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Abstract 
The transition from benign to malignant growth is a pivotal yet poorly understood step in cancer 

progression that marks the shift from a pathologically inert condition to a clinically lethal disease. 

Here, we integrate lineage tracing, single-cell and spatial transcriptomics to visualize the 

molecular, cellular and tissue-level events that promote or restrain malignancy during the tumor 

initiation in mouse models of pancreatic ductal adenocarcinoma (PDAC). We identify a discrete 

progenitor-like population of KRAS-mutant cells that co-activates oncogenic and tumor-

suppressive programs—including p53, CDKN2A, and SMAD4—engaging senescence-like 

responses and remodeling their microenvironment, ultimately assembling a niche that mirrors 

invasive PDAC. KRAS inhibition depletes progenitor-like cells and dismantles their niche. 

Conversely, p53 suppression enables progenitor cell expansion, epithelial–mesenchymal 

reprogramming, and immune-privileged niche formation. These findings position the progenitor-

like state as the convergence point of cancer-driving mutations, plasticity, and tissue 

remodeling—revealing a critical window for intercepting malignancy at its origin. 

 

Introduction 
Cancer progression is a multistep process fueled by the accumulation of genetic alterations that 

reshape cell identity and reprogram the tumor microenvironment. Yet, clonal expansions 

bearing oncogenic mutations rarely progress to cancer1, despite appearing frequently in 

histologically normal tissues2,3. These clones can persist for long periods as benign growths that 

retain epithelial architecture4–6. Only upon acquisition of additional genetic or epigenetic 

changes do these lesions breach regulatory constraints, promoting cellular plasticity, local 

invasion, and metastatic dissemination – features of lethal cancer. Despite its clinical 

importance, the transition from benign to malignant growth remains poorly understood, in part 

due to the difficulty of capturing and studying these early events in vivo. 

 

Pancreatic ductal adenocarcinoma (PDAC) is an almost universally fatal malignancy7,8 that 

exemplifies progression through well-defined benign and malignant states. It is nearly 

universally initiated by activating mutations in KRAS9, which confer epithelial plasticity and drive 

the formation of pancreatic intraepithelial neoplasia (PanINs) and other precursor lesions10. The 

dense stroma of PDAC, characterized by activated fibroblasts, immunosuppressive myeloid 

cells, and cytotoxic T-cell exclusion, further shapes both tumor progression and therapeutic 

response11–15. Although mutant KRAS is sufficient to initiate PDAC development and remains 

necessary for progression and maintenance16, we do not understand how genetic lesions, cell 
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state changes, and microenvironmental remodeling converge to trigger the benign to malignant 

transition. 

 

Disruption of the TP53, CDKN2A and/or SMAD4 tumor suppressor pathways contribute to the 

benign to malignant transition9,17–20. Among these, the gene encoding the sequence-specific 

transcription factor p53, which governs diverse tumor-suppressive molecular programs21,22, is 

mutated and/or deleted most frequently (roughly 70% of cases)23. TP53 mutations are 

uncommon in low-grade PanINs24 and dispensable for their formation in mouse models25 and 

humans 24. On the other hand, the frequency of TP53 inactivation increases in high-grade 

lesions and carcinoma26, supporting the role for p53 in restraining malignant progression. Using 

genetically engineered mice, we previously showed that Trp53 loss of heterozygosity (LOH) 

facilitates the ordered accumulation of copy number alterations (CNAs) that are analogous to 

those occurring in human PDAC27. Conversely, p53 restoration in advanced tumors induces 

reversion to a more differentiated, PanIN-like state28. These findings suggest that p53 

safeguards against PDAC progression by limiting genomic instability and opposing cell state 

plasticity—but when, where, and how p53 and other tumor suppressors act during 

premalignancy to restrain malignant transformation remains unresolved. 

 

In addition to genetic lesions, inflammatory cues are critical modulators of PDAC evolution. 

Chronic pancreatitis is a risk factor for PDAC29, and inflammation accelerates neoplastic 

progression in Kras-mutant mouse models30. In the normal pancreas, injury induces acinar-to-

ductal metaplasia (ADM), followed by regeneration and restoration of tissue homeostasis31. 

However, this regenerative process is subverted in the presence of oncogenic KRAS, resulting 

in the establishment of heterogeneous ductal metaplasia, including acinar derived PanIN-like 

lesions30–33. Interestingly, oncogenic KRAS activity in mouse models of PDAC results in the 

formation of inflammatory niches in around neoplastic niches in the absence of experimentally-

induced inflammation34–36, implying an inextricable link between oncogenic KRAS activity and 

the remodeling of the pancreatic microenvironment.  

 

Our prior work revealed that inflammation synergizes with oncogenic KRAS to promote 

chromatin remodeling and the establishment of a subpopulation of premalignant cells 

expressing the Nes, a marker of pancreatic epithelial progenitor cells37–39. This progenitor-like 

state exhibits high plasticity, as evidenced by permissive chromatin landscapes that suggest 

that this state can transition into distinct premalignant and malignant states37. In addition, this 
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state closely resembles invasive cancer both in terms of transcriptional and chromatin 

accessibility landscapes. This includes chromatin opening near cell-communication genes, 

implying a functional interplay between epithelial plasticity and the surrounding niche. Strikingly, 

this progenitor-like state arises rapidly after injury, while the malignant transition takes months, 

suggesting that additional tumor-suppressive barriers delay disease progression. 

 

Here, we use lineage tracing and conditional p53 mouse models to dissect how genetic 

alterations, cell state transitions, and microenvironmental remodeling converge to drive early 

PDAC progression. By integrating single-cell and spatial -omics with targeted perturbations, we 

capture the dynamic interplay between epithelial plasticity and niche reprogramming during the 

benign-to-malignant transition. We directly visualize and reconstruct how this transition is 

orchestrated by spatially mapping the emergence, stabilization, and expansion of a plastic, 

progenitor-like cell state uniquely capable of engaging—and ultimately evading—tumor-

suppressive mechanisms while assembling a supportive microenvironment for tumor evolution. 

These insights illuminate a critical window of vulnerability in tumorigenesis and provide a 

conceptual foundation for intercepting cancer at its inception by targeting the cell states and 

intercellular communication networks that enable malignant transformation. 

 

Results 
Capturing p53-deficient cell states after spontaneous p53 loss of heterozygosity  
To investigate cellular and molecular events underlying the benign-to-malignant transition in 

pancreatic cancer, we employed the KPLOH model27 that enables identification and isolation of 

cells that undergo spontaneous loss of heterozygosity (LOH) of Trp53 (hereafter referred to as 

p53) during tumor initiation. The model is derived from multi-allelic KPC (KrasG12D, Trp53flox/+, 

Ptf1a-Cre) embryonic stem cells that incorporate dual fluorescent reporters to track mutant Kras 

and p53 status: mKate for lineage-tracing Kras-mutant epithelium and GFP for marking cells 

that retain wild-type p53 (Fig. 1a). In this system, Kras-mutant epithelial cells that retain wild-

type p53 are mKate2/GFP double-positive, whereas cells undergoing spontaneous p53 LOH 

become mKate2 single-positive due to co-deletion of a physically linked GFP reporter. In mice 

lacking macroscopic PDAC (3-4 months old, hereby termed “pre-tumor” stage), p53-deficient 

(mKate2+/GFP-) cells are rare, appearing as isolated cells, small apparently clonal clusters, or 

as ‘microtumors’ histologically resembling advanced PDAC27 (Fig. 1b,c). By isolating tissue 

from mice well before the onset of detectable malignant tumors, this system facilitates 
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visualization and characterization of epithelial cell states before and immediately after p53 loss, 

as well as their interactions with the surrounding microenvironment. 

 

Using single-cell RNA sequencing (scRNA-seq), we compared these rare single-positive cells 

that underwent p53 LOH (pre-tumor p53-deficient, 1–3% of all mKate2+ cells) to their  p53-

proficient double-positive counterparts (pre-tumor p53 proficient), and to single positive cells 

isolated from full-blown tumors (tumor p53-deficient) (Fig. 1d, Fig. S1a–d and Methods). 

Consistent with prior work, p53-proficient premalignant cells occupied heterogeneous 

transcriptional states that departed from a normal acinar phenotype37,40 but were clearly distinct 

from malignant PDAC cells, which formed distinct, tumor-specific clusters (Fig. 1e,f and Fig. 
S1e–k). The p53-proficient fraction included cells undergoing acinar-to-ductal metaplasia (ADM) 

(expressing Cpa1+, Krt19+), cells with neuroendocrine (Scg5+, Chga+, Chgb+) or tuft (Pou2f3+) 

features, cells expressing gastric lineage markers characteristic of PanIN lesions and the 

classical PDAC subtype (Dmbt1+, Muc6+, Tff1+, Tff2+, Anxa10+), and cells displaying 

proliferation markers (Mki67+, Cdk1+) (Fig. 1e and Fig. S1e–k). Interestingly, a small subset of 

cells expressed the progenitor-like program previously identified as defining a transient, cancer-

like cell state induced in Kras-expressing epithelium following tissue injury (e.g., Nes+, Msn+, 

Hmga2+, Vim+)37 (Fig. 1e and Fig. S1e–k). Diffusion distance analysis (see Methods and Note 
S1) revealed that among all pre-tumor p53 proficient cells, the progenitor-like population is 

transcriptionally closest to PDAC (Fig. 1f) – and thus a likely transitional intermediate in the 

benign-to-malignant transition. 

 

We previously applied single-cell DNA sequencing to the KPLOH model and demonstrated that 

p53 loss is accompanied by a progressive and selective accumulation of genomic copy number 

alterations (CNAs) as cells acquire the genomic and histological features of invasive disease27. 

Reasoning that the gradual acquisition of CNAs in p53-deficient (mKate2 single-positive cells) 

could serve as a timestamp of a cell’s trajectory toward malignancy, we inferred CNAs from 

scRNA-seq data as a surrogate for underlying genomic instability. As expected, most pre-tumor 

p53-deficient cells occupying premalignant transcriptional states had quiet genomes, aside from 

loss of chromosome 11, indicating that these cells underwent p53 LOH but had not yet acquired 

genomic instability or a malignant phenotype (Fig. 1e,g and Fig. S2a). At the other extreme, 

some p53-deficient cells displayed rampant genomic instability (rearranged genomes) and 

transcriptional profiles resembling PDAC. These microtumors are likely clonal expansions of 

malignant cells that are below the detection threshold for ultrasound or gross pathology but are 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2025. ; https://doi.org/10.1101/2025.06.10.656791doi: bioRxiv preprint 

https://paperpile.com/c/zRDPV6/Urdb+4JXN
https://paperpile.com/c/zRDPV6/Urdb
https://paperpile.com/c/zRDPV6/3fYP
https://doi.org/10.1101/2025.06.10.656791
http://creativecommons.org/licenses/by/4.0/


 

6 
 

evident upon detailed histological examination27 (Fig. S2b). Notably, such microtumors also 

expressed the progenitor state marker HMGA2 (Fig. S2b). 
 

Some p53-deficient cells within the pre-tumor pancreata exhibited an intermediate level of 

genomic rearrangement, consistent with a transitional state in which p53 LOH occurred but the 

additional genetic alterations required for full malignancy were still being acquired. Notably, 

many of these cells occupied the progenitor-like state (Fig. 1h and Fig. S2c) and some shared 

distinguishing karyotypic changes with highly rearranged, malignant-appearing cells from the 

same mouse—for example, harboring loss of chr4 (Cdkn2a), loss chr11 (p53) and gain of chr2, 

while retaining diploid status in other chromosomes altered in microtumor cells from the same 

sample (e.g., chr5, chr6, chr10, chr13, chr14) (Fig. S2c). Together, these data point to the 

highly plastic, progenitor-like state, as a likely precursor for malignant tumors.  

 

Rare progenitor-like premalignant cells exhibit peak activity of oncogenic and tumor 
suppressive programs 

Our single cell data define a window to interrogate the molecular events that precede or 

immediately follow p53 inactivation during early tumorigenesis. To identify how spontaneous 

p53 loss impacts the distinct premalignant subpopulations, we compared expression of 

canonical p53 targets between p53-proficient and deficient cells within each transcriptionally-

defined premalignant state. Surprisingly, p53 inactivation had minimal impact on canonical p53 

targets in most premalignant cell types, with one notable exception—progenitor-like cells (Fig. 
2a, Fig. S3a and Methods). In p53-proficient contexts, this subpopulation expressed the highest 

levels of p53 targets, including genes involved in cell cycle arrest (e.g., Cdkn1a, Ccng1), DNA 

repair (e.g., Mgmt) and apoptosis (e.g., Bbc3, Bax, Pmaip1). These transcripts were 

downregulated in the corresponding p53-deficient cells, confirming their p53 dependence. 

Spatial mapping of these features using single molecule fluorescence in situ hybridization 

(smFISH) revealed that individual Msn-positive progenitor-like cells were dispersed throughout 

glandular structures of the premalignant pancreas, suggesting that this p53-active cell state 

arises independently during spontaneous tumorigenesis, and does not expand clonally in a p53 

proficient setting (Fig. 2b). Thus, despite uniform KrasG12D mutation across the epithelial 

compartment and loss of acinar identity37, p53 activity is heterogeneous and confined to 

progenitor-like cells—the subpopulation most transcriptionally related to PDAC (Fig. 2c). 
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Strikingly, in addition to p53 activation, progenitor-like cells exhibited the highest engagement of 

the two other major tumor suppressive programs in PDAC23: CDKN2A41 and SMAD442 (Fig. 2d 

and Fig. S3b–d). Specifically, progenitor-like cells significantly upregulated Cdkn2a relative to 

other premalignant cells (Fig. S3c,d), and inspection of splice junctions in sequencing reads 

indicated that transcripts encoding both p19ARF and p16INK4A were induced (Fig. S3e), indicating 

that both tumor suppressive programs encoded by the Cdkn2a locus were engaged19,41. 

Additionally, gene set enrichment analysis identified the TGFβ pathway as significantly 

upregulated in progenitor-like cells as compared to other premalignant subpopulations, an effect 

that was also observed when using a curated list of SMAD4-dependent TGFβ-induced genes 

that have been established as SMAD4-dependent43 (Fig. S3b–d). Therefore, all three tumor 

suppressive programs that are commonly lost during PDAC progression are engaged in the 

progenitor-like state.  

 

Regardless of p53 status, progenitor-like cells preferentially upregulated gene expression 

programs associated with malignant PDAC, including KRAS signaling, glycolysis, and epithelial-

mesenchymal transition (EMT)38,44–46 (Fig. 2d and Fig. S3b–d). The simultaneous engagement 
of tumor-promoting and tumor-suppressive pathways is reminiscent of oncogene-induced 
senescence, a potent tumor suppressive program involving p53 and p16INK4a that can be 
triggered by aberrant RAS signaling47–50.  Consistent with this, progenitor-like cells were 

enriched for senescence-associated transcriptional signatures (Fig. 2d and Fig. S3b–d). 
 

To determine whether analogous cell states exist in the human pancreas, we reanalyzed 

scRNA-seq data from pancreatic epithelial cells obtained at warm autopsy from cancer-free 

individuals3. This dataset includes cells that encompass a spectrum of epithelial states, 

including normal acinar cells and ADM/duct-like populations. Projection of murine progenitor-like 

signatures onto these data revealed transcriptional alignment with a rare subset of ADM- and 

duct-like epithelial cells, which exhibited upregulation of hallmark PDAC programs – including 

KRAS signaling, glycolysis, and EMT– as well as p53 transcriptional signatures (Fig. 2e,f and 

Fig. S3f,g). While KRAS mutational status could not be inferred from these datasets, our 

analyses support the presence of an epithelial subpopulation in the human pancreas of cancer-

free individuals that mirrors the progenitor-like state observed in mice. Together, these data 

highlight a conserved premalignant cell state in which oncogenic and tumor-suppressive 

programs intersect, revealing a potential battleground for malignant transformation. 
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Adoption of progenitor-like identity is coupled with morphological reorganization of 
premalignant lesions 
We and others previously identified progenitor-like cells as a highly plastic subpopulation with 
elevated cell–cell communication potential that expands following caerulein-induced 
pancreatitis in Kras-mutant mice37,38,40. These cells are rare in 12–27-week-old mice not 

subjected to injury (Figs. 1e, 3b and Fig. S1k), but transiently accumulate upon acute 
pancreatitis, reaching up to 60% of the epithelium, before progressively declining over 3 weeks 

(Fig. 3a,b)37. The expansion of the progenitor-like subpopulation coincides with other tissue 

remodeling events, including loss of acinar identity in the epithelial compartment and formation 
of a fibrotic niche in the stroma. Notably, as shown above, progenitor-like cells exhibit 

transcriptional features of senescence (see Fig. S3c,d)—a state known to contribute to tissue 

remodeling through secretory programs and bidirectional signaling51–53. These observations 
suggest that progenitor-like cells are not merely passive products of KRAS activation, but 
active participants in constructing the premalignant niche.  
 
To study the spatiotemporal dynamics of premalignant lesions in response to pancreatic injury, 
we leveraged our ability to generate large and synchronous cohorts of KC (LSL-KrasG12D; Ptf1a-

Cre) mice derived by injection of multiallelic mESCs into early embryos54,55. In addition, our 
models enable selective tracing of Kras-mutant epithelial cells by fluorescent reporters (mKate2 
and GFP), allowing their identification and isolation during tumor initiation. Tissues were 
collected for histological analysis either 2 days or 3 weeks after the first caerulein injection (see 

Fig. 3a), time points that capture both the accumulation and depletion of progenitor-like cells 

in response to inflammation (Fig. 3b).  
 

Consistent with our results from dissociated single-cell analyses (PMID: 37167403), progenitor-

like cells accumulated within 48h of injury-induced pancreatitis, as evidenced by upregulation of 

MSN, HMGA2, or both proteins (Fig. S4a), as well as the tumor suppressor proteins p53 and 

p19ARF (Fig. S4a,b). Lesions enriched with progenitor-like cells (termed progenitor lesions) 

formed disorganized epithelial structures, in contrast with the rosette-like and luminal epithelial 

morphologies of premalignant tissue lacking this cellular state (Fig. 3c and Fig. S4a). More 

interestingly, progenitor lesions were morphologically diverse: within the same mouse, 

progenitor-like cells can appear as small, isolated clusters; as dominant tissue lesions 

separated by stroma; or as mixed lesions suggestive of transitional states (Fig. 3c). This variety 
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of morphologies may represent snapshots of progressive epithelial identity loss during the 

earliest stages of oncogenic KRAS-driven transformation.  

 

To systematically define the early morphological, molecular, and compositional underlying the 

emergence of progenitor lesions and their associated microenvironments (“progenitor niches”), 

we performed spatial transcriptomics using the Xenium In Situ platform (10x Genomics), which 

enables single cell resolution within intact tissue. Guided by prior scRNAseq data and smFISH 
37,40) analyses in the premalignant pancreas (Fig. S5), we designed a custom 480-gene panel 
enriched for epithelial markers to resolve premalignant heterogeneity, while also capturing 
stromal and immune features and and key signaling and communication pathways37 implicated 

in early tumorigenesis, including MAPK, p53, YAP, TGFβ, and interferon (Table S4 and 

Methods). Applying this approach to  KC mice (Ptf1a-Cre; LSL-KrasG12D) at early (1-2 days, n 

= 10 mice) and late (3 weeks, n = 5 mice) timepoints following caerulein-induced injury enabled 

spatial profiling across a continuum of progenitor lesions. For each of the 3,833,679 cells 

analyzed, we obtained precise spatial context and a phenotypic profile based on gene 

expression. Despite the targeted nature of the panel, we successfully applied established 

scRNA-seq analysis methods,– including UMAP embedding, clustering, cell type annotation, 

and diffusion component analysis–to resolve cell states (Fig. 3d–f).  
 

Treating spatial and transcriptional data as complementary yet integrated dimensions allowed 

us to connect cell phenotypes with their native spatial context in the premalignant state. This 

analysis successfully discriminated a rich diversity of cell states and their spatial patterning 

across different length scales: from macroscopic tissue landmarks (e.g. lymphatics, lobular 

zones) to microscopic structures (e.g, epithelial lesions and blood vessels), and fine-grained 

gradients (e.g. fibroblast layering) (Fig. S6). The concordance between transcriptional state and 

spatial arrangement supports the notion that collective self-organization underlies the 

morphological and transcriptional patterning of the premalignant pancreas.  

 

Initially focusing on the epithelial compartment, we recovered the major subpopulations 

previously identified by scRNA-seq37,40 (Figs. 1e and 3d,e and Methods). These data revealed 

continuous transcriptional gradients connecting these states, consistent with dynamic transitions 

between premalignant cell subpopulations (Fig. 3e). To characterize such gradients, we applied 

diffusion component analysis56,57 and identified the continuous axis connecting gastric- and 

progenitor-like states as the dominant axis of transcriptional variation in these data (hereby 
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termed gastric-progenitor DC) (Fig. 3f and Methods). Gene expression changes along this axis 

revealed sequential programs marked by early Msn induction, followed by Hmga2, and 

culminating upregulation of Vim, a canonical mesenchymal cell marker (Fig. S4d).  

 

The gastric-progenitor diffusion component (DC) provided a framework to quantify the 

morphological, compositional and molecular changes in premalignant lesions as epithelial cells 

acquired progenitor-like features. By ordering epithelial cells along this axis and analyzing the 

spatial distribution of epithelial nuclei (see Methods), we observed progressive loss of luminal 

architecture (Fig. 3g,h), reduced epithelial density accompanied with immune and stromal cell 

infiltration (Fig. 3g,i), and lesion shrinkage culminating in isolated progenitor-like cells 

embedded within stroma (Fig. 3g,j). These spatially-resolved analyses map how transcriptional 

reprogramming toward a progenitor-like state coincides with epithelial disorganization and niche 

remodeling during early lesion development (Fig. 3k). Together, these findings demonstrate that 

epithelial cells undergoing progenitor-like reprogramming progressively lose epithelial 

organization and adopt mesenchymal traits (Fig. S4c), defining a continuum of premalignant 

remodeling marked by transcriptional plasticity and early features of invasiveness—hallmarks of 

cancer cell dissemination in PDAC mouse models58.  

 

Progenitor niches resemble cancer niches 
To elucidate how progenitor-like cells reshape their microenvironment, we extended our spatial 

analyses beyond the epithelium to investigate the surrounding stromal and immune 

compartments. PDAC is characterized by a profoundly remodeled microenvironment comprised 

of activated fibroblasts and immunosuppressive myeloid cells that suppress cytotoxic T-cell 

infiltration and limit therapeutic efficacy14. Myofibroblastic cancer-associated fibroblasts 

(myCAFs), defined by Acta2, Postn, Tnc, and Tgfb1 expression59, contribute to extracellular 

matrix (ECM) deposition and promote tumor-supportive inflammation60. In parallel, monocytes 

and tumor-associated macrophages (TAMs) expressing markers such as Arg1, Spp1, and Il1b, 

are known to contribute immune suppression in PDAC and other malignancies61–64. Notably, 

these features mirror cellular programs engaged in wound repair65,66 and can arise early in 

tumorigenesis36,67,68, possibly as a regenerative response to incipient cancer cells.  

 

To reconstruct the dynamics of niche formation, we leveraged the asynchronous nature of 

tissue remodeling captured in our spatial datasets. Each tissue section contained epithelial cells 

spanning the gastric-to-progenitor continuum, surrounded by diverse stromal and immune 
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populations (Fig. S4d and Fig. S6). This spatial heterogeneity was not randomly distributed: 

epithelial cells within a given spatial neighborhood typically occupied similar positions along the 

gastric–progenitor axis, forming coherent regional patterns. We formalized these spatial 

neighborhoods by defining multicellular “niches” as all cells within a 60-μm radius of an epithelial 

cell ‘anchor’ (Fig. 4a,b). Calculating the average gastric-progenitor DC of niche epithelial cells, 

we positioned these niches along a pseudotime continuum of progenitor-like state acquisition 

(Fig. 4c), analogous to single-cell trajectory inference56,69,70. This framework allowed us to 

connect changes in epithelial transcriptional identity with progressive microenvironmental 

remodeling, revealing niche dynamics from static tissue snapshots. 

 

To examine how the microenvironment evolves across this continuum, we first assessed cell 

type composition within spatial neighborhoods. This conventional approach revealed only 

modest differences across the gastric–progenitor axis (Fig. S7a), underestimating the 

differences between the niches that surround distinct premalignant subpopulations. However, 

when we instead compared the transcriptional profiles of microenvironmental cells at either end 

of the niche continuum, we observed stark differences in niche composition: niches dominated 

by gastric-like epithelial cells were predominantly surrounded by Shh-responsive Gli1+ 

myofibroblasts71 and Maf+72, whereas niches dominated by progenitor-like cells were embedded 

in a microenvironment enriched for Itgax+ (CD11c+) monocytes/macrophages and activated 

myCAFs expressing the injury-associated ECM component Tnc73 (Fig. 4d and Fig. S7b-e). 

These findings prompted us to move beyond discrete cell types to a cell-state based framework 

for mapping continuous microenvironmental changes along the niche continuum. 

 

To resolve how the microenvironment changes along the gastric-progenitor continuum, we 

embedded all non-epithelial cells in UMAP space based on their transcriptomic profiles, and 

visualized their densities (Fig. 4e, bottom) as a function of the average gastric-progenitor DC of 

epithelial cells in their respective niche (Fig. 4e, top). This continuous, state-based framework 

revealed gradual and coordinated remodeling of the fibroblast and myeloid compartments, with 

progressive enrichment of Itgax+ monocyte/macrophages and myCAFs expressing ECM and 

TGFβ-related genes (e.g., Postn, Tgfb1, Tnc) (Fig. 4f). Notably, myofibroblasts expressing the 

Ccn1 and  Ccn2, two members of the matricellular CCN family induced by YAP signaling, TGFb, 

and hypoxia, among other forms of stress74, were enriched around progenitor-like cells with 

advanced mesenchymal features (Fig. S7c), which localized to the periphery of pancreatic 

lobules (Fig. S6), indicating zonation of progenitor-like niches along the epithelial-mesenchymal 
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plasticity axis. Therefore, niche remodeling is a progressive, spatially organized process tightly 

coupled to epithelial dedifferentiation. 

 

Shifts along the gastric-progenitor niche continuum involved gradual, compartment-specific 

gene expressing changes (Fig. 4f), reinforcing the progressive, rather than binary, nature of 

niche remodeling. Analysis of dissociated single-cell datasets from injured KC mice revealed 

that the dominant axis of transcriptional variation in fibroblast or myeloid cells mirrored the 

changes along the niche trajectory (Fig. 4f, S7d,e), indicating that spatial context is a major 

source of transcriptional heterogeneity in the premalignant pancreas. This analysis also 

revealed that myeloid cells in progenitor niche expressed markers of immune suppressive 

subpopulations, including Spp1+, Arg1+ and Il1b+ cells61,62,64, while fibroblasts upregulated 

activation markers (Acta2, Timp1, Tgfb1, Tnc) and had features of senescent myofibroblasts 

(Cdkn2a+, Cdkn2b+, Plaur+) previously linked to PDAC progression60. Together, these spatially 

resolved trajectories reconstruct a pseudo-temporal sequence of niche remodeling culminating 

in the formation of the progenitor niche— a multicellular community defined by the presence of 

ARG1+ macrophages and TNC+ myofibroblasts (Fig. 4h) that is reminiscent of the 

desmoplastic and immune suppressive microenvironment of malignant PDAC11. Importantly, 

histologically advanced lesions spontaneously arising in the KPLOH model exhibited similar 

stromal composition (Fig. 4h), implicating progenitor-like cells act as early architects of the 

malignant niche during sporadic tumorigenesis. 

 

Given that progenitor-like cells display features of senescence (see Fig. S3c-d)—a state 

implicated in both tissue repair and fibrosis75,76 —we hypothesized that their emergence reflects 

an aberrant wound-healing response co-opted by oncogenic KRAS. Consistent with this 

possibility, we noted widespread induction of a wound-healing response signature across 

stromal and immune compartments in the progenitor niche (Fig. 4g). Among the most 

upregulated genes were those encoding secreted factors such as Pgdfb and Tnfrsf12a  – 

mediators of inflammation and fibrosis77,78– alongside coordinated activation of the plasminogen 

pathway (e.g.m Plaur, Plat, Plau, Serpine1) (Fig. S7f). These findings suggest that progenitor-

like cells initiate a conserved, multi-lineage wound-healing program that, when sustained in the 

context of oncogenic signaling, drives the assembly of tumor-permissive niches. 

 

Concerted activation of inter-cellular communication modules define the progenitor 
niche 
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The tight spatial and transcriptional coupling of distinct cell states within the progenitor niche 

suggested a coordinated assembly process driven by intercellular signaling. The first generation 

of computational approaches for inferring ligand-receptor interactions from single cell data, such 

as CellPhoneDB and NicheNet, relied on correlating ligand and receptor expression in 

dissociated single-cell data79,80, without accounting for spatial context. Given that the physical 

proximity of signaling partners is often important for functional signaling, we used spatial 

transcriptomics to impose an additional constraint: requiring cells expressing cognate ligands 

and receptors to be colocalized within the same niche–to define communication potential79.  

 

We built upon our previously developed method Calligraphy, a computational approach that 

leverages the modular organization of communication genes for the discovery and prioritization 

of cell-cell interactions in single cell data37. We quantified cell-type specific expression of 

communication genes at the niche level, followed by computation of gene-gene covariance 

matrices (see Methods), and found that communication genes exhibited compartment-specific 

modular organization in our spatial data (Fig. 5a and Fig. S8a), consistent with our prior work37. 

The added spatial dimension of our data allowed us to identify communication modules 

associated with the progenitor niche. Within each compartment, we found at least one 

communication module with enriched expression in the surroundings of progenitor-like cells, 

indicating that spatially coordinated signaling may contribute to the emergence of these 

multicellular communities.  

 

Inspection of cognate ligand-receptor pairs between communication modules from distinct 

cellular compartments operating in the progenitor niche revealed signaling axes spanned 

multiple modalities, including juxtacrine signaling (e.g., epithelial Jag1 – fibroblast Notch3); ECM 

production coupled to receptor upregulation (e.g., fibroblast Postn and Tnc – epithelial Itgb3 and 

Sdc1); and paracrine interactions (e.g, epithelial Pdgfb – fibroblast Pdgfrb; myeloid Nrg1 – 

epithelial Itgb3), potentially mediating MAPK activation in receiving cells81 (Fig. S8b). In 

contrast, ligand–receptor pairs expressed in spatially segregated compartments (e.g., epithelial 

Lif – fibroblast or myeloid Lifr) (Fig. S8b) lacked communication potential and may reflect 

emergent spatial patterning shaped by antagonistic interactions82.  

  

To identify signaling interactions most likely to drive progenitor niche formation, we prioritized 

receptor-ligand pairs that not only co-localized within the niche but also increased in abundance 

along the gastric–progenitor axis. Such differentially engaged signaling axes are strong 
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candidates for mediating state-specific changes underlying emergence of the progenitor niche. 

For example, we observed progressive and coordinated upregulation of cognate ligand–

receptor pairs along the average gastric–progenitor DC axis, including myeloid Il18 – epithelial 

Il18rap and epithelial Csf2 – myeloid Csf2rb (Fig 5b,c). Importantly, spatial covariation is not 

strictly required to determine signaling potential: selective upregulation of a ligand or receptor in 

one compartment—paired with broad expression of its cognate partner—may also imply 

spatially constrained communication potential. For example, Tgfb1 is selectively upregulated in 

epithelial, fibroblast, and myeloid cells of the progenitor niche (Fig. 5d), potentially activating 

TGFβ signaling within adjacent epithelial populations that ubiquitously expresses Tgfbr1 and 

Tgfbr2 (Fig. S8c)–a pattern consistent with the enrichment of TGFβ transcriptional signatures in 

progenitor-like cells (Fig. S3b). 

  

Together, these findings support a model in which progenitor niches arise through a self-

organizing circuit of spatially-constrained, reciprocal intercellular signaling. Oncogenic KRAS 

activation leads to the emergence of progenitor-like epithelial cells which express a distinctive 

set of signaling ligands and receptors that contribute to the communication potential of this 

premalignant subpopulation and its microenvironment. These stromal populations, in turn, 

engage in feedback signaling—via ligand production or extracellular matrix remodeling—that 

may stabilize and sustain the progenitor-like state, reinforcing the spatial and transcriptional 

architecture of the niche (Fig. 5e). The net result of these self-reinforcing circuits is the 

coordinated assembly of a cancer-like ecosystem that may promote cancer initiation. 

 

Oncogenic Kras inhibition dismantles the progenitor niche 

The highly coordinated nature of progenitor niche assembly raised the possibility that perturbing 

a single key component could destabilize the entire system. Given that oncogenic KRAS drives 

expression of communication modules that define the progenitor state (Fig. S8d)37, we 

hypothesized that this population orchestrates niche formation by rewiring intercellular 

communication. Moreover, because progenitor-like cells exhibited heighted KRAS activity (see 

Fig. 2d), we hypothesized that the maintenance of this state and broader niche architecture 

might depend on persistent oncogenic KRAS signaling. 

 
To test the cell state and tissue-wide consequences of removing this signal, we subjected 

treated KPLOH mice to acute pancreatitis, followed by a 48 hour pulse of MRTX11383, a mutant 

KRASG12D-specific small molecule inhibitor (Fig. 6a and Methods). This short-term perturbation 
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enabled us to determine the immediate effects of perturbing KRAS signaling without directly 

targeting their microenvironment. Histological evaluation confirmed target engagement, as 

evidenced by the reduced phospho-ERK (p-ERK) levels in the epithelial compartment (Fig. 
S9a). Strikingly, this treatment triggered a rapid depletion of HMGA2+ progenitor-like cells 

without ablating the entire premalignant epithelium (Fig. 6b). Single cell transcriptional profiling 

coupled with differential abundance analysis using Milo84, revealed that progenitor-like cells 

were the most depleted upon acute oncogenic KRAS inhibition. In addition, gastric chief-like and 

pit-like cells– characterized by gene expression signatures of PanIN and the classical PDAC 

subtype40– were also depleted, albeit to a lesser extent (Fig. 6f, Fig. S9b,c). These results 

demonstrate that the maintenance of the progenitor-like state is exquisitely dependent on 

persistent oncogenic KRAS signaling. 

