Tumor p53 deficient 10 [37167403 |Metastasis |2

DACC963LIVERmet Tumor p53 deficient 9 |37167403 |Metastasis |0

DACC963_mKate_plus Tumor p53 deficient 9 |37167403 |Metastasis |0

Feature selection and normalization

To identify a set of highly variable genes (HVGs) that capture the variability across samples in
all 3 batches, we conducted within-batch feature selection using scanpy’s
sc.pp.highly_variable_genes function with n_top_genes = 3000 and flavor = ‘seurat_v3'. The
final set of HYGs comprised the union of genes selected in each batch, resulting in 5159 genes
capturing variation along PDAC progression.

We conducted a batch-aware normalization approach similar to Haghverdi and colleagues®.
We estimated per-cell size factors as the total counts after excluding mitochondrial, ribosomal,
transgenic and Malat1 mRNAs (see Gene exclusion for post-cleaning preprocessing), then
calculated the median size factor per batch, and rescaled size factors to equalize medians
across batches. We normalized data by dividing counts by rescaled size factors, and multiplying
by the median rescaled size factor across all cells. Lastly, we applied a log transformation to the
count matrix with pseudocount = 1.

Dimensionality reduction, batch correction and KNN construction

We computed a batch-corrected latent space for subsequent processing steps using mutual
nearest neighbors in the batchelor R package (v1.8.1)?® with batches 1 and 2 as reference.
These batches contained the majority of cells in the dataset, and spanned all timepoints and
genotypes. We used the fastMNN function with cos.norm = FALSE, d = 100 (number of
components to keep), correct.all = TRUE and prop.k = 0.1 (default), resulting in a corrected
latent space of 100 components that capture 45% of reference batch variance. Although the
inflection point in the cumulative explained-variance curve was at 62 PCs (explaining 42% of
variance), we chose to keep more PCs because this dataset was composed of both cancer and
premalignant states, and our subpopulations of interest (e.g. progenitor-like cells) were rare (1—
2% of premalignant cells).

We computed this latent space on log-normalized counts, using only HVGs. In addition, when
calculating correction vectors, we excluded cells corresponding to PDAC clusters; we previously
showed that each tumor forms a distinct cluster in this model and reasoned that including PDAC
cells could remove and distort true biological heterogeneity in the dataset. We note, however,
that these clusters were subjected to batch correction using correction vectors estimated from
non-PDAC cells. The count matrix remains unmodified in this approach. Lastly, we constructed
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a k-nearest neighbor graph (kNN) using the batch-corrected latent space as input to scanpy’s
sc.pp.neighbors function, using num_neighbors = 30.

Single-cell data visualization

To visualize our single-cell data, we first appliedUniform Manifold Approximation and Projection
(UMAP) for dimensionality reduction using scanpy’s sc.tl.umap function and the precomputed
kNN graph as input (k = 30). We also computed a force-directed layout (FDL), which captures
continuities in data and highlights transitional subpopulations in dynamic systems, using the
forceatlas2 python package?*. We used the diffusion operator of our single-cell data as input to
compute force-directed layouts (Note S1). This strategy incorporates local changes in distances
along the single-cell manifold into graph visualization.

Copy number inference

We inferred karyotypes from single-cell transcriptomes to better distinguish PDAC from
premalignant status, and to characterize genomic diversification following spontaneous p53
loss. To infer chromosome-level changes, we used a custom implementation of inferCNV
(inferCNV of the Trinity CTAT Project. https://github.com/broadinstitute/inferCNV), as outlined
below. inferCNV assumes that changes in copy number cause corresponding changes in gene
expression which, though subject to variation by cell state and by other factors, can be detected
as concerted changes in the expression of genes in local genomic neighborhoods.

We first selected a p53-proficient sample’ as a diploid or near-diploid reference, and computed
the mean expression of each gene from library size normalized counts (without log
transformation). We excluded genes with low expression (min_threshold = 0.1), reasoning that
they are less likely to reveal robust gene expression differences caused by genomic changes.
Next, we ordered genes by genomic coordinates (UCSC mm10). For each gene x cell pair in the
KP-°" dataset, we computed the log, fold-change in gene expression (pseudocount = 0.1 for
both numerator and denominator) over the mean expression of that gene in the reference cell
set, clipping log: fold-change estimates to [-3, 3] to limit the effect of outliers. We computed the
sliding average log; fold-change over a window of consecutive genes in the same chromosome
(window_size = 100), trimming chromosome ends. Lastly, we recentered average log. fold-
change expression profiles by subtracting the values of each cell by their median, resulting in
our final proxy for copy number changes. To cluster inferred karyotype profiles, we computed a
simplified matrix, in which each cell is described by the average log. fold-change expression of
each chromosome. We clustered this simplified matrix using hierarchical clustering (method =
‘ward’, metric = ‘euclidean’) implemented in the cluster.hierarchy module of scipy (v1.7.3).

Our approach incorporated two modifications to the standard approach. First, our initial
examination of inferred copy number profiles revealed that small groups of biologically related
genes could distort estimates. For example, we identified a cluster of carboxypeptidases (Cpa1,
Cpaz, Cpab, Cpa4) on mouse chromosome 6 that are expressed at high levels in acinar and
ADM cells, causing spikes in inferred copy number that could be mistakenly interpreted as focal
amplification. We therefore removed all such gene groups from copy number inference through
manual inspection of spikes in gene smoothed gene expression profiles with smaller window
sizes (5-20 genes), as well as ribosomal and mitochondrial genes (see Data S3 for excluded
genes). Our approach prioritizes robust estimation of chromosome-level copy number changes
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over the identification of more focal alterations and highlights an important opportunity for
feature selection in developing copy number inference strategies.

Second, we incorporated iterative copy number inference to mitigate batch effects during
karyotype estimation. We could use within-sample diploid references for pre-tumor stage
inference, because we compared p53-proficient samples (expected to be near diploid) with p53-
deficient samples . Notably, the only recurrent change in pre-tumor p53-proficient cells was the
gain of chromosome 6, as reported in the KP-°" model’. The distribution of the average
smoothed log: fold-changes in chromosome 6 was bimodal, providing a natural threshold to
identify cells that gained this chromosome (average log- fold-change > 0.17). We used cells
without this event as diploid references within each mouse, reducing variability in inferred copy
number profiles.

To classify pre-tumor p53-deficient cells as genomically ‘quiet’ or ‘rearranged’, we computed a
simplified karyotype matrix in which each entry is the average copy number change of each
chromosome in each cell. Next, we binarized this matrix by identifying entries > 0.16 (indicating
gains) or < -0.16 (indicating losses). We selected these thresholds based on the distribution of
average copy number changes across all cells and chromosomes in the dataset. We defined
genomically ‘quiet’ cells as those that had less than 9 gain or loss events, and ‘rearranged’ cells
as those with more than 9 events. These thresholds captured differences in transcriptional
states that distinguished premalignant-like and cancer-like clusters (Fig. 1 and Fig. S$2) in the
presence of noisy karyotype inference from transcriptomes.

Refinement of condition assignment

We used copy number profiles and transcriptome-based PhenoGraph clusters to refine
assignment of individual cells to cancer-like or premalignant. First, we identified a rare group of
pre-tumor cells sorted as GFP+, but that lacked GFP mRNA expression and chromosome 11
loss (containing the p53 locus). Given that these are criteria for detecting p53 deficiency in this
mouse model, we re-assigned them as pretumor p53-deficient cells (n = 4 cells reassigned).

Annotation of premalignant states

To annotate cell states in the premalignant pancreas, we first used the scanpy implementation
of PhenoGraph sc.external.tl.phenograph (k = 30, clustering_algo = ‘leiden’) with gene
expression signatures from our published dataset'® (see Premalignant state signatures). First,
we standardized our count matrix by computing the z-score expression of each gene across all
cells. To calculate a signature score per cell, we averaged the z-scored expression of signature
genes in each cell. We aggregated signature scores at the cluster level by averaging, and
standardized such average scores across clusters. Lastly, we used the searborn (v0.11.2)
clustermap function to guide manual cluster annotation.

We noted that while some cell states were clearly separated from the bulk of the premalignant
epithelium (e.g. ADM, tuft and neuroendocrine cells), the majority of epithelial cells varied along
a phenotypic continuum linking gastric-like and progenitor-like states. To capture continuity
between these states, we used diffusion component analysis®*°, as diffusion components
represent axes of variation in the data and can describe successive cell-state transitions along
the phenotypic manifold (Note S1). In our spontaneous tumorigenesis dataset, the second
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diffusion component (DC2) correlated with single-cell progenitor-like scores (Fig. S1g). To
identify a boundary between gastric-like states and progenitor-like states along this phenotypic
continuum, we used the triangle method to identify a threshold in the distribution of cell densities
along DC2 (Fig. S1h). Cell state discretization in light of this continuum was helpful to interpret
cell state-specific consequences of spontaneous p53 loss.

Genes upregulated in malignant cells in the KP-°" model

We leveraged our p53-proficient and p53-deficient single-cell data in the KP-°" background to
derive a signature of genes upregulated in PDAC compared to premalignant cells. By adopting
a pseudobulking approach for differential gene expression, we could quantify changes in
average transcript expression between premalignant and malignant cells in a manner agnostic
to the subpopulation structure of each sample, while leveraging inter-replicate variability for the
derivation of a robust expression signature. We restricted our analysis to samples from batches
1 and 2 (see Table S1), which were collected simultaneously and sequenced using the same
reagents to avoid variation from technical sources. Furthermore, we excluded metastasis
samples to focus on pancreas-derived cells. In total, we analyzed 4 pre-tumor p53-proficient
samples and 6 tumor-derived p53-deficient samples. To identify differential expression, we
aggregated unnormalized, cellbender-corrected counts per sample to construct a pseudobulk
count matrix with genes as rows and samples as columns. Next we used the R package
DESeq2 (v1.42.1) to test for differential gene expression between PDAC and premalignant
conditions, using design = “~ condition” to model counts. We identified upregulated genes as
those with padj < 0.001 and logz(fold change) > 1.5, resulting in a signature of 941 genes.

Simultaneous visualization of multiple signatures

To visualize multiple signatures in the same single-cell layout (Fig. 1e) we used a signature-
based pseudo-coloring strategy as previously implemented'®. We normalized scores for each
signature by subtracting the minimum signature value and dividing by the 95" quantile of such
scores. We define the signature matrix S, such that S; ; is the normalized score for signature;
in cell, and we define a color-encoding matrix W,,.3; where W; . is the RGB vector representation
of the color associated with signature;. The pseudo-coloring of a cell is defined by the matrix
multiplication S x W. Because RGB components are bounded between [0,1], we clip values to 1
after matrix multiplication. This approach is most effective in simultaneously visualizing multiple
phenotypically distinct subpopulations and a limited number of mixed subpopulations, as
pseudo-colors can saturate due to the effect of summation and clipping.

Diffusion distance analysis

To quantify transcriptional similarity between premalignant cells and PDAC, we used diffusion
distance, a quantity that allows estimation of long-range cell—cell connectivities while respecting
non-linearities in the phenotypic manifold (Note S1). To compute diffusion distance between
premalignant and malignant cells (Fig. 1f), we used the eigenvectors associated with the 17
highest eigenvalues of the diffusion operator, based on the second eigengap as the threshold
criterion. To calculate the similarity between pre-tumor p53-proficient (premalignant) and cancer
cells, we computed the diffusion distance from every premalignant cell to the closest cancer cell
(annotated as p53-deficient tumor or microtumor).

Differential gene expression
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To assess cell state-dependent consequences of p53 loss, we computed differential gene
expression between pretumor p53-proficient cells and pre-tumor p53-deficient cells with ‘quiet’
genomes (see Copy number inference for details). We used the wald test in the diffxpy package
(v0.7.4, https://qgithub.com/theislab/diffxpy?tab=readme-ov-file), with raw counts as input and
library size as a numeric covariate. We identified downregulated genes upon p53 loss as those
with qval < 0.05, logz(fold change) < -1 and mean expression > 0.05. To visualize gene
expression as a function of cell state and p53 status (Fig. 2a) we z-scored log-normalized
counts using the mean and standard deviation of pre-tumor p53-proficient cells as reference.
This standardization strategy aims to highlight deviations in gene expression attributed to p53
deficiency and doesn’t depend on inclusion or exclusion of tumor-stage samples.

Quantification of p16™<** and p19”%¥ isoforms

The Ckdn2a locus encodes two structurally and functionally distinct gene products, p16™** and
p192RF both of which mediate tumor suppression through different mechanisms. cDNAs for
these gene products result from alternative use of the exon 1a (p16™**) or exon 1B (p19°%F),
spliced into the shared exon 2. Most reads captured through 3’-end sequencing are unable to
distinguish between these two gene products, but we found rare reads that spanned isoform
specific splice junctions, allowing unambiguous determination of CdknZ2a isoforms. To identify
such reads, we used our custom scRNA-seq processing pipeline SEQC to scan aligned bam
files from pre-tumor p53-proficient samples for reads that (1) fell within the boundaries of exon
18 and exon 2 of the CdknZ2a locus (chr4:89276895-89276975), and (2) showed evidence of
splicing as evidenced by a gap flag in the CIGAR string. Next, we aligned reads to the spliced
p16™¢“* or p192RF sequences, to assess the isoform associated with each read.