 

Our scRNA-seq profiling revealed other informative changes. For example, ADM cells remained 

but showed transcriptional changes consistent with acinar recovery (Fig. S9d-,e), likely 

representing the initial phase of restoration of a normal pancreas histology that results from 

chronic oncogenic KRAS inhibition16,85. Moreover, we observed coordinated downregulation 

KRAS driven transcriptional programs, p53 target genes, and Cdkn2a expression (Fig. S9f), 
changes largely attributable to depletion of the progenitor compartment (Fig. 6b and Fig. S9g). 

Notably, rare residual progenitor-like cells retained high expression of these programs, 

suggesting incomplete KRAS inhibition or alternative mechanisms for sustaining tumor 

suppressive responses (Fig. S9g). Therefore, sustained oncogenic KRAS signaling is essential 

for maintaining progenitor-like epithelial states that also engage tumor suppressive responses in 

the injured pancreas. 
 

To assess how depletion of the progenitor-like population impacts surrounding tissue, we 

applied the Xenium platform to MRTX1133-treated (n=4) and untreated (n=4) tissues collected 

48h after the first inhibitor dose, analyzing a total of 2,686,667 cells. Spatial analysis revealed 

widespread shifts in cellular states across compartments, including the expected loss of 

progenitor-like cells (Fig. 6c and Fig. S10a) accompanied by striking depletions in Tnc+ 

myofibroblasts and Itgax+ macrophages/monocytes, otherwise enriched in the progenitor niche 

(Fig. 6e). To systematically quantify these changes, we adapted Milo84 to our spatial framework 

(Fig. S10b and Methods), assessing how progenitor-like cell depletion triggered by MTRX1133 

treatment altered the abundance microenvironment state associated with the progenitor niche. 

This analysis confirmed  that the microenvironment cells most tightly associated with progenitor-
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like cells – Tnc+ myofibroblasts and Itgax+ macrophages/monocytes – were preferentially 

depleted upon oncogenic KRAS inhibition (Fig. 6d and Fig. S10c,d), whereas populations 

excluded from progenitor niches, such as Gli1+ myofibroblasts, became enriched (Fig. 6f and 
Fig. S10c). Although other premalignant subpopulations, including gastric pit and chief-like 

cells, were also affected (Fig. 6f and Fig. S9b,c), the predominant effect of MRTX1133 

treatment was the collapse of the progenitor niche itself (Fig. 6d–f). These data imply that 

progenitor-like cells actively shape their environment and that targeted depletion of this state is 

sufficient to collapse the entire niche. 

   

p53 naturally collapses the progenitor niche 

Although oncogenic KRAS inhibition rapidly dismantles the progenitor niche, this injury induced 

tissue state also resolves naturally if inflammation subsides (see Fig. 3b)37. Because progenitor-

like cells activate tumor suppressive programs, including those governed by p53, we examined 

how p53 inactivation influences progenitor-like cell dynamics and niche architecture using a 

conditional mouse model that permits spatial and temporal control of endogenous p53 

expression54 (Fig. 7a). Specifically, the KCshp53 model is derived from multiallelic ES cells and 

features Cre-dependent activation of oncogenic KrasG12D and a mKate-coupled reverse 

tetracycline transactivator (rtTA), enabling epithelial-specific induction of tetracycline-responsive 

transgenes encoding either a GFP-linked p53-targeting shRNA (shp53) or a non-targeting 

shRNA control (targeting renilla luciferase, hereby referred to as shCtrl) upon doxycycline 

treatment. This system affords synchronous p53 knockdown in pre-tumor p53 proficient cells 

(mKate2+/GFP+) while avoiding confounders associated with chronic p53 inactivation in 

traditional KPC models20. 

  

We first examined how p53 modulates progenitor-like cell dynamics and cell state transitions 

following injury. Following one week of doxycycline treatment to induce shRNA expression, 

KCshp53 and KCshCtrl mice were treated with caerulein to induce pancreatitis and euthanized 3 

weeks later for histological and molecular analysis. Reinforcing the notion that p53 selectively 

targets this subpopulation, p53 suppression produced a marked expansion of HMGA2+ 

progenitor-like cells compared to controls (Fig. 7b and Fig. S11a,b). Furthermore, beyond 

simply promoting progenitor-like cell persistence, scRNA-seq analysis revealed that p53 

inactivation led to emergence of a distinct cell state displaying more mesenchymal features, 

such as increased expression of Vimentin (Vim) (Fig. 7c and Fig. S11a,b). We refer to the state 
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present in both p53 wild-type and p53-suppressed tumors as progenitor 1, and the 

mesenchymal-like state arising specifically upon p53 loss as progenitor 2.  

 

Differential gene expression analysis revealed that in addition to acquiring mesenchymal 

features, progenitor 2 states cells activated inflammatory responses and oncogenic programs, 

including interferon signaling, Yap signaling, and glycolysis (Fig. 7c–f, and Fig. S11e,f). 
Furthermore, diffusion component analysis revealed that these features of the progenitor 2 

subpopulation emerged progressively along the gastric-progenitor axis as a continuation of the 

gastric-progenitor diffusion component (Fig. 7c,d). These results suggest that p53 loss 

facilitates the progression of a molecular program that is initiated by oncogenic KRAS signaling 

in progenitor-like cells. 

 

To disentangle direct effects of p53 loss from those driven by shifts in cell state composition, we 

performed a more focused analysis (Fig. S11c–e). Across all progenitor-like cells, p53 

suppression broadly downregulated canonical p53 targets and epithelial identity genes (e.g., 

Cdh1, Epcam) (Fig. S11c); however, when restricting comparisons to clusters occupying 

comparable positions along the gastric–progenitor axis, only p53 target gene repression 

persisted (Fig. S11d and Methods). Therefore, p53 loss has two separable effects: it disables 

its canonical transcription program and licenses further plasticity that enables epithelial cells to 

adopt more mesenchymal cell states. 

 

We next asked how p53 loss influences the composition of the progenitor niche using the 

Xenium platform (9 tissues from KCshp53 mice and 5 tissues from KCshRen mice, 4,611,972 cells 

total). While stromal cell type abundances were similar globally between p53-proficient and 

deficient tissues three weeks post-injury (Fig. S12a), this masked substantial spatial 

heterogeneity (Fig. S12b,c). Knockdown of p53 caused progenitor niches to form expansive, 

contiguous lesions that spanned entire pancreatic lobes, a pattern that was absent from controls 

(Fig. S12c). These large tissue domains produced the most striking changes in 

microenvironment composition.   

 

In the fibroblast compartment, Tnc+ activated myCAFs localized near progenitor-like cells 

regardless of p53 status (Fig. 7g,h), but their abundance did not scale with progenitor-like cell 

expansion (Fig. S12a). In contrast, myCAFs expressing the members of the matricellular CCN 

family Ccn1 and Ccn2 were increased in progenitor niches74,86. Their expansion upon p53 
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knockdown is consistent with their association with rare Vim+ progenitor-like cells in KCshCtrl 

mice (Fig. S6 and Fig. S7c). Notably, p53-deficient progenitor-like cells upregulated multiple 

ECM components, as well as the mechanosensing gene Piezo2 (Fig. S11e), suggesting that 

this premalignant subpopulation actively responds to, and potentially reshapes, the fibrotic 

microenvironment of the premalignant pancreas. 

  

The most profound effects of p53 loss were in the myeloid compartment, where the expansion 

of progenitor-like cells was accompanied by the accumulation of Itgax⁺/Cd274high (PD-L1high) 

macrophages (Fig. 7g,h). Single-cell and spatial transcriptomic analyses confirmed that these 

PD-L1high cells constitute a distinct cell state (Fig. S12d,e), whose abundance increased sharply 

once progenitor-like cells exceeded a threshold and then scaled proportionally with niche size 

(Fig. S12f). Single-cell profiling revealed that, compared to their Cd274low counterparts, 

Itgax⁺/Cd274high monocytes/macrophages upregulated immunosuppressive genes (e.g., Arg1, 

Spp1, Marco) 62,64,87, as well as markers of the alternative macrophage activation state (e.g., 

Chil3, Ms4a8a) 88,89, and downregulated MHC class II components (e.g., H2-Eb1, H2-Aa, Cd74) 

(Fig. S12g). These observations suggest that p53-deficient progenitor cells drive the expansion 

and evolution of an immune-privileged niche. 

  

Taken together, these findings demonstrate that either KRAS inactivation or p53 engagement is 

sufficient to dismantle the progenitor-like population and its associated niche. While oncogenic 

KRAS activity promotes epithelial–mesenchymal plasticity and microenvironmental 

remodeling—hallmarks of the regenerative phase of wound healing—p53 activation restrains 

these processes, collapsing the progenitor niche and mimicking the resolution of tissue repair. 

Beyond its well-established role in restraining genomic instability27,90,91, these results position 

p53 as a critical barrier to both cell-intrinsic and microenvironmental plasticity at a key inflection 

point between benign and malignant states. 

 
Discussion 
By directly visualizing the cellular and molecular events that promote or restrain the benign-to-

malignant transition, our study identifies a progenitor-like cell state as the pivotal target of 

oncogenic and tumor-suppressive forces during early pancreatic tumorigenesis. We show that 

this transiently emergent population—induced by oncogenic Kras in the context of tissue 

injury—engages tumor suppressive pathways governed  by p53, CDKN2A, and SMAD4, 

triggering senescent-like programs and activating intercellular communication programs that 
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remodel the surrounding environment. Likely through reciprocal signaling across epithelial, 

fibroblast, and immune compartments, progenitor-like cells assemble a multicellular niche with 

hallmarks of invasive cancer. Malignant progression ensues when this progenitor-like state 

escapes tumor-suppressive surveillance, enabling immune evasion, persistent epithelial 

plasticity, and stromal co-option. These findings position the progenitor-like state as a 

gatekeeper of malignant transformation and define a discrete window during which targeting the 

signaling circuits and cell states that support niche assembly may allow for effective cancer 

interception. 

 

This work was enabled by methodological innovations that directly visualize early malignant 

progression in situ. Genetically engineered models that mark spontaneous p53 loss captured 

sporadic tumor initiation27,92,93, while high-resolution spatial transcriptomics technologies94 

reconstructed the multicellular ecosystems surrounding progenitor-like cells. Anchoring spatial 

analysis on transitional epithelial states and mapping continuous gene expression trajectories 

revealed coordinated shifts in epithelial plasticity, niche remodeling, and tissue architecture 

along a path to malignancy. Transcriptional gradients in premalignant cells guided the dissection 

of dynamic and progressive remodeling events that assemble the progenitor niche – a cancer-

like environment characterized by immunosuppression and activated wound healing programs. 

These analyses, analogous to pseudotime construction in dissociated data56,69,95–99, provide an 

inferred timeline of niche-state transitions and establish a generalizable framework for 

investigating how cell state transitions orchestrate tissue-scale organization in regeneration, 

fibrosis, and early tumor evolution.  

 
Using these methods, we pinpoint when, where, and how key oncogenic and tumor-suppressive 

forces act during malignant progression. Surprisingly, the major tumor suppressor pathways 

implicated in PDAC—p53, CDKN2A, and SMAD4—are not broadly engaged across the 

premalignant epithelium, but instead converge on a discrete progenitor-like population that 

displays high KRAS signaling and is transcriptionally poised for transformation. Single-cell 

analyses of other premalignant tissues40,47,100–102 have identified senescent-like/transitory cells 

resembling the progenitor populations described herein, suggesting that targeting progenitor-like 

programs may be a conserved tumor suppressive mechanism. Intriguingly, the selective 

engagement of tumor suppressors in the highly plastic progenitor-like state echoes the long-

standing finding that p53 and p16INK4A (encoded in the CDKN2A locus) suppress induced 

pluripotency103–107—the ultimate example of cellular plasticity. Viewed through this lens, our 
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study provides direct visual evidence that p53’s tumor suppressive function stems from its role 

as a guardian of plasticity, facilitating the resolution of regenerative or progenitor-like states that, 

if unchecked, promote maladaptive remodeling and tumorigenesis. Our data suggest that the 

decision between benign persistence and malignant progression occurs within the narrow 

window defined by the emergence, activation, and resolution of the progenitor-like state. 

 

We further revealed the potential for bidirectional communication between the premalignant 

epithelial cells and their microenvironment within the progenitor niche. This signaling appears 

enabled by concerted upregulation of communication modules across compartments–TGFβ 

signaling, ECM/ECM receptor communication, and immune cytokine- mediated heterotypic 

crosstalk. The modular and reciprocal nature of these interactions suggest that positive 

feedback loops stabilize the progenitor niche, mirroring systems-level architectures that mediate 

regenerative and developmental transitions108. Supporting this model, acute KRAS inhibition not 

only depletes progenitor-like cells but simultaneously dismantles their niche, leading to rapid 

loss of immunosuppressive macrophages and activated myofibroblasts. These findings reveal 

that malignant progression is not driven by epithelial transformation alone, but by the emergent 

properties of a multicellular ecosystem. 

 

These insights converge on a broader principle: the malignant potential of progenitor-like cells is 

shaped by the interplay between genetic lesions, epithelial plasticity, and microenvironmental 

remodeling. Prior studies have shown that oncogenic KRAS derails normal regenerative 

programs, driving chromatin remodeling that induces a highly plastic progenitor state with 

heightened cell–cell communication potential37—features that mimic physiological wound 

healing but become pathologically sustained in cancer109. In this context, the progenitor-like 

state functions as both a target of tumor suppressive engagement and a hub where persistent 

KRAS signaling impedes wound resolution, such that targeting oncogenic KRAS activity or 

engaging p53 transcriptional programs allows resolution to proceed. These results align with 

emerging evidence that p53 restrains exaggerated injury responses in other epithelial 

tissues100,110,111 and support a model in which p53 and KRAS co-modulate both cell-intrinsic 

programs and tissue-scale dynamics to govern cancer risk. 

 

This study reveals that oncogenic KRAS inhibition and p53 activation converge on depleting a 

progenitor-like state that would otherwise seed a tumor-permissive niche, marking a decisive 

point in malignant progression. While p53 restricts this state, its loss enables persistence, 
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progression towards advanced mesenchymal states, and immune evasion, rendering the niche 

susceptible to transformation. These findings help contextualize the activity of KRAS inhibitors 

in advanced PDAC, where they preferentially eliminate basal/mesenchymal-like populations and 

remodel the tumor microenvironment, in some instances enhancing responsiveness to 

immunotherapy112–115. Our data suggest that these effects reflect, in part, collapse of the 

progenitor-like state and restoration of regenerative resolution, thereby permitting immune 

surveillance. Given the strong association between TP53 mutations and aggressive, treatment-

refractory cancers, targeting p53-mutant tumors has long been a central goal in oncology. Our 

data argue that interception efforts should target not only initiating mutations but also the 

specific cell states and multicellular ecosystems in which p53 operates. By revealing how p53 

naturally suppresses malignant progression, our findings suggest that eliminating the 

progenitor-like states it constrains may represent a tractable and broadly applicable therapeutic 

strategy—one that phenocopies p53 function without requiring its restoration. 
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FIGURE LEGENDS 

Figure 1. Capturing spontaneous loss of p53 throughout the premalignant-to-malignant 
spectrum. a. KPLOH mouse model. Loss of GFP linked to the only wild-type p53 copy in the cell 

reports p53 loss of heterozygosity. b. Sampling strategy to characterize progression from 

premalignant to malignant states. c. Representative fluorescence image of a pre-tumor stage 

pancreas section. Arrowheads point to rare cells that lost GFP fluorescence upon p53 LOH. d. 
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Force-directed layout (FDL) of single-cell transcriptional data from sorted KrasG12D epithelial 

cells, colored by mouse stage and p53 status. e. Projection of transcriptional signatures of major 

subpopulations identified in premalignant pancreas. Multiple transcriptional signatures were 

used to annotate cell type (Methods). ADM, acinar-to-ductal metaplasia. f. Diffusion distance 

from pre-tumor p53-proficient or p53-deficient cells to the closest cancer-like cell. g. Single-cell 

karyotypes of pre-tumor p53-deficient cells inferred from scRNA-seq (Methods). Rows represent 

individual cells and columns represent genes, ordered by genomic position. Colors represent 

inferred loss or gain of genomic material. Chr, chromosome. h. FDL of pre-tumor p53-deficient 

cells, colored by genomic state. 

 

Figure 2. p53 is maximally active in rare premalignant cells during tumor initiation. a. 
Expression of known p53 targets and markers of progenitor-like cells in pre-tumor p53-proficient 

and deficient cells, as a function of cell state. b. Representative smFISH image of pre-tumor 

stage pancreas, probing for p53 targets and the progenitor-like state marker Msn. c. FDL of 

KrasG12D-positive epithelial cells along PDAC progression, colored by p53 average expression of 

p53 canonical targets shown in (a). d. Expression of tumor-suppressive and oncogenic gene 

signatures in pre-tumor p53-proficient cells or tumor p53-deficient cells (PDAC). p53 canonical 

signature derived from p53 targets in Fig. 2a. Other signatures shown are: p53 curated targets 

(Fisher)116; p53 TSAG, tumor suppression–associated genes117; p53-restoration28; Cdkn2a 

mRNA; TGFβ-dependent SMAD4 targets118; HALLMARK EMT, epithelial-to-mesenchymal 

transition119; senescence UP52; UP in mouse PDAC (this work, see Methods); Kras/Fosl145; 

Kras injury38; glycolysis/warburg (curated list, see Methods). e. UMAP of cells from healthy 

human pancreas and PDAC tissue in3, colored by progenitor-like signature. PDAC cells and 

acinar cells are grayed out to facilitate visualization of duct-like and ADM cells from donors with 

and without cancer. Box highlights cells that exhibit highest progenitor-like signatures. f. 
Expression of tumor-suppressive and oncogenic signatures in pancreatic epithelial cells with 

and without donors. Different rows of ADM/duct-like cells correspond to PhenoGraph clusters. 

Colors represent z-score of average signature scores in each column. Box highlights the two 

PhenoGraph clusters with highest progenitor-like signatures in cells from donors without cancer. 
 

Figure 3. Transcriptional and morphological states undergo coordinated changes 
in the premalignant epithelium. a. Experimental timeline for tissue collection after inducing 

caerulein-induced pancreatitis in KC mice. b. Fraction of progenitor-like epithelial cells in 

scRNA-seq data as a function of treatment condition and time. c. Representative images of 
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smFISH staining for the progenitor-like marker Msn. The three fields of view are from the same 

tissue. Scale bars, 50 μm. d,e. Spatial representation (d) or single-cell transcriptional 

embedding (e) of Xenium data annotated by signatures of major premalignant subpopulations. f. 
Projection of gastric–progenitor diffusion component in transcriptional embedding of single-cells 

derived from Xenium data. g. Representative fields of view of premalignant epithelial lesions in 

Xenium data. Segmented nuclei are pseudo-colored by their gastric–progenitor DC value, using 

the colormap in (f). h–j. Distributions of lumen score (h), epithelial fraction in local spatial 

neighborhood (i) and lesion size (j) as a function of gastric–progenitor DC in epithelial cells (see 

Methods for details on the definition and quantification of morphological parameters). k. 
Schematic of the changes in lesion morphologies along the gastric-progenitor DC continuum.  
 

Figure 4. Continuous cellular and molecular remodeling events during the assembly of 
the progenitor niche. a. Representative section of premalignant pancreas harvested 2 days 

post-injury, analyzed using the Xenium platform and colored by cell type. b. Projection of 

gastric–progenitor DC in premalignant cells. Epithelial cells not categorized as gastric-like or 

progenitor-like are outlined in dark blue, but not pseudo-colored. c. Niches, comprising all cells 

within a 60-μm radius of a central anchor epithelial cell, are ordered by the average gastric–

progenitor DC of their constituent epithelial cells. d. Location of individual mRNA molecules 

associated with select myofibroblasts and monocyte/macrophage subpopulations in niches 

depicted in (c). e. Contour plots denote the density of niche epithelial cells in select bins along 

the average gastric-progenitor DC (top) and corresponding shifts in the density of 

microenvironment cells (bottom). f. Average niche expression of select genes in (left) epithelial, 

(middle) fibroblast or (right) myeloid immune cells along the average gastric-progenitor DC. 

Niches are ordered by average gastric–progenitor DC value, divided into 100 equal bins. Dotted 

lines indicate DC value at which epithelial cells begin expressing progenitor-like markers. 

Communication genes associated with progenitor niches are highlighted in red. g. Average 

expression of wound-healing response genes (GO Biological Processes) from our Xenium 

panel. Each dot represents a single biological replicate (n=15 mice). Values denote the average 

z-scored expression of wound-healing genes in the specified cellular compartments, in either 

gastric or progenitor niches. P-values, two-tailed Wilcoxon Rank Sums Test . h. 
Immunofluorescence staining for cellular states enriched in the progenitor niche, as a function of 

PDAC progression. Scale bars, 100 μm. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2025. ; https://doi.org/10.1101/2025.06.10.656791doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.10.656791
http://creativecommons.org/licenses/by/4.0/


 

25 
 

Figure 5. Intercellular communication modules define the progenitor niche. a. 
(Top) Gene-gene correlation matrix of communication gene niche expression in distinct cellular 

compartments. (Middle) Average expression of communication genes in canonical gastric of 

progenitor niches. (Bottom) Communication modules identified through graph-based community 

detection120. Boxes highlight communication modules associated with the progenitor niche in 

each compartment (see Methods). b-d. (Top) Each dot is a single mRNA detected in a specific 

cellular compartment. Scatter plots show colocalization of cognate ligand-receptor pairs from (b) 

IL-18, (c) GM-CSF signaling, or (d) Tgfb1 produced in different cellular compartments (see Fig. 
S8c for markers of progenitor-like cells and associated niche cells in the same tissue region). 

(Bottom) Niche expression of cognate ligands and receptor pairs from (b) IL-18, (c) GM-CSF, or 

(d) TGFβ signaling. Each dot denotes the average niche gene expression of the specified 

communication genes in a specific bin along the gastric-progenitor niche continuum. e. 

Schematic of multicellular interaction circuits enabled by engagement of communication 

modules in the progenitor niche. 
 
Figure 6. Consequences of acute oncogenic Kras inhibition in the premalignant 
pancreas. a. Timeline of acute oncogenic Kras inhibition in the premalignant pancreas. b. 
Representative images and quantification of HMGA2 staining in KPLOH mice treated with vehicle 

(n = 3) or MRTX1133 (n = 4). Tissue was collected 2 days after the first inhibitor or vehicle dose. 

Scale bars, 50 μm. Each dot in quantification corresponds to an individual mouse; bar 

corresponds to average value. c. Two-dimensional density representation of Xenium single-cell 

gene expression data from mice treated with vehicle (n = 2) or MRTX1133 (n = 4). Purple 

contours, density of transcriptional states in the vicinity of progenitor-like epithelial cells; pink 

contours, density after MRTX1133 treatment. d. Differential abundance analysis of 

transcriptional neighborhoods of fibroblasts or myeloid cells in MRTX1133-treated compared to 

vehicle-treated samples. Each dot represents a transcriptional neighborhood as defined by 

MiloR84 (see Methods). Color represents the enrichment of progenitor-like cells in the spatial 

vicinity of cells in the transcriptional neighborhood. Significantly enriched or depleted 

transcriptional neighborhoods are outlined in black. e. Representative images and quantification 

of TNC staining in KPLOH mice treated with vehicle (n = 3) or MRTX1133 (n = 4). Tissue was 

collected 2 days after the first inhibitor or vehicle dose. f. Representative images of Xenium data 

from vehicle or MRTX1133 treated mice. Each dot is a cell centroid, and colors represent select 

cell states. Scale bars, 250 μm. b,e. Scale bars, 50 μm. Each dot in quantification corresponds 
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to an individual mouse; bar corresponds to average value. P-value, Two Tailed Wilcoxon Rank 

Sums test. 

 

Figure 7. Consequences of p53 knockdown in the premalignant pancreas. a. Mouse model 

for doxycycline-inducible knockdown of p53 in the premalignant pancreatic epithelium. b. 
Representative images and quantification of HMGA2 staining 3 weeks post-pancreatitis in 

shp53 (n = 11) or shRen (n = 10) mice. c. Two-dimensional density representation of single-cell 

transcriptomes from shRen (n = 4) or shp53 (n = 5) KrasG12D+ pancreatic epithelial cells. d. 
Randomly sampled shp53 or shRen cells (top) and average score of expression signatures in 

shRen or shp53 cells (bottom) binned along the gastric–progenitor DC (bins <10 cells are not 

plotted). e,f. Representative images and quantification of VIM staining 3 weeks post-pancreatitis 

in shp53 (n = 10) or shRen (n = 10) mice. g. Xenium-based quantification of microenvironment 

subpopulations associated with the progenitor niche, as a function of the fraction of progenitor-

like cells in the tissue. Each dot is a single biological replicate. h. Representative images of 

Xenium data from KCshRen or KCshp53 mice 3 weeks post pancreatitis. Each dot is a cell centroid, 

and colors represent select cell states. Side panels show the abundance of Ccn2+ 

myofibroblasts or Itgax+/Cd274high macrophage/monocytes in their associated sample. Scale 

bars, 500 μm. b,e. Scale bars, 50 μm. Each dot in quantification corresponds to an individual 

mouse; bar corresponds to average value. P-value, Two-tailed Wilcoxon Rank Sums test. 

 

Supplementary Figure S1. Annotation of spontaneous tumorigenesis single cell data. 
(Related to Main Figure 1). a,b. Projection of cells from pre-tumor (a) or tumor (b) stage 

samples into force directed layouts of scRNA-seq data. Each dot is a single cell colored by 

sample of origin. c. Representative FACS plot showing frequency of mKate2+/GFP+ (p53 

proficient) or mKate2+/GFP- (p53 deficient) cells harvested from 4.5 months old KPLOH mouse. 

d. Projection of GFP mRNA expression in individual KrasG12D+ epithelial cells visualized in a 

force-directed layout. e. Expression of transcriptional signatures from major premalignant cell 

states derived from Burdziak, Alonso-Curbelo et al.37 in premalignant cells from pre-tumor stage 

mice. p53-deficient cells from PDAC samples, or microtumor clusters are grayed-out. f. 
Expression of transcriptional signatures from major premalignant cell states in premalignant cell 

clusters from pre-tumor stage mice. Clusters were identified using PhenoGraph (k=30). 

Signatures were computed as the average z-scored expression of signature genes in each cell. 

Scores were then averaged over all cells from a single cluster. Average signatures were 

standardized over all PhenoGraph clusters for cluster annotation and visualization. g. 
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Visualization of diffusion component 2 (DC2) in force directed layout. DC2 captured continuity 

between gastric-like and progenitor-like premalignant cells. h. Distribution of number of cells 

along DC2. Dashed line represents the DC2 threshold value used to identify progenitor-like 

cells. i. Discretization of the gastric-progenitor continuum using threshold DC2 threshold 

identified in (h). j. Expression of marker genes for distinct premalignant states and PDAC in 

distinct subpopulations of KrasG12D+ epithelial cells. Dot size represents the fraction of cells in 

the specified cell state that express the gene. Color represents the average gene expression in 

cells that express the gene. k. Distributions of premalignant states as a function of sample and 

p53 status. 

 

Supplementary Figure S2. Identification of microscopic PDAC in pre-tumor stage mice. 
(Related to Main Figure 1). a. Inferred karyotypes from single cell transcriptomes. Each row in 

karyotype matrices corresponds to a single cell, and columns correspond to genes ordered by 

chromosomal location. Colors represent estimates of copy number change. Cells are grouped in 

distinct blocks based on PDAC development stage (pre-tumor vs tumor), p53 status (proficient 

vs deficient), and the extent of karyotype changes. Within each block, cells are grouped by 

sample of origin, and clustered by karyotype profile. Dashed lines relate cells from the same 

sample of origin in different karyotype classes. b. Representative immunofluorescence images 

of microscopic PDAC detected in KPLOH mice. Slides were stained for mKate2 and GFP to 

assess p53 genetic status, as well as the progenitor state marker HMGA2. c. Karyotype profiles 

of p53 deficient cells in a mouse harvested at the pre-tumor stage. A subset of cells show 

karyotype and transcriptional profiles consistent with PDAC (microtumor cells). Another subset 

shows karyotype and transcriptional profiles consistent with progenitor-like and other 

premalignant states. Boxes highlight groups of individual cells with premalignant transcriptional 

profiles that share a subset of karyotype changes present in microtumor cells. c. Projection of 

individual p53 deficient cells from a single sample, colored based on their karyotype status. Pink 

cells with dark outline denote premalignant-like cells with a subset of karyotype changes shared 

with microtumor cells. 

 

Supplementary Figure S3. Progenitor-like signatures in individual mouse and human 
samples (Related to Main Figure 2). a. Expression of canonical p53 targets and progenitor 

state markers as a function of p53 status. Each row documents summarized expression within 

individual samples. Parenthesis show the number of cells aggregated in each row. b. Gene set 

enrichment analysis computed using log2 fold changes in gene expression between p53 
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proficient progenitor-like cells and other p53 proficient premalignant cells, as estimated by 

differential gene expression analysis (see Methods). c. Expression of representative genes 

upregulated in progenitor-like cells, corresponding to tumor suppressive and oncogenic 

signatures shown in Main Fig. 2d. d. Fraction of isoform-specific Cdkn2a reads in pre-tumor p53 

proficient samples. e. Distribution of oncogenic and tumor suppressive signature scores shown 

in Main Fig. 2d in p53 proficient cells, as a function of cell state (progenitor-like or other). e. 
Average z-scored expression of representative genes from oncogenic and tumor suppressive 

signatures associated with the progenitor-like state in human-derived single cell data from 

Carpenter, Elhossiny, Kadiyala, et al.3. Rows in the middle block correspond to PhenoGraph 

clusters of ADM/duct-like cells (see Methods). Box highlights PhenoGraph clusters with the 

highest expression of progenitor-like signatures in Main Fig. 2f. e. Projection of individual cells 

from human pancreatic samples in UMAP. ADM/duct-like cells are outlined. Cells in 

PhenoGraph clusters with highest progenitor-like signatures are colored based on donor of 

origin. 

 

Supplementary Figure S4. Identification of progenitor-like lesions upon pancreatic injury 
(Related to Main Figure 3). a. Staining of progenitor-like markers in tissue section from a 6 

weeks old pre-tumor stage KPLOH mouse 2 days post pancreatitis. Data was collected using the 

Lunaphore COMET multiplex immunofluorescence platform. White box highlights a progenitor 

lesion. Side fields of view show overlays of individual progenitor markers with counterstains for 

premalignant epithelial (GFP) and nuclei (DAPI). b. Immunofluorescence staining and 

quantification of p53 protein levels in 6-7 weeks old KCshRen mice 2 days post pancreatitis. 

Images show staining for MSN to identify progenitor lesions (left) and staining for p53 in an 

adjacent lesion (right). Cyan and magenta outlines highlight epithelial lesions manually identified 

as either MSN- or MSN+, respectively, based on comparison between adjacent tissue sections, 

blinded for p53 staining. c. Immunofluorescence staining of the mesenchymal marker VIM in 

KCshRen mice harvested 3 weeks post pancreatitis. 

 

Supplementary Figure S5. Use of reference single cell dataset and smFISH staining for 
determining expression thresholds for Xenium panel design (Related to Main Figures 3 
and 4). a. Distribution of gene expression in single cell reference datasets. Each dot represents 

a meta-cell computed using SEACells121 (see Methods). Expression values are plotted in linear 

scale. Genes are ordered by their highest expression in any SEACell. Dashed lines represent 

expression thresholds that guided selection of markers to include in our Xenium panel (see 
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Methods). b. Representative smFISH staining of genes shown in (a) in the premalignant 

pancreas. Regions of interest, highlighting positive cells, are shown in high resolution below 

each tissue image. Scale bars 20 μm. 

 

Supplementary Figure S6. Spatial patterning of transcriptional heterogeneity in distinct 
cellular compartments of the premalignant pancreas (Related to Main Figures 3-5). (Left 

panels) Representative images of spatial organization of transcriptional clusters identified in 

major cellular compartments in Xenium data (see Methods). Each dot represents a single cell 

centroid, and cells are colored based on transcriptional state. The tissue shown is derived from 

a KCshRen mouse, 3 weeks post-pancreatitis. (Middle panels) UMAP visualization of 

transcriptional clusters depicted in left panels. (Right panels) Xenium-based quantification of 

representative marker genes for transcriptional clusters identified in each cellular compartment. 

 

Supplementary Figure S7. Molecular and compositional properties of the progenitor 
niche (Related to Main Figure 4). a. Distribution of coarse cell types in niches as a function of 

the average gastric-progenitor DC in the niche (see Main Text and Methods) in Xenium samples 

from mice with Kras mutant, p53 proficient pancreatic epithelium (pre-tumor KCshRen or KPLOH), 

pooling tissue samples 2 days and 3 weeks post injury. b. Expression of select mRNA markers 

of microenvironment states associated with gastric or progenitor niches. Each dot is an mRNA. 

Circles represent niches highlighted in Main Fig. 4d. c. Frequency of select cell populations as a 

function of average gastric–progenitor DC in niche epithelial cells. Bold lines, median fraction; 

shaded areas, interquartile range. d-e. Analysis of gene expression heterogeneity in (d) 

monocyte/macrophages and (e) myofibroblasts from genome-wide dissociated single cell data. 

Data was collected from 2 mice with Kras mutant, p53 proficient pancreatic epithelium (KCshRen 

or KCshp53 without doxycycline induction of shp53), 3 weeks post pancreatitis. Cells are aligned 

and grouped in 50 bins along the major axis of variation within each cellular compartment, as 

defined by diffusion component 1 (DC1). (Top panels) Expression of genes measured in our 

Xenium panel and depicted in Main Fig. 4f, preserving the order of rows for ease of comparison. 

Bottom panels include expression of genes not measured in our Xenium panel that inform 

broader expression programs activated in the progenitor niche. f. Average expression of wound-

healing response genes (GO Biological Processes) with highest upregulation in progenitor 

relative to gastric niches, in different cellular compartments. Each dot represents a single 

biological replicate (n=15 mice). Values denote the average z-scored expression of wound-
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healing genes in either gastric or progenitor niches. P-values, two-tailed Wilcoxon Rank Sums 

Test . 

 

Supplementary Figure S8. Concerted upregulation of cognate ligand-receptor pairs in the 
progenitor niche (Related to Main Figure 5). a. Expression of representative cognate ligand-

receptor pairs with coordinated changes in expression as a function of the average gastric-

progenitor DC in the niche. Each dot is the averaged z-scored niche expression of the specified 

genes in their corresponding cellular compartment (Methods). The color and size of the dots 

corresponds to the relative frequency of gastric or progenitor-like cells in the niche. b. 
Expression of markers associated with the progenitor niche in epithelial, immune and 

fibroblasts. Each dot is an individual mRNA, colored depending on the producer cell type. c. Log 

normalized niche expression of Tgfbr1 and Tgfbr2 in gastric (navy) or progenitor-like (red) 

niches, as a function of cellular compartment. Dashed lines denote 0 expression. d. Dot plot of 

dissociated single cell expression data in pancreatic epithelial cells. First row: acinar cells from 

uninjured mice37; second row: ADM cells 2 days post pancreatic injury in the context of WT 

Kras37; third row: KrasG12D+ cells outside of the progenitor-like state, harvested 3 weeks post-

injury (this work); fourth row: KrasG12D+ progenitor-like state harvested 3 weeks post-injury 

(this work). Dot size represents the fraction of cells that express a given mRNA in the group. Dot 

color represents the level of expression in positive cells within the group. 

 

Supplementary Figure S9. Consequences of acute oncogenic Kras inhibition in 
premalignant cells (Related to Main Figure 6). a. Representative images and quantification of 

p-ERK staining in KPLOH mice treated with vehicle or MRTX-1133d. Median p-ERK signal 2 days 

after vehicle (n = 3) or MRTX1133 treatment (n = 4). b. Force-directed layout visualization of 

single cell transcriptomic data from KrasG12D+/p53 proficient pancreatic epithelial cells derived 

from MRTX1133 (n=3) or vehicle (n=3) treated mice during injury-induced pancreatitis. Panels 

show two-dimensional density maps of premalignant states (left) or treatment condition (right). 
c. Differential abundance testing for differences between MRTX1133 or vehicle-treated mice 

using MiloR84. Each dot is a transcriptional neighborhood of single cells. The size of the dots 

scales with SpatialFDR. Outlined dots show transcriptional neighborhoods that were 

differentially abundant between conditions (SpatialFDR < 0.1). Transcriptional neighborhoods 

are grouped and colored by the most abundant cell state in the neighborhood. d. Differences in 

the expression of transcriptional signatures in ADM cells as a function of treatment (MRTX1133 

vs vehicle). The log2 fold change in gene expression between conditions, as estimated by 
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differential gene expression analysis using diffxpy (https://github.com/theislab/diffxpy), was used 

as the ranking variable for gene set enrichment analysis. All signatures shown are enriched or 

depleted with FDR < 0.1. Top up- and down-regulated pathways from unbiased analysis are 

shown. e. Expression of representative genes for select gene sets identified in (d) as a function 

of treatment. Each row represents a biological replicate, denoting the number of cells in the 

group in parenthesis. f. Differences in the expression of oncogenic and tumor suppressive 

signatures shown in Main Fig. 6c, as a function of treatment (MRTX1133 or vehicle, n=3 mice 

each). Dots represent individual biological replicates. Expression signatures were computed as 

the average z-scored expression of signature genes in individual cells. Signatures were then 

averaged across all cells in a biological replicate for a final sample-level score. P-values result 

from rank sums test . g. Expression of oncogenic and tumor suppressive signatures in single 

cell data from MRTX1133 (n=3 mice) or vehicle (n=3 mice) treated KPLOH mice. Cells were 

aggregated by condition, or cell state. Parentheses indicate the total number of cells per group.  

 
Supplementary Figure S10. Consequences of acute oncogenic Kras inhibition in 
premalignant niches (Related to Main Figure 6). a. Representative Xenium images of whole 

tissue sections from vehicle (left) or MRTX1133 (right) pre-tumor stage KPLOH treated mice. 

Each dot is a single cell centroid colored by select cell states that demarcate differences 

between gastric and progenitor niches. b. Integration of niche-level analysis with differential 

abundance testing (i) For each cell, we calculate the fraction of epithelial cells annotated as 

either progenitor-like or gastric-like in their niche. The plot highlights two fibroblast cells that 

differ in the fraction of progenitor-like cells in their vicinity. The progenitor enrichment score is 

defined as the log ratio of the fraction of progenitor-like cells in the niche and the fraction of 

progenitor-like cells in the tissue. (ii) Systematic quantification of the progenitor enrichment 

score results in a tissue map that reflects continuous spatial variation in the abundance of 

progenitor-like cells in the tissue. Fibroblasts in the image are colored by their progenitor 

enrichment score. (iii) Construction of transcriptional neighborhoods as implemented in MiloR. 

For each cell in a Milo neighborhood, we extract epithelial cells in their niche (bottom). (iv) We 

use the fraction of progenitor-like cells relative to other epithelial cells in the niche of cells 

identified in (iii) to compute a progenitor enrichment score for every Milo neighborhood (see 

Methods). c. Two-dimensional density representation of Xenium single-cell gene expression 

data from mice treated with vehicle (n = 2) or MRTX1133 (n = 4). Purple contours, density of 

transcriptional states in the vicinity of progenitor-like epithelial cells; gold contours, density of 
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states depleted after MRTX1133 treatment; royal blue contours, density of states enriched after 

MRTX1133 treatment. 

 

Supplementary Figure S11. Transcriptional consequences of p53 loss in the context of 
oncogenic Kras activation and pancreatic injury (Related to Main Figure 7). a. 
Immunofluorescence-based quantification of the number of HMGA2+ (left) or VIM+ (right) 

epithelial cells in KCshp53 or KCshCtrl mice 3 weeks post-pancreatitis. Each represents a single 

mouse, bars are grouped by cohort, matching pooled data in Fig. 7a,e. b. scRNA-seq based 

quantification of progenitor-like cells or Vim+ progenitor-like cells as a function of p53 

knockdown status, 3 weeks post-pancreatitis. Each dot is a single biological replicate. p-value 

results from Two-tailed Wilcoxon Rank Sums Test. c-e. (Left) Force-directed layouts of 

KrasG12D+ pancreatic epithelial cells derived from KCshCtrl (n=4 mice) or KCshp53 (n=5 mice) 

samples, 3 weeks post caerulein-induced pancreatitis. Box highlights progenitor-like clusters. 

Cells are colored by p53 knockdown status (a,b) or by cell state (c). (Right) expression of 

canonical p53 targets and epithelial markers in progenitor-like clusters. Each row represents a 

biological replicate. The number of cells in each group is denoted in parenthesis. a. All 

progenitor-like cells in individual biological replicates were aggregated to summarize gene 

expression regardless of progression along an epithelial-mesenchymal plasticity axis. b. The 

PhenoGraph cluster that accumulates in KCshp53, but is rare in KCshCtrl was excluded from 

aggregation. c. KCshp53 cells were aggregated as a function of PhenoGraph cluster assignment 

(termed progenitor1 and progenitor2). d. Differences in the expression of transcriptional 

signatures in progenitor-like cells from KCshp53 mice as a function of treatment (progression 

along the epithelial-mesenchymal plasticity axis). Differential gene expression analysis using 

diffxpy (https://github.com/theislab/diffxpy) was used to estimate log2 fold changes in gene 

expression between progenitor 1 and progenitor 2 shp53 cells—as defined by PhenoGraph 

clustering. The log2 fold change in gene expression was used as the ranking variable for gene 

set enrichment analysis. All signatures shown are enriched or depleted with FDR < 0.1. e. 
Expression of representative genes of select signatures enriched in progenitor2 vs progenitor1 

cells, as identified in (d). Columns represent individual biological replicates, grouped by 

premalignant cell state. Parentheses denote the number of cells per group.  
 

Supplementary Figure S12. Tissue remodeling upon p53 knockdown in the context of 
oncogenic Kras and pancreatic injury (Related to Main Figure 7). a. Frequency of cell 

states in epithelial, myeloid cells and fibroblasts, as a function of p53 proficiency in the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2025. ; https://doi.org/10.1101/2025.06.10.656791doi: bioRxiv preprint 

https://github.com/theislab/diffxpy
https://doi.org/10.1101/2025.06.10.656791
http://creativecommons.org/licenses/by/4.0/


 

33 
 

premalignant epithelium: shp53 (n=9) or ctrl samples (n=5). All samples were harvested 3 

weeks post-pancreatic injury. Each dot denotes a single biological replicate. P-values, Two-

tailed Wilcoxon Rank Sums Test. b. Representative Xenium data of epithelial composition in 

control or p53 knockdown tissue. Each dot is a single cell centroid, colored by cell state. c. 
Visualization of progenitor niches in our entire collection of KCshRen and KCshp53 tissues collected 

3 weeks post-pancreatitis. Each dot is a single cell colored by cell state. Boxes denote regions 

highlighted in (b). d. UMAP visualization of macrophage/monocyte cells in dissociated single 

cell data from the premalignant pancreas. Cells were harvested from mice with p53 knockdown 

in the premalignant epithelium or (n=2) or control (n=2), 3 weeks post-injury. Cells are colored 

by condition of origin. e. Visualization of gene expression of select markers of myeloid 

subpopulations. Each cell is pseudocolored by the collective expression of specified markers. 

(top) log-normalized expression, (bottom) MAGIC imputed counts (kNN with k=30, kernel width 

= 10, t=1). f. Distribution of the abundance of Itgax+/Cd274high cells (fraction of myeloid), 

conditioned on the abundance of progenitor-like cells (fraction of epithelial) in the niche. Red 

line denotes. Axes are presented in log scale (left) or linear scale (right). g. Subset of genes 

differentially expressed in Itgax+/Cd274high vs Itgax+/Cd274low cells. The first gene group shows 

differentially-expressed genes highlighted due to known roles in immune regulation and tissue 

injury. The second and third groups show the top 10 upregulated and downregulated genes in 

Itgax+/Cd274high cells.  

 

SUPPLEMENTARY MATERIALS 
 
Note S1. Construction of diffusion operator and computation of diffusion maps. 

 
Table S1. Metadata of scRNA-seq produced in this study. 
 
Table S2. smFISH probe metadata (Related to Fig. S5) 
 
Table S3. Embedding of TME subsets in injury induced tumorigenesis dissociated scRNA-seq 
(Related to Fig. S7 and Fig. S12) 
 
Table S4. Custom 10x Xenium library design with annotations of cellular compartment or 

biological processes probed by each gene. 
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Table S5. Xenium sample information and embeddings (Related to Fig. 3, Fig. 4, Fig. 5, Fig. 6, 
Fig. 7). 
 
Table S6. Compartment- and condition-specific embeddings for Xenium samples. 
 
Table S7. Statistics on mixed cell states in Xenium data (Related to Fig. S6) 
 
Table S8. Gene censoring in Xenium data (Related to Fig. 4, Fig. 5, Fig. S7, Fig. S8) 
 
Data S1. Custom probes for detection of GFP and mKate2 reporters in FFPE-based scRNA-

seq. 

 
Data S2. Oligonucleotides used for probing select mRNA expression using smFISH. 

 
Data S3. Gene signatures used in this study. 

 

Data S4. Source data for immunofluorescence. 
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Table S1. Metadata of scRNA-seq produced in this study 
 

sample_id condition 
Mouse 
strain Source 

Hash 
id batch 

cell 
count 

Counts per 
cell (mean) 

Detected genes 
per cell (mean) 

10x 
version 

Related 
figures 

254_2RH_PanI
NPM_GFPh 

Pre-tumor p53 
proficient 1 KPLOH 

This 
work 

unhash
ed 2 3,365 16018.8 3394.7 v2 

Fig1 
Fig2 

254_2RH_PanI
NPM_Kate_CD
45_1_31 

Pre-tumor p53 
deficient 1 KPLOH 

This 
work 

unhash
ed 2 88 24659.8 4055.1 v2 

Fig1 
Fig2 

254_RH_PanI
NPM_GFPh 

Pre-tumor p53 
proficient 2 KPLOH 

This 
work 

unhash
ed 2 3,194 14828.8 3226.6 v2 

Fig1 
Fig2 

254_RH_PanI
NPM_Kate_CD
45_1_4 

Pre-tumor p53 
deficient 2 KPLOH 

This 
work 

unhash
ed 2 558 29470.9 4567.4 v2 

Fig1 
Fig2 

53_LHRH_PD
ACreg_KATE 

Tumor p53 
deficient 7 KPLOH 

This 
work 

unhash
ed 2 2,791 27471.2 4529.8 v2 

Fig1 
Fig2 

53_NH_PanIN
PM_GFPh 

Pre-tumor p53 
proficient 0 KPLOH 

This 
work 

unhash
ed 2 2,585 17438.3 3368.7 v2 

Fig1 
Fig2 

9268_PHLH_P
DAC_SP 

Tumor p53 
deficient 8 KPLOH 

This 
work 

unhash
ed 2 2,600 26649.4 3991.1 v2 

Fig1 
Fig2 

9268_RH_PanI
NPM_DP 

Pre-tumor p53 
proficient 3 KPLOH 

This 
work 

unhash
ed 2 1,503 17330.8 3446.4 v2 

Fig1 
Fig2 

Ag-Lung-Mets-
Kate 

Tumor p53 
deficient 10 

KPC 
(p53R172
H) 

PMID: 
371674
03 

unhash
ed 1 313 52329.3 5582.6 v2 

Fig1 
Fig2 

Ag-PDAC-PT-
Kate 

Tumor p53 
deficient 10 

KPC 
(p53R172
H) 

PMID: 
371674
03 

unhash
ed 1 1,982 28501.5 4136.7 v2 

Fig1 
Fig2 

DAC_D020_p5
_Epi 

Tumor p53 
deficient 11 KPfC 

PMID: 
371674
03 

unhash
ed 1 2,036 33921.8 4312.8 v2 

Fig1 
Fig2 

DACC963_mK
ate_plus 

Tumor p53 
deficient 9 KPfC 

PMID: 
371674
03 

unhash
ed 1 1,491 36368.8 4655.5 v2 

Fig1 
Fig2 

DACC963LIVE
Rmet 

Tumor p53 
deficient 9 KPfC 

PMID: 
371674
03 

unhash
ed 1 1,701 37370.6 4762.5 v2 

Fig1 
Fig2 

DACC963PT_
Kate_plus 

Tumor p53 
deficient 9 KPfC 

PMID: 
371674
03 

unhash
ed 1 275 37863.3 4567.3 v2 

Fig1 
Fig2 

PDAC-SP3 
Tumor p53 
deficient 6 KPLOH 

This 
work 

unhash
ed 2 2,869 24434.5 3809.4 v2 

Fig1 
Fig2 

pre_dp_2 
Pre-tumor p53 
proficient 5 KPLOH 

This 
work 

unhash
ed 8 2,076 21085.8 3786.5 v3 

Fig1 
Fig2 

pre_sp_2 
Pre-tumor p53 
deficient 5 KPLOH 

This 
work 

unhash
ed 8 212 74262.0 6335.4 v3 

Fig1 
Fig2 

Preclinical_DP
_batch1 

Pre-tumor p53 
proficient 4 KPLOH 

This 
work A0301 7 344 8150.3 2308.9 v3 

Fig1 
Fig2 

Preclinical_DP
_batch1 

Pre-tumor p53 
proficient 4 KPLOH 

This 
work A0302 7 5,708 9682.7 2545.5 v3 

Fig1 
Fig2 
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Preclinical_DP
_batch1 

Pre-tumor p53 
proficient 4 KPLOH 

This 
work 

undefin
ed 7 247 17517.8 2054.1 v3 

Fig1 
Fig2 

Preclinical_SP
_batch1 

Pre-tumor p53 
deficient 4 KPLOH 

This 
work A0301 7 10 13578.9 3044.5 v3 

Fig1 
Fig2 

Preclinical_SP
_batch1 

Pre-tumor p53 
deficient 4 KPLOH 

This 
work A0302 7 590 22675.5 4108.6 v3 

Fig1 
Fig2 

Preclinical_SP
_batch1 

Pre-tumor p53 
deficient 4 KPLOH 

This 
work 

undefin
ed 7 14 79336.1 5400.3 v3 

Fig1 
Fig2 

p489c_shRen_
p53exp_caer_
3weeks 

control Injury, 3 
weeks KCshCtrl 

This 
work B0301 3 1,718 13095.7 3137.3 v3 Fig7 

p489c_shRen_
p53exp_caer_
3weeks 

control Injury, 3 
weeks KCshCtrl 

This 
work B0302 3 1,608 13598.9 3222.2 v3 Fig7 

p489c_shRen_
p53exp_caer_
3weeks 

control Injury, 3 
weeks KCshCtrl 

This 
work 

undefin
ed 3 221 27018.1 2794.2 v3 Fig7 

shRen_caer_3
weeks_repeat 

control Injury, 3 
weeks KCshCtrl 

This 
work B0304 5 3,742 13175.0 3246.6 v3 Fig7 

shRen_caer_3
weeks_repeat 

control Injury, 3 
weeks KCshCtrl 

This 
work B0305 5 2,840 14041.6 3309.8 v3 Fig7 

shRen_caer_3
weeks_repeat 

control Injury, 3 
weeks KCshCtrl 

This 
work 

undefin
ed 5 867 29102.1 2213.6 v3 Fig7 

p489c_shp53_
caer_3weeks 

p53 knockdown, 
Injury, 3 weeks KCshp53 

This 
work B0303 3 3,034 9459.1 2725.9 v3 Fig7 

p489c_shp53_
caer_3weeks 

p53 knockdown, 
Injury, 3 weeks KCshp53 

This 
work B0304 3 3,225 9414.4 2711.1 v3 Fig7 

p489c_shp53_
caer_3weeks 

p53 knockdown, 
Injury, 3 weeks KCshp53 

This 
work 

undefin
ed 3 359 17922.5 2117.9 v3 Fig7 

shp53_caer_3
weeks_repeat 

p53 knockdown, 
Injury, 3 weeks KCshp53 

This 
work B0304 5 2,513 12226.5 3195.0 v3 Fig7 

shp53_caer_3
weeks_repeat 

p53 knockdown, 
Injury, 3 weeks KCshp53 

This 
work B0305 5 2,965 11728.2 3084.0 v3 Fig7 

shp53_caer_3
weeks_repeat 

p53 knockdown, 
Injury, 3 weeks KCshp53 

This 
work B0306 5 2,593 12316.6 3210.1 v3 Fig7 

shp53_caer_3
weeks_repeat 

p53 knockdown, 
Injury, 3 weeks KCshp53 

This 
work 

undefin
ed 5 222 30944.2 2667.9 v3 Fig7 

JR-
2281_Krasi_ca
er_epi 

p53 proficient, 
MRTX1133 KPLOH 

This 
work B0304 9 2283 14560.0 3145.1 v3 FigS9 

JR-
2281_Krasi_ca
er_epi 

p53 proficient, 
MRTX1133 KPLOH 

This 
work B0305 9 1654 14762.2 3025.1 v3 FigS9 

JR-
2281_Krasi_ca
er_epi 

p53 proficient, 
MRTX1133 KPLOH 

This 
work B0306 9 2514 13502.7 3155.1 v3 FigS9 

JR-
2281_Krasi_ca
er_epi 

p53 proficient, 
MRTX1133 KPLOH 

This 
work 

Undefi
ned 9 48 5927.0 1441.3 v3 FigS9 
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JR-
2281_Ctrl_caer
_epi 

p53 proficient, 
Vehicle KPLOH 

This 
work B0304 9 3062 13402.9 3078.8 v3 FigS9 

JR-
2281_Ctrl_caer
_epi 

p53 proficient, 
Vehicle KPLOH 

This 
work B0305 9 2618 13152.1 3017.2 v3 FigS9 

JR-
2281_Ctrl_caer
_epi 

p53 proficient, 
Vehicle KPLOH 

This 
work B0306 9 2680 14234.8 3207.8 v3 FigS9 

JR-
2281_Ctrl_caer
_epi 

p53 proficient, 
Vehicle KPLOH 

This 
work 

Undefi
ned 9 26 7430.4 2074.7 v3 FigS9 

JR-sp-28-02 
control, 3 weeks 
post-injury 

KCshp53 
(dox off) 

This 
work BC001 Flex1 21,181 2641.0 924.9 FLEX 

FigS7 
FigS12 

JR-sp-17-01 

p53 knockdown, 
3 weeks post-
injury 

KCshp53 
(dox on) 

This 
work BC003 Flex1 18,593 2236.0 1102.2 FLEX 

FigS7 
FigS12 

JR-sp-19-09 
control, 3 weeks 
post-injury 

KCshRen 
(dox on) 

This 
work BC002 Flex1 17,098 1520.0 850.9 FLEX 

FigS7 
FigS12 

JR-sp-28-07 

p53 knockdown, 
3 weeks post-
injury 

KCshp53 
(dox on) 

This 
work BC004 Flex1 16,443 2647.8 980.7 FLEX 

FigS7 
FigS12 
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Table S2. smFISH probe metadata (Related to Fig. S5) 
 

filename codename date 
Gene 
symbol 

Readout 
id 

chan
nel readout_probe 

Number 
readout 

Num 
probes 

LOH20210524_GFP_RS00
15_x2_opool.fa 

LOH2021052
4 20210524 GFP RS0015 Cy5 

ATCCTCCTTCAATACA
TCCC 4 28 

LOH20210524_RIKALLELE
_RS0083_x0_opool.fa 

LOH2021052
4 20210524 RIKALLELE RS0083 Cy7 

ACACTACCACCATTTC
CTAT 1 89 

LOH20210524_PTPRC_RS
0095_x1_opool.fa 

LOH2021052
4 20210524 PTPRC RS0095 Cy7 

ACTCCACTACTACTCA
CTCT 2 92 

LOH20210524_CDKN1A_R
S0109_x0_opool.fa 

LOH2021052
4 20210524 CDKN1A RS0109 Cy5 

ACCCTCTAACTTCCAT
CACA 1 82 

Almu20211213_PanchoIFN
_ITGAX_RS0109_x0_opool
.fa 

Almu2021121
3_PanchoIFN 20211213 ITGAX RS0109 Cy5 

ACCCTCTAACTTCCAT
CACA 1 92 

LOH20210524_VIM_RS017
5_x0_opool.fa 

LOH2021052
4 20210524 VIM RS0175 Cy5 

ACCACAACCCATTCCT
TTCA 1 86 

LOH20210524_ANXA10_R
S0237_x1_opool.fa 

LOH2021052
4 20210524 ANXA10 RS0237 Cy7 

TTTCTACCACTAATCA
ACCC 2 56 

LOH20210622_CDKN2A_R
S0247_x2_opool.fa 

LOH2021062
2 20210622 CDKN2A RS0247 Cy5 

ACCCTTTACAAACACA
CCCT 4 30 

Pancreas20220830_Cassa
ndraDirena_revisions_high
Expressors_SPP1_RS0247
_x2_opool.fa 

Pancreas202
20830_Cassa
ndraDirena_r
evisions_high
Expressors 20220830 SPP1 RS0247 Cy5 

ACCCTTTACAAACACA
CCCT 2 55 

LOH20210524_MUC6_RS0
247_x1_opool.fa 

LOH2021052
4 20210524 MUC6 RS0247 Cy5 

ACCCTTTACAAACACA
CCCT 2 92 

LOH20210622_KRT19_RS
0255_x1_opool.fa 

LOH2021062
2 20210622 KRT19 RS0255 Cy7 

TCCTATTCTCAACCTA
ACCT 2 67 

LOH20220302_newMaligna
ncyMarkers_RBPJL_RS030
7_x0_opool.fa 

LOH2022030
2_newMalign
ancyMarkers 20220302 RBPJL RS0307 Cy7 

TATCCTTCAATCCCTC
CACA 1 88 

LOH20210524_CPA1_RS0
332_x1_opool.fa 

LOH2021052
4 20210524 CPA1 RS0332 Cy5 

ACATTACACCTCATTC
TCCC 2 70 

LOH20210622_MKI67_RS0
384_x0_opool.fa 

LOH2021062
2 20210622 MKI67 RS0384 Cy7 

TTCTCCCTCTATCAAC
TCTA 1 92 

LOH20230507_microenviro
nment_nreadout_2_spacer
_A_PLAUR_ENSMUST000
00002284_RS0406_possibl
e_oligos.fasta 

LOH2023050
7_microenviro
nment 20230507 PLAUR RS0406 Cy5 

ACCCTTACTACTACAT
CATC 2 45 

LOH20230608_progenitor_
nreadout_1_spacer_A_HM
GA2_ENSMUST000001596
99_RS0406_possible_oligo
s.fasta 

LOH2023060
8_progenitor 20230608 HMGA2 RS0406 Cy5 

ACCCTTACTACTACAT
CATC 1 100 

LOH20211213_OIS_TFF1_
RS0451_x2_opool.fa 

LOH2021121
3_OIS 20211213 TFF1 RS0451 Cy7 

TCCTAACAACCAACTA
CTCC 4 28 

Senescence20210901_PE
CAM1_RS0468_x0_opool.f
a 

Senescence2
0210901 20210901 PECAM1 RS0468 Cy7 

TCTATCATTACCCTCC
TCCT 1 92 
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Pancreas20220830_Cassa
ndraDirena_revisions_high
Expressors_FN1_RS0468_
x1_opool.fa 

Pancreas202
20830_Cassa
ndraDirena_r
evisions_high
Expressors 20220830 FN1 RS0468 Cy7 

TCTATCATTACCCTCC
TCCT 1 92 

LOH20230507_microenviro
nment_nreadout_3_spacer
_A_LCN2_ENSMUST0000
0192241_RS0468_possible
_oligos.fasta 

LOH2023050
7_microenviro
nment 20230507 LCN2 RS0468 Cy7 

TCTATCATTACCCTCC
TCCT 3 39 

LOH20211213_OIS_LIF_R
S0548_x0_opool.fa 

LOH2021121
3_OIS 20211213 LIF RS0548 Cy5 

TATTCACCTTACAAAC
CCTC 1 92 

LOH20230515_microenviro
nment_nreadout_1_spacer
_A_TNC_ENSMUST00000
107372_RS0548_possible_
oligos.fasta 

LOH2023051
5_microenviro
nment 20230515 TNC RS0548 Cy5 

TATTCACCTTACAAAC
CCTC 1 100 

Senescence20210901_AC
TA2_RS0578_x0_opool.fa 

Senescence2
0210901 20210901 ACTA2 RS0578 Cy3B 

AAACACACACTAAACC
ACCC 1 92 

LOH20230608_progenitor_
nreadout_1_spacer_A_ON
ECUT2_ENSMUST000001
75965_RS0578_possible_o
ligos.fasta 

LOH2023060
8_progenitor 20230608 ONECUT2 RS0578 Cy3B 

AAACACACACTAAACC
ACCC 1 100 

LOH20210622_MDM2_RS
0584_x1_opool.fa 

LOH2021062
2 20210622 MDM2 RS0584 Cy3B 

AACTCATCTCAATCCT
CCCA 2 89 

LOH20230608_progenitor_
nreadout_1_spacer_A_ITG
B4_ENSMUST0000010646
1_RS0584_possible_oligos.
fasta 

LOH2023060
8_progenitor 20230608 ITGB4 RS0584 Cy3B 

AACTCATCTCAATCCT
CCCA 1 100 

LOH20210622_BAX_RS06
39_x2_opool.fa 

LOH2021062
2 20210622 BAX RS0639 Cy3B 

TATCTCATCAATCCCA
CACT 4 32 

Kal20221005_TGFB1_RS0
639_x2_opool.fa Kal20221005 20221005 TGFB1 RS0639 Cy3B 

TATCTCATCAATCCCA
CACT 2 56 

Senescence20210901_AD
GRE1_RS0708_x0_opool.f
a 

Senescence2
0210901 20210901 ADGRE1 RS0708 Cy3B 

TCCAACTCATCTCTAA
TCTC 1 92 

LOH20210628_MSN_RS07
30_x0_opool.fa 

LOH2021062
8 20210628 MSN RS0730 Cy3B 

AATACTCTCCCACCTC
AACT 1 92 

LOH20220302_newMaligna
ncyMarkers_PIEZO2_RS07
63_x0_opool.fa 

LOH2022030
2_newMalign
ancyMarkers 20220302 PIEZO2 RS0763 Cy3B 

ATAAATCATTCCCACT
ACCC 1 92 

LOH20230608_progenitor_
nreadout_2_spacer_A_F3_
ENSMUST00000029771_R
S0793_possible_oligos.fast
a 

LOH2023060
8_progenitor 20230608 F3 RS0793 Cy3B 

ACCCAACACTCATAAC
ATCC 2 54 

LOH20220411_CCN2_RS1
047_x0_opool.fa 

LOH2022041
1 20220411 CCN2 RS1047 Cy3B 

ACCTTTCTCCATACCC
AACT 1 84 
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Table S3. Embedding of TME subsets in injury induced tumorigenesis dissociated scRNA-seq (Related 
to Fig. S7 and Fig. S12) 
 

object id Parent object Filter Subpopulation filter 
# cells in 
subset # PCs 

Explained 
variance Related figure 

all_cells NA 

control and 
shp53 
samples NA 73,315 100 53% 

Intermediate 
processing 

fibroblast_ctrl all cells 
control 
samples 

fibroblasts (Dpt, Col1a1, Pdgfra, 
Pdpn) 9,576 86 36% 

Intermediate 
processing 

iCAF_myCAF
_ctrl fibroblast_ctrl 

control 
samples 

iCAF and myCAFs based on 
public signatures (PMID: 
31197017) 8,915 88 36% 

Intermediate 
processing 

myCAF_ctrl iCAF_myCAF_ctrl 
control 
samples 

myCAFs based on public 
signatures (PMID: 31197017) 6,291 83 32% Fig. S7d 

myeloid_ctrl all cells 
control 
samples 

Public signature: (PMID: 
35427180) Ptprc, Csf1r, Adgre1, 
H2-Ab1, Cd68, Lyz2, Itgam, Mertk 5,538 76 39% 

Intermediate 
processing 

myeloid_Maf
_Itgax_ctrl myeloid_ctrl 

control 
samples 

PhenoGraph clusters expressing 
either Maf or Itgax 4,505 87 42% Fig. S7e 

myeloid_all all cells 

control and 
shp53 
samples 

Public signature: (PMID: 
35427180) Ptprc, Csf1r, Adgre1, 
H2-Ab1, Cd68, Lyz2, Itgam, Mertk 10,446 61 34% Fig. S12 
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Table S5. Xenium sample information and embeddings (Related to Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7). 
 

xenium 
batch slide id slide name mouse id 

mouse 
strain treatment timepoint 

Counts 
per cell 

Num 
genes 

detected 
per cell 

JR-2885 0004279_Region_1 JR0025 JR-sp-04-03 KCshCtrl injury 2d post-injury 81.6 56.4 

JR-2885 0004279_Region_2 
JR0104_section
1 JR-sp-12-23 KPLOH injury 1d post-injury 118.3 68.5 

JR-2885 0004279_Region_3 
JR0104_section
2 JR-sp-12-24 KPLOH injury 1d post-injury 112.1 66.4 

JR-2885 0004329_Region_1 JR0077 JR-sp-09-05 KCshCtrl injury 3w post-injury 103 62.5 

JR-2885 0004329_Region_2 JR0033 JR-sp-04-02 KCshCtrl injury 3w post-injury 100.4 60.6 

JR-2885 0004329_Region_3 JR0081 JR-sp-09-03 KCshp53 injury 3w post-injury 112.4 65.1 

JR-3090 0011178_Region_1 JR-sp-15-04 JR-sp-15-04 KPLOH 
injury + 
MRTX1133 2d post inhibitor 95.3 58.3 

JR-3090 0011178_Region_2 JR-sp-15-09 JR-sp-15-09 KPLOH 
injury + 
MRTX1133 2d post inhibitor 97.4 58.8 

JR-3090 0011181_Region_1 JR-sp-15-06 JR-sp-15-06 KPLOH 
injury + 
MRTX1133 2d post inhibitor 82.8 52.7 

JR-3090 0011181_Region_2 JR-sp-15-02 JR-sp-15-02 KPLOH 
injury + 
MRTX1133 2d post inhibitor 96.2 58.6 

JR-2918 0015409_Region_1 JR0079 JR-sp-09-01 KCshp53 injury 3w post-injury 96.9 59.9 

JR-2918 0015409_Region_2 JR0026 JR-sp-04-07 KCshp53 injury 2d post-injury 93.7 59.4 

JR-2918 0015409_Region_3 JR0080 JR-sp-09-02 KCshp53 injury 3w post-injury 91.9 57.4 

JR-2918 0015409_Region_4 JR0034 JR-sp-04-10 KCshp53 injury 3w post-injury 97.1 59.2 

JR-2918 0015409_Region_5 JR0027 JR-sp-04-08 KCshp53 injury 2d post-injury 93.2 60.4 

JR-2918 0015410_Region_1 DACE616 DACE616 KCshCtrl injury 2d post-injury 92.5 59.5 

JR-2918 0015410_Region_2 JR0078 JR-sp-09-06 KCshCtrl injury 3w post-injury 84.4 53.5 

JR-2918 0015410_Region_3 JR0024 JR-sp-04-01 KCshCtrl injury 2d post-injury 81.3 55.7 

JR-2918 0015410_Region_4 DACE617 DACE617 KCshCtrl injury 2d post-injury 95 60.4 

JR-3083 0027845_Region_1 JR0039 JR-sp-06-09 KCshCtrl injury 1d post-injury 106.4 62.5 

JR-3083 0027845_Region_2 JR0040 JR-sp-06-10 KCshCtrl injury 1d post-injury 115.5 66.6 

JR-3083 0027845_Region_3 JR-sp-15-05 JR-sp-15-05 KPLOH injury + Vehicle 2d post vehicle 113.3 65 

JR-3083 0027846_Region_1 JR0042 JR-sp-06-04 KCshp53 injury 1d post-injury 84.5 54.1 

JR-3083 0027846_Region_2 JR0041 JR-sp-06-03 KCshp53 injury 1d post-injury 113.5 65.7 

JR-3083 0027846_Region_3 JR-sp-15-07 JR-sp-15-07 KPLOH injury + Vehicle 2d post vehicle 112 65.4 

JR-3177 0028094_Region_1 JR-sp-19-09 JR-sp-19-09 KCshCtrl injury 3w post-injury 88.5 57.5 

JR-3177 0028094_Region_2 JR-sp-19-10 JR-sp-19-10 KCshCtrl injury 3w post-injury 95.6 59.5 

JR-3433 0042536_Region_1 JR-sp-28-25 JR-sp-28-25 KCshp53 injury 3w post-injury 78 52.7 
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JR-3433 0042536_Region_2 JR-sp-28-08 JR-sp-28-08 KCshp53 injury 3w post-injury 84.8 54.6 

JR-3311 0042569_Region_3 JR0019 JR-sp-02-17 KPLOH Spontaneous pre-tumor 60.2 43.4 

JR-3433 0042724_Region_1 JR-sp-17-01 JR-sp-17-01 KCshp53 injury 3w post-injury 80.6 52.5 

JR-3433 0042724_Region_2 JR-sp-28-07 JR-sp-28-07 KCshp53 injury 3w post-injury 85.4 55.4 

JR-3433 0042724_Region_3 JR-sp-28-06 JR-sp-28-06 KCshp53 injury 3w post-injury 89.2 57.1 
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Table S6. Compartment- and condition-specific embeddings for Xenium samples. 
 