Processing and analysis of p53 knockdown data

Dataset details

Our injury shp53 cohort contained dissociated single-cell data from Kras®'?°+ epithelial cells
collected from KCS"**3 or KC"?" mice 3 weeks after injury to induce pancreatitis. This dataset,
composed of two batches with 2—-3 mice per genotype per batch, formed the basis of our
investigations on the cell-intrinsic consequences of p53 loss in the context of pancreatic injury.
Table S1 summarizes the number of cells per condition in our p53 perturbation dataset.

Cell filtering
Preliminary embeddings of filtered and merged objects during data cleaning (see Data

preprocessing and quality control) revealed a PhenoGraph-defined (k = 30) subpopulation of
210 premalignant cells that coexpressed divergent cell-type markers—Cpa1 for acinar, Msn for
progenitor-like, Muc6 for gastric-chief-like and Anxa10 for gastric-pit-like cells. This
subpopulation was present in only one batch, and 95% of its cells were derived from a single
biological replicate. We excluded these cells from further analysis because the cluster was not
reproducible between biological replicates.

Normalization, feature selection and dimensionality reduction

As we did not detect strong batch effects during exploratory analysis, we merged the two
batches into the same AnnotationData object and computed embeddings as follows: (1) size
factor estimation from library sizes, excluding Malat1 and ribosomal, mitochondrial and
transgenic mMRNAs; (2) median equalization of size factors between batches; (3) normalization



https://github.com/theislab/diffxpy?tab=readme-ov-file
https://doi.org/10.1101/2025.06.10.656791
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.06.10.656791; this version posted June 12, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

through division by size factors, scaling by the median size factor estimate, followed by log
transformation with pseudocount = 1; (4) selection of top 3000 HVGs in each batch using the
scanpy sc.pp.highly variable_genes function with flavor = 'seurat_v3’; (5) dimensionality
reduction using the scanpy PCA function sc.pp.pca., keeping 68 PCs (explaining 54% of total
variance) based on the inflection point in the cumulative explained-variance curve; (6) kNN
construction with k = 30; and (7) visualization using UMAP and FDL (see Single-cell data
visualization). Our embedding recapitulated the structure that we previously identified in our
published injury-induced tumorigenesis dataset'.

Visualization of cell state density in two-dimensional representation

To gain an intuition of how individual cell distributions change along the phenotypic manifold
upon p53 knockdown, we computed two-dimensional densities in the coordinates of our layouts.
For each condition (p53 knockdown or control), we computed a histogram summarizing cellular
frequencies at different coordinates of the 2D projection of the UMAP embedding (100 bins for x
and y axes). We smoothed the histogram using a 2D Gaussian kernel with bandwidth = 1 bin,
and visualized the estimated distributions in a contour plot (Fig. 7¢). We emphasize that this
procedure does not accurately estimate cellular densities in high dimensional space; however,
we found it useful for communicating results of high-dimensional computations (e.g. the
accumulation of progenitor-like cells with mesenchymal properties upon p53 knockdown).

Differential gene expression

To assess the consequences of p53 knockdown in premalignant epithelial cells during injury, we
adopted a pseudobulking approach. PhenoGraph (k = 30) grouped progenitor-like cells into
three clusters—one from shRen samples (shRen progenitor 1) and two from shp53 samples
(shp53 progenitor 1 and 2) (Fig. S11c¢). Diffusion component analysis suggested that different
progenitor-like subpopulations lie along a phenotypic continuum and that p53 knockdown
facilitates persistence or progression of the more advanced progenitor 2 state.

We reasoned that comparing cluster pairs would allow us to distinguish direct effects of p53
knockdown that are due to target gene activation from secondary effects that are due to
changes in cell state. We therefore asked which gene expression programs change upon p53
knockdown (1) for all progenitor-like cells, (2) for regions of the progenitor continuum with
similar shp53 and shRen cell densities, and (3) that specifically characterize progenitor 2 cells.

We grouped cells by genotype (shp53 or shRen) and progenitor-class (progenitor 1, progenitor
2 or all progenitor-like cells) combination, then summed unnormalized counts to generate a
pseudobulk sample. Our approach is conceptually similar to marker-based cell sorting followed
by bulk RNA sequencing, and illustrates how differential gene expression results change
depending on the resolution at which single-cell communities are computationally or
experimentally isolated. To compute differential expression, we used DESeq2 (v1.42.1) with
pseudobulk counts as input, and genotype or cell state as contrasts. We used the GSEA
implementation of gseapy (v1.1.2) to query gene sets differentially expressed between different
progenitor-like clusters in shp53 cells, using the MSigDB Hallmark 2020 database, log. fold-
change estimates as the rank variable, and FDR < 0.1 as a significance threshold.

Condition-aware imputation and gene signature scoring
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We used MAGIC-imputed counts®® to compute gene expression signatures. MAGIC uses the
diffusion operator (Note S1) to share gene expression information in local neighborhoods in cell
state space, mitigating the effect of dropouts in sparse single-cell datasets. Formally, the
imputed count matrix is obtained by exponentiation of the diffusion operator, and multiplication
with the count matrix. The exponent of the diffusion operator t corresponds to the number of
diffusion steps (t = 3 in our specific implementation). Increasing t increases the distance over
which gene expression information of any given cell influences imputed counts of another cell in
the phenotypic manifold.

To avoid sharing gene expression information between cells from different genotypes, we
carried out imputation separately for shp53 and shRen samples, using the same PC space to
construct the kNN graph (k = 30) as input to the imputation process. To score gene signatures,
we first computed a z-scored imputed gene expression matrix. We used the mean and standard
deviation of imputed counts in shRen samples for z-scoring. This strategy aims to highlight
deviations in shp53 cells relative to control cells.

Diffusion component analysis

Diffusion component analysis captures continuous, non-linear variation in data; we applied it to
identify dominant axes of variation in our premalignant pancreas data. We constructed a
diffusion operator using a kNN graph (k = 30) built on cells from both shp53 and shRen
samples. The third eigenvector of the diffusion operator (diffusion component 3 or DC3)
captured variability between the two most abundant subpopulations in the premalignant
pancreas, consisting of gastric-like and progenitor-like states. To plot gene signatures as a
function of diffusion component, we discretized DC3 into 100 equally sized bins and computed
the average signature score for each bin, separately for shp53 and shRen genotypes (Fig. 7d).
We excluded bins with fewer than 10 cells from visualization.

Analysis of KRAS inhibitor data

We aimed to systematically quantify changes in the premalignant epithelium from acute
oncogenic KRAS inhibition by MRTX1133 treatment in the context of pancreatic injury. This
unbiased characterization complements our targeted analyses of the effects of this treatment on
the abundance of progenitor-like cells (Fig. 6b). The three biological replicates from each
condition (MRTX1133 or vehicle-treated) were pooled, encapsulated and sequenced together,
followed by sample deconvolution using cell hashing.

Single-cell embeddings

Starting from QC-filtered count matrices (see Data preprocessing and quality control), we
merged data from two conditions into a single object, and generated single-cell embeddings by:
(1) size factor estimation from library sizes, excluding Malat1 and mitochondrial, ribosomal and
transgenic mMRNAs; (2) standard library size normalization, followed by scaling by median library
size; (3) log transformation using pseudocount = 1; (4) selection of top 3000 HVGs using
scanpy’s sc.pp.highly_variable function on cellbender counts with flavor = ‘seurat_v3’ (excluding
mitochondrial, ribosomal, transgene and Malat1 mRNA); (5) dimensionality reduction using the
scanpy PCA function sc.pp.pca., keeping 57 PCs (explaining 51% of total variance) based on
the inflection point in the cumulative explained-variance curve; (6) kNN construction using k =
30; (7) UMAP visualization using sc.tl.umap and default parameters; (8) computation of diffusion



https://paperpile.com/c/4owcJJ/Jq9a
https://doi.org/10.1101/2025.06.10.656791
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.06.10.656791; this version posted June 12, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

operator on the kNN graph (Gaussian kernel width determined adaptively based on distance to
each cell’s 10th nearest neighbor) and (9) FDL visualization using the diffusion operator as input
and initialization using UMAP coordinates. We visualized conditions and cell states as 2D
density maps projected on our FDLs (Fig. S9b). Table S1 summarizes the number of cells
contained in our single-cell object.

Cell type annotation

We used PhenoGraph clustering and marker gene expression to annotate premalignant
subpopulations. Most subpopulations relied on highly specific established markers (e.g., Cpa1
for ADM cells, or Pou2f3 for tuft cells, or Syp for neuroendocrine cells). For gastric-like states,
we used a refined set of markers, since oncogenic KRAS inhibition led to shifts in the spectrum
of these states. To refine gastric-like states, we also used a smaller than typical k (k = 10) for
kNN construction when inferring PhenoGraph clusters. We used the following markers to
annotate premalignant states:

Cell state Marker genes
Progenitor-like Hmga2, Msn, ltga3, Nes
ADM Cpa1, Rbpjl, Nrba2

Tuft Pou2f3, Alox5 , Ptgs1
Neuroendocrine  |Syp, Scgb, Chga, Chgb
Cycling Mki67, Bub1, Cdk1
Duct Rgsb5, Cp, Prox1

Gastric-general Dmbt1
Gastric pit-like Anxa10, Tff1
Gastric chief-like  |F5, Muc6

Differential abundance analysis

To test for differential abundance of distinct premalignant subpopulations as a result of
MRTX1133 treatment, we used the Milo algorithm?’. This method first identifies communities of
cells on a kNN graph that partially overlap between conditions (Milo transcriptional
neighborhoods), then models the cell counts from different experimental conditions in each
neighborhood using a generalized linear model with negative binomial residuals. This allows
testing for differences in the abundance of cells from different conditions within granular cellular
states in the data. We used the miloR implementation with a precomputed kNN graph (k = 30)
and PCA (n_pcs = 57), using the makeNhoods function for Milo neighborhood construction with
prop = 0.01 and refined = TRUE. This approach uncovered a set of granular cell states that are
either enriched or depleted (SpatialFDR < 0.1) in the premalignant pancreas upon acute
oncogenic KRAS inhibition. To visualize these results, we annotated transcriptional
neighborhoods by their most common cell state label, and plotted their estimated log-fold
change in MRTX1133-treated vs vehicle treated mice as a function of cell state (Fig. S9c).
Furthermore, it showed that the progenitor-like state is most dependent on persistent Kras
signaling among premalignant subpopulations.

Differential gene expression analysis



https://paperpile.com/c/4owcJJ/LGwf
https://doi.org/10.1101/2025.06.10.656791
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.06.10.656791; this version posted June 12, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

We reasoned that dissecting gene expression changes within premalignant states as a
consequence of acute oncogenic KRAS inhibition could reveal programs dependent on
persistent KRAS signaling and cell-state transitions mediated by loss of oncogenic signaling.
We focused on ADM cells, as this subpopulation was not depleted but showed a marked shift in
transcriptional state. We used the wald-test in the diffxpy package (v0.7.4,
https://github.com/theislab/diffxpy?tab=readme-ov-file) to compute differential gene expression
between MRTX1133 and vehicle-treated ADM cells, using library size as a numeric covariate,
and filtering to only include genes with mean expression > 0.05 that are expressed in at least 20
cells. These filters aimed to exclude low-expressed genes with potentially large fold changes
that do not represent the strongest biological differences between states. To identify molecular
programs upregulated or downregulated upon MRTX1133 treatment, we used the GSEA
implementation of gseapy (v1.1.2), using log: fold-change estimates as the rank variable, and
FDR < 0.1 as a significant threshold. We independently queried multiple databases, including
the MSigDB_Hallmark_2020 database for general shifts in cellular signaling and the
TF_Perturbations_Followed_by Expression database to reveal molecular regulators that may
mediate cell-state shifts following oncogenic KRAS inhibition. Our focus on these gene sets was
motivated by results from the literature, showing that chronic genetic or pharmacological
inhibition of oncogenic KRAS signaling leads to restoration of a normal pancreatic histology in
the premalignant pancreas®2°.

Gene expression signatures and statistical analysis

Oncogenic KRAS engages cancer-associated and tumor suppressive responses in the
premalignant pancreas; thus, we asked whether removing the signal was sufficient to
downregulate these programs. We compared the gene expression signatures used to
characterize oncogenic and tumor suppressive responses in premalignant cells during
spontaneous tumorigenesis (Fig. 2d) in MRTX1133 and vehicle-treated mice. Specifically, we
first standardized log-transformed normalized counts over all cells unambiguously assigned to a
specific biological replicate through cell hashing. Then, we computed signature scores per cell
by averaging z-scored gene expression of signature genes. We grouped cells by biological
replicate (Fig. S9f,g), testing for differences in the average signature score as a function of
experimental condition using a Two Tailed Wilcoxon Rank Sums test. Note that p-values from
this test only consider the rank of observations, explaining why p-values are the same for every
comparison in (Fig. S9f). This analysis showed that MRTX1133 treatment reduces the
expression of oncogenic and tumor suppressive responses in the premalignant pancreas when
considering all cells together. To complement this approach, we grouped cells by treatment and
cell state, computing group averages of signature scores. Visualization of these summarized
scores in a heatmap (Fig. S9g) revealed that regardless of treatment status, cell state continued
to be a dominant variable in shaping oncogenic and tumor suppressive responses in the
premalignant pancreas.

Processing and analysis of premalignant tumor microenvironment data

We used Flex Gene Expression (10x Genomics) to gain insights into transcriptome-wide
heterogeneity in gene expression across cellular compartments in the premalignant pancreas.
These data allowed us to contextualize compositional and molecular properties of cellular states
associated with the progenitor niche, as identified with Xenium-based measurements, including
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information regarding the expression of mMRNAs that were not measured in our Xenium panel,
but that have important roles in myeloid and stromal compartments in the context of tissue injury
and cancer.

Our dissociated single-cell data was composed of samples from KCS"*** mice (n = 2) or KC®""!
mice (n = 2, KCS"Re" or KCS"P5? without doxycycline induction of shp53). All samples came from
tissue harvested 3 weeks post-pancreatitis, followed by nucleus isolation from FFPE blocks (see
Dissociated nuclei from FFPE samples). Data from these samples was subjected to (1) QC
and embedding of single-cells from all samples, and (2) computation of compartment-specific
embeddings.

Cell and gene filtering

We used cellbender (v0.3.2) for ambient RNA correction and prediction of empty droplets.
Examination of library sizes of cellbender-filtered cells revealed a unimodal distribution of
In(library size) with mean = 7.04 and standard deviation = 1.17. We conservatively filtered out
cells with In(library size) < 5, corresponding to the bottom 3.6% of the dataset. We excluded
mitochondrial and transgene mRNAs (GFP and mKate2) from influencing normalization and
feature selection. Furthermore, we used doubletdetection v4.2,
http://doi.org/10.5281/zenodo.2678041 for prediction of doublets, removing any PhenoGraph
cluster (k = 30 or 10) in which at least 50% of cells within the cluster were predicted to be
doublets. Table $1 summarizes the number of cells included in this dataset for each biological
replicate.

Embedding of single cells from all samples

We generated single-cell embeddings as for other datasets, by (1) size factor estimation from
library sizes, excluding Malat1 and mitochondrial, ribosomal and transgenic mRNAs; (2)
standard library size normalization, followed by scaling by median library size; (3) log
transformation of count matrix with pseudocount = 1; (4) selection of top 3000 HVGs using
scanpy’s function sc.pp.highly_variable with flavor = ‘seurat_v3’ (excluding mitochondrial,
ribosomal, transgene and Malat1 mRNA); (5) dimensionality reduction using the scanpy PCA
function sc.pp.pca., keeping 100 PCs (explaining 53% of total variance). We used many more
PCs than the knee point of the cumulative explained-variance curve because we sought to
capture both intercompartment and intracompartment heterogeneity in this dataset, containing
the full diversity of premalignant cell types; (6) kNN construction using k = 30; (7) Computation
of PhenoGraph clusters with different resolutions (k = 30 or 10), using Leiden for clustering of
the Jaccard similarity matrix; (7) visualization using UMAP. This strategy resulted in a
consolidated dataset for the extraction of select cellular compartments for further analysis.

Compartment and condition-specific embeddings

Our main goal in collecting and analyzing this dataset was to provide a transcriptome-wide
contextualization of the gene expression changes that we identified in Xenium-based spatial
transcriptomics data. Thus, it was important to compute compartment-specific and condition-
specific embeddings. We focused specifically on fibroblast and myeloid compartments, which
represent the two most abundant microenvironmental cells in the premalignant pancreatic
parenchyma, and those in which we identified the strongest changes in gene expression as a
function of which niche they were encountered in. To compute these embeddings, we (1)
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isolated subpopulations based on condition filtering and identification of PhenoGraph clusters
labeled by marker genes; we followed the strategy outlined above (Embedding of single cells
from all samples), except that we used an adaptive strategy for determining the number of PCs
to retain at each step, based on the inflection point in the cumulative explained-variance curve.
Table S3 summarizes the intermediate processing steps that we took to compute compartment
and condition-specific embeddings.

Analysis of human pancreatic epithelial data

Computation of p53 activity and gene expression signatures

To investigate p53 activity in human data, we used the scRNA-seq dataset published in
Carpenter*, Elhossiny*, Kadiyala* et al, 2023°. We split the data into acinar or epithelial cell
subsets, as determined by cell type annotation. To calculate transcription factor activity score for
TP53, we used run_viper() function in decoupleR R Package (v2.6.0) using default parameters.

Signature-based annotation of epithelial subpopulations

For signatures derived from mouse datasets, we converted mouse symbols to their
corresponding human orthologs using convert_mouse_to_human_symbols() function from
nichenetr R package (v2.0.1). We used AUCell R Package (v1.22.0)*! to score the gene sets of
interest in each cell using default parameters except for aucMaxRank which was set to include
10% of the number of genes in the rankings. We decided to use this method for scoring gene
signatures based on our prior experience with this data and the fact that AUCell is not sensitive
to the scale factor used during normalization or the inclusion/exclusion of specific cell
populations.

SPATIAL DATA PROCESSING AND ANALYSIS

Image processing and quantification

Our image collection and analysis aimed to quantify (1) signaling proteins in progenitor-like or
other premalignant cells (i.e., P53 and phospho-ERK (p-ERK)), and (2) progenitor-like epithelial
cells in response to perturbing the premalignant pancreas (i.e., HMGA2- or VIM-positive cells).
For the latter, we collected whole tissue scans, reasoning that this strategy would most faithfully
quantify the progenitor-like cell population, by minimizing bias and variability stemming from
spatial heterogeneity in progenitor-like lesions (documented in Fig. S12¢). To quantify how
premalignant states differ in P53 abundance, we selected FOVs containing lesions rich in
progenitor-like cells (MSN+) and spatially adjacent lesions devoid of this state (MSN-), providing
an internally controlled setup for comparison. All analyzed tissues were collected at 20X
magnification with a pixel size of 0.34 ym px™".

To process and analyze whole tissue scans, we divided images in non-overlapping FOVs of 500
x 500 px for p53 perturbation, HMGA2 and VIM datasets, or 1000 x 1000 px for KRAS inhibitor
datasets. We used smaller FOVs for the p53 perturbation cohort to minimize the inclusion of
large empty regions in images derived from small fractions of the pancreas.

Generation of nuclear and whole-cell segmentation masks
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To quantify HMGAZ2-positive cell abundance, P53 protein and p-ERK intensity, we used nuclear
segmentation masks generated with Mesmer, implemented in the deepcell python package (v
0.12.9)*. This deep learning method was pretrained with a large number of manually annotated
cell and nuclear masks from diverse imaging modalities and biological sources, aimed at
generalizing mask prediction in new data, and it uses boundary predictions with a watershed
approach to refine segmentation masks. For nuclear segmentation, we used the standard rolling
ball background subtraction approach (radius = 10 px) on DAPI images, which we then fed to
Mesmer with compartment = 'nuclear', preprocess_kwargs = {{percentile’. 99.9, 'threshold" True,
‘normalize”. True, 'kernel_size" 10}, and postprocess_kwargs_nuc = {'maxima_threshold". 0.001,
'maxima_smooth". 1, 'interior_threshold" 0.1, 'interior_smooth". 0, other parameters as default}.
Non-default parameters were manually tuned to recover accurate nuclear segmentation results
in our datasets.

As VIM localizes outside the nucleus, we undertook whole-cell segmentation using Cellpose
(v3.0.6)*® with DAPI (nucleus) and E-cadherin (membrane) stains to quantify VIM+ epithelial
cells. Visual inspection revealed that Cellpose generated better whole-cell segmentation masks
than Mesmer in our data. Like Mesmer, Cellpose is a deep learning method that is pretrained on
a large collection of ground-truth masks; it leverages both cytoplasmic and nuclear stains to
predict cell boundaries. Although we were interested in cells with mesenchymal properties, we
noticed that progenitor-like cells with upregulated VIM expression retain membrane-localized E-
cadherin. This suggests that our cells of interest lie at an intermediate point in the epithelial-to-
mesenchymal spectrum, and enables the use of an epithelial marker such as E-cadherin to
generate masks. Following background subtraction with the rolling ball approach (radius = 10)
on DAPI and E-cadherin channels, we normalized images (saturating at the 99th quantile of the
intensity histogram), and blended these channels into an RGB image. Next, we applied the
pretrained segmentation model (model_type = 'cyto3') to generate segmentation masks using
the model.eval function of the cellpose package with diameter = None, channel_axis = 0,
normalize = True, channels = [2,3], flow_threshold = 0, and cellprob_threshold = 0.

Visual inspection of both Mesmer and Cellpose masks confirmed that these approaches better
adapt to heterogeneous cellular densities and signal intensities in the tissue, compared to
traditional approaches that rely on thresholding, morphological operations and watershed-based
segmentation.

Signal quantification and quality control

We used segmentation masks to quantify fluorescent signal intensity, applying standard rolling
ball background subtraction for markers with subcellular and stereotyped localization (e.g.,
HMGAZ2, VIM and P53). We avoided this background subtraction for p-ERK and TNC, as a
single radius may fail to adequately capture the diverse sizes and geometries of epithelial and
stromal structures that they mark; instead, we measured raw intensities at this step, and
leveraged the full distribution of measured states to conduct background subtraction at the
whole-slide or single-FOV level (see below).

In addition to measuring fluorescence intensity in the segmentation mask, we quantified
geometric parameters such as area and solidity (a measure of roundness, calculated as the
fraction of the convex hull of each segmented object covered by the actual mask). Geometric
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parameters are particularly helpful for QC, as they provide information about putative
segmentation errors. They were computed using the regionprops function of the measure
module in the python scikit-image package (v0.22.0). The resulting multidimensional
representation of each cell in the dataset consisted of both intensity and geometric
measurements, allowing downstream QC and in silico isolation and quantification of specific cell
subpopulations.

Geometric features can be used to identify segmentation errors; for example, pairs of adjacent
cells that segmentation fails to separate tend to have increased area, and decreased solidity.
We used morphological parameters to identify putative low quality cells, filtering out cells with
low solidity (< 0.8) or high nuclear area (>750 px), which excluded an average of 3% of cells in
the data. Data S4 summarizes results from QC filtering in whole-slide scan datasets.

Identification of epithelial cells

In our mouse models, RFP and GFP are activated for lineage tracing upon Cre-mediated
recombination and doxycycline induction of shRNA alleles, thus serving as proxies for
oncogenic KRAS activation (see Mouse model genetics). To identify premalignant epithelial
cells, we computed the distribution of log-transformed (pseudocount = 1) average nuclear GFP
or RFP intensity. Log-transformation of intensity values compresses the tails of the distributions,
making bimodality more apparent and facilitating the identification of thresholds to isolate
marker-positive cells. We used otsu thresholding on the log-transformed intensity to binarize the
signal, resulting in the identification of premalignant epithelial cells (29% of cells, on average,
across datasets). Data S4 summarizes results of epithelial cell identification in whole-slide scan
datasets.

Quantification of HMGA2- and VIM-positive cells

We used HMGAZ2 and VIM expression to quantify the abundance of progenitor-like premalignant
cells in premalignant tissues. Similar to our treatment of GFP and RFP signals, we log-
transformed (pseudocount = 1) the intensity distributions of HMGA2 and VIM followed by signal
binarization using the Otsu thresholding method, capturing the second mode of the distribution.
We summarized HMGA2 and VIM measurements as the average number of positive epithelial
cells per field of view in each slide, and tested for differences between experimental conditions
(KC3"%3 and KCS"°") with a Two-Tailed Wilcoxon Rank Sums Test. Data S4 provides detailed
information regarding sample metadata and source data shown in Fig. 6b, Fig. 7b and Fig. 7e.

Quantification of p-ERK levels

We assessed the effectiveness of oncogenic KRAS inhibition in vivo through staining and
quantification of p-ERK, a canonical downstream effector on MAPK signaling. To do so, we
calculated the average p-ERK signal and non-epithelial cells per tissue. We used the average p-
ERK intensity in non-epithelial cells as our estimate of the background signal, subtracting it from
our measurements of p-ERK intensity in epithelial cells. The use of non-epithelial cells to
estimate a global background per sample is motivated by selective p-ERK upregulation in the
Kras®'?"+ cells; on the other hand, non-cell autonomous effects leading to upregulation of
MAPK signaling in non-epithelial cells would lead to underestimation of signal intensity in the
epithelium, and thus our results should be interpreted as a lower bound estimate of the
difference in p-ERK engagement between vehicle and MRTX1133-treated samples. We tested
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for differences between experimental conditions using a Two-Tailed Wilcoxon Rank Sums Test.
Data S4 provides detailed information regarding sample metadata and source data shown in
Fig. S9a.