Compartment 
Conditions 
included 

Number of 
samples 
included 

Number 
of genes 

Fraction 
of genes 

Number 
of PCs 

Variance 
explained 

Total 
cells Related figures 

TME 
Non-perturbed 
samples 15 415 0.86 127 75% 6,489,818 Fig. S6 

Epithelial 
Non-perturbed 
samples 15 394 0.82 100 75% 3,217,585 All Xenium 

Immune Myeloid 
Non-perturbed 
samples 15 389 0.81 98 75% 1,844,178 All Xenium 

Immune Lymphoid 
Non-perturbed 
samples 15 385 0.8 87 75% 636,172 All Xenium 

Fibroblast 
Non-perturbed 
samples 15 387 0.8 100 75% 2,862,709 All Xenium 

Mural Cells 
Non-perturbed 
samples 15 369 0.76 85 75% 285,767 All Xenium 

Endothelial 
Non-perturbed 
samples 15 380 0.79 104 75% 814,550 All Xenium 

Epithelial - control samples 
Non-perturbed 
samples 15 399 0.83 96 75% 1,388,199 Fig. 3 and Fig. 4 

Progenitor and gastric-like 
cells - control samples 

Non-perturbed 
samples 15 392 0.81 93 75% 838,581 

Fig. 3, Fig. 4, Fig. 
5, Fig. S4, Fig. S8 

Kras inhibitor experiment 
TME 

MRTX1133 or 
vehicle treated 
samples 6 390 0.81 108 75% 1,216,079 Fig. 6, Fig. S10 

Kras inhibitor experiment 
Epithelial 

MRTX1133 or 
vehicle treated 
samples 6 370 0.77 93 75% 925,367 Fig. 6, Fig. S10 
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Table S7. Statistics on mixed cell states in Xenium data (Related to Fig. S6) 
 

Mix type 
Number of 
cells % in dataset 

mixed_myeloid_stroma 166,979 1.7 

mixed_epithelial_stroma 70,906 0.72 

mixed_endothelial_immue_stroma 33,375 0.34 

mixed_lymphoid_other 22,790 0.23 

mixed_mural_fibroblast 8,310 0.08 

mixed_lymphoid_myeloid 3,338 0.03 

mixed_mural_immune 2,750 0.02 

mixed_mural_other 1,233 0.012 
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Table S8. Gene censoring in Xenium data (Related to Fig. 4, Fig. 5, Fig. S7, Fig. S8) 
 

Compartment 

Fraction 
positive 
threshold 
(dissociated) 

Number of 
genes that 
passed 
dissociated 
threshold 

Fraction 
positive 
threshold in 
any 
subpopulation 

Number of 
genes that 
passed 
dissociated 
threshold 

Number of 
genes that 
passed both 
thresholds 

Epithelial 1% of cells 373 0.0794 326 318 

Immune myeloid 1% of cells 296 0.0797 233 211 

Fibroblast 1% of cells 347 0.1199 294 277 

Immune B 1% of cells 225 0.0789 251 194 

Immune 
T,NK,ILC 1% of cells 259 0.1184 220 194 

Mural cells 1% of cells 304 0.0797 242 227 

Endothelial cells 1% of cells 322 0.0788 273 258 
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Note S1 
 
Construction of the diffusion operator and diffusion maps 
Throughout this work, we make use of diffusion maps as a latent representation of single-cell 
expression data that is analogous to a non-linear version of principal components. A diffusion 
map captures dominant directions of diffusion along a single-cell manifold, understood as a 
random walk in which cells are allowed to reversibly transition between similar transcriptional 
states. We follow the computation of diffusion maps as previously described1–3.  

Let 𝑀!×# be a matrix representing the log-normalized expression of 𝑚 genes in 𝑛 cells. We 
define the k-nearest neighbor graph (kNN) 𝐺!×! as a sparse matrix such that 𝐺$,& is the 
Euclidean distance in principal component space between celli and cellj when cellj belongs to 
the k-nearest neighbors of celli, and 𝐺$,& = 0 for every other cellj in the data. 

We compute the cell–cell affinity matrix 𝐴!×! by applying an adaptive Gaussian kernel to the 
kNN matrix: 

𝐴$,& = 𝑒
'(!,#
) 	

where ℎ varies for each celli and is defined as the distance to its 𝑘′ closest cell (we use 𝑘* = 10 
for a kNN graph with 𝑘 = 30). The width ℎ of the Gaussian kernel determines the rate at which 
𝐴$,& decays as a function of distance. Thus, an adaptive width allows controlling for 
heterogeneity in cell density along the single cell manifold. 

To compute the diffusion operator 𝑇!×!, we symmetrize the cell-cell affinity matrix, set the 
diagonal to 0, and normalize by row, resulting in a row stochastic matrix. 𝑇$,& can be interpreted 
as the transition probability from celli to cellj. Further exponentiation of the diffusion operator 
results is diffusion, a random walk over the kNN graph that results in long-range connectivities 
between single cells based on short-scale phenotypic transitions. 

Although Euclidean distances on PC space captures cell–cell similarities at the local level, and 
is routinely used to construct a kNN graph during manifold estimation, they fail to capture 
distances over long ranges due to non-linearities in the phenotypic manifold. Diffusion 
distance—intuitively understood as the result of a diffusion process or a random walk over the 
kNN graph—captures long-range cell-cell connectivities while respecting such non-linearities. A 
diffusion map results from the eigen-decomposition of the diffusion operator. The right 
eigenvectors of such decomposition, termed diffusion components, provide a new 
representation of the data that can be used to approximate diffusion distance. Ordering 
eigenvectors by their corresponding eigenvalue, and keeping the top 𝐿 eigenvectors allows 
estimation of the diffusion distance between two cells: 

𝐷$,& =2⬚
+

,-.

𝜆,
/05𝜓$, − 𝜓&,8

/	

Where 𝜆, is the top 𝑙0) eigenvalue of the diffusion operator, 𝜓∙, it’s associated eigenvector, and 𝑡 
is the number of diffusion steps (𝑡 = 3 in our analysis). Because the 0th right eigenvector of the 
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diffusion operator is a constant vector, we exclude this from the diffusion map, following work 
from Haghverdi and colleagues3. 
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METHODS 

I. Experimental Methods 

MOUSE MODELS 

All animal experiments were performed in accordance with protocols approved by the Memorial 
Sloan Kettering Institutional Animal Care and Use Committee (approval number: 11-06-018). 
Mice were maintained under specific pathogen-free conditions, and provided with food and 
water ad libitum. In all experiments with PDAC models, tumors did not exceed a volume 
corresponding to 10% of body weight (typically 12–15-mm diameter). Mice were evaluated daily 
for signs of distress or end-point criteria, and immediately euthanized if they presented signs of 
cachexia, weight loss beyond 20% of initial weight or breathing difficulties, or if they developed 
tumors of 15 mm in diameter. Animals were housed on a 12 h light–12 h dark cycle under 
standard temperature (18–24 °C) and humidity (40–60%). 

Mouse model genetics 
The KPLOH model1,2 allows the identification and isolation of cells that undergo spontaneous p53 
loss of heterozygosity (LOH) during pancreatic cancer initiation. This model is derived from 
multi-allelic ES cells and harbors Ptf1a-Cre; LSL-KrasG12D; p53flox/WT alleles that predispose mice 
for spontaneous cancer development. Embryonic expression of Ptf1a-Cre in pancreatic 
epithelial progenitor cells leads to Cre-dependent excision of the LSL (lox-STOP-lox) cassette 
upstream of mutant KrasG12D, and deletion of one copy of p53. Oncogenic KRAS activity in the 
pancreatic epithelium leads to the formation of premalignant lesions3 and eventual PDAC 
development1,2 upon loss of the remaining wild-type copy of p53 in premalignant cells (p53-
LOH). 

The KPLOH model harbors fluorescent proteins that trace the lineage of cells that experienced 
Cre activity, as well as cells that have undergone p53-LOH. This model includes the Rosa26-
CAGGS-LSL-rtta-IRES-mKate2 (RIK) allele4, in which Cre-dependent excision of the LSL 
cassette leads to constitutive polycistronic production of the reverse tetracycline transcriptional 
activator (rtTA3) and mKate2. Both proteins serve as proxies for oncogenic KrasG12D activation 
in epithelial cells (detected through mKate2 immunofluorescence), single molecule fluorescence 
in situ hybridization (smFISH) or transcriptomics. Furthermore, upon doxycycline administration, 
rtTA3 expression allows selective induction of transgenes downstream of a promoter harboring 
the tetracycline-regulated element. This genetic configuration thus allows both detection and 
perturbation of premalignant cells in vivo. 

Lastly, the KPLOH model harbors the doxycycline-inducible TRE-GFP-shRen.713 allele, which 
produces GFP and a short-hairpin RNA (shRNA) targeting Renilla luciferase (shRen) upon 
doxycycline administration. We have used this allele extensively as a non-targeting negative 
control5 to account for non-specific effects of shRNA-expression and interaction with the RNAi 
machinery in a cell. In the context of the KPLOH model, this allele serves the unique purpose of 
reporting for the genetic status of p53 in vivo. The TRE-GFP-shRen allele is located in the 
Col1a1 safe-harbor locus in mouse chromosome 11, in cis with the single p53WT allele (due to 
how we designed our breeding scheme). Given the selective pressure for homozygous p53 loss 
during PDAC development, and the fact that p53-LOH events most frequently occur through 
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whole chromosome or large segmental deletion events1, loss of GFP serves as a proxy for p53-
LOH in this model. 

All cohorts in this study were derived from multiallelic mESCs harboring the genetic 
configuration described above (KPfCRC shRen clone YMZ). While this model uniquely allows 
tracing and isolation of cells that underwent spontaneous p53-LOH events in vivo, we have also 
used these mESCs to study p53-proficient cells in the premalignant pancreas due to their high 
efficiency in generating experimental mice. 

KCshRNA models harbor the same genetic configuration of the KPLOH model, with the exception 
that they have p53WT/WT alleles. We use two variants of this model: KCshCtrl harbors the TRE-
GFP-shRen.713 allele, serving as a non-targeting negative control (shRen), and KCshp53 harbors 
the TRE-GFP-shp53.1224 allele5 targeting shp53. We used these models to investigate the 
consequences of inducible p53 knockdown in vivo. All KCshRNA mice in this study were 
generated using multiallelic mESCs (KCshCtrl: clone p48-9c shRen.713 c2; KCshp53: clone p48-9c 
shp53.1224 #6)6. 

The identity of the ESCs and ESC-derived mice were authenticated by genomic PCR using a 
common Col1a1 primer paired with an shRNA-specific primer: 

- Col1a1: 5’-CACCCTGAAAACTTTGCCCC-3’ 
- shRen.713: 5’-GTATAGATAAGCATTATAATTCCTA-3’ (~250 bp band) 
- shp53.1224: 5’-TGTATTACACATGTACTTGTAGTGG-3’ (~210 bp band) 

The presence of the RIK allele in mESCs was confirmed using PCR with the following primers: 
- 5’-GGTGAGCGAGCTGATTAAGG-3’ 
- 5’-TTTTGCTGCCGTACATGAAG-3’ (~200 bp band) 

In addition, we confirmed shp53 and shRen expression at the single-cell level by aligning reads 
to the unique sequences that distinguish TRE-GFP-shp53 and TRE-GFP-shRen alleles: 

>TGM_shRen_unique 
TGCTGTTGACAGTGAGCGCAGGAATTATAATGCTTATCTATAGTGAAG 
CCACAGATGTATAGATAAGCATTATAATTCCTATGCCTACTGCCTCGG 
 
>TGM_shp53_unique 
TGCTGTTGACAGTGAGCGCCCACTACAAGTACATGTGTAATAGTGAAG 
CCACAGATGTATTACACATGTACTTGTAGTGGATGCCTACTGCCTCGG 
 

Cohort generation 
ESC-derived chimeric male mice were generated by injecting KPLOH, KCshCtrl or KCshp53 
backgrounds at the 8-cell or blastocyst stage, as previously described5, enabling the 
synchronous creation of large cohorts of mice bearing all alleles for modeling PDAC initiation 
and progression. Cohorts were generated by the Mouse Genetics Core Facility at Memorial 
Sloan Kettering Cancer Center (MSK) or the Rodent Genetic Engineering Core at New York 
University. Only mice with coat-color chimaerism of over 95% were included for experiments. 

shRNA induction 
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To induce shRNA expression, KCshCtrl and KCshp53 mice were switched to a doxycycline diet (200 
mg kg-1, Harlan Teklad) at 4–5 weeks of age, one week before inducing pancreatitis. KPLOH 
mice were switched to doxycycline diet at 4–5 weeks of age to allow doxycycline dependent 
induction of the GFP transgene that reports the presence or absence of the wild-type p53 allele 
in this model. 

For KCshp53 collection cohort 4 (Fig. S11a), a subset of mice were switched to doxycycline diet 
and the remaining animals were fed normal chow (used in Fig. 7b,e). p53 knockdown led to an 
increase in progenitor-like cells and expansion of their niche in this comparison. These results 
not only corroborate previous findings, but also provide an orthogonal negative control, as they 
show that differences in the abundance of progenitor-like cells track with p53 knockdown, as 
opposed to the specific mESC strain used to generate cohorts. 

KPLOH mice from batches 2, 7 and 8 (see Table S1 for details on sample metadata) were 
administered 625 mg kg-1 doxycycline diet (Harlan Teklad) following prior practices in our lab1. 
The remaining cohorts were treated with low dose doxycycline (200 mg kg-1) to minimize the 
potential effects of antibiotic treatment on the microbiome. No differences in the spectrum or 
dynamics of premalignant states were observed as a function of doxycycline dose. 
 
TREATMENTS 

Injury-induced pancreatitis 
To assess the spectrum and dynamics of premalignant states and tissue remodeling events in 
the in the context of oncogenic KRAS activation in the premalignant epithelium, we subjected 5–
6-week-old male mice with eight-hourly intraperitoneal injections of 80 μg kg-1 of caerulein 
(Bachem) for two consecutive days (16 injections total), as previously described7. Caerulein 
dose was adjusted to body weight at the beginning of each day of treatment. We harvested the 
pancreata at two phases of the injury response: an acute phase, corresponding to the peak of 
inflammation (days 1 and 2 after the 9th caerulein injection), or a long-term response (3 weeks 
post-caerulein treatment). 

Oncogenic KRAS inhibition 
The KRASG12D-specific small molecule inhibitor MRTX11338 allowed us to interrogate the 
consequences of acute removal of Kras signaling in premalignant cells without directly affecting 
the tumor microenvironment (Fig. 6, Fig. S9 and Fig. S10).  

Formulation for in vivo use 
We formulated MRTX1133 for in vivo use, as previously described9. To prepare the vehicle for 
drug administration, we first dissolved Captisol (MedChemExpress, HY-17031) at a 20% w/v 
concentration in sterile water. Next, we mixed the 20% Captisol solution with 100 mM citrate 
buffer pH 5.0 (Teknova, Q2443) in a 1:1 ratio, resulting in a final vehicle solution of 10% 
Captisol, 50 mM citrate buffer pH 5.0. To prepare the stock solution of MRTX1133, we diluted 
MRTX1133 powder in the vehicle solution to a final concentration of 3 mg mL-1. We stored 
vehicle and MRTX1133 formulations at 4°C protected from light for up to 1 week. 

Dosing 
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We fed mice with MRTX1133 at the maximum tolerated dose of 30 mg kg-1 through 
intraperitoneal injection (200 μL for a 20-g mouse). Controls were dosed with an equivalent 
volume of vehicle based on weight. Dosing was twice a day, with an inter-dose interval of 10–12 
h. We randomized MRTX1133 and vehicle-treated mice to control for differences in the social 
structure of individual cages, as well as inter-cage heterogeneity in average mouse size. 

Experimental design 
We used 5-week-old male KPLOH mice generated through mESC injections as experimental 
cohorts. For mice profiled with scRNA-seq, we started dosing of MRTX1133 or vehicle 
concurrently with caerulein treatment, euthanizing mice within 4 h of the last MRTX1133 or 
vehicle dose (fifth dose, 2 days after the first dose). For mice profiled with the Xenium spatial 
transcriptomics, we started MRTX1133 or vehicle dosing 2 days after the first caerulein dose, 
euthanizing mice 2 days after the first dose of MRTX1133 or vehicle. These two experimental 
protocols aimed to assay the role of oncogenic KRAS signaling in inducing or maintaining the 
progenitor-like state upon acute pancreatitis. In practice, both protocols had equivalent 
outcomes in terms of the spectrum of premalignant lesions at end-point: depletion of progenitor-
like, gastric pit-like and gastric chief-like cells, as well as shifts in the state of acinar-to-ductal 
metaplasia (ADM) cells, with progenitor-like cells being the subpopulation with strongest 
dependency on persistent oncogenic KRAS (Fig. 6c and Fig. S9c). 
 
SAMPLE COLLECTION 

Table S1 provides details of scRNA-seq samples collected for this study. 

Experimental endpoints 
Pre-tumor stage KPLOH mice were euthanized at 3–4 months of age. Lack of a macroscopic 
tumor mass was assessed by palpation before euthanasia, and confirmed by gross histology 
upon dissection. Tumor stage KPLOH mice were euthanized upon confirmation of the presence 
of a macroscopic tumor mass by palpation; two animals at 3 months of age, and one at 8 
months. Mice subjected to acute pancreatitis in time course and p53 perturbation cohorts were 
euthanized at 1 day, 2 days or 3 weeks after the second day of the pancreatitis protocol. Mice 
treated with MRTX1133 or vehicle were euthanized 2 days after the first treatment dose. 

Tissue dissociation for single-cell analyses 
For scRNA-seq and bulk RNA-seq collection, we isolated lineage-traced (mKate2+/GFP+ or 
mKate2/GFP-) epithelial cells from pancreatic tissues from KPLOH, or KCshRNA mice by FACS 
sorting, as previously described7,10. Specifically: 

1. Pancreata were finely chopped with scissors and incubated in digestion buffer containing 
1 mg mL-1 collagenase V (Sigma-Aldrich, C9263), 2 U mL-1 Dispase (Life Technologies, 
17105041) dissolved in HBSS with Mg2+ and Ca2+ (Thermo Fisher Scientific, 14025076) 
supplemented with 0.1 mg mL-1 DNase I (Sigma, DN25-100MG) and 0.1 mg mL-1 
soybean trypsin inhibitor (STI) (Sigma, T9003), in gentleMACS C Tubes (Miltenyi Biotec) 
for 42 min at 37°C using the gentleMACS Octo Dissociator.  

2. Digested samples were washed with PBS and further digested with a 0.05% solution of 
Trypsin-EDTA (Thermo Fisher Scientific, 15400054) diluted in PBS for 5 min at 37 °C. 
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Trypsin digestion was neutralized with FACS buffer (10 mM EGTA and 2% FBS in PBS) 
containing DNase I and STI.  

3. Samples were washed in FACS buffer containing DNAse and STI, and filtered through a 
100-μm strainer.  

4. Samples were blocked with anti-mouse CD16/CD32 with Fcblock (BD Biosciences, Cat# 
553141; Clone 2.4G2) for 7 min at 4°C, followed by incubation with APC-conjugated 
CD45 antibody (Biolegend, Cat# 103111; Clone 30-F11, 1:200, 10-min incubation). 

5. Cells were washed once in FACS buffer containing DNase I and STI, filtered through a 
40-μm strainer and resuspended in FACS buffer containing DNase I and STI and 300 
nM DAPI as a live-cell marker. Cells were sorted on BD FACSAria I or BD FACSAria III 
(Becton Dickinson) for mKate2+/GFP+ (KrasG12D+ p53-proficient epithelial cells) or 
mKate2+/GFP- (KrasG12D+ p53-deficient epithelial cells), excluding DAPI+ and CD45+ 
cells. FACS-sorted cells were collected in 2% FBS in PBS (see Fig. S1c for a 
representative example of FACS gates for isolating epithelial cells from a pre-tumor 
stage KPLOH mouse). 

6. For scRNA-seq, cells were resuspended at 1000 cells μL-1 in 0.04% BSA 1X PBS 
solution with RNAse inhibitor (Thermo Fisher Scientific, AM2684; 1 U μL-1 or 1:40 
dilution from stock). In the case of pre-tumor p53-deficient cell isolation, the low 
frequency of this subpopulation (200–2000 cells per mouse) limited our ability to 
resuspend and process sorted cells directly from the sorter. To allow downstream 
processing of this rare and important cell population, we spiked-in CD45+ cells isolated 
from the same mouse to reach a threshold of 30,000 cells, resuspending in a final 
volume of 30 μL for downstream processing. 

For p53 perturbation and acute oncogenic KRAS inhibition experiments, we modified this 
isolation protocol to accommodate pooling of biological replicates in the same encapsulation 
and sequencing runs via cell hashing, minimizing both costs and batch effects. Following from 
step 2 above: 

3. For every sample that would be subjected to cell hashing, we used DNAse-free buffers 
from this point on, reasoning that the presence of DNAse could hamper our ability to 
recover DNA barcodes. 

4. Samples were resuspended in 1 mL ACK-lysis buffer and incubated for 5 min at room 
temperature to deplete red blood cells, and washed the ACK lysis buffer with 20 mL 
HBSS. 

5. We blocked samples with TruStain Fc block Plus (Biolegend, 156603; clone S17011E, 
1:100) for 7 min at 4°C, followed by incubation with a sample-specific TotalSeq cell 
hashing antibody (Biolegend, 155832, 155833, 155835, 155837, 155839, 155841; 
clones M1/42; 30-F11). We incubated cell hashing antibodies at a 1:50 dilution for 30 
min. 

6. We washed samples 3 times with DNAse-free FACS buffer + STI, followed by filtering 
through a 40-μm strainer and FACS-based isolation of mKate2+/GFP+ cells (KrasG12D+ 
pancreatic epithelial cells expressing shp53 or shCtrl). 

7. To prepare cells for scRNA-seq, we pooled samples from the same experimental 
conditions into the same tube, and resuspended cells at a 1000 cells μL-1. This strategy 
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ensured our ability to interpret differences between conditions even if deconvolution of 
biological replicates failed. In practice, we didn’t experience problems with downstream 
deconvolution of biological replicates in these data. 

 
Preparation of tissues for histology 
For immunofluorescence and Xenium-based analyses, tissues were fixed overnight in 10% 
neutral buffered formalin (Richard-Allan Scientific), and embedded in paraffin. Formalin fixed 
paraffin embedded (FFPE) blocks were stored at room temperature, or more recently at 4°C as 
we started profiling RNA from these tissues using spatial transcriptomic technologies. 

For smFISH-based analyses, we followed the fixation protocol by Farack and Itzkovitz11. 
Specifically, we fixed tissue in 4% PFA (Fisher / Electron Microscopy Sciences, 15710) 1X PBS 
at 4°C for 3 h, followed by overnight incubation in 4% PFA, 1X PBS, 30% w/v sucrose solution, 
verifying that tissues sank to the bottom of the tube before further processing. We washed 
tissues with 1X PBS and thoroughly dried them with a kimwipe before OCT embedding. We 
incubated tissues for 30 min to 1 h incubation in OCT at 4°C, since we observed that this 
decreases the likelihood of tissue detachment during sectioning as compared to immediate 
freezing. Lastly, we completed embedding by placing tissues in a mold, fully covering with OCT, 
and placing on dry ice for freezing. We stored frozen OCT blocks at -80°C. 
 
SINGLE-CELL RNA SEQUENCING 

Fresh dissociated samples 
Cells were resuspended in 1X PBS and BSA (0.04%) and checked for viability using 0.2% (w/v) 
Trypan Blue staining (Countess II). All sequencing experiments were performed on samples 
with a minimum of 80% viable cells. Single-cell encapsulation and scRNA-seq library prep of 
FACS-sorted cell suspensions was performed on the Chromium instrument (10x Genomics) 
following the user manual (Reagent Kit 3’ v2 or v3). Each sample loaded onto the cartridge 
contained approximately 5,000 cells (non-hashed samples) or 15,000 cells (hashed samples) at 
a final dilution of ~500 cells μl-1. Transcriptomes of encapsulated cells were barcoded during 
reverse transcription and the resulting cDNA was purified with DynaBeads, followed by 
amplification per the user manual. Next, the PCR-amplified product was fragmented, A-tailed, 
purified with 1.2X SPRI beads, ligated to sequencing adapters and indexed by PCR. Indexed 
DNA libraries were double-size purified (0.6–0.8X) with SPRI beads and sequenced on an 
Illumina sequencer (R1 – 26 cycles, i7 – 8 cycles, R2 – 70 cycles or higher) to a depth of >50 
million reads per sample (>13,000 reads per cell) at MSK’s Integrated Genomics Operation 
Core Facility. 

Dissociated nuclei from FFPE samples 
FFPE samples were preprocessed using a prototype Singulator™ system. Each sample was 
automatically processed in a NIC+™ cartridge (S2 Genomics, 100-215-389) through two 10-min 
deparaffinization steps using Deparaffinization Reagent (S2 Genomics), followed by rehydration 
through successive 1 mL ethanol washes (100%, 100%, 70%, 50%, and 30%). This was 
followed by two PBS washes. The sample was then centrifuged at 1,000 g for 3 min and 
resuspended in 0.5 mL of Nuclei Isolation Reagent (NIR, S2 Genomics, 100-063-396) 
containing 0.1 U μL-1 RNase inhibitor (Protector™, Millipore Sigma, 3335399001). All 
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subsequent solutions contained RNase inhibitor at the same concentration. The sample was 
dissociated into single nuclei in a second NIC+ cartridge using “FFPE Nuclei Isolation” protocol, 
using 0.5 mL of NIR for 12 min of lysis, followed by a 2-mL wash with Nuclei Storage Reagent 
(NSR, S2 Genomics, #100-063-405). The single-nucleus suspension was centrifuged at 500 g 
for 5 min, resuspended in NSR, and counted using 0.2% (w/v) Trypan Blue staining on a 
Countess II instrument. This was followed by a second centrifugation at 850 g for 5 min. 

Nuclei were then resuspended in 1 mL of Fixation Buffer (4% formaldehyde in 1× Fix & Perm 
Buffer, 10x Genomics, PN-2000517) and incubated at 4°C for 16–24 h. To stop the fixation, 
nuclei were centrifuged at 850 g for 5 min at room temperature and quenched with 1 mL of 
Quenching Buffer (1× Quench Buffer, 10x Genomics, PN-2000516). Fixed nuclei were then 
stained with 1 μg mL-1 DAPI and sorted for DAPI-positive nuclei. 

Up to 300,000 nuclei were processed per hybridization according to 10x Genomics 
recommendations. Each hybridization was performed in 40 μL of hybridization mix, containing 
10 μL of Mouse WTA probes (10x Genomics, PN-2001275) and 2.5 μL of custom probes 
targeting eGFP and mKate2 for a final concentration of 2 nM per probe. Custom probes were 
designed following the 10x Genomics technical note on probe design, with particular attention to 
GC content (see Data S1 for probe sequences). Hybridizations were carried out at 42°C for 16–
24 h. 

Following hybridization, samples were diluted in Post-Hybridization Wash Buffer and counted. 
For each experiment, an equal number of nuclei from each hybridization reaction was pooled to 
ensure equal sample representation. The pooled nuclei were then washed four times in Post-
Hybridization Wash Buffer for 10 min at 42°C. After washing, nuclei were resuspended in Post-
Hybridization Resuspension Buffer, filtered through a 30 μm Miltenyi Biotec filter, and counted to 
determine the appropriate volume for loading onto the Chromium X instrument. 

GEM encapsulation was performed following the 10x Genomics Flex GEM-X (PN-1000782) 
protocol, using their guidelines for cell and reagent volumes per well based on the desired cell 
recovery. After loading the Chip FX and running it on the Chromium X, GEMs were recovered 
and processed according to the manufacturer’s instructions. Following GEM processing, the 
resulting product was pre-amplified and indexed to generate the sequencing library. All libraries 
were sequenced on an Illumina NovaSeq X+ (R1 – 28 cycles, i5 – 10 cycles, i7 – 10 cycles, R2 
– 90 cycles) using standard dual indexing and demultiplexing. Raw BCL files were processed 
with Cell Ranger (9.0.0), and the resulting FASTQ files were quantified using a custom probe 
set reference for the mouse genome (GRCm39) within the Cell Ranger pipeline. 

Table S1 provides details of the dissociated samples collected as part of this study. 
 
 
SPATIAL PROFILING 

Table S5 describes detailed information regarding the 10x Xenium spatial transcriptomics 
samples that we collected as part of this study. Data S4 contains source data and sample 
metadata of tissues analyzed with immunofluorescence. 
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Immunofluorescence 
Immunofluorescence was conducted on 5-μm sections of FFPE blocks. Following 
deparaffinization and antigen retrieval (citrate buffer pH 6.0, Fisher / Vector Biolabs, H-3300-
250), slides were blocked with 5% BSA 1X PBS for 1 h at room temperature, followed by 
overnight incubation with primary antibodies. Following primary incubation, we washed slides 3 
times for 10 min with 1X PBS, and incubated with secondary antibodies diluted in blocking 
buffer for 1h. We washed slides for 10 min with 1X PBS 1 ug mL-1 DAPI, followed by two 
additional washes and mounting. Images were imaged with a Nikon T2i Eclipse system 
equipped with a 20X Plan APO objective (Nikon, MRD00205) equipped and an ORCA-
FusionBT sCMOS camera. For quantification of HMGA2, VIM and TNC, we collected full tissue 
scans using the Nikon Elements image acquisition software.  

For quantification of P53 levels, we stained adjacent tissue sections for the progenitor state 
marker MSN or P53, as well as GFP as a proxy for KrasG12D+/p53-proficient cells. We selected 
and acquired fields of view based on the presence of MSN+ and MSN- lesions and 
subsequently acquired the corresponding regions of interest in the p53-stained slide. We 
acquired images using a 20X Plan APO objective and the Crest X-Light V2 LFOV25 Spinning 
Disk Confocal attached to our Nikon T2i Eclipse microscope, collecting fields of view of 2000 x 
2000 px. 

We used the following primary antibodies: GFP (Abcam, ab13970; RRID:AB_300798, 1:1000), 
RFP (Evrogen, AB233; RRID:AB_2571743, 1:1000), HMGA2 (Cell Signaling Technology, 
8179S; clone D1A7, RRID:AB_11178942, 1:500), Moesin (Proteintech, 26053-1-AP; 
RRID:AB_2880353, 1:100), E-cadherin (BD Biosciences, 610181; RRID:AB_397580, 1:500), 
Vimentin (Cell Signaling Technology 5741; RRID:AB_10695459, 1:500), mKate2 (generated in-
house, #4007; rat isotype, 1:250), p19 (SantaCruz, sc-32748; RRID:AB_628071 1:100), 
Tenascin-C (R&D systems, MAB2138; RRID:AB_2203818, 1:250), p53 (Leica Biosystems, P53-
CM5P; RRID:AB_2744683, 1:250), Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (Cell 
Signaling Technology, 9101; 1:250). We used the following secondary antibodies as part of this 
study: Donkey Anti-Mouse IgG Alexa Fluor 750 (Abcam, ab175738; 1:250), Donkey anti Rabbit 
IgG Alexa Fluor 555 (Invitrogen, A31572; 1:500), Donkey anti-Rat IgG Antibody, Alexa Fluor 
647 (Thermo Fisher Scientific, A78947; 1:500), Donkey anti-Chicken IgY Alexa Fluor 488 
(Thermo Fisher Scientific, A78948; 1:1000), Donkey Anti-Chicken IgY Alexa Fluor 647 (Sigma-
Aldrich, AP194SA6; 1:1000), Donkey anti Mouse IgG Alexa Fluor 488 (Thermo Fisher Scientific, 
A21202; 1:1000), Donkey anti-Rabbit IgG Alexa Fluor Plus 647 (Invitrogen; A32795, 1:500), 
Donkey anti-Rat IgG Alexa Fluor Plus 555 (Invitrogen, A48270; 1:500). 