Quantification of P53 levels

Our single-cell data revealed the selective upregulation of p53 target genes in progenitor-like
premalignant cells during both spontaneous and injury-induced tumorigenesis (Fig. 2a,b,7d and
Fig. S11c,d). Protein stability is a key mechanism by which p53 is regulated; thus, we
quantified protein levels in premalignant cells, staining for P53 and the progenitor-like marker
MSN separately in serial sections to avoid antibody isotype incompatibility. We first identified
progenitor lesions (MSN+) in one section, considering only epithelial structures and remaining
blind to p53 signal, and manually annotated the equivalent region in the adjacent section. Next,
we quantified p53 abundance in epithelial cells from all MSN+ or all MSN- lesions. As p53
staining has a lower signal-to-noise ratio than cell-state markers such as HMGA2, MSN, VIM
and GFP, we conducted local signal normalization to control for systematic intensity bias across
the tissue. Specifically, for each FOV, we normalized nuclear p53 intensity in epithelial cells by
its average intensity in non-epithelial cells, then computed the average normalized signal in
MSN+ or MSN- epithelial cells for each tissue sample. We used a two-tailed Wilcoxon rank
sums test to identify significant differences in P53 levels between MSN+ and MSN- cells. Data
$4 provides detailed sample metadata and source data information for Fig. S4b.

Quantification of TNC levels

Acute oncogenic KRAS inhibition led to collapse of the progenitor niche within 48 h of treatment,
as evidenced by depletion of microenvironmental transcriptional states associated with
progenitor-like cells (Fig. 6c,d). To test whether remodeling events were reflected at the protein
level at these early time points, we quantified TNC, an injury- and cancer-associated ECM
component that is upregulated in activated myofibroblasts in the progenitor niche. We opted for
segmentation-free pixel quantification in the entire tissue section, given that TNC generates
fibers not strictly associated with cellular or nuclear segmentation masks. Furthermore, we
normalized by GFP-positive signal, as it represents the area of pancreatic parenchyma in the
image. To identify positive and negative pixels, we analyzed intensity distributions of TNC and
GFP per tissue section. First, we set a hard threshold of In(pixel intensity) > 5.5, empirically
determined to avoid empty areas in the image for both markers. Next, we computed the
histograms of log-transformed TNC and GFP intensity values. We fit a Gaussian centered on
the first mode of the intensity distributions using scipy.optimize to determine a background
distribution. Using the mean and standard deviations of our background estimates, we
standardized the intensity distributions, effectively equalizing the background distribution in all
tissue slides. Lasly, we used triangle thresholding to identify pixels positive for TNC or GFP. We
normalized the fraction of TNC-positive pixels by the fraction of GFP-positive pixels, and tested
for differences between conditions using a two-tailed Wilcoxon rank sums test. Data S4
provides details of sample metadata and source data in Fig. 6e.

Probe design for multiplexed smFISH

We built upon published software' to design custom panels for multiplexed smFISH. This

design strategy relies on pre-computation of all possible 30mer sequences found in mouse
cDNAs (Ensembl GRCm38.p6), augmented with coding sequences of fluorescent proteins
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engineered into our mouse model. We excluded pseudogenes from the potential pool of mMRNAs
used for probe design. We compute multiple scores for each 30mer, including Tm, GC content,
and potential for hybridization with rRNAs and tRNAs. We used the following parameters to
include a 30mer into our candidate probe-set: GC-content (43—63%), Tm (66—76°C), excluding
30mers that contain at least a 15mer present in an rRNA or tRNA.

In addition, we computed expression-informed penalties to estimate the specificity of each
candidate probe. We adapted published software to include single-cell information into the
estimation of specificity scores, reasoning that it would decrease the chances of selecting
probes with off-target binding to highly-expressed genes in rare cell populations. To do so, we
considered our single-cell data from epithelial and immune compartments of the injured
pancreas. Furthermore, we leveraged a published single-cell time course of Kras-driven
transformation in pancreatic tissue to incorporate information about fibroblast, pericyte and
endothelial gene expression®. Since our spatial analysis is focused on the premalignant-stage
of pancreatic tumorigenesis, we excluded cancer-associated samples for the purpose of
computing specificity scores.

To summarize single-cell gene expression as a function of cell state in distinct cellular
compartments (epithelial, immune, fibroblast, pericyte and endothelial), we used our SEACells
algorithm (v0.2.0)* for aggregating cells into statistically equivalent cell states, known as
metacells. SEACells metacells improve the robustness of analyses by overcoming sparsity in
single-cell data, while still capturing its full heterogeneity, including rare cell states. For each
cellular compartment, we first used standard log library-size normalization and dimensionality
reduction using PCA (n_pcs = 100) for preprocessing. We then ran SEACells using
n_waypoint_eigs = 10 (default) and waypoint_proportion = 0.9 (default). We selected the
number of metacells per compartment such that the median number of cells per metacell
ranged within a similar range:

Epithelial: 300 metacells, median size = 79 individual cells
Immune: 150 metacells, median size = 69.5 individual cells
Fibroblasts: 100 metacells, median size = 88 individual cells
Pericytes: 15 metacells, median size = 63 individual cells
Endothelial: 50 metacells, median size = 85.5 individual cells

Next, we computed a summarized gene expression matrix X of dimensions n x m, where n is
the number of metacells across all cellular compartments, and m is the number of genes in the
dataset. In this matrix, x; is the average normalized linear counts of gene j across individual
cells in metacell i. We normalized X by total counts per metacell, and scaled by an arbitrary
factor of 2000. Lastly, we identified the maximum expression per gene across all metacells, and
used these to compute specificity penalties during probe design. This strategy penalizes off-
target binding to highly expressed genes, even when such high expression occurs in rare cell
subpopulations.

We computed transcription-wide specificity as published'®, with the exception that we assumed
all isoforms of a gene contribute uniformly to its total expression (our single-cell data lack
isoform-specific information). To compute the specificity score, each 30mer was represented as
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a collection of overlapping 17mer sequences in sliding windows with 1-bp shift. For each 17mer,
we calculated the fraction of occurrences in the on-target gene (any isoform) out of all
occurrences in the transcriptome, weighted by gene expression to penalize off-target binding to
highly-expressed genes. We computed a final specificity score ranging from 0 (no occurrence
from on-target gene) to 1 (all occurrences from on-target gene) for each 30mer by averaging the
scores of its constituent 17mers, and selected 30mers with scores above 0.75 as candidates for
our panels.

Candidate 30mers were used to compile primary probes for a set of query genes. We selected
Ensembl canonical isoforms to design probes targeting a particular gene, aiming for 92 non-
overlapping probes per gene. Whenever this was not possible due to transcript length,
homology to other genes, or other sequence properties, we allowed a maximum overlap of 20
bp between probes. The use of overlapping probes was previously reported to maximize
smFISH signal®” due to the probabilistic nature of probe—-mRNA binding. Lastly, we appended
readout sequences to each probe, which serve as recognition sequences for fluorescently
labeled readout probes. In the case of genes for which we were not able to generate at least 75
probes, we added two or four copies of the selected readout sequence in order to amplify the
fluorescent signal coming from such probes. Sequences of probes used in this study are
included in Data S2 and Table S2.

Custom probe set design for spatial transcriptomics

Spatially resolved transcriptomics provides the opportunity to localize the rich transcriptional
heterogeneity uncovered by single-cell experiments in tissue context. In the premalignant
pancreatic epithelium, this includes transcriptional gradients that connect cellular states and key
signaling axes such as Kras and p53. The premalignant epithelium undergoes dramatic
microenvironmental remodeling, including the formation of fibrotic and inflammatory niches rich
in myeloid cells. We sought to understand (1) the interplay between the adoption of distinct
pancreatic epithelial states and changes in the microenvironment, (2) the spatiotemporal
dynamics of niche transitions, and (3) what intercellular signaling circuits may mediate the
formation and stabilization of progenitor niches. Thus, we designed a custom Xenium probe
panel targeting 480 genes (Table S4) to capture:

1. Transcriptional heterogeneity in major cellular compartments, including cluster-level
heterogeneity and transcriptional gradients connecting disparate cellular states.

2. Activation of major signaling programs (e.g., p53, Kras, Yap, interferon) operating in the
benign-to-malignant transition in pancreatic cancer.

3. Genes that may construct intercellular circuits through juxtacrine and paracrine
interactions.

Reference single-cell datasets for spatial expression profiling

Marker selection for imaging-based spatial transcriptomics should consider gene expression
estimates for all cell populations in the target tissue. Optical crowding from abundant mRNA
species not only hampers their accurate quantification, but also that of other mRNAs in the
vicinity, due to the combinatorial encoding of mMRNA identity through sequential imaging™. To
inform our custom Xenium probe set, we leveraged the premalignant pancreas expression atlas
we compiled for smFISH probe design (see Probe design for multiplexed smFISH), which
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includes epithelial and immune cell profiles in response to injury (with or without p53
perturbation) as well as fibroblast, endothelial and mural cell data (excluding tumor-stage
samples to better match premalignant cell stated distributions) from Schlesinger, Yosefov-Levi,
Kolodkin-Gal et al.*®.

Our compiled dataset also leveraged SEACells to generate more robust estimates of gene
expression distributions across cell states, including rare cell states (v0.2.0)*®. We reasoned that
information from rare cell states would help us to retain biologically important mMRNAs expressed
in a small fraction of cells, and to exclude abundant mMRNAs prone to optical crowding in rare
cells and adjacent cells. To this end, we used the maximum expression per gene across all
SEACells to guide marker selection for imaging-based spatial transcriptomics.

Gene expression constraints on marker selection

We avoided selecting mRNAs that lacked discrete foci due to optical crowding in smFISH
staining of the premalignant pancreas (Fig. S5a,b; e.g. Cpa1 in acinar cells, Muc6 in gastric
chief-like premalignant cells, Tff1 in gastric pit-like premalignant cells or Acta2 in activated
stroma, Fn1 in progenitor-like cells). Moreover, we identified ideal expression thresholds based
on genes that we successfully imaged using multiplex smFISH (e.g. Ptprc in immune cells,
Adgre1 in macrophages, Msn in progenitor-like cells, Anxa10 in gastric pit-like cells). Guided by
experience with individual markers, we set the lower bound (max expression across metacells >
0.5), upper bound for subpopulation markers identified through unbiased clustering (max < 2.5),
upper bound for gene-set derived markers such as communication genes (max < 4) and upper
bound for biologically curated markers (max < 10), though we did make exceptions for certain
markers of biological interest (e.g., expression of type | interferons, Pecam1 endothelial
marker).

Marker selection for cellular compartments and microenvironmental subpopulations

We used a combination of prior knowledge and unbiased marker gene identification, guided by
expression constraints as described above. For example, we selected well-recognized markers
of epithelial (Cdh1), immune (Ptprc), macrophage (Adgre1, Csf1r), fibroblast (Pdgfra, Col5a1,
Vim), endothelial (Pecam) and pericyte (Des, Pdgfrb) cells. Although excluded from our
premalignant atlas, we included markers for a rare subpopulation of glial cells (Fabp7, Plp1)
identified by Schlesinger, Yosefov-Levi, Kolodkin-Gal, et al.>®, as well as Fabp4, an adipocyte
marker.

To dissect heterogeneity within cellular compartments, we computed differential gene
expression to identify markers of manually curated cell subpopulations (immune dataset'®) or
PhenoGraph clusters (k = 30) (fibroblast, endothelial and mural cells). We prioritized known
markers of subpopulations (e.g. Tnc, Dpt or Gli1 in fibroblasts) or communication pathways
(e.g., Csf1in Gr-MDCs, Lifrin fibroblasts, Kitl in endothelial cells or Csf2rb in mural cells), as
well as genes that independently mark subpopulations in distinct compartments (e.g. Prox1 as a
marker of normal duct cells and lymphatic endothelial cells). Collectively, this marker selection
strategy allowed us to identify subpopulations across multiple compartments, while maintaining
the biological interpretability of gene expression patterns in our spatial data.

Marker selection for premalignant epithelial cells
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We aimed to capture the major premalignant states that we identified in dissociated single-cell
data, including the cluster of progenitor-like cells with mesenchymal phenotypes that
accumulate upon p53 loss. We started with markers that have been reproducibly identified in
independent single-cell datasets, including acinar (Rbpj1, Nr5a2), tuft cell (Pou2f3, Dclk1),
neuroendocrine (e.g. Syp, Ascl1), gastric-like (EIf3, Onecut2)*®, and progenitor-like (e.g., Msn,
Hmga2, Nes) cell-state markers. We next used differential expression in PhenoGraph clusters
to select markers that capture heterogeneity in gastric and progenitor-like states; for example,
distinct subpopulations of gastric-like cells that correspond to chief-like (F5) or pit-like (Anxa10)
states. In addition, we included Cp and Rgs5, two genes expressed in premalignant cells most
resembling ducts. Lastly, we included a number of genes that transiently increased at the
boundary of gastric-like and progenitor-like states (e.g. Msin, F3), as well as genes that
progressively increased in expression along the progenitor axis (e.g. Zeb2, Grem1 and Piezo2).
We made the conservative decision not to probe for mMRNAs of fluorescent proteins to
distinguish premalignant and normal cells in our samples, due to the potential of these
constitutively expressed mRNAs to hamper decoding the rest of the panel. Despite this, we note
that we were able to identify structural and molecular features corresponding to normal ducts
and islets, allowing us to focus on lesions consistent with premalignant phenotypes.

Marker selection for signaling pathways and biological processes

We manually selected markers for major signaling pathways, prioritizing negative feedback
genes known to constitute some of the earliest transcriptional responses to pathway activation.
Specifically, we probed for p53 (e.g., Mdm2, Cdkn1a, Bax), MAPK (e.g., Dusp4, Dusp6, Duspb,
Spry1, Spry2), interferon (e.g., Socs1, Socs3, Irf7, Oasl1), YAP (Ccn1, Ccn2) and TGF-$ (e.g.,
Smad7, I111, Has?2) signaling. In addition, we probed for cell cycle regulators, including major
cyclins and cyclin-dependent kinases (CDKSs) (e.g., Ccnd1, Ccne1, Ccna1, Cdk1, Cdk2, Cdk4,
Cdk6) as well as CDK inhibitors (e.g., Cdkn1b, Cdkn1c, Cdkn2a, Cdkn2b).

Selection of genes involved in cell-cell interactions

To prioritize genes involved in cell-cell communication, we leveraged our previously identified
communication modules—groups of ligands and receptors that are selectively upregulated upon
Kras signaling in the premalignant pancreas and are predicted to form multiple interactions
between cell states'®. These communication modules involve a plethora of cytokines and
receptors with known and predicted roles in tissue remodeling during tumor initiation (e.g., /133,
1118, Il1a, Ccl2, Csf2, Lif, Vegfa, Fgf) and their cognate receptors. In addition, we probed for
ligands and receptors from Whnt, Shh, Bmp and Notch signaling, due to their roles in
development and tissue repair. Lastly, we included genes involved in cell adhesion (e.g.,
claudins, cadherins, integrins) and juxtacrine signaling (e.g., ephrin and semaphorin signaling),
prioritizing genes based on gene expression constraints and HVG status (n = 3000) within each
cellular compartment.

Computational design of probe set

We used 10x Xenium Designer (10x Genomics) with vendor assistance to generate isoform-
specific probes for Cdkn2a. We used three independent reference datasets to compute cell-type
utilization scores, which inform the potential for optical crowding as a function of target mMRNA
abundance in specific cellular states. Specifically, we used in-house single-cell data for
premalignant epithelial cells after injury with or without p53 knockdown (this work), immune cells



https://paperpile.com/c/4owcJJ/hKYq
https://paperpile.com/c/4owcJJ/uyx4
https://doi.org/10.1101/2025.06.10.656791
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.06.10.656791; this version posted June 12, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

in the injured premalignant pancreas'® and a PDAC progression atlas that includes all cellular
compartments®. Given that these datasets were generated using different Ensembl annotation
versions, we mapped gene_symbols to ensembl_ids to match those of the Ensembl build
Mus_musculus.GRCm38p6.102. We excluded any gene above the recommended cell utilization
score recommended by 10x Xenium Designer.

Spatial transcriptomics embedding and annotation

In our spatial data, each cell is represented by three primary features: (1) a transcript count
matrix, (2) an x-y spatial coordinate (in um), and (3) a polygon describing its segmented
nucleus. In addition, we derive secondary features describing the morphological and molecular
properties of the local niche of a cell, such as the structure and size of premalignant lesions,
and the average gene expression of a given cell type in the vicinity of a given cell. These
multiple viewpoints allow us to identify molecular and morphological correlates between the
intrinsic state of a cell and its microenvironment. Our data is composed of 33 tissue samples,
spanning 9 conditions, including different collection timepoints in the response to acute
pancreatitis, as well as pharmacological inhibition of oncogenic KRAS, and p53 knockdown in
premalignant cells. In total, this comprises 9,463,399 cells (excluding cells with mixed
phenotype), with an average of 92.83 mRNA counts per cell, and 57.92 detected genes in each
cell. Table S5 shows the details of the samples included in our Xenium data.

In this section, we first describe our strategy to compute cell-level and niche-level
representations from single-cell-resolved spatial transcriptomics data. Then we describe how we
integrate these different viewpoints to study the dynamic interplay between premalignant
epithelial cells and their microenvironment.

Transcript-to-cell assignments

Assigning transcripts to cells is a critical first step in recovering comprehensive and accurate cell
states from imaging-based spatial transcriptomics data. Because cell boundary estimates based
on pure geometric constraints, such as nuclear segmentation expansion followed by Voronoid
tessellation (default 10x Xenium processing), result in pervasive transcript cross-contamination
from adjacent cells, we opted to construct a count table composed only of transcripts that
overlap nucleus masks (10x nucleus transcripts). This approach successfully eliminated inter-
cell transcript contamination, as evidenced by our recovery of Leiden clusters with reasonable
cell type purity based on marker expression (Fig. S5). However, it also resulted in an average
loss of 57% of transcripts per slide (interquartile range 53%—60%). Although the limited
sensitivity of this conservative approach is not ideal for all contexts, it was sufficient to recover
expected cell-state heterogeneity in every cellular compartment (e.g., myofibroblast, myeloid,
lymphoid and endothelial subpopulations) in our data (Fig. S5), including transcriptional
gradients, such as the gastric—progenitor continuum in the premalignant epithelium (Fig. 3e,f).
This is likely due to our use of probes targeting highly expressed marker genes in our panel,
and to the fact that we focused on cell types that were not exceptionally small and therefore
contained relatively high transcript counts.

Gene filtering, cell filtering and normalization
We excluded negative control probes from library size estimation and dimensionality reduction
steps, but left them in the data for possible use in subsequent processing steps. Furthermore,
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we excluded cells with fewer than 25 mRNA counts. On average, we excluded 9.5% of cells per
slide (interquartile range 7-10%).

For normalization, we estimated size factors per cell as the total 10x nucleus counts per cell.
We normalized count matrices by dividing by size factors, and scaling by the median size factor
in the data. We used linear, as opposed to log transformed counts, as this led to faster and
reproducible convergence during the computation of UMAP embeddings. Linear counts may be
more appropriate for this data modality given that our panel is enriched in communication
genes, signaling proteins and transcriptional regulators, gene classes that tend to have lower
expression than the abundant house-keeping genes in transcriptome-wide datasets.

Single-cell embeddings for spatial transcriptomics

We computed an initial single-cell embedding using concatenated count matrices from all tissue
slices. To compute this embedding, we used GPU-based implementations of PCA, kNN graph
construction and UMAP functions in rapidsai (v24.2.0). We conducted dimensionality reduction
using PCA on linear normalized counts, keeping the top 136 PCs that captured 75% of
variance. In addition, we noted that the use of more than 100 PCs was important to isolate
molecularly and spatially distinct subpopulations that were nonetheless rare in the dataset (i.e.,
adipose, glial and non-pancreatic epithelial cells). Use of a smaller number of PCs collapsed
these subpopulations into stromal and epithelial compartments, hindering the purity of our initial
cell type annotation. We constructed a kNN graph using the GPU-based nearest-neighbor graph
implementation of cuML python package (v24.02.00). We computed the kNN graph using
euclidean distance on PC space (k = 30) as our metric, followed by UMAP for visualization
(n_neighbors = 10), and computation of clusters using GPU implementations of leiden
(resolution = 1.0). We used this integrated embedding to annotate coarse and refined cell states
(see below). These annotations were transferred into any condition-specific embedding to
maintain consistency in downstream analyses.

Cell type annotation

We first annotated major cellular compartments, then determined more refined cell states
(details below). We leveraged spatial patterning to inform cell type annotation, for example, by
identifying cellular states associated with lymph nodes, the edge of the tissue (e.g., mesothelial)
or the pancreatic parenchyma.

Major cellular compartments. To identify major cellular compartments, we annotated clusters
based on known markers, then refined cell states within cell types by re-embedding and
clustering cellular subsets. Specifically, we first computed clusters using the Leiden algorithm on
a kNN graph (k = 30) constructed on PC space, with resolution = 1.0. We manually assigned
clusters to major compartments based on markers in our panel: epithelial (Cdh1, ltgb4, Cpaf,
Onecut2, Prox1, Cp, Krt7), endothelial (Pecam1), immune myeloid (Ptprc, Adgre1, Csf1r, Csf3r,
Cd68, Itgam, ltgax), immune lymphoid (Ptprc, Cd3g, Cd4, Cd8a, Foxp3, Cd19, Cd79a, Lman1,
Gata3, Rora, Trdc), fibroblast (Col5a1, Pdgfra, Dpt, Pdpn), mural cell (Des, Rgs5, Tagln, Fhi1),
adipose (Fabp4), mesothelial (MsIn) and glial/nerve (Plp1, Fabp7, Ncam1, Ncam2, Syp, Ngfr).

Refined cellular states and condition-specific embeddings. To identify more granular cell states,
we re-embedded cells and recomputed clusters within each compartment, then annotated
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clusters based on the expression of marker genes from the literature, manually curated single-
cell atlases of the premalignant pancreas, or unbiased identification of cluster marker genes
using scanpy’s sc.tl.rank_genes_groups. The latter approach highlighted genes with higher
expression in a cluster relative to all other clusters; among these, we selected markers that
would provide the most interpretable cell-state label (e.g., Cd55 in endothelial cells or Ccn2 in
myofibroblasts). In addition, we computed condition- and subpopulation-specific embeddings for
downstream analyses. For example, Figs. 3-5 focus on variation in epithelial cells and their
niches in unperturbed samples to gain insights into tissue remodeling around progenitor-like
cells.

To compute refined single-cell embeddings, we first excluded negative control probes and
genes expressed in fewer than 1% of cells within a compartment, so that they would not
influence normalization and dimensionality reduction. Next, we normalized the data by dividing
counts by library size in each cell and re-scaling by the median library size, applied PCA on
normalized linear counts, and kept the top PCs that captured 75% of total variance. We
constructed a kNN graph on Euclidean distance in PC space (k = 30) and visualized our
embeddings using UMAP (n_neighbors = 10, min_dist = 0.1).

Next, we computed clusters at different resolutions to dissect heterogeneity within cell types.
We used Leiden clustering on the kNN graph with resolution = 1.0 for initial cluster annotation,
then computed PhenoGraph clusters on the kNN graph by leveraging GPU implementations of
Jaccard similarity matrix construction and Louvain clustering at multiple resolutions (resolution =
1.0, 0.75, 0.5) in the cugraph module of rapidsai. The use of multiple resolutions allowed us to
distinguish closely related cell states during cell type refinement, while avoiding noise from over-
clustering.

See Table S6 for all cell-type or condition-specific embeddings in our study; methods for
annotating specific cell states are presented below.

Epithelial states. We first annotated Leiden clusters based on major premalignant subpopulation
markers identified during PDAC initiation (% and this work): progenitor1 (Msn, Hmga2, Itgb4),
progenitor2 (Vim, Piezo2, Tnc), gastric-like (EIf3, Onecut2, Lgals4), gastric chief-like (F5),
gastric pit-like (Anxa10), tuft (Pou2f3, Dclk1), neuroendocrine (Syp, Hepacam?2), duct-like (Cp,
Prox1, Rgs5), ADM (Rbpjl), and cycling cells (Mki67).

To distinguish normal ducts from premalignant cells with a duct-like phenotype, we re-
embedded the duct subpopulation using the above strategy. We identified clusters
corresponding to normal ducts based on Rgs5 and Prox1 expression®. Cells in this cluster
formed morphological structures characteristic of normal duct, providing support for our
annotation.

Fibroblast states. We used fibroblast signatures from cancer contexts®*=°, together with the
spatial organization of stroma in the premalignant pancreas, to assign Leiden clusters:

1. myCAFs. Most fibroblasts in the premalignant pancreas (86%) resembled myofibroblast
cancer-associated fibroblast (myCAF) states (Sdc1, Tagln, Tgfb1, Tnc, Epha4, Igf2,
Itgbl1). These cells populated the pancreatic parenchyma, and were in close proximity to
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premalignant epithelial cells (Fig. $5). We identified marker genes expressed in
myofibroblast subclusters using the scanpy function sc.tl.rank_genes_groups, and used
these markers to label specific subpopulations (e.g., Tnc+, Ccn2+, Gli1+, Igf2+).

2. iCAFs. A group of cells were consistent with the inflammatory cancer associated
fibroblast (iCAF) phenotype (Cxcl1, Cxcl12, Tnxb) and expressed the universal fibroblast
marker Dpt*°. These fibroblasts were excluded from the parenchyma (Fig. S5).

3. Trf+ CAFs. A small subset of fibroblasts (0.2%) expressed antigen-presenting CAF
(apCAF) markers (Trf, Sdc4). We conservatively labeled these as Fibroblast_Trf given
that our panel did not include additional apCAF markers.

Myeloid states. We used our single-cell immune atlas of the premalignant pancreas'® to group
myeloid cells into three broad categories, followed by cell-type refinement:

1. Monocyte/macrophages. Most myeloid cells in the premalignant pancreas (91%)
resembled monocyte/macrophages (Csf1r and Adgre1). Spatially patterned clusters
within this compartment guided the annotation of refined states. Specifically, Cd7163+
cells localized outside the pancreatic parenchyma and Nirc5+ cells localized to lymph
nodes; Maf and ltgax characterized clusters at two extremes of the continuum of
macrophage states; and a cluster of ltgax+, Cd274 (PD-L1)"" cells appeared upon p53
knockdown in the premalignant epithelium. Thus, granular myeloid subsets were
characterized by spatial patterning in addition to transcriptional variation in the
premalignant pancreas.