Multiplexed Immunofluorescence using Lunaphore COMET 
The Lunaphore COMET platform allowed us to probe for multiple markers of the progenitor-like 
state in the same tissue slide, overcoming limitations of isotype incompatibility between markers 
(e.g., MSN and HMGA2 antibodies are both derived from rabbit hosts). Tissue sections (5 µm) 
were trimmed from a FFPE block and placed at the center of a clean glass slide. The slide was 
air dried and baked at 42˚C for 3 h and stored in a desiccator. Epredia PT Module was used to 
deparaffinize and retrieve epitopes (Epredia Dewax and HIER Buffer L). The slide was then 
washed twice with 1X Multistaining buffer (BU06) and loaded onto the COMET. Appropriate 
volumes of primary antibodies, secondary antibodies, 5 µg mL-1 DAPI (Thermo Fisher Scientific, 
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D3571), Multistaining buffer, Quenching buffer (BU08-L), Imaging buffer (BU09), and Elution 
buffer (BU07-L) were freshly made and loaded into the fluidics compartment of the instrument. 
Fields of view (FOVs) of 12 mm x 12 mm were captured in a tiled fashion, only where the tissue 
was auto detected. The primary antibodies were used at the following dilutions: 1:1000 GFP 
(Abcam, ab13970), 1:300 HMGA2 (8179S, CST), 1:100 Moesin (ProteinTech, 26053-1-AP), 
1:100 p19 (SantaCruz, sc-32748). The secondary antibodies were used at the following 
dilutions: 1: 100 Donkey anti-Rabbit AlexaFluor Plus 555 (Thermo Fisher Scientific, A32794), 
1:200 Donkey anti-Rabbit AlexaFluor Plus 647 (Thermo Fisher Scientific, A32795), 1:200 
Donkey anti-Rat AlexaFluor Plus 647 (Thermo Fisher Scientific, A48272), 1:200 Goat anti-
Chicken AlexaFluor Plus 647 (Thermo Fisher Scientific, A32933). 

Multiplexed Immunofluorescence using Leica CellDive 
We used the Leica CellDive imaging system to conduct multi-IF experiments through cycles of 
staining, imaging and bleaching of fluorescent stains. This allowed us to probe for multiple 
microenvironment markers in the same tissue section while bypassing limitations of isotype 
incompatibilities, and leveraging the computational removal of autofluorescence in this imaging 
system. We imaged 5-μm FFPE sections following the manufacturer’s protocol. Briefly, after a 
2-step antigen retrieval process, slides were blocked with 3% BSA, stained with DAPI, and 
imaged unstained to acquire background autofluorescence (AF). Samples were then stained 
and imaged using DAPI, Cy3, Cy5, and FITC channels on the CellDive (Leica) instrument with 
CellDive image acquisition and processing software. Each FOV was imaged in each staining 
round, followed by AF removal, registration with baseline DAPI, and stitching. Unconjugated 
primary antibodies were used in the first staining round, followed by secondary antibody 
staining: GFP (Abcam, ab13970; RRID:AB_300798, 1:1000), HMGA2 (Cell Signaling 
Technology, 8179S; clone D1A7, RRID:AB_11178942, 1:500) and Tenascin-C (R&D systems, 
MAB2138; RRID:AB_2203818, 1:250). After imaging, dye inactivation was performed using 0.1 
M Na2CO3 3% H2O2 solution for 15 min at room temperature, followed by 1 h blocking with 
rabbit serum (Sigma-Aldrich, R9133) at room temperature and washing with 1X PBS-T, before 
starting the next round of AF imaging and staining. Subsequent rounds of staining were 
conducted with primary antibodies conjugated to a fluorophore, and included the 
immunosuppressive myeloid cell marker ARG1 (Cell Signaling Technology, 35298; AlexaFluor 
555 conjugated, 1:100). All rounds of imaging and slide storage were done in a solution of PBS 
with 50% glycerol. Staining quality and fluorescence removal were verified after each round. 
The fully stitched images were imported into HALO® image analysis software (Indica Labs) for 
visualization.  

Single-molecule FISH 
Coverslip preparation for smFISH 
Coverslips were prepared as described12. Briefly, 40-mm–diameter #1.5 coverslips (Bioptechs, 
0420-0323-2) were cleaned in batches by arranging in a wafer boat (Entegris, A23-0215) and 
immersing in a 1:1 mix of 37% HCl and methanol at room temperature for 30 min. Coverslips 
were then washed twice with Milli-Q water, and once with 70% ethanol, followed by gentle 
drying with nitrogen gas. Cleaned coverslips were coated with a silane layer to allow 
stabilization of a polyacrylamide gel during smFISH staining, following published protocols12: 
they were submerged in 0.1% (vol/vol) triethylamine (Millipore, TX1200) and 0.2% (vol/vol) 
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allyltrichlorosilane (Sigma, 107778) in chloroform for 30 min at room temperature, washed once 
with chloroform, washed once with 100% ethanol and dried using nitrogen gas. Coverslips were 
stored long-term in a desiccated chamber. 

To prepare for staining individual samples, silanized coverslips were coated with 0.1 mg mL-1 
Poly-D lysine (Thermo Fisher Scientific, A3890401) at room temperature for 1 h in a 6-cm tissue 
culture plate. They were then washed once with 1X PBS, and 3 times with nuclease-free water. 
Coverslips were lifted after each wash, using either tweezers or a needle, to ensure that both 
sides of the coverslips were exposed to the solution. Coverslips were left to dry for at least 2 h 
in a tissue culture hood before proceeding to tissue sectioning. 

Tissue sectioning, fixation and permeabilization 
Tissue section preparation was conducted following a published protocol11. Briefly, 10-μm tissue 
sections were cut using a cryostat and mounted into poly-D lysine coated coverslips, then 
placed face-up on a 6-cm tissue culture dish for all subsequent wash and incubation steps. 
Coverslips were dried for 5–10 min at 50°C, and placed on dry ice until all samples were 
sectioned. Next, plates with coverslips were transferred to ice, and treated with 3 mL 1X PBS to 
melt the OCT, and fixed at room temperature with 4% PFA 1X PBS for 10 min. Coverslips were 
then washed three times with 1X PBS, and treated with ice-cold 70% ethanol and maintained at 
4°C overnight for permeabilization. 

Pre-staining treatment of permeabilized tissues 
After overnight ethanol incubation, coverslips were rehydrated with 1X PBS on ice for 10 min. 
To bleach endogenous fluorescence of lineage reporters, tissues were exposed to a bleaching 
solution of 3% hydrogen peroxide (Fisher, H325-500), 1:600 37% HCl (vol/vol) 1X PBS, and 
placed under a heat lamp for 1 h13. They were then washed twice with 1X PBS and once with 
2X SSC. Next, they were treated with pre-warmed (37°C) digestion solution containing 20 μg 
mL-1 proteinase K (Sigma, 3115836001) in 2X SSC, and incubated at 37°C for 10 min. This step 
enhances the permeabilization of probes in an optimized protocol for RNA staining in pancreatic 
tissue11. To remove proteinase K, coverslips were washed 3 times with 2X SSC. To prepare 
coverslips for hybridization, they were treated with pre-hybridization solution, composed of 30% 
formamide (Thermo Fisher Scientific, AM9344) in 2X SSC and incubated for at least 3 h at 
37°C, as previously described11. 

Staining with primary probes 
Computational probe design is described below (Probe design for multiplexed smFISH). 
Primary probes were diluted at a 100 nM final concentration per probe in 3H staining buffer, 
composed of 30% formamide, 10% dextran sulfate (Sigma Aldrich, D8906-50G), 1 mg mL-1 
yeast tRNA (Thermo Fisher Scientific, 15401029) in 2X SSC12. In addition, this staining solution 
had a final concentration of 2 μM anchor probe, a 15-nt sequence of alternating dT and 
thymidine-locked nucleic acid (dT+) with a 5′-acrydite modification (Integrated DNA 
Technologies), designed to anchor all polyadenylated RNAs to a polyacrylamide gel in 
subsequent steps. Next, hybridization chambers were prepared by attaching parafilm on the 
surface of a 6-cm tissue culture dish. Upon completion of pre-hybridization incubation, a 100-μL 
droplet of hybridization solution and probes (100 nM per probe) was placed on the center of the 
hybridization chamber, and coverslips were placed face down so that the hybridization solution 
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uniformly covered the tissue, taking care of removing bubbles that may have formed in the 
parafilm–coverslip interface. Hybridization chambers were placed on a 15-cm dish, with a wet 
Kimwipe used as a humidity buffer, and incubated at 37°C for 36h–48 h. 

Post-hybridization wash 
Upon completion of incubation with primary staining solution, post-hybridization wash buffer 
composed of 30% formamide in 2X SSC was prepared, and pre-heated to 37°C. Coverslips 
were then washed face-up with post-hybridization wash buffer at 47°C for 30 min. This washing 
step was repeated for a second 30-min incubation with fresh post-hybridization wash buffer. 
Lastly, coverslips were transferred to 2X SSC solution and maintained at 4°C until the next step. 

Gel embedding 
!"#$%&'()&*&(&#+&,,&,(-.("(/01.(%"2&*(-3($-%2"4*2%"#1,&(5&%6(/-("%%-)('7+'&87&./(/1''7&9

4%&"*1.5(/0*-750(,15&'/1-.(-3($*-/&1.(".,(%1$1,':(;-($*&$"*&(/0&()-*<'$"4&(3-*(5&%(&#+&,,1.56(

#14*-'4-$&(5%"''('%1,&'(=>*&#1&*6(?@A@B()&*&()"'0&,()1/0(CAD(&/0".-%(".,(EFG'&(")"2(

=;0&*#-(H1'0&*(!41&./13146(I@9JAI9@CKB6($%"4&,(-.("(+&.40/-$6(".,(4-L&*&,()1/0(A:M(#N(5&%('%14<(

=N-.O"6(MA?JAB6(4%&".1.5(&P4&''()1/0("(Q1#)1$&:(;0&(5&%('-%7/1-.()"'(4-#$-'&,(-3(JD(=L-%RL-%B(

-3(@ST@("4*2%"#1,&R+1'9"4*2%"#1,&(=U1-E",6(@?@A@JJB6(?A(#V(;*1'WXY%($X(K(=Z.L1/*-5&.6(@MM?K9

AIMB6(A:[(V(F"Y%(=U-'/-.(U1-$*-,74/'6(E9IJJB6('7$$%&#&./&,()1/0(/0&($-%2#&*1O1.5("5&./'(

"##-.17#($&*'7%3"/&(=!15#"6(ASS@[B(".,(;\V\](=!15#"6(;CAIJB("/(31."%(4-.4&./*"/1-.'(-3(

A:A[D(=)/RL-%B(".,(A:@MD(=L-%RL-%B6(*&'$&4/1L&%26("'(,&'4*1+&,12. The solution was then 
degassed using a vacuum chamber (Thermo Fisher Scientific, 53050609) until bubbles stopped 
rising to the surface of the solution. Coverslips were rinsed twice with gel solution. A 100-μL 
droplet of gel solution was placed on a glass slide, and coverslips were placed face-down on the 
slide so that the gel solution spread evenly at the slide-coverslip interface. Polymerization was 
completed in 2 h at room temperature, after which gel-embedded coverslips were lifted from the 
glass slide with the aid of a razor-blade, and transferred to a 6-cm tissue culture dish with 2X 
SSC. 

Digestion 
Gel-embedded samples were subjected to an overnight treatment with digestion solution, aimed 
at clearing proteins and lipids from the samples, improving the signal to noise for RNA 
detection. Digestion solution was composed of 2% SDS (Invitrogen, AM9822), 0.25% TritonX 
(Acros organics, 327371000), 1:100 dilution of proteinase K (New England Biolabs, P8107S) in 
2X SSC. Samples were incubated overnight in digestion solution at 37°C. Following overnight 
digestion, samples were rinsed once with 2X SSC, transferred into a separate plate with 2X 
SSC, and washed for 30 min with gentle agitation. The 2X SSC solution was replaced, for a 
second 30-min wash. 

Staining with secondary probes 
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We used readout probes constituted by a 20-bp oligonucleotide conjugated to a fluorophore 
(Alexa Fluor 488, Cy3B, Cy5 or Alexa Fluor 750) via a disulfide bond. Fluorescent conjugated 
probes were purchased from Biosynthesis Inc. The secondary staining solution was composed 
of 5% ethylene carbonate (Sigma Aldrich, E26258-100G) in 2X SSC, and supplemented by 3 
nM of a secondary readout probe for each fluorescent color and 1 μM DAPI. Secondary staining 
was conducted following the same procedure for the primary staining step with the exception 
that it was conducted for 20 min at room temperature, covering samples with aluminum foil. 
Following hybridization, samples were washed once with a 10% ethylene carbonate 2X SSC 
solution for 20 min with gentle agitation, and three times with 2X SSC for 5 min per wash. 

Iterative smFISH imaging 
We prepared the following buffers for iterative smFISH imaging: (1) Wash buffer: 10% ethylene 
carbonate 2X SSC, 2.5 mL per staining round; (2) Cleavage buffer: 10% TCEP (Sigma-Aldrich, 
646547-10X1ML) 2X SSC, 3 mL per cleavage round. TCEP in the cleavage buffer allows 
reduction of disulfide bond linking fluorophores to oligonucleotides in readout probes for rapid 
extinction of fluorescent signal; (3) Imaging buffer: 10% glucose 2X SSC, supplemented with 
catalase (Sigma-Aldrich, C3515; 17.5 μg mL-1 final concentration) and glucose oxidase (Sigma-
Aldrich, G2133; 1.4 mg mL-1 final concentration), 2 mL per imaging round. Imaging buffer was 
stored under a layer of 1.5 mL mineral oil to minimize oxygen in solution during sequential 
rounds of staining and imaging; (4) 2X SSC, 40–50 mL per experiment. Furthermore, we 
prepared readout probe mixes for each round of staining. Readout probes were diluted to a final 
3 nM concentration per probe, in 5% ethylene carbonate 2X SSC, supplemented with Murine 
RNAse inhibitor (New England Biolabs, M0314S; 1:400 dilution). Buffers and readout probe 
mixes were loaded into a custom-build fluidics control system14 that can interface with the NIS 
Elements image acquisition software (v 5.31.02) using custom macros. 

Coverslips were mounted in a commercial flow chamber (Bioptechs, FCS2) sandwiched 
between a 0.75-mm-thick flow chamber gaskets (Bioptechs, 1907-100; DIE# F18524), a micro-
aqueduct slide (Bioptechs, 130119-5NC) and a second 0.75-mm-thick flow chamber gaskets 
(Bioptechs, 1907-100; DIE# 449673-A), as described15. We first cut the gel so that it would fit in 
its entirety within the rectangular opening of the flow chamber gasket. We placed the flow 
chamber for imaging on a Nikon Ti2 inverted microscope using the FCS2 stage adapter 
(Bioptechs, 060319-2-2611), and used our fluidics system to flow in 20X SSC into the sample in 
order to eliminate bubbles in the tubbing and chamber. Next, we flowed imaging buffer into the 
sample and generated a low magnification map of the entire tissue using a 20X Plan APO 
objective (Nikon, MRD00205). We then switch objectives to a high magnification 60X Plan APO 
immersion oil objective (N.A. 1.4, W.D. 0.13 mm, F.O.V. 25 mm, Nikon, MRD01605) to resolve 
individual mRNAs. We used tape to minimize the movement of the plate-holder during 
sequential rounds of imaging, which we found to be important to prevent positional drift 
throughout the experiment. 

Imaging cycles were conducted using the following parameters: 

● Staining. Flow staining buffer for 4 min at a rate of 0.5 mL min-1. Incubate for 20 min. 
● Wash. Flow wash buffer for 5 min at a rate of 0.4 mL min-1. 
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● Imaging. Flow imaging buffer for 3 min 40 sec at a rate of 0.5 mL min-1. Take 7 z-stacks 
per field of view, using a 1-μm step size, for a coverage of -3 μm to 3 μm around the 
mid-plane, using perfect focus throughout the entire experiment. 

● Cleavage. Flow cleavage buffer for 4 min at a rate of 0.5 mL min-1. Flow cleavage buffer 
for 10 min at a rate of 0.1 mL min-1. Incubate for 10 min. Flow 2X SCC for 5 min at a rate 
of 0.5 mL min-1. 

We collected images from FOVs without tissue or sources of bright autofluorescence that would 
allow us to estimate non-uniform illumination and detection profiles in each fluorescent channel, 
and correct for these in downstream image processing steps. 

Spatial transcriptomics using Xenium 
FFPE blocks were sectioned and processed according to 10x Genomics user guidelines 
(CG000580, CG000582, CG000584). Briefly, 5-µm tissue sections were trimmed from FFPE 
blocks and placed within the fiducial frame of the Xenium slide (PN-1000460). The slides were 
air dried, baked at 42˚C for 3 h and stored in a desiccator. Tissues were then deparaffinized, 
rehydrated and de-crosslinked using Xenium Sample Prep Reagents (PN-1000460). Tissues 
were hybridized overnight using a custom probe set (480 gene panel). The probes were ligated 
and amplified in situ. Tissues were quenched to remove autofluorescence and counterstained 
with DAPI. Slides with their corresponding decoding file were loaded and imaged on the Xenium 
instrument. 

Table S5 details the samples we analyzed with the Xenium platform. 
 
II. Computational Methods 

GENE EXPRESSION SIGNATURE DERIVATION FROM EXISTING DATA 

Premalignant state signatures 
To derive gene expression signatures for major premalignant subpopulations, we computed 
pairwise differential gene expression between discretized premalignant states as defined by 
Burdziak, Alonso-Curbelo and colleagues10. We used the wald test in the diffxpy package 
(v0.7.4, https://github.com/theislab/diffxpy?tab=readme-ov-file) and library size as numeric 
covariates. We identified upregulated genes using the following thresholds: qval < 0.05, log2 
fold-change > 1, mean expression > 0.05, and defined a signature as the set of genes 
upregulated in a specific subpopulation in every pairwise comparison between premalignant 
states. 

SMAD4-dependent TGFβ induced genes 
We reanalyzed published bulk RNA-seq data from SMAD4-proficient and SMAD4-deficient 
PDAC organoids stimulated with TGFβ or vehicle16. We used the R DESeq2 package 
(v1.32.0)17 to model gene counts as a function of treatment (TGFβ stimulation of vehicle) and 
SMAD4 status (SMAD4-proficient or SMAD4-deficient). We identified genes that are 
upregulated by TGFβ stimulation in a SMAD4-proficient context. Furthermore, we required that 
upregulation was sensitive to SMAD4 status. We used the following thresholds to identify 
upregulated genes: padj < 0.001 and log2FoldChange > 1.5, resulting in a gene signature of 88 
genes. 
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Glycolysis (Warburg) signature 
This signature is composed of a curated list of glycolysis-related enzymes (Hk1, Hk2, Gapdh, 
Pgk1, Eno1, Pkm, Ldha), including glucose, lactate and pyruvate transporters upregulated 
during the Warburg effect (Slc16a1, Slc16a3, Slc2a1)18, as well as the hypoxia master regulator 
Hif1a. 

Public transcriptional signatures 
The following table specifies the sources of other signatures used in this study. Signatures are 
provided in Data S3. 

Signature id Description Source 

p53 Fisher Curated targets of the tumor suppressive transcription factor p53 28288132 

p53 TSAG Effectors of p53-dependent tumor suppression that are also bound 
by p53 in irradiated MEFs 

33157015 

p53 restoration Upregulated upon p53 restoration in PDAC cells in vitro 31534224 

Senescence UP Upregulated in IMR90 human fibroblasts upon HrasV12-induced 
senescence 

27099234 

HALLMARK 
EMT 

Genes defining epithelial-mesenchymal transition, as in wound 
healing, fibrosis and metastasis 

26771021 

Kras signaling/ 
Fosl1 

Consistently upregulated genes in Kras mutant vs wild-type mouse 
and human tumors 

28220783 

Kras injury Genes upregulated in KrasG12D+ pancreatic epithelial cells, 
compared to KrasWT cells, both harvested 48h post-acute 
pancreatitis in vivo 

33536616 

GOBP wound 
healing 

The series of events that restore integrity to a damaged tissue, 
following an injury 

GO: 
0042060 

YAP signature Genes activated by YAP overexpression in human mammary cells 
(MCF10A), and YAP overexpression in mouse liver tissues or in 
immortalized mouse fibroblasts 

22078877 

IFNγ response Genes up-regulated in response to IFNG (HALLMARK Gene Sets) 26771021 

p65-dependent Upregulated in IMR90 human fibroblasts upon HrasV12-induced 
senescence, dependent on p65 proficiency 

27099234 

 
 
PROCESSING AND ANALYSIS OF SINGLE-CELL DATA 

Data preprocessing and quality control 
mRNA count matrix generation and demultiplexing 
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All scRNA-seq datasets were demultiplexed, barcode-corrected, aligned and UMI-corrected with 
SEQC19 using mouse genome mm10 and default parameters for samples generated using the 
v2 (spontaneous tumorigenesis samples) or v3 (injury-induced tumorigenesis samples) 3’ 
scRNA-seq kit. We summed all counts from genes that share the same gene symbol.  

For samples subjected to cell hashing, we demultiplexed using an in-house method known as 
SHARP (https://github.com/hisplan/sharp). Hash labels were assigned to either identify a cell as 
belonging to a specific mouse or as a doublet or low-quality droplet. Doublet calls informed our 
cluster-based doublet filtering (see below). We excluded non-doublet cells without an assigned 
hash barcode from sample-specific analyses, but included them in condition-level analyses. 
This is possible because cells from distinct conditions (experimental time point x genotype) were 
sequenced independently, and our cell hashing strategy aimed to distinguish biological 
replicates within a condition. 

Empty droplet removal and ambient RNA subtraction 
We removed empty droplets using the remove-background function of cellbender (v0.2.0)20, with 
expected_cells = 5000 for spontaneous tumorigenesis datasets, and 8000 for injury-induced 
tumorigenesis datasets (based on the number of cells targeted for encapsulation, total-droplets-
included = 20,000, fpr = 0.01 (default), learning-rate = 0.0001 (default) and epochs = 150 
(default). We excluded droplets with fewer than 100 mRNA counts as input into subsequent 
quality control (QC) analyses, and used cellbender background-corrected count matrices for 
downstream applications. Ambient RNA subtraction was important for mitigating the effect of 
CD45+ cell spike-ins during the collection of rare pre-tumor p53-deficient cells, as revealed by 
inspecting immune-related transcripts in epithelial cells (not shown). Unless otherwise stated, 
we used the cellbender background-corrected count matrix for downstream analyses. We 
aggregated counts from genes that share the same gene symbol through summation. 
Preprocessed datasets published as part of our study contain raw and cellbender-corrected 
counts in the same AnnotationData object for ease of comparison.  

Low-quality cell removal 
For each sample, we used an iterative clustering-based approach to identify and remove low 
quality groups of cells. During each iteration, we applied scanpy (v1.9.1)21 to embed single-cell 
transcriptomes and identify clusters using standard library size normalization 
(sc.pp.normalize_per_cell), log transformation with pseudocount 1 (sc.pp.log1p), feature 
selection (sc.pp.highly_variable, flavor = ’seurat’ and default parameters), dimensionality 
reduction using PCA (n_comp = 100), kNN construction (sc.pp.neighbors, num_neighbors = 15) 
and visualization with UMAP (sc.tl.umap). Next, we used PhenoGraph to identify single-cell 
clusters22 (sc.external.tl.phenograph, clustering_algo = ‘leiden’) varying the parameter k during 
kNN construction (k = 10, 30), resulting in cluster assignments with different levels of resolution.  

We removed the groups of cells with lowest summary QC metrics per cluster at each iteration, 
and stopped excluding when log_lib_size reached 7.5 and percent_mito fell below 20%. By 
varying cluster resolution, we could identify small clusters of low-quality cells that would 
otherwise be merged into large clusters. For some samples, we computed high-resolution 
clusters using k = 5 during the last iteration of cluster-based QC. We found that two or three 
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iterations of this procedure per sample was sufficient to satisfy our bounding criteria, and 
removed all clusters with outlier QC metrics. 

Doublet and contaminant identification 
We used doubletdetection (v4.2, http://doi.org/10.5281/zenodo.2678041) with default 
parameters to infer doublets, using raw counts as input. For samples subjected to cell hashing, 
we consolidated computationally inferred doublets with doublets identified through the detection 
of two hash ids. Using PhenoGraph cluster assignments with different resolutions (k = 5, 10, 
30), we identified and recorded clusters in which at least 50% of cells were inferred as doublets. 
At this preprocessing step, we only recorded doublets, but didn’t exclude them from the dataset. 
We reasoned that maintaining these annotations would be helpful for cross-sample identification 
of double-enriched clusters, as we have previously shown10. 

Although our single-cell data was derived from epithelial cells sorted by fluorescent protein 
expression, we identified single-cell clusters corresponding to immune and stromal 
contaminants. We used gene expression marker of major cellular compartments to identify 
these clusters (Col1a1 for fibroblasts, Ptprc for immune cells, Pecam1 for endothelial cells, Des 
for pericytes), in combination with the absence of epithelial markers (Epcam and Cdh1, as well 
as mRNAs corresponding to fluorescent proteins used during sorting, GFP and rtTA3-IRES-
mKate2). Similar to our strategy with doublet handling, we only annotated, but not excluded 
these clusters at this stage of analysis in an effort to identify contaminants in other samples from 
the same batch that are too rare to form a single cluster. 

Gene exclusion for post-cleaning preprocessing 
We excluded the following classes of genes for normalization and feature selection: (i) mRNAs 
corresponding to fluorescent proteins and shRNAs engineered into our mouse model, (ii) 
mitochondrial and ribosomal transcripts, (iii) the lncRNA Malat1, the inclusion of which was 
previously shown to distort single cell embeddings in our experimental system10. In excluding 
these genes, we aimed to minimize variation stemming from quality control metrics or hard-
coded experimental conditions (e.g. inducible expression of a fluorescent protein). In addition, 
we excluded genes expressed in less than 10 cells across all batches. While we excluded these 
genes during single-cell embedding, we kept them in the count matrix, so that the information 
they contained could be used in downstream analyses. 

Within-batch data consolidation 
As the final step of QC and preprocessing, we merged count tables and annotations of all 
samples from the same batch. We merged AnnotationData objects using the concat function of 
this class with join = ‘outer’ (include genes present in any sample) and fill_value = 0 (assume 
that a gene not present in a sample has expression of 0). We computed within-batch single-cell 
embedding and clustering using the strategy detailed for single sample filtering. We used 
cluster-level doublet annotations of individual samples to exclude doublet-enriched clusters 
(those in which >50% of cells were predicted to be doublets). Similarly, we removed clusters 
enriched in cells annotated as contaminants. 

Lastly, we used outlier detection and hard thresholding to exclude a small number of cells with 
low QC metrics that were not identified using cluster-based exclusion. Specifically, we 
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computed two QC metrics for each cell, log-transformed library size and log-transformed 
number of detected genes (excluding ribosomal, mitochondrial, fluorescent protein and shRNA 
mRNA counts). Although correlated, these two metrics provide orthogonal information about 
transcriptional complexity, as a cell may pass a library size-based threshold even when few 
genes dominate its mRNA counts. To identify outliers whose QC metrics deviate from those of 
their nearest neighbors, we used the LocalOutlierFactor function from the sklearn.neighbors 
package (v1.0.2) with n_neighbors = 100 and contamination = 0.1 (number of assumed 
outliers). In the final step, we excluded low-quality cells based on log-transformed library size < 
7.5, fraction mitochondrial counts > 0.2, or number of detected genes < 300. 

Preliminary tumor and premalignant annotations 
After integrating samples within batches, we identified clusters that exhibited transcriptional and 
genomic patterns consistent with being derived from PDAC (see Cell state annotation and Copy 
number inference for details). Conducting these preliminary annotations within individual 
batches was important for determining which cells to exclude from subsequent batch correction 
vector calculations. 

Analysis of KPLOH spontaneous tumorigenesis data 
KPLOH  dataset details 
Our spontaneous tumorigenesis data from KPLOH mice charts PDAC progression through the 
benign-to-malignant transition, and is composed of three conditions: (1) p53-proficient cells from 
mice without a macroscopic tumor (pre-tumor p53-proficient), (2) p53-deficient cells from mice 
without a macroscopic tumor (pre-tumor p53-deficient), and (3) p53-deficient cells from mice 
with a macroscopic tumor (tumor p53-deficient). Tumor p53-deficient cells are derived from (i) 
tumor-bearing KPLOH mice, isolated as GFP-/mKate2+ cells (see Mouse model genetics for 
details) and (ii) samples from tumor-bearing mice from Burdziak, Alonso-Curbelo and 
colleagues 10. For batch 8, we pooled multiple mice without hashing to minimize the time 
between harvesting and sorting during single-cell isolation. While we lack cell-to-mouse 
assignments in this sample, we note that pre-tumor cells generally do not cluster by biological 
replicate (Fig. S1a). Table S1 summarizes the number of cells per sample in our spontaneous 
tumorigenesis dataset. 

Our prior data set10 did not include a reporter of p53 genetic status; thus, a subset of cells from 
PDAC samples co-embedded with premalignant cells during integration. We also observed that 
a small fraction of cells sorted as p53-deficient from the KPLOH model co-embedded with pre-
malignant cells and expressed GFP mRNA, implying that they were indeed p53-proficient. We 
filtered out such contaminants from our dataset before embedding all samples. Note that most 
premalignant contamination comes from primary tumors rather than metastases, supporting the 
notion that these were non-cancer cells embedded within the tumor. 

Sample ID Sample codename Source 
(PMID) 

Primary or 
metastasis 

No. cells in pre- 
malignant clusters 

DAC_D020_p5_Epi  Tumor p53 deficient 11 37167403 Primary 645 

Ag-PDAC-PT-Kate  Tumor p53 deficient 10 37167403 Primary 180 
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53_LHRH_PDACreg_KATE  Tumor p53 deficient 7 This work Primary 14 

DACC963PT_Kate_plus  Tumor p53 deficient 9 37167403 Primary 7 

PDAC-SP3  Tumor p53 deficient 6 This work Primary 5 

9268_PHLH_PDAC_SP  Tumor p53 deficient 8 This work Primary 2 

Ag-Lung-Mets-Kate  Tumor p53 deficient 10 37167403 Metastasis 2 

DACC963LIVERmet  Tumor p53 deficient 9 37167403 Metastasis 0 

DACC963_mKate_plus  Tumor p53 deficient 9 37167403 Metastasis 0 

 

Feature selection and normalization 
To identify a set of highly variable genes (HVGs) that capture the variability across samples in 
all 3 batches, we conducted within-batch feature selection using scanpy’s 
sc.pp.highly_variable_genes function with n_top_genes = 3000 and flavor = ‘seurat_v3’. The 
final set of HVGs comprised the union of genes selected in each batch, resulting in 5159 genes 
capturing variation along PDAC progression. 

We conducted a batch-aware normalization approach similar to Haghverdi and colleagues23. 
We estimated per-cell size factors as the total counts after excluding mitochondrial, ribosomal, 
transgenic and Malat1 mRNAs (see Gene exclusion for post-cleaning preprocessing), then 
calculated the median size factor per batch, and rescaled size factors to equalize medians 
across batches. We normalized data by dividing counts by rescaled size factors, and multiplying 
by the median rescaled size factor across all cells. Lastly, we applied a log transformation to the 
count matrix with pseudocount = 1. 

Dimensionality reduction, batch correction and KNN construction 
We computed a batch-corrected latent space for subsequent processing steps using mutual 
nearest neighbors in the batchelor R package (v1.8.1)23 with batches 1 and 2 as reference. 
These batches contained the majority of cells in the dataset, and spanned all timepoints and 
genotypes. We used the fastMNN function with cos.norm = FALSE, d = 100 (number of 
components to keep), correct.all = TRUE and prop.k = 0.1 (default), resulting in a corrected 
latent space of 100 components that capture 45% of reference batch variance. Although the 
inflection point in the cumulative explained-variance curve was at 62 PCs (explaining 42% of 
variance), we chose to keep more PCs because this dataset was composed of both cancer and 
premalignant states, and our subpopulations of interest (e.g. progenitor-like cells) were rare (1–
2% of premalignant cells). 

We computed this latent space on log-normalized counts, using only HVGs. In addition, when 
calculating correction vectors, we excluded cells corresponding to PDAC clusters; we previously 
showed that each tumor forms a distinct cluster in this model and reasoned that including PDAC 
cells could remove and distort true biological heterogeneity in the dataset. We note, however, 
that these clusters were subjected to batch correction using correction vectors estimated from 
non-PDAC cells. The count matrix remains unmodified in this approach. Lastly, we constructed 
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a k-nearest neighbor graph (kNN) using the batch-corrected latent space as input to scanpy’s 
sc.pp.neighbors function, using num_neighbors = 30. 

Single-cell data visualization 
To visualize our single-cell data, we first appliedUniform Manifold Approximation and Projection 
(UMAP) for dimensionality reduction using scanpy’s sc.tl.umap function and the precomputed 
kNN graph as input (k = 30). We also computed a force-directed layout (FDL), which captures 
continuities in data and highlights transitional subpopulations in dynamic systems, using the 
forceatlas2 python package24. We used the diffusion operator of our single-cell data as input to 
compute force-directed layouts (Note S1). This strategy incorporates local changes in distances 
along the single-cell manifold into graph visualization. 

Copy number inference 
We inferred karyotypes from single-cell transcriptomes to better distinguish PDAC from 
premalignant status, and to characterize genomic diversification following spontaneous p53 
loss. To infer chromosome-level changes, we used a custom implementation of inferCNV 
(inferCNV of the Trinity CTAT Project. https://github.com/broadinstitute/inferCNV), as outlined 
below. inferCNV assumes that changes in copy number cause corresponding changes in gene 
expression which, though subject to variation by cell state and by other factors, can be detected 
as concerted changes in the expression of genes in local genomic neighborhoods.  

We first selected a p53-proficient sample1 as a diploid or near-diploid reference, and computed 
the mean expression of each gene from library size normalized counts (without log 
transformation). We excluded genes with low expression (min_threshold = 0.1), reasoning that 
they are less likely to reveal robust gene expression differences caused by genomic changes. 
Next, we ordered genes by genomic coordinates (UCSC mm10). For each gene x cell pair in the 
KPLOH dataset, we computed the log2 fold-change in gene expression (pseudocount = 0.1 for 
both numerator and denominator) over the mean expression of that gene in the reference cell 
set, clipping log2 fold-change estimates to [-3, 3] to limit the effect of outliers. We computed the 
sliding average log2 fold-change over a window of consecutive genes in the same chromosome 
(window_size = 100), trimming chromosome ends. Lastly, we recentered average log2 fold-
change expression profiles by subtracting the values of each cell by their median, resulting in 
our final proxy for copy number changes. To cluster inferred karyotype profiles, we computed a 
simplified matrix, in which each cell is described by the average log2 fold-change expression of 
each chromosome. We clustered this simplified matrix using hierarchical clustering (method = 
‘ward’, metric = ‘euclidean’) implemented in the cluster.hierarchy module of scipy (v1.7.3). 

Our approach incorporated two modifications to the standard approach. First, our initial 
examination of inferred copy number profiles revealed that small groups of biologically related 
genes could distort estimates. For example, we identified a cluster of carboxypeptidases (Cpa1, 
Cpa2, Cpa5, Cpa4) on mouse chromosome 6 that are expressed at high levels in acinar and 
ADM cells, causing spikes in inferred copy number that could be mistakenly interpreted as focal 
amplification. We therefore removed all such gene groups from copy number inference through 
manual inspection of spikes in gene smoothed gene expression profiles with smaller window 
sizes (5-20 genes), as well as ribosomal and mitochondrial genes (see Data S3 for excluded 
genes). Our approach prioritizes robust estimation of chromosome-level copy number changes 
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over the identification of more focal alterations and highlights an important opportunity for 
feature selection in developing copy number inference strategies. 

Second, we incorporated iterative copy number inference to mitigate batch effects during 
karyotype estimation. We could use within-sample diploid references for pre-tumor stage 
inference, because we compared p53-proficient samples (expected to be near diploid) with p53-
deficient samples . Notably, the only recurrent change in pre-tumor p53-proficient cells was the 
gain of chromosome 6, as reported in the KPLOH model1. The distribution of the average 
smoothed log2 fold-changes in chromosome 6 was bimodal, providing a natural threshold to 
identify cells that gained this chromosome (average log2 fold-change > 0.17). We used cells 
without this event as diploid references within each mouse, reducing variability in inferred copy 
number profiles. 

To classify pre-tumor p53-deficient cells as genomically ‘quiet’ or ‘rearranged’, we computed a 
simplified karyotype matrix in which each entry is the average copy number change of each 
chromosome in each cell. Next, we binarized this matrix by identifying entries > 0.16 (indicating 
gains) or < -0.16 (indicating losses). We selected these thresholds based on the distribution of 
average copy number changes across all cells and chromosomes in the dataset. We defined 
genomically ‘quiet’ cells as those that had less than 9 gain or loss events, and ‘rearranged’ cells 
as those with more than 9 events. These thresholds captured differences in transcriptional 
states that distinguished premalignant-like and cancer-like clusters (Fig. 1 and Fig. S2) in the 
presence of noisy karyotype inference from transcriptomes. 

Refinement of condition assignment 
We used copy number profiles and transcriptome-based PhenoGraph clusters to refine 
assignment of individual cells to cancer-like or premalignant. First, we identified a rare group of 
pre-tumor cells sorted as GFP+, but that lacked GFP mRNA expression and chromosome 11 
loss (containing the p53 locus). Given that these are criteria for detecting p53 deficiency in this 
mouse model, we re-assigned them as pretumor p53-deficient cells (n = 4 cells reassigned).  

Annotation of premalignant states 
To annotate cell states in the premalignant pancreas, we first used the scanpy implementation 
of PhenoGraph sc.external.tl.phenograph (k = 30, clustering_algo = ‘leiden’) with gene 
expression signatures from our published dataset10 (see Premalignant state signatures). First, 
we standardized our count matrix by computing the z-score expression of each gene across all 
cells. To calculate a signature score per cell, we averaged the z-scored expression of signature 
genes in each cell. We aggregated signature scores at the cluster level by averaging, and 
standardized such average scores across clusters. Lastly, we used the searborn (v0.11.2) 
clustermap function to guide manual cluster annotation. 

We noted that while some cell states were clearly separated from the bulk of the premalignant 
epithelium (e.g. ADM, tuft and neuroendocrine cells), the majority of epithelial cells varied along 
a phenotypic continuum linking gastric-like and progenitor-like states. To capture continuity 
between these states, we used diffusion component analysis25,26, as diffusion components 
represent axes of variation in the data and can describe successive cell-state transitions along 
the phenotypic manifold (Note S1). In our spontaneous tumorigenesis dataset, the second 
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diffusion component (DC2) correlated with single-cell progenitor-like scores (Fig. S1g). To 
identify a boundary between gastric-like states and progenitor-like states along this phenotypic 
continuum, we used the triangle method to identify a threshold in the distribution of cell densities 
along DC2 (Fig. S1h). Cell state discretization in light of this continuum was helpful to interpret 
cell state-specific consequences of spontaneous p53 loss. 

Genes upregulated in malignant cells in the KPLOH model 
We leveraged our p53-proficient and p53-deficient single-cell data in the KPLOH background to 
derive a signature of genes upregulated in PDAC compared to premalignant cells. By adopting 
a pseudobulking approach for differential gene expression, we could quantify changes in 
average transcript expression between premalignant and malignant cells in a manner agnostic 
to the subpopulation structure of each sample, while leveraging inter-replicate variability for the 
derivation of a robust expression signature. We restricted our analysis to samples from batches 
1 and 2 (see Table S1), which were collected simultaneously and sequenced using the same 
reagents to avoid variation from technical sources. Furthermore, we excluded metastasis 
samples to focus on pancreas-derived cells. In total, we analyzed 4 pre-tumor p53-proficient 
samples and 6 tumor-derived p53-deficient samples. To identify differential expression, we 
aggregated unnormalized, cellbender-corrected counts per sample to construct a pseudobulk 
count matrix with genes as rows and samples as columns. Next we used the R package 
DESeq2 (v1.42.1) to test for differential gene expression between PDAC and premalignant 
conditions, using design = “~ condition” to model counts. We identified upregulated genes as 
those with padj < 0.001 and log2(fold change) > 1.5, resulting in a signature of 941 genes. 

Simultaneous visualization of multiple signatures 
To visualize multiple signatures in the same single-cell layout (Fig. 1e) we used a signature-
based pseudo-coloring strategy as previously implemented10. We normalized scores for each 
signature by subtracting the minimum signature value and dividing by the 95th quantile of such 
scores. We define the signature matrix 𝑆!×# such that 𝑆$,& is the normalized score for signaturej 
in celli, and we define a color-encoding matrix 𝑊#×' where 𝑊&,∙	is the RGB vector representation 
of the color associated with signaturej. The pseudo-coloring of a cell is defined by the matrix 
multiplication 𝑆 ×𝑊. Because RGB components are bounded between [0,1], we clip values to 1 
after matrix multiplication. This approach is most effective in simultaneously visualizing multiple 
phenotypically distinct subpopulations and a limited number of mixed subpopulations, as 
pseudo-colors can saturate due to the effect of summation and clipping. 

Diffusion distance analysis 
To quantify transcriptional similarity between premalignant cells and PDAC, we used diffusion 
distance, a quantity that allows estimation of long-range cell–cell connectivities while respecting 
non-linearities in the phenotypic manifold (Note S1). To compute diffusion distance between 
premalignant and malignant cells (Fig. 1f), we used the eigenvectors associated with the 17 
highest eigenvalues of the diffusion operator, based on the second eigengap as the threshold 
criterion. To calculate the similarity between pre-tumor p53-proficient (premalignant) and cancer 
cells, we computed the diffusion distance from every premalignant cell to the closest cancer cell 
(annotated as p53-deficient tumor or microtumor). 

Differential gene expression 
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To assess cell state-dependent consequences of p53 loss, we computed differential gene 
expression between pretumor p53-proficient cells and pre-tumor p53-deficient cells with ‘quiet’ 
genomes (see Copy number inference for details). We used the wald test in the diffxpy package 
(v0.7.4, https://github.com/theislab/diffxpy?tab=readme-ov-file), with raw counts as input and 
library size as a numeric covariate. We identified downregulated genes upon p53 loss as those 
with qval < 0.05, log2(fold change) < -1 and mean expression > 0.05. To visualize gene 
expression as a function of cell state and p53 status (Fig. 2a) we z-scored log-normalized 
counts using the mean and standard deviation of pre-tumor p53-proficient cells as reference. 
This standardization strategy aims to highlight deviations in gene expression attributed to p53 
deficiency and doesn’t depend on inclusion or exclusion of tumor-stage samples. 

Quantification of p16INK4A and p19ARF isoforms 
The Ckdn2a locus encodes two structurally and functionally distinct gene products, p16INK4A and 
p19ARF, both of which mediate tumor suppression through different mechanisms. cDNAs for 
these gene products result from alternative use of the exon 1α (p16INK4A) or exon 1β (p19ARF), 
spliced into the shared exon 2. Most reads captured through 3’-end sequencing are unable to 
distinguish between these two gene products, but we found rare reads that spanned isoform 
specific splice junctions, allowing unambiguous determination of Cdkn2a isoforms. To identify 
such reads, we used our custom scRNA-seq processing pipeline SEQC to scan aligned bam 
files from pre-tumor p53-proficient samples for reads that (1) fell within the boundaries of exon 
1β and exon 2 of the Cdkn2a locus (chr4:89276895-89276975), and (2) showed evidence of 
splicing as evidenced by a gap flag in the CIGAR string. Next, we aligned reads to the spliced 
p16INK4A or p19ARF sequences, to assess the isoform associated with each read. 

Processing and analysis of p53 knockdown data 
Dataset details 
Our injury shp53 cohort contained dissociated single-cell data from KrasG12D+ epithelial cells 
collected from KCshp53 or KCshRen mice 3 weeks after injury to induce pancreatitis. This dataset, 
composed of two batches with 2–3 mice per genotype per batch, formed the basis of our 
investigations on the cell-intrinsic consequences of p53 loss in the context of pancreatic injury. 
Table S1 summarizes the number of cells per condition in our p53 perturbation dataset. 

Cell filtering 
Preliminary embeddings of filtered and merged objects during data cleaning (see Data 
preprocessing and quality control) revealed a PhenoGraph-defined (k = 30) subpopulation of 
210 premalignant cells that coexpressed divergent cell-type markers—Cpa1 for acinar, Msn for 
progenitor-like, Muc6 for gastric-chief-like and Anxa10 for gastric-pit-like cells. This 
subpopulation was present in only one batch, and 95% of its cells were derived from a single 
biological replicate. We excluded these cells from further analysis because the cluster was not 
reproducible between biological replicates. 

Normalization, feature selection and dimensionality reduction 
As we did not detect strong batch effects during exploratory analysis, we merged the two 
batches into the same AnnotationData object and computed embeddings as follows: (1) size 
factor estimation from library sizes, excluding Malat1 and ribosomal, mitochondrial and 
transgenic mRNAs; (2) median equalization of size factors between batches; (3) normalization 
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through division by size factors, scaling by the median size factor estimate, followed by log 
transformation with pseudocount = 1; (4) selection of top 3000 HVGs in each batch using the 
scanpy sc.pp.highly_variable_genes function with flavor = ’seurat_v3’; (5) dimensionality 
reduction using the scanpy PCA function sc.pp.pca., keeping 68 PCs (explaining 54% of total 
variance) based on the inflection point in the cumulative explained-variance curve; (6) kNN 
construction with k = 30; and (7) visualization using UMAP and FDL (see Single-cell data 
visualization). Our embedding recapitulated the structure that we previously identified in our 
published injury-induced tumorigenesis dataset10. 

Visualization of cell state density in two-dimensional representation 
To gain an intuition of how individual cell distributions change along the phenotypic manifold 
upon p53 knockdown, we computed two-dimensional densities in the coordinates of our layouts. 
For each condition (p53 knockdown or control), we computed a histogram summarizing cellular 
frequencies at different coordinates of the 2D projection of the UMAP embedding (100 bins for x 
and y axes). We smoothed the histogram using a 2D Gaussian kernel with bandwidth = 1 bin, 
and visualized the estimated distributions in a contour plot (Fig. 7c). We emphasize that this 
procedure does not accurately estimate cellular densities in high dimensional space; however, 
we found it useful for communicating results of high-dimensional computations (e.g. the 
accumulation of progenitor-like cells with mesenchymal properties upon p53 knockdown). 

Differential gene expression 
To assess the consequences of p53 knockdown in premalignant epithelial cells during injury, we 
adopted a pseudobulking approach. PhenoGraph (k = 30) grouped progenitor-like cells into 
three clusters—one from shRen samples (shRen progenitor 1) and two from shp53 samples 
(shp53 progenitor 1 and 2) (Fig. S11c). Diffusion component analysis suggested that different 
progenitor-like subpopulations lie along a phenotypic continuum and that p53 knockdown 
facilitates persistence or progression of the more advanced progenitor 2 state.  

We reasoned that comparing cluster pairs would allow us to distinguish direct effects of p53 
knockdown that are due to target gene activation from secondary effects that are due to 
changes in cell state. We therefore asked which gene expression programs change upon p53 
knockdown (1) for all progenitor-like cells, (2) for regions of the progenitor continuum with 
similar shp53 and shRen cell densities, and (3) that specifically characterize progenitor 2 cells. 

We grouped cells by genotype (shp53 or shRen) and progenitor-class (progenitor 1, progenitor 
2 or all progenitor-like cells) combination, then summed unnormalized counts to generate a 
pseudobulk sample. Our approach is conceptually similar to marker-based cell sorting followed 
by bulk RNA sequencing, and illustrates how differential gene expression results change 
depending on the resolution at which single-cell communities are computationally or 
experimentally isolated. To compute differential expression, we used DESeq2 (v1.42.1) with 
pseudobulk counts as input, and genotype or cell state as contrasts. We used the GSEA 
implementation of gseapy (v1.1.2) to query gene sets differentially expressed between different 
progenitor-like clusters in shp53 cells, using the MSigDB Hallmark 2020 database, log2 fold-
change estimates as the rank variable, and FDR < 0.1 as a significance threshold. 

Condition-aware imputation and gene signature scoring 
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We used MAGIC-imputed counts26 to compute gene expression signatures. MAGIC uses the 
diffusion operator (Note S1) to share gene expression information in local neighborhoods in cell 
state space, mitigating the effect of dropouts in sparse single-cell datasets. Formally, the 
imputed count matrix is obtained by exponentiation of the diffusion operator, and multiplication 
with the count matrix. The exponent of the diffusion operator 𝑡 corresponds to the number of 
diffusion steps (𝑡 = 3 in our specific implementation). Increasing 𝑡 increases the distance over 
which gene expression information of any given cell influences imputed counts of another cell in 
the phenotypic manifold. 

To avoid sharing gene expression information between cells from different genotypes, we 
carried out imputation separately for shp53 and shRen samples, using the same PC space to 
construct the kNN graph (k = 30) as input to the imputation process. To score gene signatures, 
we first computed a z-scored imputed gene expression matrix. We used the mean and standard 
deviation of imputed counts in shRen samples for z-scoring. This strategy aims to highlight 
deviations in shp53 cells relative to control cells. 

Diffusion component analysis 
Diffusion component analysis captures continuous, non-linear variation in data; we applied it to 
identify dominant axes of variation in our premalignant pancreas data. We constructed a 
diffusion operator using a kNN graph (k = 30) built on cells from both shp53 and shRen 
samples. The third eigenvector of the diffusion operator (diffusion component 3 or DC3) 
captured variability between the two most abundant subpopulations in the premalignant 
pancreas, consisting of gastric-like and progenitor-like states. To plot gene signatures as a 
function of diffusion component, we discretized DC3 into 100 equally sized bins and computed 
the average signature score for each bin, separately for shp53 and shRen genotypes (Fig. 7d). 
We excluded bins with fewer than 10 cells from visualization. 

Analysis of KRAS inhibitor data 
We aimed to systematically quantify changes in the premalignant epithelium from acute 
oncogenic KRAS inhibition by MRTX1133 treatment in the context of pancreatic injury. This 
unbiased characterization complements our targeted analyses of the effects of this treatment on 
the abundance of progenitor-like cells (Fig. 6b). The three biological replicates from each 
condition (MRTX1133 or vehicle-treated) were pooled, encapsulated and sequenced together, 
followed by sample deconvolution using cell hashing. 

Single-cell embeddings 
Starting from QC-filtered count matrices (see Data preprocessing and quality control), we 
merged data from two conditions into a single object, and generated single-cell embeddings by: 
(1) size factor estimation from library sizes, excluding Malat1 and mitochondrial, ribosomal and 
transgenic mRNAs; (2) standard library size normalization, followed by scaling by median library 
size; (3) log transformation using pseudocount = 1; (4) selection of top 3000 HVGs using 
scanpy’s sc.pp.highly_variable function on cellbender counts with flavor = ‘seurat_v3’ (excluding 
mitochondrial, ribosomal, transgene and Malat1 mRNA); (5) dimensionality reduction using the 
scanpy PCA function sc.pp.pca., keeping 57 PCs (explaining 51% of total variance) based on 
the inflection point in the cumulative explained-variance curve; (6) kNN construction using k = 
30; (7) UMAP visualization using sc.tl.umap and default parameters; (8) computation of diffusion 
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operator on the kNN graph (Gaussian kernel width determined adaptively based on distance to 
each cell’s 10th nearest neighbor) and (9) FDL visualization using the diffusion operator as input 
and initialization using UMAP coordinates. We visualized conditions and cell states as 2D 
density maps projected on our FDLs (Fig. S9b). Table S1 summarizes the number of cells 
contained in our single-cell object. 

Cell type annotation 
We used PhenoGraph clustering and marker gene expression to annotate premalignant 
subpopulations. Most subpopulations relied on highly specific established markers (e.g., Cpa1 
for ADM cells, or Pou2f3 for tuft cells, or Syp for neuroendocrine cells). For gastric-like states, 
we used a refined set of markers, since oncogenic KRAS inhibition led to shifts in the spectrum 
of these states. To refine gastric-like states, we also used a smaller than typical k (k = 10) for 
kNN construction when inferring PhenoGraph clusters. We used the following markers to 
annotate premalignant states: 

Cell state Marker genes 
Progenitor-like Hmga2, Msn, Itga3, Nes 
ADM Cpa1, Rbpjl, Nr5a2 
Tuft Pou2f3, Alox5 , Ptgs1 
Neuroendocrine Syp, Scg5, Chga, Chgb 
Cycling Mki67, Bub1, Cdk1 
Duct Rgs5, Cp, Prox1 
Gastric-general Dmbt1 
Gastric pit-like Anxa10, Tff1 
Gastric chief-like F5, Muc6 
 
Differential abundance analysis 
To test for differential abundance of distinct premalignant subpopulations as a result of 
MRTX1133 treatment, we used the Milo algorithm27. This method first identifies communities of 
cells on a kNN graph that partially overlap between conditions (Milo transcriptional 
neighborhoods), then models the cell counts from different experimental conditions in each 
neighborhood using a generalized linear model with negative binomial residuals. This allows 
testing for differences in the abundance of cells from different conditions within granular cellular 
states in the data. We used the miloR implementation with a precomputed kNN graph (k = 30) 
and PCA (n_pcs = 57), using the makeNhoods function for Milo neighborhood construction with 
prop = 0.01 and refined = TRUE. This approach uncovered a set of granular cell states that are 
either enriched or depleted (SpatialFDR < 0.1) in the premalignant pancreas upon acute 
oncogenic KRAS inhibition. To visualize these results, we annotated transcriptional 
neighborhoods by their most common cell state label, and plotted their estimated log-fold 
change in MRTX1133-treated vs vehicle treated mice as a function of cell state (Fig. S9c). 
Furthermore, it showed that the progenitor-like state is most dependent on persistent Kras 
signaling among premalignant subpopulations. 

Differential gene expression analysis 
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We reasoned that dissecting gene expression changes within premalignant states as a 
consequence of acute oncogenic KRAS inhibition could reveal programs dependent on 
persistent KRAS signaling and cell-state transitions mediated by loss of oncogenic signaling. 
We focused on ADM cells, as this subpopulation was not depleted but showed a marked shift in 
transcriptional state. We used the wald-test in the diffxpy package (v0.7.4, 
https://github.com/theislab/diffxpy?tab=readme-ov-file) to compute differential gene expression 
between MRTX1133 and vehicle-treated ADM cells, using library size as a numeric covariate, 
and filtering to only include genes with mean expression > 0.05 that are expressed in at least 20 
cells. These filters aimed to exclude low-expressed genes with potentially large fold changes 
that do not represent the strongest biological differences between states. To identify molecular 
programs upregulated or downregulated upon MRTX1133 treatment, we used the GSEA 
implementation of gseapy (v1.1.2), using log2 fold-change estimates as the rank variable, and 
FDR < 0.1 as a significant threshold. We independently queried multiple databases, including 
the MSigDB_Hallmark_2020 database for general shifts in cellular signaling and the 
TF_Perturbations_Followed_by_Expression database to reveal molecular regulators that may 
mediate cell-state shifts following oncogenic KRAS inhibition. Our focus on these gene sets was 
motivated by results from the literature, showing that chronic genetic or pharmacological 
inhibition of oncogenic KRAS signaling leads to restoration of a normal pancreatic histology in 
the premalignant pancreas28,29.  

Gene expression signatures and statistical analysis 
Oncogenic KRAS engages cancer-associated and tumor suppressive responses in the 
premalignant pancreas; thus, we asked whether removing the signal was sufficient to 
downregulate these programs. We compared the gene expression signatures used to 
characterize oncogenic and tumor suppressive responses in premalignant cells during 
spontaneous tumorigenesis (Fig. 2d) in MRTX1133 and vehicle-treated mice. Specifically, we 
first standardized log-transformed normalized counts over all cells unambiguously assigned to a 
specific biological replicate through cell hashing. Then, we computed signature scores per cell 
by averaging z-scored gene expression of signature genes. We grouped cells by biological 
replicate (Fig. S9f,g), testing for differences in the average signature score as a function of 
experimental condition using a Two Tailed Wilcoxon Rank Sums test. Note that p-values from 
this test only consider the rank of observations, explaining why p-values are the same for every 
comparison in (Fig. S9f). This analysis showed that MRTX1133 treatment reduces the 
expression of oncogenic and tumor suppressive responses in the premalignant pancreas when 
considering all cells together. To complement this approach, we grouped cells by treatment and 
cell state, computing group averages of signature scores. Visualization of these summarized 
scores in a heatmap (Fig. S9g) revealed that regardless of treatment status, cell state continued 
to be a dominant variable in shaping oncogenic and tumor suppressive responses in the 
premalignant pancreas. 

Processing and analysis of premalignant tumor microenvironment data 
We used Flex Gene Expression (10x Genomics) to gain insights into transcriptome-wide 
heterogeneity in gene expression across cellular compartments in the premalignant pancreas. 
These data allowed us to contextualize compositional and molecular properties of cellular states 
associated with the progenitor niche, as identified with Xenium-based measurements, including 
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information regarding the expression of mRNAs that were not measured in our Xenium panel, 
but that have important roles in myeloid and stromal compartments in the context of tissue injury 
and cancer.  

Our dissociated single-cell data was composed of samples from KCshp53 mice (n = 2) or KCcontrol 
mice (n = 2, KCshRen or KCshp53 without doxycycline induction of shp53). All samples came from 
tissue harvested 3 weeks post-pancreatitis, followed by nucleus isolation from FFPE blocks (see 
Dissociated nuclei from FFPE samples). Data from these samples was subjected to (1) QC 
and embedding of single-cells from all samples, and (2) computation of compartment-specific 
embeddings. 

Cell and gene filtering 
We used cellbender (v0.3.2) for ambient RNA correction and prediction of empty droplets. 
Examination of library sizes of cellbender-filtered cells revealed a unimodal distribution of 
ln(library size) with mean = 7.04 and standard deviation = 1.17. We conservatively filtered out 
cells with ln(library size) < 5, corresponding to the bottom 3.6% of the dataset. We excluded 
mitochondrial and transgene mRNAs (GFP and mKate2) from influencing normalization and 
feature selection. Furthermore, we used doubletdetection v4.2, 
http://doi.org/10.5281/zenodo.2678041 for prediction of doublets, removing any PhenoGraph 
cluster (k = 30 or 10) in which at least 50% of cells within the cluster were predicted to be 
doublets. Table S1 summarizes the number of cells included in this dataset for each biological 
replicate. 

Embedding of single cells from all samples 
We generated single-cell embeddings as for other datasets, by (1) size factor estimation from 
library sizes, excluding Malat1 and mitochondrial, ribosomal and transgenic mRNAs; (2) 
standard library size normalization, followed by scaling by median library size; (3) log 
transformation of count matrix with pseudocount = 1; (4) selection of top 3000 HVGs using 
scanpy’s function sc.pp.highly_variable with flavor = ‘seurat_v3’ (excluding mitochondrial, 
ribosomal, transgene and Malat1 mRNA); (5) dimensionality reduction using the scanpy PCA 
function sc.pp.pca., keeping 100 PCs (explaining 53% of total variance). We used many more 
PCs than the knee point of the cumulative explained-variance curve because we sought to 
capture both intercompartment and intracompartment heterogeneity in this dataset, containing 
the full diversity of premalignant cell types; (6) kNN construction using k = 30; (7) Computation 
of PhenoGraph clusters with different resolutions (k = 30 or 10), using Leiden for clustering of 
the Jaccard similarity matrix; (7) visualization using UMAP. This strategy resulted in a 
consolidated dataset for the extraction of select cellular compartments for further analysis. 

Compartment and condition-specific embeddings 
Our main goal in collecting and analyzing this dataset was to provide a transcriptome-wide 
contextualization of the gene expression changes that we identified in Xenium-based spatial 
transcriptomics data. Thus, it was important to compute compartment-specific and condition-
specific embeddings. We focused specifically on fibroblast and myeloid compartments, which 
represent the two most abundant microenvironmental cells in the premalignant pancreatic 
parenchyma, and those in which we identified the strongest changes in gene expression as a 
function of which niche they were encountered in. To compute these embeddings, we (1) 
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isolated subpopulations based on condition filtering and identification of PhenoGraph clusters 
labeled by marker genes; we followed the strategy outlined above (Embedding of single cells 
from all samples), except that we used an adaptive strategy for determining the number of PCs 
to retain at each step, based on the inflection point in the cumulative explained-variance curve. 
Table S3 summarizes the intermediate processing steps that we took to compute compartment 
and condition-specific embeddings.  

Analysis of human pancreatic epithelial data 
Computation of p53 activity and gene expression signatures 
To investigate p53 activity in human data, we used the scRNA-seq dataset published in 
Carpenter*, Elhossiny*, Kadiyala* et al, 202330. We split the data into acinar or epithelial cell 
subsets, as determined by cell type annotation. To calculate transcription factor activity score for 
TP53, we used run_viper() function in decoupleR R Package (v2.6.0) using default parameters.  

Signature-based annotation of epithelial subpopulations 
For signatures derived from mouse datasets, we converted mouse symbols to their 
corresponding human orthologs using convert_mouse_to_human_symbols() function from 
nichenetr R package (v2.0.1). We used AUCell R Package (v1.22.0)31 to score the gene sets of 
interest in each cell using default parameters except for aucMaxRank which was set to include 
10% of the number of genes in the rankings. We decided to use this method for scoring gene 
signatures based on our prior experience with this data and the fact that AUCell is not sensitive 
to the scale factor used during normalization or the inclusion/exclusion of specific cell 
populations. 
 
 
SPATIAL DATA PROCESSING AND ANALYSIS 

Image processing and quantification 
Our image collection and analysis aimed to quantify (1) signaling proteins in progenitor-like or 
other premalignant cells (i.e., P53 and phospho-ERK (p-ERK)), and (2) progenitor-like epithelial 
cells in response to perturbing the premalignant pancreas (i.e., HMGA2- or VIM-positive cells). 
For the latter, we collected whole tissue scans, reasoning that this strategy would most faithfully 
quantify the progenitor-like cell population, by minimizing bias and variability stemming from 
spatial heterogeneity in progenitor-like lesions (documented in Fig. S12c). To quantify how 
premalignant states differ in P53 abundance, we selected FOVs containing lesions rich in 
progenitor-like cells (MSN+) and spatially adjacent lesions devoid of this state (MSN-), providing 
an internally controlled setup for comparison. All analyzed tissues were collected at 20X 
magnification with a pixel size of 0.34 μm px-1. 

To process and analyze whole tissue scans, we divided images in non-overlapping FOVs of 500 
x 500 px for p53 perturbation, HMGA2 and VIM datasets, or 1000 x 1000 px for KRAS inhibitor 
datasets. We used smaller FOVs for the p53 perturbation cohort to minimize the inclusion of 
large empty regions in images derived from small fractions of the pancreas. 

Generation of nuclear and whole-cell segmentation masks 
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To quantify HMGA2-positive cell abundance, P53 protein and p-ERK intensity, we used nuclear 
segmentation masks generated with Mesmer, implemented in the deepcell python package (v 
0.12.9)32. This deep learning method was pretrained with a large number of manually annotated 
cell and nuclear masks from diverse imaging modalities and biological sources, aimed at 
generalizing mask prediction in new data, and it uses boundary predictions with a watershed 
approach to refine segmentation masks. For nuclear segmentation, we used the standard rolling 
ball background subtraction approach (radius = 10 px) on DAPI images, which we then fed to 
Mesmer with compartment = 'nuclear', preprocess_kwargs = {'percentile': 99.9, 'threshold': True, 
'normalize': True, 'kernel_size': 10}, and postprocess_kwargs_nuc = {'maxima_threshold': 0.001, 
'maxima_smooth': 1, 'interior_threshold': 0.1, 'interior_smooth': 0, other parameters as default}. 
Non-default parameters were manually tuned to recover accurate nuclear segmentation results 
in our datasets. 

As VIM localizes outside the nucleus, we undertook whole-cell segmentation using Cellpose 
(v3.0.6)33 with DAPI (nucleus) and E-cadherin (membrane) stains to quantify VIM+ epithelial 
cells. Visual inspection revealed that Cellpose generated better whole-cell segmentation masks 
than Mesmer in our data. Like Mesmer, Cellpose is a deep learning method that is pretrained on 
a large collection of ground-truth masks; it leverages both cytoplasmic and nuclear stains to 
predict cell boundaries. Although we were interested in cells with mesenchymal properties, we 
noticed that progenitor-like cells with upregulated VIM expression retain membrane-localized E-
cadherin. This suggests that our cells of interest lie at an intermediate point in the epithelial-to-
mesenchymal spectrum, and enables the use of an epithelial marker such as E-cadherin to 
generate masks. Following background subtraction with the rolling ball approach (radius = 10) 
on DAPI and E-cadherin channels, we normalized images (saturating at the 99th quantile of the 
intensity histogram), and blended these channels into an RGB image. Next, we applied the 
pretrained segmentation model (model_type = 'cyto3') to generate segmentation masks using 
the model.eval function of the cellpose package with diameter = None, channel_axis = 0, 
normalize = True, channels = [2,3], flow_threshold = 0, and cellprob_threshold = 0. 

Visual inspection of both Mesmer and Cellpose masks confirmed that these approaches better 
adapt to heterogeneous cellular densities and signal intensities in the tissue, compared to 
traditional approaches that rely on thresholding, morphological operations and watershed-based 
segmentation. 

Signal quantification and quality control 
We used segmentation masks to quantify fluorescent signal intensity, applying standard rolling 
ball background subtraction for markers with subcellular and stereotyped localization (e.g., 
HMGA2, VIM and P53). We avoided this background subtraction for p-ERK and TNC, as a 
single radius may fail to adequately capture the diverse sizes and geometries of epithelial and 
stromal structures that they mark; instead, we measured raw intensities at this step, and 
leveraged the full distribution of measured states to conduct background subtraction at the 
whole-slide or single-FOV level (see below). 

In addition to measuring fluorescence intensity in the segmentation mask, we quantified 
geometric parameters such as area and solidity (a measure of roundness, calculated as the 
fraction of the convex hull of each segmented object covered by the actual mask). Geometric 
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parameters are particularly helpful for QC, as they provide information about putative 
segmentation errors. They were computed using the regionprops function of the measure 
module in the python scikit-image package (v0.22.0). The resulting multidimensional 
representation of each cell in the dataset consisted of both intensity and geometric 
measurements, allowing downstream QC and in silico isolation and quantification of specific cell 
subpopulations. 

Geometric features can be used to identify segmentation errors; for example, pairs of adjacent 
cells that segmentation fails to separate tend to have increased area, and decreased solidity. 
We used morphological parameters to identify putative low quality cells, filtering out cells with 
low solidity (< 0.8) or high nuclear area (>750 px), which excluded an average of 3% of cells in 
the data. Data S4 summarizes results from QC filtering in whole-slide scan datasets. 