2. Granulocyte—-myeloid derived cells (GrMDCs). A cluster defined by high Csf3r and low
Csf1r expression characterized GrMDCs.

3. Dendritic cells. Dendritic cells were defined by /tgax (CD11c) expression, lack of Csf1r
and Adgre1, and expression of dendritic cell markers in the panel (/fi205, Itgae, Jak2).

Lymphoid states. We used markers from our single-cell immune atlas of the premalignant
pancreas'®, along with cluster refinement and marker identification using the scanpy
sc.tl.rank_genes_groups function to define lymphoid cells groups. We re-embedded non-B-cell-
related lymphoid cells (see Refined cellular states and condition-specific embeddings), followed
by PhenoGraph clustering and cell-state annotation to define the following populations: (1) B
cells (Cd79a, Cd19) and plasma cells (Lman1), (2) parenchyma associated lymphoid cells,
including Tregs (Cd4, Foxp3), Th17 cells (/123r), gdT cells (Trdc), innate lymphoid cells (Gata3),
NK cells (Ncr1) and mast cells (Kit), and (3) lymph-node-associated CD4 and CD8 T cells.

Endothelial and mural states. Endothelial cells were broadly divided into vascular
(Pecam1+/Prox1-) or lymphatic (Pecam1+/Prox1+) subpopulations. Within the vascular
subpopulation, we labeled clusters based on known biology (e.g., activated endothelial cells
expressing Selp) or marker expression (e.g., Piezo2+ endothelial cells). We annotated mural
cell clusters based on markers identified using the scanpy sc.tl.rank_genes_groups function.
Endothelial and mural cells exhibited their expected spatial colocalization, and clusters of these
cellular compartments also showed spatial patterning related to vessel size (Fig. S5).
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Mixed cell states. Some clusters showed evidence of cross-contamination between cell types,
particularly between fibroblasts and myeloid cells (e.g., expression of macrophage marker Csf1r
with fibroblast-specific /gf2). These artifacts can emerge from errors in nuclear segmentation or
from 2D projection of transcripts, both of which are expected to increase in tightly packed
tissues such as the premalignant pancreas. We flagged clusters in these mixed states, kept
them in the dataset for visualization of tissue architecture, but excluded them from biological
analyses involving cell type proportions or changes in gene expression between niches.
Altogether, mixed cell states encompassed 3.1% of our data, and were dominated by cells
sharing fibroblast and myeloid profiles (1.7% of all cells). Table S7 summarizes the fraction of
cells in our dataset corresponding to mixed states.

Compartment-aware gene censoring

Despite restricting our analyses to 10x nucleus transcripts and excluding clusters with mixed cell
states, we observed some transcript contamination between cell types. For example, Igf2 was
expressed in myeloid cells, despite its absence in dissociated reference datasets'. As
expected, these effects were larger for highly expressed markers of specific subpopulations or
cellular compartments, which can result from projecting expression onto two dimensions from a
3D section (https://doi.org/10.1101/2025.03.14.643160,
https://doi.org/10.1101/2025.01.20.634005), or from transcript diffusion.

To mitigate the effect of contaminants in downstream analyses, we leveraged dissociated
reference datasets'®*° to identify the fraction of cells within each cellular compartment with non-
zero counts for any given gene. For downstream analyses, we censored genes in each cellular
compartment that were expressed in < 1% of cells in every reference dataset. This threshold
was meant to exclude genes with little evidence for expression in single-cell data, suggesting
that their presence in our spatial dataset could be due to cross contamination between cell
types. On average, 303 (67%) of the genes included in our panel passed this filter.

To complement filtering based on summary statistics from dissociated cells, we identified
robustly expressed genes based on the fraction of cells within a subpopulation of a cellular
compartment that express a given gene (gene detection rate) in our spatial data. Assessing per-
subpopulation rather than per-compartment statistics ensures that no positive populations are
missed.

For a specific cell type, this resulted in a matrix P*™ where c is the number of subpopulations
within the cell type, and m is the number of genes. To identify a ‘robust expression’ threshold
within a cell type, we flattened the matrix P, and computed the histogram of subpopulation-level
gene detection rate (n_bins = 25). Next, we used triangle thresholding to identify a cutoff that
distinguished genes with high or low detection rates. On average, this strategy nominated genes
as robustly expressed if they were detected in at least 9% of cells within a compartment
subpopulation. We applied it to all coarse cell types in our data to identify compartment-specific
gene sets with evidence of robust expression. Across cell types, an average of 262 (54%) of
genes were classified as robustly expressed. For a given cell type, an average of 240 (50%) of
genes passed both the spatial and dissociated data detection thresholds. We used this high-
confidence gene set to analyze within-cell-type spatial heterogeneity in expression (Figs. 5a,b,
7f and Figs. S7f, S8a,b,d). We note that for future work, newer methods can correct transcript
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misassignment resulting from contamination in spatial transcriptomics data
(https://doi.org/10.1101/2025.01.20.634005).

Table S8 summarizes the results of compartment-aware gene censoring across all cellular
compartments.

Spatial transcriptomics transcriptional and cell-state gradients

Our single-cell characterization revealed that premalignant epithelial phenotypes do not exist as
discrete states. Rather, we and others observe pervasive continuity in the transcriptional
heterogeneity of individual premalignant cells (Fig. 1e)'*%. These continuums are reflected by
the presence of cells with mixed states (Fig. 1e), which suggest cellular plasticity. Embracing
continuity in cell states allowed us to connect these features of plasticity at the single-cell level
with tissue remodeling events encoded in spatial transcriptomics data. We took two
complementary approaches to characterize transcriptional gradients in premalignant cells: (1)
we used gene signatures of canonical premalignant subpopulations'® to visualize their
continuous variation along an epithelial-specific phenotypic manifold and (2) we used diffusion
component analysis to identify the major axes of transcriptional variation in epithelial states.

Visualization of gene expression signatures in epithelial cells

We asked whether epithelial cells in our spatial data recapitulated the spectrum of premalignant
transcriptional states we observed in dissociated scRNA-seq. We used markers of premalignant
subpopulations in our Xenium panel as transcriptional signatures (Table S$4), and computed a
signature score matrix X™* where n is the number of epithelial cells in non-perturbed samples (n
=1,388,199) and z is the number of epithelial states (z = 6, progenitor-like, gastric-like, duct-
like, neuroendocrine, tuft, adm). To compute the signature score matrix, we first standardized
our log-transformed count matrices (pseudocount = 1) by computing the z-score of each gene
over all epithelial cells. The signature score xi; is the average standardized expression of genes
in signature; for cell.. We normalized the signature score matrix column-wise, such that signature
scores ranged between [0,1], saturating the signature score at the 90th quantile. We visualized
signatures by plotting epithelial cells in both spatial and transcriptional (UMAP) domains,
pseudocoloring each cell by aggregating RGB color vectors weighted by each signature score
(see Simultaneous visualization of multiple signatures). This visualization strategy showed that
our spatial data captured the transcriptional heterogeneity in epithelial states in single-cell data
(compare to Figs. 1e, 3e, 4b in ref. '°). Furthermore, the mixture of signatures at intermediate
points connecting extreme cellular states highlighted continuity between subpopulations of
premalignant states, such as the presence of epithelial cells with mixed gastric and progenitor
signatures.

Diffusion component analysis in spatial data

To identify the major axes of continuous variation in premalignant states, we used diffusion
maps, which model gradual cell-state transitions along the phenotypic manifold as a diffusion
process in a kNN graph. Starting from a kNN graph (k = 30) constructed on a single-cell
embedding for gastric-like or progenitor-like cells from unperturbed samples (see Refined
cellular states and condition-specific embeddings), we constructed a diffusion operator, followed
by eigendecomposition to identify diffusion components (Note S1). The first diffusion
component, representing the dominant axis of transcriptional variation among gastric-like and
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progenitor-like cells, captured gradual changes in gene expression linking gastric-like epithelial
states on one extreme, and progenitor-like on the other, including mixed phenotypes at
intermediate points (Fig. S4d). This approach positioned each of the 838,581 gastric-like or
progenitor-like cells in our data along a continuous axis of variation between these
subpopulations.

Spatial transcriptomics niche analyses

Definition and identification of cellular niches

Spatial transcriptomics makes it possible to represent a cell not only by its intrinsic properties,
but also by the properties of its cellular neighbors and surrounding tissue structure. The spatial
niche framework provides a simple and elegant approach to connect a cell with its
surroundings*'*2. In general, a niche can be defined as a set of cells in shared physical space,
represented by a spatial neighborhood graph Gn x n, where n is the number of cells in the
data, and G;; is a measure of spatial distance between cell; and cell.

We used 2D Euclidean distance as our metric, and defined a niche as the set of cells within a
radius r of a reference cell, which we refer to as the anchor cell. In using a fixed radius to define
a niche, we can ensure biological length scales that are interpretable and represented by well-
defined physical units; dissociated single-cell data, by contrast, does not report physical
distance, with implications for our understanding of the spatial extent of cellular influences. We
use a radius of 60 ym throughout this work as this length scale captured glandular structures in
the premalignant pancreas, establishing individual lesion size as a unit of analysis. However, we
recognize different choices of r are bound to highlight different emergent properties of
intercellular communities, such as the formation of large spatial domains of progenitor-like cells
upon p53 knockdown (Fig. S11f).

We extracted three types of features from our spatially defined niches: (i) morphological
parameters of premalignant lesions, (ii) cell composition vectors of cellular niches, and (iii)
compartment-specific locally averaged niche expression matrices (detailed below). These
features enabled us to characterize tissue remodeling events that are coupled to gradual
changes in premalignant cell states.

Quantification of structural and morphological parameters

To study morphological changes associated with the adoption of distinct premalignant cell
identities, we quantified three parameters of local tissue organization in individual cell niches:
lesion size, epithelial fraction, and luminal area. Our computational approach relied on graph
and pixel-based representations of epithelial structures, enabling tissue properties to be
estimated from cell centroids alone.

Lesion size. We defined a lesion as a contiguous set of physically adjacent epithelial cells in the
tissue. We first built a spatial neighbor graph connecting all epithelial nuclei centroids within 20
um. The use of this length scale, which is within the range of a cell diameter, maximized the
probability that two cells are interacting physically in the tissue. Next, we identified connected
graph components in our spatial neighbor graph. We defined epithelial lesion size as the
number of cells in each connected component.
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Epithelial fraction. The epithelial fraction represented the fraction of epithelial cells out of all cells
in a niche.

Luminal area. To quantify luminal area, we adopted classical image processing procedures
aimed at identifying holes in the tissue surrounded by epithelial cells. We identified (1) non-
empty regions covered by tissue; (2) closed holes within the tissue; and (3) empty space that
was not closed and may have resulted from epithelial disruption during tissue processing:

1. To identify empty space, we generated a tissue image starting from single-cell centroids.
For each tissue slice, we constructed a 5 um px ™' mesh grid covering all cellular
centroids using numpy (v1.23.4) linspace and meshgrid functions. Next, we calculated
the number of cell centroids that overlapped each xy coordinate of the mesh grid,
resulting in a bitmap-based representation of the tissue, where values correspond to the
cell density at each pixel. Using a 2D Gaussian filter with an isotropic kernel of 3-px
bandwidth (15 um), we denoised cell density estimates in the image. Lastly, we applied
an empirically determined threshold of 0.01 to identify pixels with high cell density
(foreground) from empty pixels (background).

2. Toidentify closed holes surrounded by epithelial cells, we computed a bitmap-based
representation of epithelial cells. Starting from the mesh grid in step 1, we set any pixel
overlapping with an epithelial centroid to 1, and all other pixels to 0. To close small gaps
between pixels associated with a single glandular epithelial lesion, we dilated our
binarized image of the premalignant epithelium using the dilate function in the cv2
package (v4.10.0) with an 10-px disk kernel and n_iterations = 1. Next, we filled holes in
the image using the cv2 floodFill function, followed by erosion using the erode function to
counterbalance the original dilation, returning the boundaries of epithelial lesions to their
original scale. Luminal pixels correspond to empty points that lie within filled epithelial
masks.

3. To identify empty luminal regions that are not enclosed, we used a pixel propagation
procedure, whereby luminal pixels are identified as empty points within 20 um of an
anchor epithelial cell. We used this propagation strategy iteratively, such that luminal
points identified in the first iteration lead to the identification of the next layer in the
lumen. The use of a 20-um threshold was empirically determined to prevent
classification of the tissue edge as lumen due to the presence of epithelial cells close to
the tissue edge.

We defined lumen area as the number of pixels classified as lumen within a radius r of a cell
(r = 60 um) for Fig. 3h.

Structural changes along the gastric-progenitor DC. To quantify how structural features in the
vicinity of premalignant cells change along the gastric—progenitor DC, we discretized this DC
into 11 equally sized bins, and computed the distribution of niche morphological parameters as
a function of an epithelial cell’s DC bin (Fig. 3g—j).