Identification of epithelial cells 
In our mouse models, RFP and GFP are activated for lineage tracing upon Cre-mediated 
recombination and doxycycline induction of shRNA alleles, thus serving as proxies for 
oncogenic KRAS activation (see Mouse model genetics). To identify premalignant epithelial 
cells, we computed the distribution of log-transformed (pseudocount = 1) average nuclear GFP 
or RFP intensity. Log-transformation of intensity values compresses the tails of the distributions, 
making bimodality more apparent and facilitating the identification of thresholds to isolate 
marker-positive cells. We used otsu thresholding on the log-transformed intensity to binarize the 
signal, resulting in the identification of premalignant epithelial cells (29% of cells, on average, 
across datasets). Data S4 summarizes results of epithelial cell identification in whole-slide scan 
datasets. 

Quantification of HMGA2- and VIM-positive cells 
We used HMGA2 and VIM expression to quantify the abundance of progenitor-like premalignant 
cells in premalignant tissues. Similar to our treatment of GFP and RFP signals, we log-
transformed (pseudocount = 1) the intensity distributions of HMGA2 and VIM followed by signal 
binarization using the Otsu thresholding method, capturing the second mode of the distribution. 
We summarized HMGA2 and VIM measurements as the average number of positive epithelial 
cells per field of view in each slide, and tested for differences between experimental conditions 
(KCshp53 and KCshCtrl) with a Two-Tailed Wilcoxon Rank Sums Test. Data S4 provides detailed 
information regarding sample metadata and source data shown in Fig. 6b, Fig. 7b and Fig. 7e. 

Quantification of p-ERK levels 
We assessed the effectiveness of oncogenic KRAS inhibition in vivo through staining and 
quantification of p-ERK, a canonical downstream effector on MAPK signaling. To do so, we 
calculated the average p-ERK signal and non-epithelial cells per tissue. We used the average p-
ERK intensity in non-epithelial cells as our estimate of the background signal, subtracting it from 
our measurements of p-ERK intensity in epithelial cells. The use of non-epithelial cells to 
estimate a global background per sample is motivated by selective p-ERK upregulation in the 
KrasG12D+ cells; on the other hand, non-cell autonomous effects leading to upregulation of 
MAPK signaling in non-epithelial cells would lead to underestimation of signal intensity in the 
epithelium, and thus our results should be interpreted as a lower bound estimate of the 
difference in p-ERK engagement between vehicle and MRTX1133-treated samples. We tested 
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for differences between experimental conditions using a Two-Tailed Wilcoxon Rank Sums Test. 
Data S4 provides detailed information regarding sample metadata and source data shown in 
Fig. S9a. 

Quantification of P53 levels 
Our single-cell data revealed the selective upregulation of p53 target genes in progenitor-like 
premalignant cells during both spontaneous and injury-induced tumorigenesis (Fig. 2a,b,7d and 
Fig. S11c,d). Protein stability is a key mechanism by which p53 is regulated34; thus, we 
quantified protein levels in premalignant cells, staining for P53 and the progenitor-like marker 
MSN separately in serial sections to avoid antibody isotype incompatibility. We first identified 
progenitor lesions (MSN+) in one section, considering only epithelial structures and remaining 
blind to p53 signal, and manually annotated the equivalent region in the adjacent section. Next, 
we quantified p53 abundance in epithelial cells from all MSN+ or all MSN- lesions. As p53 
staining has a lower signal-to-noise ratio than cell-state markers such as HMGA2, MSN, VIM 
and GFP, we conducted local signal normalization to control for systematic intensity bias across 
the tissue. Specifically, for each FOV, we normalized nuclear p53 intensity in epithelial cells by 
its average intensity in non-epithelial cells, then computed the average normalized signal in 
MSN+ or MSN- epithelial cells for each tissue sample. We used a two-tailed Wilcoxon rank 
sums test to identify significant differences in P53 levels between MSN+ and MSN- cells. Data 
S4 provides detailed sample metadata and source data information for Fig. S4b. 

Quantification of TNC levels 
Acute oncogenic KRAS inhibition led to collapse of the progenitor niche within 48 h of treatment, 
as evidenced by depletion of microenvironmental transcriptional states associated with 
progenitor-like cells (Fig. 6c,d). To test whether remodeling events were reflected at the protein 
level at these early time points, we quantified TNC, an injury- and cancer-associated ECM 
component that is upregulated in activated myofibroblasts in the progenitor niche. We opted for 
segmentation-free pixel quantification in the entire tissue section, given that TNC generates 
fibers not strictly associated with cellular or nuclear segmentation masks. Furthermore, we 
normalized by GFP-positive signal, as it represents the area of pancreatic parenchyma in the 
image. To identify positive and negative pixels, we analyzed intensity distributions of TNC and 
GFP per tissue section. First, we set a hard threshold of ln(pixel intensity) > 5.5, empirically 
determined to avoid empty areas in the image for both markers. Next, we computed the 
histograms of log-transformed TNC and GFP intensity values. We fit a Gaussian centered on 
the first mode of the intensity distributions using scipy.optimize to determine a background 
distribution. Using the mean and standard deviations of our background estimates, we 
standardized the intensity distributions, effectively equalizing the background distribution in all 
tissue slides. Lasly, we used triangle thresholding to identify pixels positive for TNC or GFP. We 
normalized the fraction of TNC-positive pixels by the fraction of GFP-positive pixels, and tested 
for differences between conditions using a two-tailed Wilcoxon rank sums test. Data S4 
provides details of sample metadata and source data in Fig. 6e. 

Probe design for multiplexed smFISH 
We built upon published software15 to design custom panels for multiplexed smFISH. This 
design strategy relies on pre-computation of all possible 30mer sequences found in mouse 
cDNAs (Ensembl GRCm38.p6), augmented with coding sequences of fluorescent proteins 
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engineered into our mouse model. We excluded pseudogenes from the potential pool of mRNAs 
used for probe design. We compute multiple scores for each 30mer, including Tm, GC content, 
and potential for hybridization with rRNAs and tRNAs. We used the following parameters to 
include a 30mer into our candidate probe-set: GC-content (43–63%), Tm (66–76˚C), excluding 
30mers that contain at least a 15mer present in an rRNA or tRNA. 

In addition, we computed expression-informed penalties to estimate the specificity of each 
candidate probe. We adapted published software to include single-cell information into the 
estimation of specificity scores, reasoning that it would decrease the chances of selecting 
probes with off-target binding to highly-expressed genes in rare cell populations. To do so, we 
considered our single-cell data from epithelial and immune compartments of the injured 
pancreas. Furthermore, we leveraged a published single-cell time course of Kras-driven 
transformation in pancreatic tissue to incorporate information about fibroblast, pericyte and 
endothelial gene expression35. Since our spatial analysis is focused on the premalignant-stage 
of pancreatic tumorigenesis, we excluded cancer-associated samples for the purpose of 
computing specificity scores. 

To summarize single-cell gene expression as a function of cell state in distinct cellular 
compartments (epithelial, immune, fibroblast, pericyte and endothelial), we used our SEACells 
algorithm (v0.2.0)36 for aggregating cells into statistically equivalent cell states, known as 
metacells. SEACells metacells improve the robustness of analyses by overcoming sparsity in 
single-cell data, while still capturing its full heterogeneity, including rare cell states. For each 
cellular compartment, we first used standard log library-size normalization and dimensionality 
reduction using PCA (n_pcs = 100) for preprocessing. We then ran SEACells using 
n_waypoint_eigs = 10 (default) and waypoint_proportion = 0.9 (default). We selected the 
number of metacells per compartment such that the median number of cells per metacell 
ranged within a similar range: 

● Epithelial: 300 metacells, median size = 79 individual cells 
● Immune: 150 metacells, median size = 69.5 individual cells 
● Fibroblasts: 100 metacells, median size = 88 individual cells 
● Pericytes: 15 metacells, median size = 63 individual cells 
● Endothelial: 50 metacells, median size = 85.5 individual cells 

Next, we computed a summarized gene expression matrix X of dimensions n x m, where n is 
the number of metacells across all cellular compartments, and m is the number of genes in the 
dataset. In this matrix, xij is the average normalized linear counts of gene j across individual 
cells in metacell i. We normalized X by total counts per metacell, and scaled by an arbitrary 
factor of 2000. Lastly, we identified the maximum expression per gene across all metacells, and 
used these to compute specificity penalties during probe design. This strategy penalizes off-
target binding to highly expressed genes, even when such high expression occurs in rare cell 
subpopulations. 

We computed transcription-wide specificity as published15, with the exception that we assumed 
all isoforms of a gene contribute uniformly to its total expression (our single-cell data lack 
isoform-specific information). To compute the specificity score, each 30mer was represented as 
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a collection of overlapping 17mer sequences in sliding windows with 1-bp shift. For each 17mer, 
we calculated the fraction of occurrences in the on-target gene (any isoform) out of all 
occurrences in the transcriptome, weighted by gene expression to penalize off-target binding to 
highly-expressed genes. We computed a final specificity score ranging from 0 (no occurrence 
from on-target gene) to 1 (all occurrences from on-target gene) for each 30mer by averaging the 
scores of its constituent 17mers, and selected 30mers with scores above 0.75 as candidates for 
our panels. 

Candidate 30mers were used to compile primary probes for a set of query genes. We selected 
Ensembl canonical isoforms to design probes targeting a particular gene, aiming for 92 non-
overlapping probes per gene. Whenever this was not possible due to transcript length, 
homology to other genes, or other sequence properties, we allowed a maximum overlap of 20 
bp between probes. The use of overlapping probes was previously reported to maximize 
smFISH signal37 due to the probabilistic nature of probe–mRNA binding. Lastly, we appended 
readout sequences to each probe, which serve as recognition sequences for fluorescently 
labeled readout probes. In the case of genes for which we were not able to generate at least 75 
probes, we added two or four copies of the selected readout sequence in order to amplify the 
fluorescent signal coming from such probes. Sequences of probes used in this study are 
included in Data S2 and Table S2. 

Custom probe set design for spatial transcriptomics 
Spatially resolved transcriptomics provides the opportunity to localize the rich transcriptional 
heterogeneity uncovered by single-cell experiments in tissue context. In the premalignant 
pancreatic epithelium, this includes transcriptional gradients that connect cellular states and key 
signaling axes such as Kras and p53. The premalignant epithelium undergoes dramatic 
microenvironmental remodeling, including the formation of fibrotic and inflammatory niches rich 
in myeloid cells. We sought to understand (1) the interplay between the adoption of distinct 
pancreatic epithelial states and changes in the microenvironment, (2) the spatiotemporal 
dynamics of niche transitions, and (3) what intercellular signaling circuits may mediate the 
formation and stabilization of progenitor niches. Thus, we designed a custom Xenium probe 
panel targeting 480 genes (Table S4) to capture: 

1. Transcriptional heterogeneity in major cellular compartments, including cluster-level 
heterogeneity and transcriptional gradients connecting disparate cellular states. 

2. Activation of major signaling programs (e.g., p53, Kras, Yap, interferon) operating in the 
benign-to-malignant transition in pancreatic cancer. 

3. Genes that may construct intercellular circuits through juxtacrine and paracrine 
interactions. 

Reference single-cell datasets for spatial expression profiling 
Marker selection for imaging-based spatial transcriptomics should consider gene expression 
estimates for all cell populations in the target tissue. Optical crowding from abundant mRNA 
species not only hampers their accurate quantification, but also that of other mRNAs in the 
vicinity, due to the combinatorial encoding of mRNA identity through sequential imaging14. To 
inform our custom Xenium probe set, we leveraged the premalignant pancreas expression atlas 
we compiled for smFISH probe design (see Probe design for multiplexed smFISH), which 
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includes epithelial and immune cell profiles in response to injury (with or without p53 
perturbation) as well as fibroblast, endothelial and mural cell data (excluding tumor-stage 
samples to better match premalignant cell stated distributions) from Schlesinger, Yosefov-Levi, 
Kolodkin-Gal et al.35. 

Our compiled dataset also leveraged SEACells to generate more robust estimates of gene 
expression distributions across cell states, including rare cell states (v0.2.0)36. We reasoned that 
information from rare cell states would help us to retain biologically important mRNAs expressed 
in a small fraction of cells, and to exclude abundant mRNAs prone to optical crowding in rare 
cells and adjacent cells. To this end, we used the maximum expression per gene across all 
SEACells to guide marker selection for imaging-based spatial transcriptomics. 

Gene expression constraints on marker selection 
We avoided selecting mRNAs that lacked discrete foci due to optical crowding in smFISH 
staining of the premalignant pancreas (Fig. S5a,b; e.g. Cpa1 in acinar cells, Muc6 in gastric 
chief-like premalignant cells, Tff1 in gastric pit-like premalignant cells or Acta2 in activated 
stroma, Fn1 in progenitor-like cells). Moreover, we identified ideal expression thresholds based 
on genes that we successfully imaged using multiplex smFISH (e.g. Ptprc in immune cells, 
Adgre1 in macrophages, Msn in progenitor-like cells, Anxa10 in gastric pit-like cells). Guided by 
experience with individual markers, we set the lower bound (max expression across metacells > 
0.5), upper bound for subpopulation markers identified through unbiased clustering (max < 2.5), 
upper bound for gene-set derived markers such as communication genes (max < 4) and upper 
bound for biologically curated markers (max < 10), though we did make exceptions for certain 
markers of biological interest (e.g., expression of type I interferons, Pecam1 endothelial 
marker). 

Marker selection for cellular compartments and microenvironmental subpopulations 
We used a combination of prior knowledge and unbiased marker gene identification, guided by 
expression constraints as described above. For example, we selected well-recognized markers 
of epithelial (Cdh1), immune (Ptprc), macrophage (Adgre1, Csf1r), fibroblast (Pdgfra, Col5a1, 
Vim), endothelial (Pecam1) and pericyte (Des, Pdgfrb) cells. Although excluded from our 
premalignant atlas, we included markers for a rare subpopulation of glial cells (Fabp7, Plp1) 
identified by Schlesinger, Yosefov-Levi, Kolodkin-Gal, et al.35, as well as Fabp4, an adipocyte 
marker. 

To dissect heterogeneity within cellular compartments, we computed differential gene 
expression to identify markers of manually curated cell subpopulations (immune dataset10) or 
PhenoGraph clusters (k = 30) (fibroblast, endothelial and mural cells). We prioritized known 
markers of subpopulations (e.g. Tnc, Dpt or Gli1 in fibroblasts) or communication pathways 
(e.g., Csf1 in Gr-MDCs, Lifr in fibroblasts, Kitl in endothelial cells or Csf2rb in mural cells), as 
well as genes that independently mark subpopulations in distinct compartments (e.g. Prox1 as a 
marker of normal duct cells and lymphatic endothelial cells). Collectively, this marker selection 
strategy allowed us to identify subpopulations across multiple compartments, while maintaining 
the biological interpretability of gene expression patterns in our spatial data. 

Marker selection for premalignant epithelial cells 
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We aimed to capture the major premalignant states that we identified in dissociated single-cell 
data, including the cluster of progenitor-like cells with mesenchymal phenotypes that 
accumulate upon p53 loss. We started with markers that have been reproducibly identified in 
independent single-cell datasets, including acinar (Rbpj1, Nr5a2), tuft cell (Pou2f3, Dclk1), 
neuroendocrine (e.g. Syp, Ascl1), gastric-like (Elf3, Onecut2)35, and progenitor-like (e.g., Msn, 
Hmga2, Nes) cell-state markers. We next used differential expression in PhenoGraph clusters 
to select markers that capture heterogeneity in gastric and progenitor-like states; for example, 
distinct subpopulations of gastric-like cells that correspond to chief-like (F5) or pit-like (Anxa10) 
states. In addition, we included Cp and Rgs5, two genes expressed in premalignant cells most 
resembling ducts. Lastly, we included a number of genes that transiently increased at the 
boundary of gastric-like and progenitor-like states (e.g. Msln, F3), as well as genes that 
progressively increased in expression along the progenitor axis (e.g. Zeb2, Grem1 and Piezo2). 
We made the conservative decision not to probe for mRNAs of fluorescent proteins to 
distinguish premalignant and normal cells in our samples, due to the potential of these 
constitutively expressed mRNAs to hamper decoding the rest of the panel. Despite this, we note 
that we were able to identify structural and molecular features corresponding to normal ducts 
and islets, allowing us to focus on lesions consistent with premalignant phenotypes. 

Marker selection for signaling pathways and biological processes 
We manually selected markers for major signaling pathways, prioritizing negative feedback 
genes known to constitute some of the earliest transcriptional responses to pathway activation. 
Specifically, we probed for p53 (e.g., Mdm2, Cdkn1a, Bax), MAPK (e.g., Dusp4, Dusp6, Dusp5, 
Spry1, Spry2), interferon (e.g., Socs1, Socs3, Irf7, Oasl1), YAP (Ccn1, Ccn2) and TGF-β (e.g., 
Smad7, Il11, Has2) signaling. In addition, we probed for cell cycle regulators, including major 
cyclins and cyclin-dependent kinases (CDKs) (e.g., Ccnd1, Ccne1, Ccna1, Cdk1, Cdk2, Cdk4, 
Cdk6) as well as CDK inhibitors (e.g., Cdkn1b, Cdkn1c, Cdkn2a, Cdkn2b). 

Selection of genes involved in cell-cell interactions 
To prioritize genes involved in cell-cell communication, we leveraged our previously identified 
communication modules—groups of ligands and receptors that are selectively upregulated upon 
Kras signaling in the premalignant pancreas and are predicted to form multiple interactions 
between cell states10. These communication modules involve a plethora of cytokines and 
receptors with known and predicted roles in tissue remodeling during tumor initiation (e.g., Il33, 
Il18, Il1a, Ccl2, Csf2, Lif, Vegfa, Fgf) and their cognate receptors. In addition, we probed for 
ligands and receptors from Wnt, Shh, Bmp and Notch signaling, due to their roles in 
development and tissue repair. Lastly, we included genes involved in cell adhesion (e.g., 
claudins, cadherins, integrins) and juxtacrine signaling (e.g., ephrin and semaphorin signaling), 
prioritizing genes based on gene expression constraints and HVG status (n = 3000) within each 
cellular compartment.  

Computational design of probe set 
We used 10x Xenium Designer (10x Genomics) with vendor assistance to generate isoform-
specific probes for Cdkn2a. We used three independent reference datasets to compute cell-type 
utilization scores, which inform the potential for optical crowding as a function of target mRNA 
abundance in specific cellular states. Specifically, we used in-house single-cell data for 
premalignant epithelial cells after injury with or without p53 knockdown (this work), immune cells 
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in the injured premalignant pancreas10 and a PDAC progression atlas that includes all cellular 
compartments35. Given that these datasets were generated using different Ensembl annotation 
versions, we mapped gene_symbols to ensembl_ids to match those of the Ensembl build 
Mus_musculus.GRCm38p6.102. We excluded any gene above the recommended cell utilization 
score recommended by 10x Xenium Designer. 

Spatial transcriptomics embedding and annotation 
In our spatial data, each cell is represented by three primary features: (1) a transcript count 
matrix, (2) an x-y spatial coordinate (in μm), and (3) a polygon describing its segmented 
nucleus. In addition, we derive secondary features describing the morphological and molecular 
properties of the local niche of a cell, such as the structure and size of premalignant lesions, 
and the average gene expression of a given cell type in the vicinity of a given cell. These 
multiple viewpoints allow us to identify molecular and morphological correlates between the 
intrinsic state of a cell and its microenvironment. Our data is composed of 33 tissue samples, 
spanning 9 conditions, including different collection timepoints in the response to acute 
pancreatitis, as well as pharmacological inhibition of oncogenic KRAS, and p53 knockdown in 
premalignant cells. In total, this comprises 9,463,399 cells (excluding cells with mixed 
phenotype), with an average of 92.83 mRNA counts per cell, and 57.92 detected genes in each 
cell. Table S5 shows the details of the samples included in our Xenium data. 

In this section, we first describe our strategy to compute cell-level and niche-level 
representations from single-cell-resolved spatial transcriptomics data. Then we describe how we 
integrate these different viewpoints to study the dynamic interplay between premalignant 
epithelial cells and their microenvironment. 

Transcript-to-cell assignments 
Assigning transcripts to cells is a critical first step in recovering comprehensive and accurate cell 
states from imaging-based spatial transcriptomics data. Because cell boundary estimates based 
on pure geometric constraints, such as nuclear segmentation expansion followed by Voronoid 
tessellation (default 10x Xenium processing), result in pervasive transcript cross-contamination 
from adjacent cells, we opted to construct a count table composed only of transcripts that 
overlap nucleus masks (10x nucleus transcripts). This approach successfully eliminated inter-
cell transcript contamination, as evidenced by our recovery of Leiden clusters with reasonable 
cell type purity based on marker expression (Fig. S5). However, it also resulted in an average 
loss of 57% of transcripts per slide (interquartile range 53%–60%). Although the limited 
sensitivity of this conservative approach is not ideal for all contexts, it was sufficient to recover 
expected cell-state heterogeneity in every cellular compartment (e.g., myofibroblast, myeloid, 
lymphoid and endothelial subpopulations) in our data (Fig. S5), including transcriptional 
gradients, such as the gastric–progenitor continuum in the premalignant epithelium (Fig. 3e,f). 
This is likely due to our use of probes targeting highly expressed marker genes in our panel, 
and to the fact that we focused on cell types that were not exceptionally small and therefore 
contained relatively high transcript counts. 

Gene filtering, cell filtering and normalization 
We excluded negative control probes from library size estimation and dimensionality reduction 
steps, but left them in the data for possible use in subsequent processing steps. Furthermore, 
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we excluded cells with fewer than 25 mRNA counts. On average, we excluded 9.5% of cells per 
slide (interquartile range 7–10%). 

For normalization, we estimated size factors per cell as the total 10x nucleus counts per cell. 
We normalized count matrices by dividing by size factors, and scaling by the median size factor 
in the data. We used linear, as opposed to log transformed counts, as this led to faster and 
reproducible convergence during the computation of UMAP embeddings. Linear counts may be 
more appropriate for this data modality given that our panel is enriched in communication 
genes, signaling proteins and transcriptional regulators, gene classes that tend to have lower 
expression than the abundant house-keeping genes in transcriptome-wide datasets. 

Single-cell embeddings for spatial transcriptomics 
We computed an initial single-cell embedding using concatenated count matrices from all tissue 
slices. To compute this embedding, we used GPU-based implementations of PCA, kNN graph 
construction and UMAP functions in rapidsai (v24.2.0). We conducted dimensionality reduction 
using PCA on linear normalized counts, keeping the top 136 PCs that captured 75% of 
variance. In addition, we noted that the use of more than 100 PCs was important to isolate 
molecularly and spatially distinct subpopulations that were nonetheless rare in the dataset (i.e., 
adipose, glial and non-pancreatic epithelial cells). Use of a smaller number of PCs collapsed 
these subpopulations into stromal and epithelial compartments, hindering the purity of our initial 
cell type annotation. We constructed a kNN graph using the GPU-based nearest-neighbor graph 
implementation of cuML python package (v24.02.00). We computed the kNN graph using 
euclidean distance on PC space (k = 30) as our metric, followed by UMAP for visualization 
(n_neighbors = 10), and computation of clusters using GPU implementations of leiden 
(resolution = 1.0). We used this integrated embedding to annotate coarse and refined cell states 
(see below). These annotations were transferred into any condition-specific embedding to 
maintain consistency in downstream analyses.  

Cell type annotation 
We first annotated major cellular compartments, then determined more refined cell states 
(details below). We leveraged spatial patterning to inform cell type annotation, for example, by 
identifying cellular states associated with lymph nodes, the edge of the tissue (e.g., mesothelial) 
or the pancreatic parenchyma. 

Major cellular compartments. To identify major cellular compartments, we annotated clusters 
based on known markers, then refined cell states within cell types by re-embedding and 
clustering cellular subsets. Specifically, we first computed clusters using the Leiden algorithm on 
a kNN graph (k = 30) constructed on PC space, with resolution = 1.0. We manually assigned 
clusters to major compartments based on markers in our panel: epithelial (Cdh1, Itgb4, Cpa1, 
Onecut2, Prox1, Cp, Krt7), endothelial (Pecam1), immune myeloid (Ptprc, Adgre1, Csf1r, Csf3r, 
Cd68, Itgam, Itgax), immune lymphoid (Ptprc, Cd3g, Cd4, Cd8a, Foxp3, Cd19, Cd79a, Lman1, 
Gata3, Rora, Trdc), fibroblast (Col5a1, Pdgfra, Dpt, Pdpn), mural cell (Des, Rgs5, Tagln, Fhl1), 
adipose (Fabp4), mesothelial (Msln) and glial/nerve (Plp1, Fabp7, Ncam1, Ncam2, Syp, Ngfr).  

Refined cellular states and condition-specific embeddings. To identify more granular cell states, 
we re-embedded cells and recomputed clusters within each compartment, then annotated 
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clusters based on the expression of marker genes from the literature, manually curated single-
cell atlases of the premalignant pancreas, or unbiased identification of cluster marker genes 
using scanpy’s sc.tl.rank_genes_groups. The latter approach highlighted genes with higher 
expression in a cluster relative to all other clusters; among these, we selected markers that 
would provide the most interpretable cell-state label (e.g., Cd55 in endothelial cells or Ccn2 in 
myofibroblasts). In addition, we computed condition- and subpopulation-specific embeddings for 
downstream analyses. For example, Figs. 3–5 focus on variation in epithelial cells and their 
niches in unperturbed samples to gain insights into tissue remodeling around progenitor-like 
cells. 

To compute refined single-cell embeddings, we first excluded negative control probes and 
genes expressed in fewer than 1% of cells within a compartment, so that they would not 
influence normalization and dimensionality reduction. Next, we normalized the data by dividing 
counts by library size in each cell and re-scaling by the median library size, applied PCA on 
normalized linear counts, and kept the top PCs that captured 75% of total variance. We 
constructed a kNN graph on Euclidean distance in PC space (k = 30) and visualized our 
embeddings using UMAP (n_neighbors = 10, min_dist = 0.1).  

Next, we computed clusters at different resolutions to dissect heterogeneity within cell types. 
We used Leiden clustering on the kNN graph with resolution = 1.0 for initial cluster annotation, 
then computed PhenoGraph clusters on the kNN graph by leveraging GPU implementations of 
Jaccard similarity matrix construction and Louvain clustering at multiple resolutions (resolution = 
1.0, 0.75, 0.5) in the cugraph module of rapidsai. The use of multiple resolutions allowed us to 
distinguish closely related cell states during cell type refinement, while avoiding noise from over-
clustering. 

See Table S6 for all cell-type or condition-specific embeddings in our study; methods for 
annotating specific cell states are presented below. 

Epithelial states. We first annotated Leiden clusters based on major premalignant subpopulation 
markers identified during PDAC initiation (10,35 and this work): progenitor1 (Msn, Hmga2, Itgb4), 
progenitor2 (Vim, Piezo2, Tnc), gastric-like (Elf3, Onecut2, Lgals4), gastric chief-like (F5), 
gastric pit-like (Anxa10), tuft (Pou2f3, Dclk1), neuroendocrine (Syp, Hepacam2), duct-like (Cp, 
Prox1, Rgs5), ADM (Rbpjl), and cycling cells (Mki67).  

To distinguish normal ducts from premalignant cells with a duct-like phenotype, we re-
embedded the duct subpopulation using the above strategy. We identified clusters 
corresponding to normal ducts based on Rgs5 and Prox1 expression35. Cells in this cluster 
formed morphological structures characteristic of normal duct, providing support for our 
annotation. 

Fibroblast states. We used fibroblast signatures from cancer contexts38,39, together with the 
spatial organization of stroma in the premalignant pancreas, to assign Leiden clusters: 

1. myCAFs. Most fibroblasts in the premalignant pancreas (86%) resembled myofibroblast 
cancer-associated fibroblast (myCAF) states (Sdc1, Tagln, Tgfb1, Tnc, Epha4, Igf2, 
Itgbl1). These cells populated the pancreatic parenchyma, and were in close proximity to 
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premalignant epithelial cells (Fig. S5). We identified marker genes expressed in 
myofibroblast subclusters using the scanpy function sc.tl.rank_genes_groups, and used 
these markers to label specific subpopulations (e.g., Tnc+, Ccn2+, Gli1+, Igf2+). 

2. iCAFs. A group of cells were consistent with the inflammatory cancer associated 
fibroblast (iCAF) phenotype (Cxcl1, Cxcl12, Tnxb) and expressed the universal fibroblast 
marker Dpt40. These fibroblasts were excluded from the parenchyma (Fig. S5).  

3. Trf+ CAFs. A small subset of fibroblasts (0.2%) expressed antigen-presenting CAF 
(apCAF) markers (Trf, Sdc4). We conservatively labeled these as Fibroblast_Trf given 
that our panel did not include additional apCAF markers.  

Myeloid states. We used our single-cell immune atlas of the premalignant pancreas10 to group 
myeloid cells into three broad categories, followed by cell-type refinement: 

1. Monocyte/macrophages. Most myeloid cells in the premalignant pancreas (91%) 
resembled monocyte/macrophages (Csf1r and Adgre1). Spatially patterned clusters 
within this compartment guided the annotation of refined states. Specifically, Cd163+ 
cells localized outside the pancreatic parenchyma and Nlrc5+ cells localized to lymph 
nodes; Maf and Itgax characterized clusters at two extremes of the continuum of 
macrophage states; and a cluster of Itgax+, Cd274 (PD-L1)high cells appeared upon p53 
knockdown in the premalignant epithelium. Thus, granular myeloid subsets were 
characterized by spatial patterning in addition to transcriptional variation in the 
premalignant pancreas. 

2. Granulocyte–myeloid derived cells (GrMDCs). A cluster defined by high Csf3r and low 
Csf1r expression characterized GrMDCs. 

3. Dendritic cells. Dendritic cells were defined by Itgax (CD11c) expression, lack of Csf1r 
and Adgre1, and expression of dendritic cell markers in the panel (Ifi205, Itgae, Jak2).  

Lymphoid states. We used markers from our single-cell immune atlas of the premalignant 
pancreas10, along with cluster refinement and marker identification using the scanpy 
sc.tl.rank_genes_groups function to define lymphoid cells groups. We re-embedded non-B-cell-
related lymphoid cells (see Refined cellular states and condition-specific embeddings), followed 
by PhenoGraph clustering and cell-state annotation to define the following populations: (1) B 
cells (Cd79a, Cd19) and plasma cells (Lman1), (2) parenchyma associated lymphoid cells, 
including Tregs (Cd4, Foxp3), Th17 cells (Il23r), gdT cells (Trdc), innate lymphoid cells (Gata3), 
NK cells (Ncr1) and mast cells (Kit), and (3) lymph-node-associated CD4 and CD8 T cells. 

Endothelial and mural states. Endothelial cells were broadly divided into vascular 
(Pecam1+/Prox1-) or lymphatic (Pecam1+/Prox1+) subpopulations. Within the vascular 
subpopulation, we labeled clusters based on known biology (e.g., activated endothelial cells 
expressing Selp) or marker expression (e.g., Piezo2+ endothelial cells). We annotated mural 
cell clusters based on markers identified using the scanpy sc.tl.rank_genes_groups function. 
Endothelial and mural cells exhibited their expected spatial colocalization, and clusters of these 
cellular compartments also showed spatial patterning related to vessel size (Fig. S5). 
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Mixed cell states. Some clusters showed evidence of cross-contamination between cell types, 
particularly between fibroblasts and myeloid cells (e.g., expression of macrophage marker Csf1r 
with fibroblast-specific Igf2). These artifacts can emerge from errors in nuclear segmentation or 
from 2D projection of transcripts, both of which are expected to increase in tightly packed 
tissues such as the premalignant pancreas. We flagged clusters in these mixed states, kept 
them in the dataset for visualization of tissue architecture, but excluded them from biological 
analyses involving cell type proportions or changes in gene expression between niches. 
Altogether, mixed cell states encompassed 3.1% of our data, and were dominated by cells 
sharing fibroblast and myeloid profiles (1.7% of all cells). Table S7 summarizes the fraction of 
cells in our dataset corresponding to mixed states. 

Compartment-aware gene censoring 
Despite restricting our analyses to 10x nucleus transcripts and excluding clusters with mixed cell 
states, we observed some transcript contamination between cell types. For example, Igf2 was 
expressed in myeloid cells, despite its absence in dissociated reference datasets10. As 
expected, these effects were larger for highly expressed markers of specific subpopulations or 
cellular compartments, which can result from projecting expression onto two dimensions from a 
3D section (https://doi.org/10.1101/2025.03.14.643160, 
https://doi.org/10.1101/2025.01.20.634005), or from transcript diffusion.  

To mitigate the effect of contaminants in downstream analyses, we leveraged dissociated 
reference datasets10,35 to identify the fraction of cells within each cellular compartment with non-
zero counts for any given gene. For downstream analyses, we censored genes in each cellular 
compartment that were expressed in < 1% of cells in every reference dataset. This threshold 
was meant to exclude genes with little evidence for expression in single-cell data, suggesting 
that their presence in our spatial dataset could be due to cross contamination between cell 
types. On average, 303 (67%) of the genes included in our panel passed this filter. 

To complement filtering based on summary statistics from dissociated cells, we identified 
robustly expressed genes based on the fraction of cells within a subpopulation of a cellular 
compartment that express a given gene (gene detection rate) in our spatial data. Assessing per-
subpopulation rather than per-compartment statistics ensures that no positive populations are 
missed. 

For a specific cell type, this resulted in a matrix Pcxm where c is the number of subpopulations 
within the cell type, and m is the number of genes. To identify a ‘robust expression’ threshold 
within a cell type, we flattened the matrix P, and computed the histogram of subpopulation-level 
gene detection rate (n_bins = 25). Next, we used triangle thresholding to identify a cutoff that 
distinguished genes with high or low detection rates. On average, this strategy nominated genes 
as robustly expressed if they were detected in at least 9% of cells within a compartment 
subpopulation. We applied it to all coarse cell types in our data to identify compartment-specific 
gene sets with evidence of robust expression. Across cell types, an average of 262 (54%) of 
genes were classified as robustly expressed. For a given cell type, an average of 240 (50%) of 
genes passed both the spatial and dissociated data detection thresholds. We used this high-
confidence gene set to analyze within-cell-type spatial heterogeneity in expression (Figs. 5a,b, 
7f and Figs. S7f, S8a,b,d). We note that for future work, newer methods can correct transcript 
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misassignment resulting from contamination in spatial transcriptomics data 
(https://doi.org/10.1101/2025.01.20.634005). 