Quantification of cell-state proportions in niches
The distribution of discretized cellular states in niches provide one description of the
compositional heterogeneity of cellular communities in the tissue. To quantify the distribution of
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cell states across niches, we constructed a cell-state count table, represented as a n x m matrix,
where n is the number of niches (centered at every single cell) and m is the number of
discretized cell states in the dataset. Then, we computed cell-state distributions at two
resolutions, coarse cell-type and cellular compartment.

Compartment-specific niche expression matrices

The active molecular programs within a niche provide an additional description of the
compositional and transcriptional heterogeneity of cellular communities. The first challenge in
characterizing spatial patterns of transcriptional variation at the single-cell level is sparsity; each
cell in our data expressed only ~60 transcripts on average (Table S5). Moreover, genes in
positive cells (cells with at least one mRNA count for that gene) had a median of 1.3 raw counts
(interquartile range, 1.2—-1.6). Sparsity persisted even when restricting our analysis to genes
with known robust expression in a specific cell state. For instance, Msn had a median of 2 raw
counts (interquartile range of 1-3) in Msn-positive cells. This contrasts with smFISH
measurements of the same gene, which average 55 transcripts per progenitor-like cell (Figs.
2b,3c and Fig. S5). Dropouts, or unobserved transcripts, dilute differences between cell
subpopulations and limit the estimation of gene—gene covariance matrices*®. We and others
have developed approaches to overcome sparsity in dissociated data, including gene count
imputation through signal sharing in kNN graphs?® and aggregation of gene counts in
metacells—sets of cells that occupy the same transcriptional state, with minor residual variation
between cells due to technical as opposed to biological sources®®3,

To overcome sparsity in Xenium spatial transcriptomics, we spatially aggregated mRNA counts,
leveraging coarse cell-type annotations to obtain a compartment-specific summarized gene
expression vector for each cellular niche. To do so, we first constructed a cell type x niche x
gene count table, where each entry corresponded to the number of mMRNA molecules in cells
from a specific cell type in every niche in the dataset. We computed size factors as the total
number of MRNA molecules in cells from the specified cell type in the niche, and used them to
normalize our compartment-specific count matrix, followed by scaling by the median library size.
Using this approach, each niche is represented by m independent count matrices, where m is
the number of coarse cell types queried in the niche.

Spatial aggregation overcomes sparsity while preserving information about coarse cell types
that express a given gene, facilitating the analysis of cell-type-specific expression differences
between niches. On the other hand, aggregation loses single-cell resolution, and may mix
heterogeneous states. However, our analyses at single-cell resolution showed concerted shifts
in cell-state distributions within cell types when comparing niches dominated by gastric-like or
progenitor-like cells (Fig. 4e), suggesting that our spatial aggregation approach is well suited to
capture the average changes in gene expression that accompany such shifts. In addition, while
heterogeneity in cell density can introduce artifacts in these compartment-specific count
matrices, as denser neighborhoods are more likely to have fewer collective dropouts in gene
expression, our choice of r = 60 um mitigates this problem due to the large number of cells (>
100 on average) within each niche.

Molecular and compositional changes along the gastric—progenitor DC
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Oncogenic KRAS activation leads to the transcriptional diversification of the pancreatic
epithelium, as well as profound tissue remodeling events linked to inflammatory responses*
We hypothesized that the identity and local distribution of premalignant cells in tissue profoundly
impact the morphological, cellular and molecular properties of their surrounding
microenvironment. To investigate the relationship between cell-state changes in the
premalignant epithelial cells and remodeling of the surrounding microenvironment, we
integrated two viewpoints of our spatial data: (1) our quantification of niche features (see
Definition and identification of cellular niches and subsequent sections) and (2) our
characterization of gastric—progenitor cell-state continuum in premalignant cells (see Diffusion
component analysis in spatial data). This strategy allowed us to connect the gradual
transcriptional changes in premalignant cells with gradual changes in morphological, cellular
and molecular properties of their niche.

4-46

Ordering cells and niches by average gastric—progenitor DC. We noted that gastric and
progenitor-like cells within the same niche were at similar positions in the gastric-progenitor DC
axis, suggesting spatial coordination in the adoption of divergent premalignant cell identities.
The spatial coupling of premalignant heterogeneity allowed us to average the gastric-progenitor
DC value of gastric or progenitor-like cells in the niche, resulting in a niche analog to the gastric-
progenitor DC axis that we defined at the single cell level. In order to minimize variation due to
averaging of small numbers of cells, we restricted our analyses to niches anchored at any cell
with at least 10 gastric or progenitor-like cells in their niche. This newly constructed axis
positioned each of the 2,772,533 niches in our data along a niche continuum linking the
canonical gastric or progenitor niches.

Summarization of niche features along the gastric—progenitor continuum. We used three
complementary approaches to quantify how the cell-state composition of niches changes as a
function of variation along the average gastric—progenitor DC, which we discretized into 100
uniform bins.

For our first approach, we quantified cell-type proportions in niches as a function of the DC axis
bin, by computing the median and interquartile range of the relative frequencies of coarse cell
types (Fig. S6a), or cell states within a cell type (Fig. S6c¢). For cell states, we included niches
harboring at least 10 cells of the specified coarse cell type in the niche.

For our second approach, we disregarded discrete cell-state labels and instead visualized
changes in the distribution of transcriptional states within cellular niches as a function of the DC
axis bin (Fig. 4e). Given niche matrix Gr x n, where r is the number of niches, n is the number
of cells in the data, and G;; = 1 if cell;belongs to niche;, otherwise 0, we:

1. Extracted cell-state composition vectors for niches in each gastric—progenitor bin. We
identified all niches that fall in a given bin in G, and extracted all cells that appear in
these niches. This set of cells represents the neighborhood composition vector of niches
in a specified bin along the gastric—progenitor axis.

2. Visualized cell-state densities in UMAP representations. We projected 2D cell density
estimates onto a UMAP of tumor microenvironmental cells (Fig. 4e bottom) (see
Visualization of cell state density in two-dimensional representation). As a reference, we
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visualized the density of gastric- or progenitor-like epithelial cells in the bin (Fig. 4e top).
This approach provided a label-free visualization of changes in niche cell-state
distributions coupled to changes in epithelial anchor-cell states.

For our third approach, we quantified gene expression changes in specific cellular
compartments as a function of the DC axis bin (Fig. 4f). Given compartment-specific niche
expression matrix X°*"*™ where ¢, n and m represent the number of cell types, niches
containing at least 10 gastric- or progenitor-like cells, and genes, respectively, and xs,; is the
average expression of gene; in cells of types in niche; (see Compartment-specific niche
expression matrices), we:

1. Standardized compartment-specific niche expression matrices. We log-transformed the
niche expression matrix (pseudocount = 1) to stabilize variance and reduce the impact of
outliers in downstream quantification. We standardized X by z-scoring log-transformed
niche expression over all niches, for every cell type and gene pair. The resulting matrix
represents cell-type-specific heterogeneity in gene expression across niches.

2. Summarized gene expression along niche bins. For a given cell type, bin and gene, we
averaged our standardized compartment-specific niche expression matrix over all niches
in the bin, resulting in a summarized niche expression matrix X°*?*™ where b is the total
number of bins along the DC axis (b = 100). The resulting matrix represents the
continuous gene expression shifts along the gastric—progenitor niche continuum in each
cell type, analogous to the quantification of gene trends in pseudotime analysis®®*’.

3. Visualized gene trends. To examine trends in niche gene expression, we first sorted
genes based on how early their expression changed along the gastric—progenitor DC
axis—when it reached a maximum value, minimum value, or changed in average z-
score sign. We chose to visualize markers of gastric-like (e.g., Anxa10, F5, Onecut2,
EIf3) and progenitor-like (e.g., Msn, Hmga2, Vim) cells, as well as myeloid (e.g., Maf,
Mab, Itgax) and fibroblast (e.g., Tnxb, Dpt, Postn, Tnc) subpopulations that changed in
abundance along the DC axis. In addition, we visualized genes that suggest shifts in
signaling along the niche axis (e.g., Oasl2, Irf7 for interferon signaling; Dusp4, Dusp6,
Dusp5 for MAPK signaling; Mdm2, Cdkn1a for P53 signaling). Lastly, we selected genes
related to communication and wound healing that were upregulated in distinct cellular
compartments of the progenitor niche.

These three approaches reveal changes in cell-state frequencies, cell-state densities, and
compartment-specific gene expression as niches progress from gastric to progenitor-like
epithelial anchor states, providing complementary viewpoints on the spatiotemporal dynamics of
tissue remodeling during progenitor niche formation.

Comparison of spatial niche expression with dissociated data

Our spatial analyses revealed a coupling between epithelial states and fibroblast and myeloid
states within corresponding niches along the gastric—progenitor continuum (Fig. 4f). These
results were based on a handful of markers in our Xenium panel. To gain insights into broader
programs across the full transcriptome, we reasoned that scRNA-seq data from our
premalignant samples (see Analysis of premalignant tumor microenvironment data) should
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reflect similar axes of continuous variation, and thus searched for these axes in non-epithelial
cell types in the niche microenvironment.

In the fibroblast compartment, we used our myofibroblast cell embeddings, as these are the
major stromal components of the pancreatic parenchyma (see Table S3 for embedding details).
We applied diffusion component analysis to the scRNA-seq data (k = 30, adaptive Gaussian
kernel with distance to tenth neighbor as bandwidth) to identify the major axis of transcriptional
variation (DC1). We ordered cells along this axis and grouped them into 50 bins of equal cell
number, then averaged z-scored gene expression over all cells in each bin to compute gene
trends along DC1. Plotting genes in this orthogonal dataset (Fig. 4f) revealed concordant
trends: progressive downregulation of genes associated with inflammatory fibroblasts and
universal fibroblast state (e.g., Tnxb, Dpt, Cxcl12), induction of activated myofibroblast genes
near the progenitor-like cell extreme (e.g., Tnc, Tgfb1), and upregulation of Shh-related
signatures in the middle of the axis (e.g., Gli1, Ptch1, Ptch2). By leveraging transcriptome-wide
information, we confirmed the induction of additional fibroblast activation markers at the end of
DCA1, including Acta2, Timp1 and Spp1, as well as tumor suppressor CdknZ2a, recently
highlighted as a marker of senescent myofibroblasts that promote pancreatic cancer
progression® (Fig. S7e).

In the myeloid compartment, we examined PhenoGraph clusters expressing Maf or Itgax, which
each mark an extreme point in our niche continuum, and exist at intermediate levels along this
axis in our spatial data. Notably, diffusion component analysis revealed that the MafItgax
dichotomy also captured the major axis of variation in scRNA-seq data (DC1). Projection of
genes upregulated alongside ltgax and Cd274, markers of myeloid cells in the progenitor niche,
revealed the engagement of a plethora of genes associated with immune suppressive and pro-
fibrotic myeloid subsets (e.g., Spp1, Arg1, ll1b, Fn1). Taken together, this analysis allowed us to
contextualize cell-state changes in the progenitor niche with transcription-wide information,
some of which are known to mediate fibrotic responses and cancer progression (Fig. S7d).

Discretization of canonical gastric and progenitor niches

We found it useful to identify a single canonical progenitor and gastric-like niche, in order to
simplify the computation of gene expression differences between these two communities (in
wound-healing and communication gene programs, for example). We defined the canonical
progenitor niche as the set of niches belonging to niche bins in which the median proportion of
progenitor-like cells was higher than the median proportion of gastric-like cells. This
corresponded to the top 22% of niches along the average gastric—progenitor DC niche axis. We
defined the canonical gastric-like niche as the bottom 22% of niches ordered along the same
axis. For simplicity, we term these sets gastric niche and progenitor niche.

Wound-healing signatures in the progenitor niche

We noticed that a plethora of genes with roles in wound healing processes (e.g., Tnc and Postn
ECM remodeling, Pdgfb signaling, plasminogen processing) were upregulated in the progenitor
niche across cellular compartments, motivating us to systematically test for wound-healing gene
upregulation in our curated gene panel. We used all genes in our panel that appear in the Gene
Ontology wound-healing response gene set (GO:0042060) as a wound healing signature,
grouped niches by canonical gastric or progenitor label and by biological replicate, and
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averaged compartment-specific z-scored niche expression of these genes. Differences in
signatures (Fig. 4g) or individual signature genes (Fig. S6f) between gastric and progenitor
niches were tested using a two-tailed Wilcoxon rank sums test per compartment. This strategy
identified differences in wound healing responses between gastric and progenitor-niches and
the top genes that drive this signature in each cellular compartment.

Spatial transcriptomics communication module analysis

Our previous work showed that different cell types in the premalignant pancreas undergo
concerted upregulation of communication modules (sets of receptor and ligand genes), and that
this modularity that can be exploited to identify crosstalk between cell types that involves
multiple cognate ligand and receptor pairs, suggesting robust and stable cell-cell interaction
circuits'®. To find evidence of communication in our spatial data, we identified pairs of
communication modules that not only shared multiple cognate ligands and receptors, but were
also upregulated in the same niches, a requirement for positive communication potential.

To compute cell-type-specific communication modules, we started from compartment-specific
niche expression matrices of non-perturbed samples (excluding KCs"°* and MRTX1133-treated
mice). The use of niche expression matrices overcomes sparsity in our spatial transcriptomics
data, ensuring that dropouts do not dominate the signal and dilute out correlation estimates. We
log-transformed the niche matrices (pseudocount = 1), standardized them over all niches and
computed the gene—gene correlation matrix of communication genes, as defined by the
CellChat database*® and distributed in the COMMOT repository*®. Note that we only included
communication genes with evidence of expression in the specified cellular compartment in our
scRNA-seq data, and robust expression in our spatial data (see Compartment-aware gene
censoring). Hierarchical clustering of the gene—gene correlation matrix revealed a modular
architecture (Fig. 5a), which was preserved in single-cell correlation matrices, implying that
compartment-specific average niche expression matrices largely aggregate coherent cell states
within a cell type (Fig. S8a). As in our prior work', large blocks of off-diagonal correlations
suggested shared communication genes, motivating a soft-clustering approach that allows
individual genes to participate in multiple communication modules.

To infer communication modules, we followed the same graph-based community detection
strategy that we applied to dissociated single-cell data'. Briefly, we first constructed a gene—
gene graph in which genes were connected if the Pearson correlation of their niche expression
was larger than p = 0.2. Next we used a graph refinement approach based on each edge’s
Jaccard similarity—the fraction of neighbors shared between two connected nodes in the graph,
relative to the union of all neighbors of such nodes. Intuitively, this metric reveals tight
communities of genes that are not only correlated in their expression, but also share many
correlated genes. We removed edges with potentially spurious correlations (Jaccard similarity <
0.05) and added edges for genes that may not have reached the correlation threshold during
graph construction, but that belong to a larger community of correlated genes (Jaccard similarity
greater than 0.95). Lastly, we applied the Order Statistics Local Optimization Method (OSLOM)
algorithm® to identify compartment-specific communication modules, following prior work'®. This
algorithm finds potentially overlapping communities of genes in the refined gene—gene
correlation graph. Application of OSLOM to gene—gene graphs constructed on niche expression
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of epithelial, immune and fibroblast compartments resulted in three distinct sets of
communication modules (Fig. 5a).

The spatial dimension of our data allowed us to incorporate spatial co-expression when
interpreting compartment-specific communication modules. For each module, we calculated the
compartment-specific average z-scored niche expression of module genes in either progenitor
or gastric niches (see Discretization of canonical gastric and progenitor niches). In each cellular
compartment, we identified one or two modules with enriched expression in the progenitor
niche, as quantified by an average z-scored expression > 0.2 (Fig. 5a). Thus, our approach
defined a progenitor niche communication module in each cellular compartment.

To identify potential channels of intercellular communication in the progenitor niche, we
identified cognate ligand—receptor pairs*® between progenitor niche communication modules in
distinct cellular compartments. This approach resulted in a set of candidate communication
channels that satisfied two criteria: (1) spatial co-occurrence in the progenitor niche, and (2)
upregulation in progenitor niches, relative to gastric niches. We leveraged our standardized
compartment-specific niche expression matrices (see Summarization of niche features along
the gastric—progenitor continuum, third approach) to visualize concerted changes in the
expression between cognate receptor—ligand pairs that may mediate heterotypic crosstalk in the
progenitor niche (Fig. 5b and Fig. S8b). Specifically, we plotted the expression of a ligand in a
specified cellular compartment across different niches. Our data suggested that collective
upregulation of multiple communication genes in spatially co-occurring cell states may
contribute to the formation and stabilization of the progenitor niche.

Tissue-level consequences of genetic and pharmacological perturbation

Our characterization of the injured premalignant pancreas revealed the tissue remodeling
events that accompany the formation of progenitor niches at the morphological, cellular and
molecular levels. These cancer-like wound-healing niches centered around progenitor-like cells,
a subpopulation that simultaneously exhibited the highest engagement of tumor suppressive
and oncogenic transcriptional signatures in the premalignant pancreas. Perturbation of Kras and
p53 signaling in epithelial cells profoundly impacted the abundance and state of this unique
premalignant subpopulation: p53 inactivation led to its expansion and adoption of advanced
mesenchymal phenotypes (Fig. 7b—e), whereas KRAS inhibition rapidly depleted this cellular
state (Fig. 6b). Next, we investigated how perturbation-induced changes in progenitor-like cells
impacted non-epithelial cell types, particularly those associated with progenitor-like cells in the
absence of additional interventions (e.g., Tnc+ myofibroblasts, ltgax+
macrophages/monocytes).

In silico dissection of pancreatic parenchyma. An immediate challenge for analysis was the
sample-to-sample heterogeneity in tissue structures outside of the pancreatic parenchyma,
including lymph nodes and adipose tissue. These structures were larger and more prevalent
when derived from whole-pancreas FFPE blocks than from samples comprising a fraction of the
pancreas (collected as part of a cohort with multiple types of readout). Given that interlobular
spaces and cell-dense lymph nodes could introduce technical variability into downstream
analyses (due to tissue size and dissection strategy), we used spatial information to focus only
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on cells directly associated with the pancreatic epithelium. This in silico dissection is analogous
to the manual removal of mesenteric lymph nodes in our prior work with dissociated cells, which
was critical to avoid having the sheer density of their immune cells dominate cell-state
quantification. Our strategy was to:

1. Define the pancreatic parenchyma as the set of all epithelial cells, plus neighboring cells
within a 200-pm radius. Any cell outside this set was ignored.

2. Computationally identify lymph nodes. Starting from centroids corresponding to lymph-
node-associated immune cells (B, CD4 T and CD8 T cells), we constructed a spatial
neighbor graph connecting all cells within 30 um of each other. We identified lymph
nodes as connected components in the spatial neighbor graph with > 250 cells, a
parameter that we manually tuned to capture visually identified lymph nodes. Cells in
lymph nodes were computationally ignored.

After in silico dissection, the premalignant pancreas epithelium corresponded to 84% of cells in
the data. We used this subset of cells to analyze differential abundance of tumor
microenvironment cells in response to perturbation.

Shifts in microenvironmental states upon oncogenic KRAS inhibition. Acute inhibition of
oncogenic KRAS led to a dramatic reduction in progenitor-like cell abundance within 48 h of the
first dose. To characterize the effect of this reduction on microenvironmental states and
communication potential, we (1) quantified progenitor-like cell enrichment in the vicinity of
different cell states, and (2) computed differential abundance with MiloR and interpreted results
in light of the spatial association of enriched or depleted states with progenitor-like cells. We
quantified and visualized changes in parenchyma cell-state abundance, excluding lymph nodes
and interlobular spaces (see In silico dissection of pancreatic parenchyma).

We derived a quantitative scoring scheme to identify cellular states enriched near progenitor-like
cells. For each niche anchored at a non-epithelial cell, we computed the fraction of progenitor-
like or gastric-like cells relative to all epithelial cells within the niche (Fig. S9b—i). Next, we
defined ‘progenitor enrichment’ as the log-ratio of the progenitor-like cell fraction, relative to the
fraction of progenitor-like cells in the dataset. We defined ‘gastric enrichment’ following the
same logic for gastric-like cells.

To identify a set of microenvironment states associated with progenitor-like cells, we selected
cells with a progenitor enrichment score > 2, a threshold beyond which the gastric enrichment
score sharply decreased. Furthermore, we required a gastric enrichment score < 0, thereby
selecting for niches specifically enriched for progenitor-like cells relative to other premalignant
states. This analysis resulted in (1) a continuous feature for each microenvironment cell,
describing the extent of enrichment of progenitor-like cells in their vicinity, and (2) a discrete set
of cells tightly associated with progenitor-like cells.

Density estimates on tumor microenvironment UMAP embeddings revealed that cell niches
enriched with progenitor-like cells were depleted in MRTX1133-treated samples (Fig. 6¢). To
determine the significance of depletion, we applied the Milo algorithm?’. Milo first constructs a
set of tight and potentially overlapping cellular neighborhoods defined by transcriptional
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similarity on a kNN graph (makeNhoods function from miloR package, prop = 0.01, k = 30,
refined = TRUE, reduced_dims = "PCA", using pre-computed kNN and PCA), then tests for
differences in cell counts between experimental conditions in each neighborhood using a
generalized linear model with negative binomial residuals. Using Milo, we identified significantly
enriched or depleted cell states upon acute oncogenic KRAS inhibition (SpatialFDR < 0.1).

To interpret differential abundance in light of defined cellular states, we annotated Milo
neighborhoods by cell-state label, and found that 28% were composed of a single discrete label,
representing pure cell states. For the remaining 72% of neighborhoods, we calculated the
enrichment of the most frequent cell state relative to the second most frequent cell state. We
conservatively excluded the 5% of Milo neighborhoods with lowest enrichment score (frequency
of the most abundant cell state was less than 2.89-fold that of the second most abundant cell
state), and labeled remaining neighborhoods by the predominant state. This strategy resulted in
a set of transcriptional neighborhoods with a single cell-state label.

Lastly, we integrated spatial information into the interpretation of our differential abundance
analysis. For each cell in a Milo neighborhood, we identified the cells in its niche, hereby termed
Milo niche cells. Next, we calculated a progenitor enrichment score as the log ratio of the
frequency of progenitor-like cells among Milo niche cells, relative to the frequency of progenitor-
like cells in the dataset. We used this enrichment score to visualize the relationship between
enrichment or depletion of neighborhoods, and their association with progenitor-like cells. Milo
neighborhoods depleted upon acute oncogenic KRAS inhibition are strongly associated with
progenitor-like cells in their niches (Fig. 6d).

Tissue-wide cell state proportions in KCS""%* and KC"“"" samples

To assess the tissue-wide consequences of p53 loss in the injured pancreas, we quantified the
frequency of cell-state proportions relative to their coarse cell type in each biological replicate.
We restricted our analysis to the pancreatic parenchyma, to avoid potential confounding by
large histological structures such as lymph nodes (see In silico dissection of pancreatic
parenchyma). We used a two-tailed Wilcoxon rank sums test to assess the significance of
differences in the tissue-wide frequency of cell states as a function of p53 status.

Quantitative relationship between cell state frequencies in cellular niches

Knockdown of p53 in premalignant epithelial cells led to the accumulation of progenitor-like cells
with advanced mesenchymal phenotypes (Fig. 7b—f). These cells formed large tissue domains
that could encompass entire pancreatic lobes (Fig. S11b,c), and were accompanied by the
accumulation of /tgax+/Cd274"" (PD-L1"9") macrophages/monocytes. Remarkably, the same
tissue could contain regions devoid of progenitor-like cells and their associated
microenvironments. This heterogeneity suggested that the local density of progenitor-like cells
could determine properties of their microenvironment. To quantify such relationships, we
determined cell-state frequencies relative to their coarse cellular compartment in cellular niches
of different sizes. We log-transformed cell state frequencies, setting as pseudount the minimum
non-zero value in each frequency vector. Next, we computed the joint distribution of the log
frequency of progenitor-like cells (relative to epithelial cells in the niche) and the log frequency
of Itgax+/Cd274"" cells (relative to myeloid cells in the niche). To visualize the cell-state
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relationship in a manner that is agnostic to the marginal distribution of the progenitor-like state
frequency, we computed the distribution of ltgax+/Cd274"" cell frequencies conditioned on the
frequency of progenitor-like cells in the niche, following the strategy outlined in DREVI®'. Our
analysis revealed that changes in the local density of progenitor-like cells are statistically related
to changes in the frequency of their associated ltgax+/Cd274"" cells, suggesting also the
presence of non-linearities in the quantitative relationship between the relative abundance of
these two cell states.

Molecular programs in ltgax+/Cd274"" cells

To better understand the molecular properties of ltgax+/Cd274"9" macrophages/monocytes that
accumulated upon p53 knockdown in premalignant pancreatic epithelial cells, we leveraged our
myeloid-specific embedding of dissociated single cell data from KC" or KCS"*** mice three
weeks post injury (see Analysis of premalignant tumor microenvironment data). First, we
identified Cd163, Maf, ltgax and Cd274 as four landmark genes that described progressive
gene expression changes along the average gastric-progenitor niche axis in myeloid cells.
Plotting and visualization of these four genes in UMAP embeddings of dissociated myeloid cells
revealed that they captured gradual shifts in cell myeloid cell states in these data, consistent
with spatial transcriptomics analyses (Fig. 11e). Moreover, we observed accumulation of
ltgax+/Cd274"" cells in KC3"**® samples, corroborating our findings in spatial data, and
providing the opportunity to study this subpopulation in greater depth. We used the wald test in
the diffxpy package (v0.7.4, https://github.com/theislab/diffxpy?tab=readme-ov-file) and library
size as numeric covariates. We identified upregulated genes using the following thresholds: qval
< 0.05, log- fold-change > 1. To highlight the top upregulated and downregulated genes from
this analysis, we identified genes with mean_expression > 1, thus reporting changes in genes
that are robustly expressed in at least one of the subpopulations (Fig. 11g).
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