Table S8 summarizes the results of compartment-aware gene censoring across all cellular 
compartments. 

Spatial transcriptomics transcriptional and cell-state gradients  
Our single-cell characterization revealed that premalignant epithelial phenotypes do not exist as 
discrete states. Rather, we and others observe pervasive continuity in the transcriptional 
heterogeneity of individual premalignant cells (Fig. 1e)10,35. These continuums are reflected by 
the presence of cells with mixed states (Fig. 1e), which suggest cellular plasticity. Embracing 
continuity in cell states allowed us to connect these features of plasticity at the single-cell level 
with tissue remodeling events encoded in spatial transcriptomics data. We took two 
complementary approaches to characterize transcriptional gradients in premalignant cells: (1) 
we used gene signatures of canonical premalignant subpopulations10 to visualize their 
continuous variation along an epithelial-specific phenotypic manifold and (2) we used diffusion 
component analysis to identify the major axes of transcriptional variation in epithelial states. 

Visualization of gene expression signatures in epithelial cells 
We asked whether epithelial cells in our spatial data recapitulated the spectrum of premalignant 
transcriptional states we observed in dissociated scRNA-seq. We used markers of premalignant 
subpopulations in our Xenium panel as transcriptional signatures (Table S4), and computed a 
signature score matrix Xnxz where n is the number of epithelial cells in non-perturbed samples (n 
= 1,388,199) and z is the number of epithelial states (z = 6, progenitor-like, gastric-like, duct-
like, neuroendocrine, tuft, adm). To compute the signature score matrix, we first standardized 
our log-transformed count matrices (pseudocount = 1) by computing the z-score of each gene 
over all epithelial cells. The signature score xi,j is the average standardized expression of genes 
in signaturej for celli. We normalized the signature score matrix column-wise, such that signature 
scores ranged between [0,1], saturating the signature score at the 90th quantile. We visualized 
signatures by plotting epithelial cells in both spatial and transcriptional (UMAP) domains, 
pseudocoloring each cell by aggregating RGB color vectors weighted by each signature score 
(see Simultaneous visualization of multiple signatures). This visualization strategy showed that 
our spatial data captured the transcriptional heterogeneity in epithelial states in single-cell data 
(compare to Figs. 1e, 3e, 4b in ref. 10). Furthermore, the mixture of signatures at intermediate 
points connecting extreme cellular states highlighted continuity between subpopulations of 
premalignant states, such as the presence of epithelial cells with mixed gastric and progenitor 
signatures. 

Diffusion component analysis in spatial data 
To identify the major axes of continuous variation in premalignant states, we used diffusion 
maps, which model gradual cell-state transitions along the phenotypic manifold as a diffusion 
process in a kNN graph. Starting from a kNN graph (k = 30) constructed on a single-cell 
embedding for gastric-like or progenitor-like cells from unperturbed samples (see Refined 
cellular states and condition-specific embeddings), we constructed a diffusion operator, followed 
by eigendecomposition to identify diffusion components (Note S1). The first diffusion 
component, representing the dominant axis of transcriptional variation among gastric-like and 
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progenitor-like cells, captured gradual changes in gene expression linking gastric-like epithelial 
states on one extreme, and progenitor-like on the other, including mixed phenotypes at 
intermediate points (Fig. S4d). This approach positioned each of the 838,581 gastric-like or 
progenitor-like cells in our data along a continuous axis of variation between these 
subpopulations.  

Spatial transcriptomics niche analyses  
Definition and identification of cellular niches 
Spatial transcriptomics makes it possible to represent a cell not only by its intrinsic properties, 
but also by the properties of its cellular neighbors and surrounding tissue structure. The spatial 
niche framework provides a simple and elegant approach to connect a cell with its 
surroundings41,42. In general, a niche can be defined as a set of cells in shared physical space, 
represented by a spatial neighborhood graph G𝑛	 × 	𝑛, where 𝑛 is the number of cells in the 
data, and Gi,j is a measure of spatial distance between celli and cellj.  

We used 2D Euclidean distance as our metric, and defined a niche as the set of cells within a 
radius 𝑟 of a reference cell, which we refer to as the anchor cell. In using a fixed radius to define 
a niche, we can ensure biological length scales that are interpretable and represented by well-
defined physical units; dissociated single-cell data, by contrast, does not report physical 
distance, with implications for our understanding of the spatial extent of cellular influences. We 
use a radius of 60 μm throughout this work as this length scale captured glandular structures in 
the premalignant pancreas, establishing individual lesion size as a unit of analysis. However, we 
recognize different choices of 𝑟 are bound to highlight different emergent properties of 
intercellular communities, such as the formation of large spatial domains of progenitor-like cells 
upon p53 knockdown (Fig. S11f). 

We extracted three types of features from our spatially defined niches: (i) morphological 
parameters of premalignant lesions, (ii) cell composition vectors of cellular niches, and (iii) 
compartment-specific locally averaged niche expression matrices (detailed below). These 
features enabled us to characterize tissue remodeling events that are coupled to gradual 
changes in premalignant cell states.  

Quantification of structural and morphological parameters 
To study morphological changes associated with the adoption of distinct premalignant cell 
identities, we quantified three parameters of local tissue organization in individual cell niches: 
lesion size, epithelial fraction, and luminal area. Our computational approach relied on graph 
and pixel-based representations of epithelial structures, enabling tissue properties to be 
estimated from cell centroids alone. 

Lesion size. We defined a lesion as a contiguous set of physically adjacent epithelial cells in the 
tissue. We first built a spatial neighbor graph connecting all epithelial nuclei centroids within 20 
μm. The use of this length scale, which is within the range of a cell diameter, maximized the 
probability that two cells are interacting physically in the tissue. Next, we identified connected 
graph components in our spatial neighbor graph. We defined epithelial lesion size as the 
number of cells in each connected component. 
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Epithelial fraction. The epithelial fraction represented the fraction of epithelial cells out of all cells 
in a niche. 

Luminal area. To quantify luminal area, we adopted classical image processing procedures 
aimed at identifying holes in the tissue surrounded by epithelial cells. We identified (1) non-
empty regions covered by tissue; (2) closed holes within the tissue; and (3) empty space that 
was not closed and may have resulted from epithelial disruption during tissue processing: 

1. To identify empty space, we generated a tissue image starting from single-cell centroids. 
For each tissue slice, we constructed a 5 μm px-1 mesh grid covering all cellular 
centroids using numpy (v1.23.4) linspace and meshgrid functions. Next, we calculated 
the number of cell centroids that overlapped each xy coordinate of the mesh grid, 
resulting in a bitmap-based representation of the tissue, where values correspond to the 
cell density at each pixel. Using a 2D Gaussian filter with an isotropic kernel of 3-px 
bandwidth (15 μm), we denoised cell density estimates in the image. Lastly, we applied 
an empirically determined threshold of 0.01 to identify pixels with high cell density 
(foreground) from empty pixels (background). 

2. To identify closed holes surrounded by epithelial cells, we computed a bitmap-based 
representation of epithelial cells. Starting from the mesh grid in step 1, we set any pixel 
overlapping with an epithelial centroid to 1, and all other pixels to 0. To close small gaps 
between pixels associated with a single glandular epithelial lesion, we dilated our 
binarized image of the premalignant epithelium using the dilate function in the cv2 
package (v4.10.0) with an 10-px disk kernel and n_iterations = 1. Next, we filled holes in 
the image using the cv2 floodFill function, followed by erosion using the erode function to 
counterbalance the original dilation, returning the boundaries of epithelial lesions to their 
original scale. Luminal pixels correspond to empty points that lie within filled epithelial 
masks. 

3. To identify empty luminal regions that are not enclosed, we used a pixel propagation 
procedure, whereby luminal pixels are identified as empty points within 20 μm of an 
anchor epithelial cell. We used this propagation strategy iteratively, such that luminal 
points identified in the first iteration lead to the identification of the next layer in the 
lumen. The use of a 20-μm threshold was empirically determined to prevent 
classification of the tissue edge as lumen due to the presence of epithelial cells close to 
the tissue edge. 

We defined lumen area as the number of pixels classified as lumen within a radius 𝑟 of a cell 
(𝑟 = 60	𝜇𝑚) for Fig. 3h. 

Structural changes along the gastric–progenitor DC. To quantify how structural features in the 
vicinity of premalignant cells change along the gastric–progenitor DC, we discretized this DC 
into 11 equally sized bins, and computed the distribution of niche morphological parameters as 
a function of an epithelial cell’s DC bin (Fig. 3g–j). 

Quantification of cell-state proportions in niches 
The distribution of discretized cellular states in niches provide one description of the 
compositional heterogeneity of cellular communities in the tissue. To quantify the distribution of 
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cell states across niches, we constructed a cell-state count table, represented as a n x m matrix, 
where n is the number of niches (centered at every single cell) and m is the number of 
discretized cell states in the dataset. Then, we computed cell-state distributions at two 
resolutions, coarse cell-type and cellular compartment.  

Compartment-specific niche expression matrices 
The active molecular programs within a niche provide an additional description of the 
compositional and transcriptional heterogeneity of cellular communities. The first challenge in 
characterizing spatial patterns of transcriptional variation at the single-cell level is sparsity; each 
cell in our data expressed only ~60 transcripts on average (Table S5). Moreover, genes in 
positive cells (cells with at least one mRNA count for that gene) had a median of 1.3 raw counts 
(interquartile range, 1.2–1.6). Sparsity persisted even when restricting our analysis to genes 
with known robust expression in a specific cell state. For instance, Msn had a median of 2 raw 
counts (interquartile range of 1–3) in Msn-positive cells. This contrasts with smFISH 
measurements of the same gene, which average 55 transcripts per progenitor-like cell (Figs. 
2b,3c and Fig. S5). Dropouts, or unobserved transcripts, dilute differences between cell 
subpopulations and limit the estimation of gene–gene covariance matrices36. We and others 
have developed approaches to overcome sparsity in dissociated data, including gene count 
imputation through signal sharing in kNN graphs26 and aggregation of gene counts in 
metacells—sets of cells that occupy the same transcriptional state, with minor residual variation 
between cells due to technical as opposed to biological sources36,43. 

To overcome sparsity in Xenium spatial transcriptomics, we spatially aggregated mRNA counts, 
leveraging coarse cell-type annotations to obtain a compartment-specific summarized gene 
expression vector for each cellular niche. To do so, we first constructed a cell type x niche x 
gene count table, where each entry corresponded to the number of mRNA molecules in cells 
from a specific cell type in every niche in the dataset. We computed size factors as the total 
number of mRNA molecules in cells from the specified cell type in the niche, and used them to 
normalize our compartment-specific count matrix, followed by scaling by the median library size. 
Using this approach, each niche is represented by m independent count matrices, where m is 
the number of coarse cell types queried in the niche.  

Spatial aggregation overcomes sparsity while preserving information about coarse cell types 
that express a given gene, facilitating the analysis of cell-type-specific expression differences 
between niches. On the other hand, aggregation loses single-cell resolution, and may mix 
heterogeneous states. However, our analyses at single-cell resolution showed concerted shifts 
in cell-state distributions within cell types when comparing niches dominated by gastric-like or 
progenitor-like cells (Fig. 4e), suggesting that our spatial aggregation approach is well suited to 
capture the average changes in gene expression that accompany such shifts. In addition, while 
heterogeneity in cell density can introduce artifacts in these compartment-specific count 
matrices, as denser neighborhoods are more likely to have fewer collective dropouts in gene 
expression, our choice of 𝑟 = 60	𝜇𝑚	mitigates this problem due to the large number of cells (> 
100 on average) within each niche. 

Molecular and compositional changes along the gastric–progenitor DC 
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Oncogenic KRAS activation leads to the transcriptional diversification of the pancreatic 
epithelium, as well as profound tissue remodeling events linked to inflammatory responses44–46. 
We hypothesized that the identity and local distribution of premalignant cells in tissue profoundly 
impact the morphological, cellular and molecular properties of their surrounding 
microenvironment. To investigate the relationship between cell-state changes in the 
premalignant epithelial cells and remodeling of the surrounding microenvironment, we 
integrated two viewpoints of our spatial data: (1) our quantification of niche features (see 
Definition and identification of cellular niches and subsequent sections) and (2) our 
characterization of gastric–progenitor cell-state continuum in premalignant cells (see Diffusion 
component analysis in spatial data). This strategy allowed us to connect the gradual 
transcriptional changes in premalignant cells with gradual changes in morphological, cellular 
and molecular properties of their niche. 

Ordering cells and niches by average gastric–progenitor DC. We noted that gastric and 
progenitor-like cells within the same niche were at similar positions in the gastric-progenitor DC 
axis, suggesting spatial coordination in the adoption of divergent premalignant cell identities. 
The spatial coupling of premalignant heterogeneity allowed us to average the gastric-progenitor 
DC value of gastric or progenitor-like cells in the niche, resulting in a niche analog to the gastric-
progenitor DC axis that we defined at the single cell level. In order to minimize variation due to 
averaging of small numbers of cells, we restricted our analyses to niches anchored at any cell 
with at least 10 gastric or progenitor-like cells in their niche. This newly constructed axis 
positioned each of the 2,772,533 niches in our data along a niche continuum linking the 
canonical gastric or progenitor niches.  

Summarization of niche features along the gastric–progenitor continuum. We used three 
complementary approaches to quantify how the cell-state composition of niches changes as a 
function of variation along the average gastric–progenitor DC, which we discretized into 100 
uniform bins.  

For our first approach, we quantified cell-type proportions in niches as a function of the DC axis 
bin, by computing the median and interquartile range of the relative frequencies of coarse cell 
types (Fig. S6a), or cell states within a cell type (Fig. S6c). For cell states, we included niches 
harboring at least 10 cells of the specified coarse cell type in the niche. 

For our second approach, we disregarded discrete cell-state labels and instead visualized 
changes in the distribution of transcriptional states within cellular niches as a function of the DC 
axis bin (Fig. 4e). Given niche matrix G𝑟	 × 	𝑛, where r is the number of niches, n is the number 
of cells in the data, and Gi,j = 1 if cellj belongs to nichei, otherwise 0, we: 

1. Extracted cell-state composition vectors for niches in each gastric–progenitor bin. We 
identified all niches that fall in a given bin in G, and extracted all cells that appear in 
these niches. This set of cells represents the neighborhood composition vector of niches 
in a specified bin along the gastric–progenitor axis.  

2. Visualized cell-state densities in UMAP representations. We projected 2D cell density 
estimates onto a UMAP of tumor microenvironmental cells (Fig. 4e bottom) (see 
Visualization of cell state density in two-dimensional representation). As a reference, we 
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visualized the density of gastric- or progenitor-like epithelial cells in the bin (Fig. 4e top). 
This approach provided a label-free visualization of changes in niche cell-state 
distributions coupled to changes in epithelial anchor-cell states.  

For our third approach, we quantified gene expression changes in specific cellular 
compartments as a function of the DC axis bin (Fig. 4f). Given compartment-specific niche 
expression matrix Xc x n x m, where c, n and m represent the number of cell types, niches 
containing at least 10 gastric- or progenitor-like cells, and genes, respectively, and xs,i,j is the 
average expression of genej in cells of types in nichei (see Compartment-specific niche 
expression matrices), we: 

1. Standardized compartment-specific niche expression matrices. We log-transformed the 
niche expression matrix (pseudocount = 1) to stabilize variance and reduce the impact of 
outliers in downstream quantification. We standardized X by z-scoring log-transformed 
niche expression over all niches, for every cell type and gene pair. The resulting matrix 
represents cell-type-specific heterogeneity in gene expression across niches. 

2. Summarized gene expression along niche bins. For a given cell type, bin and gene, we 
averaged our standardized compartment-specific niche expression matrix over all niches 
in the bin, resulting in a summarized niche expression matrix Xc x b x m, where b is the total 
number of bins along the DC axis (b = 100). The resulting matrix represents the 
continuous gene expression shifts along the gastric–progenitor niche continuum in each 
cell type, analogous to the quantification of gene trends in pseudotime analysis25,47. 

3. Visualized gene trends. To examine trends in niche gene expression, we first sorted 
genes based on how early their expression changed along the gastric–progenitor DC 
axis—when it reached a maximum value, minimum value, or changed in average z-
score sign. We chose to visualize markers of gastric-like (e.g., Anxa10, F5, Onecut2, 
Elf3) and progenitor-like (e.g., Msn, Hmga2, Vim) cells, as well as myeloid (e.g., Maf, 
Mab, Itgax) and fibroblast (e.g., Tnxb, Dpt, Postn, Tnc) subpopulations that changed in 
abundance along the DC axis. In addition, we visualized genes that suggest shifts in 
signaling along the niche axis (e.g., Oasl2, Irf7 for interferon signaling; Dusp4, Dusp6, 
Dusp5 for MAPK signaling; Mdm2, Cdkn1a for P53 signaling). Lastly, we selected genes 
related to communication and wound healing that were upregulated in distinct cellular 
compartments of the progenitor niche.  

These three approaches reveal changes in cell-state frequencies, cell-state densities, and 
compartment-specific gene expression as niches progress from gastric to progenitor-like 
epithelial anchor states, providing complementary viewpoints on the spatiotemporal dynamics of 
tissue remodeling during progenitor niche formation. 

Comparison of spatial niche expression with dissociated data 
Our spatial analyses revealed a coupling between epithelial states and fibroblast and myeloid 
states within corresponding niches along the gastric–progenitor continuum (Fig. 4f). These 
results were based on a handful of markers in our Xenium panel. To gain insights into broader 
programs across the full transcriptome, we reasoned that scRNA-seq data from our 
premalignant samples (see Analysis of premalignant tumor microenvironment data) should 
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reflect similar axes of continuous variation, and thus searched for these axes in non-epithelial 
cell types in the niche microenvironment. 

In the fibroblast compartment, we used our myofibroblast cell embeddings, as these are the 
major stromal components of the pancreatic parenchyma (see Table S3 for embedding details). 
We applied diffusion component analysis to the scRNA-seq data (k = 30, adaptive Gaussian 
kernel with distance to tenth neighbor as bandwidth) to identify the major axis of transcriptional 
variation (DC1). We ordered cells along this axis and grouped them into 50 bins of equal cell 
number, then averaged z-scored gene expression over all cells in each bin to compute gene 
trends along DC1. Plotting genes in this orthogonal dataset (Fig. 4f) revealed concordant 
trends: progressive downregulation of genes associated with inflammatory fibroblasts and 
universal fibroblast state (e.g., Tnxb, Dpt, Cxcl12), induction of activated myofibroblast genes 
near the progenitor-like cell extreme (e.g., Tnc, Tgfb1), and upregulation of Shh-related 
signatures in the middle of the axis (e.g., Gli1, Ptch1, Ptch2). By leveraging transcriptome-wide 
information, we confirmed the induction of additional fibroblast activation markers at the end of 
DC1, including Acta2, Timp1 and Spp1, as well as tumor suppressor Cdkn2a, recently 
highlighted as a marker of senescent myofibroblasts that promote pancreatic cancer 
progression38 (Fig. S7e). 

In the myeloid compartment, we examined PhenoGraph clusters expressing Maf or Itgax, which 
each mark an extreme point in our niche continuum, and exist at intermediate levels along this 
axis in our spatial data. Notably, diffusion component analysis revealed that the Maf–Itgax 
dichotomy also captured the major axis of variation in scRNA-seq data (DC1). Projection of 
genes upregulated alongside Itgax and Cd274, markers of myeloid cells in the progenitor niche, 
revealed the engagement of a plethora of genes associated with immune suppressive and pro-
fibrotic myeloid subsets (e.g., Spp1, Arg1, Il1b, Fn1). Taken together, this analysis allowed us to 
contextualize cell-state changes in the progenitor niche with transcription-wide information, 
some of which are known to mediate fibrotic responses and cancer progression (Fig. S7d). 

Discretization of canonical gastric and progenitor niches 
We found it useful to identify a single canonical progenitor and gastric-like niche, in order to 
simplify the computation of gene expression differences between these two communities (in 
wound-healing and communication gene programs, for example). We defined the canonical 
progenitor niche as the set of niches belonging to niche bins in which the median proportion of 
progenitor-like cells was higher than the median proportion of gastric-like cells. This 
corresponded to the top 22% of niches along the average gastric–progenitor DC niche axis. We 
defined the canonical gastric-like niche as the bottom 22% of niches ordered along the same 
axis. For simplicity, we term these sets gastric niche and progenitor niche. 

Wound-healing signatures in the progenitor niche 
We noticed that a plethora of genes with roles in wound healing processes (e.g., Tnc and Postn 
ECM remodeling, Pdgfb signaling, plasminogen processing) were upregulated in the progenitor 
niche across cellular compartments, motivating us to systematically test for wound-healing gene 
upregulation in our curated gene panel. We used all genes in our panel that appear in the Gene 
Ontology wound-healing response gene set (GO:0042060) as a wound healing signature, 
grouped niches by canonical gastric or progenitor label and by biological replicate, and 
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averaged compartment-specific z-scored niche expression of these genes. Differences in 
signatures (Fig. 4g) or individual signature genes (Fig. S6f) between gastric and progenitor 
niches were tested using a two-tailed Wilcoxon rank sums test per compartment. This strategy 
identified differences in wound healing responses between gastric and progenitor-niches and 
the top genes that drive this signature in each cellular compartment. 

Spatial transcriptomics communication module analysis  
Our previous work showed that different cell types in the premalignant pancreas undergo 
concerted upregulation of communication modules (sets of receptor and ligand genes), and that 
this modularity that can be exploited to identify crosstalk between cell types that involves 
multiple cognate ligand and receptor pairs, suggesting robust and stable cell-cell interaction 
circuits10. To find evidence of communication in our spatial data, we identified pairs of 
communication modules that not only shared multiple cognate ligands and receptors, but were 
also upregulated in the same niches, a requirement for positive communication potential.  

To compute cell-type-specific communication modules, we started from compartment-specific 
niche expression matrices of non-perturbed samples (excluding KCshp53 and MRTX1133-treated 
mice). The use of niche expression matrices overcomes sparsity in our spatial transcriptomics 
data, ensuring that dropouts do not dominate the signal and dilute out correlation estimates. We 
log-transformed the niche matrices (pseudocount = 1), standardized them over all niches and 
computed the gene–gene correlation matrix of communication genes, as defined by the 
CellChat database48 and distributed in the COMMOT repository49. Note that we only included 
communication genes with evidence of expression in the specified cellular compartment in our 
scRNA-seq data, and robust expression in our spatial data (see Compartment-aware gene 
censoring). Hierarchical clustering of the gene–gene correlation matrix revealed a modular 
architecture (Fig. 5a), which was preserved in single-cell correlation matrices, implying that 
compartment-specific average niche expression matrices largely aggregate coherent cell states 
within a cell type (Fig. S8a). As in our prior work10, large blocks of off-diagonal correlations 
suggested shared communication genes, motivating a soft-clustering approach that allows 
individual genes to participate in multiple communication modules. 

To infer communication modules, we followed the same graph-based community detection 
strategy that we applied to dissociated single-cell data10. Briefly, we first constructed a gene–
gene graph in which genes were connected if the Pearson correlation of their niche expression 
was larger than ρ = 0.2. Next we used a graph refinement approach based on each edge’s 
Jaccard similarity—the fraction of neighbors shared between two connected nodes in the graph, 
relative to the union of all neighbors of such nodes. Intuitively, this metric reveals tight 
communities of genes that are not only correlated in their expression, but also share many 
correlated genes. We removed edges with potentially spurious correlations (Jaccard similarity < 
0.05) and added edges for genes that may not have reached the correlation threshold during 
graph construction, but that belong to a larger community of correlated genes (Jaccard similarity 
greater than 0.95). Lastly, we applied the Order Statistics Local Optimization Method (OSLOM) 
algorithm50 to identify compartment-specific communication modules, following prior work10. This 
algorithm finds potentially overlapping communities of genes in the refined gene–gene 
correlation graph. Application of OSLOM to gene–gene graphs constructed on niche expression 
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of epithelial, immune and fibroblast compartments resulted in three distinct sets of 
communication modules (Fig. 5a). 

The spatial dimension of our data allowed us to incorporate spatial co-expression when 
interpreting compartment-specific communication modules. For each module, we calculated the 
compartment-specific average z-scored niche expression of module genes in either progenitor 
or gastric niches (see Discretization of canonical gastric and progenitor niches). In each cellular 
compartment, we identified one or two modules with enriched expression in the progenitor 
niche, as quantified by an average z-scored expression > 0.2 (Fig. 5a). Thus, our approach 
defined a progenitor niche communication module in each cellular compartment. 

To identify potential channels of intercellular communication in the progenitor niche, we 
identified cognate ligand–receptor pairs48 between progenitor niche communication modules in 
distinct cellular compartments. This approach resulted in a set of candidate communication 
channels that satisfied two criteria: (1) spatial co-occurrence in the progenitor niche, and (2) 
upregulation in progenitor niches, relative to gastric niches. We leveraged our standardized 
compartment-specific niche expression matrices (see Summarization of niche features along 
the gastric–progenitor continuum, third approach) to visualize concerted changes in the 
expression between cognate receptor–ligand pairs that may mediate heterotypic crosstalk in the 
progenitor niche (Fig. 5b and Fig. S8b). Specifically, we plotted the expression of a ligand in a 
specified cellular compartment across different niches. Our data suggested that collective 
upregulation of multiple communication genes in spatially co-occurring cell states may 
contribute to the formation and stabilization of the progenitor niche. 

Tissue-level consequences of genetic and pharmacological perturbation 
Our characterization of the injured premalignant pancreas revealed the tissue remodeling 
events that accompany the formation of progenitor niches at the morphological, cellular and 
molecular levels. These cancer-like wound-healing niches centered around progenitor-like cells, 
a subpopulation that simultaneously exhibited the highest engagement of tumor suppressive 
and oncogenic transcriptional signatures in the premalignant pancreas. Perturbation of Kras and 
p53 signaling in epithelial cells profoundly impacted the abundance and state of this unique 
premalignant subpopulation: p53 inactivation led to its expansion and adoption of advanced 
mesenchymal phenotypes (Fig. 7b–e), whereas KRAS inhibition rapidly depleted this cellular 
state (Fig. 6b). Next, we investigated how perturbation-induced changes in progenitor-like cells 
impacted non-epithelial cell types, particularly those associated with progenitor-like cells in the 
absence of additional interventions (e.g., Tnc+ myofibroblasts, Itgax+ 
macrophages/monocytes). 

In silico dissection of pancreatic parenchyma. An immediate challenge for analysis was the 
sample-to-sample heterogeneity in tissue structures outside of the pancreatic parenchyma, 
including lymph nodes and adipose tissue. These structures were larger and more prevalent 
when derived from whole-pancreas FFPE blocks than from samples comprising a fraction of the 
pancreas (collected as part of a cohort with multiple types of readout). Given that interlobular 
spaces and cell-dense lymph nodes could introduce technical variability into downstream 
analyses (due to tissue size and dissection strategy), we used spatial information to focus only 
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on cells directly associated with the pancreatic epithelium. This in silico dissection is analogous 
to the manual removal of mesenteric lymph nodes in our prior work with dissociated cells, which 
was critical to avoid having the sheer density of their immune cells dominate cell-state 
quantification. Our strategy was to:  

1. Define the pancreatic parenchyma as the set of all epithelial cells, plus neighboring cells 
within a 200-μm radius. Any cell outside this set was ignored. 

2. Computationally identify lymph nodes. Starting from centroids corresponding to lymph-
node-associated immune cells (B, CD4 T and CD8 T cells), we constructed a spatial 
neighbor graph connecting all cells within 30 μm of each other. We identified lymph 
nodes as connected components in the spatial neighbor graph with > 250 cells, a 
parameter that we manually tuned to capture visually identified lymph nodes. Cells in 
lymph nodes were computationally ignored. 

After in silico dissection, the premalignant pancreas epithelium corresponded to 84% of cells in 
the data. We used this subset of cells to analyze differential abundance of tumor 
microenvironment cells in response to perturbation. 

Shifts in microenvironmental states upon oncogenic KRAS inhibition. Acute inhibition of 
oncogenic KRAS led to a dramatic reduction in progenitor-like cell abundance within 48 h of the 
first dose. To characterize the effect of this reduction on microenvironmental states and 
communication potential, we (1) quantified progenitor-like cell enrichment in the vicinity of 
different cell states, and (2) computed differential abundance with MiloR and interpreted results 
in light of the spatial association of enriched or depleted states with progenitor-like cells. We 
quantified and visualized changes in parenchyma cell-state abundance, excluding lymph nodes 
and interlobular spaces (see In silico dissection of pancreatic parenchyma).  

We derived a quantitative scoring scheme to identify cellular states enriched near progenitor-like 
cells. For each niche anchored at a non-epithelial cell, we computed the fraction of progenitor-
like or gastric-like cells relative to all epithelial cells within the niche (Fig. S9b–i). Next, we 
defined ‘progenitor enrichment’ as the log-ratio of the progenitor-like cell fraction, relative to the 
fraction of progenitor-like cells in the dataset. We defined ‘gastric enrichment’ following the 
same logic for gastric-like cells.  

To identify a set of microenvironment states associated with progenitor-like cells, we selected 
cells with a progenitor enrichment score > 2, a threshold beyond which the gastric enrichment 
score sharply decreased. Furthermore, we required a gastric enrichment score < 0, thereby 
selecting for niches specifically enriched for progenitor-like cells relative to other premalignant 
states. This analysis resulted in (1) a continuous feature for each microenvironment cell, 
describing the extent of enrichment of progenitor-like cells in their vicinity, and (2) a discrete set 
of cells tightly associated with progenitor-like cells. 

Density estimates on tumor microenvironment UMAP embeddings revealed that cell niches 
enriched with progenitor-like cells were depleted in MRTX1133-treated samples (Fig. 6c). To 
determine the significance of depletion, we applied the Milo algorithm27. Milo first constructs a 
set of tight and potentially overlapping cellular neighborhoods defined by transcriptional 
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similarity on a kNN graph (makeNhoods function from miloR package, prop = 0.01, k = 30, 
refined = TRUE, reduced_dims = "PCA", using pre-computed kNN and PCA), then tests for 
differences in cell counts between experimental conditions in each neighborhood using a 
generalized linear model with negative binomial residuals. Using Milo, we identified significantly 
enriched or depleted cell states upon acute oncogenic KRAS inhibition (SpatialFDR < 0.1). 

To interpret differential abundance in light of defined cellular states, we annotated Milo 
neighborhoods by cell-state label, and found that 28% were composed of a single discrete label, 
representing pure cell states. For the remaining 72% of neighborhoods, we calculated the 
enrichment of the most frequent cell state relative to the second most frequent cell state. We 
conservatively excluded the 5% of Milo neighborhoods with lowest enrichment score (frequency 
of the most abundant cell state was less than 2.89-fold that of the second most abundant cell 
state), and labeled remaining neighborhoods by the predominant state. This strategy resulted in 
a set of transcriptional neighborhoods with a single cell-state label. 

Lastly, we integrated spatial information into the interpretation of our differential abundance 
analysis. For each cell in a Milo neighborhood, we identified the cells in its niche, hereby termed 
Milo niche cells. Next, we calculated a progenitor enrichment score as the log ratio of the 
frequency of progenitor-like cells among Milo niche cells, relative to the frequency of progenitor-
like cells in the dataset. We used this enrichment score to visualize the relationship between 
enrichment or depletion of neighborhoods, and their association with progenitor-like cells. Milo 
neighborhoods depleted upon acute oncogenic KRAS inhibition are strongly associated with 
progenitor-like cells in their niches (Fig. 6d). 

Tissue-wide cell state proportions in KCshp53 and KCshCtrl samples 
To assess the tissue-wide consequences of p53 loss in the injured pancreas, we quantified the 
frequency of cell-state proportions relative to their coarse cell type in each biological replicate. 
We restricted our analysis to the pancreatic parenchyma, to avoid potential confounding by 
large histological structures such as lymph nodes (see In silico dissection of pancreatic 
parenchyma). We used a two-tailed Wilcoxon rank sums test to assess the significance of 
differences in the tissue-wide frequency of cell states as a function of p53 status. 

Quantitative relationship between cell state frequencies in cellular niches 
Knockdown of p53 in premalignant epithelial cells led to the accumulation of progenitor-like cells 
with advanced mesenchymal phenotypes (Fig. 7b–f). These cells formed large tissue domains 
that could encompass entire pancreatic lobes (Fig. S11b,c), and were accompanied by the 
accumulation of Itgax+/Cd274high (PD-L1high) macrophages/monocytes. Remarkably, the same 
tissue could contain regions devoid of progenitor-like cells and their associated 
microenvironments. This heterogeneity suggested that the local density of progenitor-like cells 
could determine properties of their microenvironment. To quantify such relationships, we 
determined cell-state frequencies relative to their coarse cellular compartment in cellular niches 
of different sizes. We log-transformed cell state frequencies, setting as pseudount the minimum 
non-zero value in each frequency vector. Next, we computed the joint distribution of the log 
frequency of progenitor-like cells (relative to epithelial cells in the niche) and the log frequency 
of Itgax+/Cd274high cells (relative to myeloid cells in the niche). To visualize the cell-state 
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relationship in a manner that is agnostic to the marginal distribution of the progenitor-like state 
frequency, we computed the distribution of Itgax+/Cd274high cell frequencies conditioned on the 
frequency of progenitor-like cells in the niche, following the strategy outlined in DREVI51. Our 
analysis revealed that changes in the local density of progenitor-like cells are statistically related 
to changes in the frequency of their associated Itgax+/Cd274high cells, suggesting also the 
presence of non-linearities in the quantitative relationship between the relative abundance of 
these two cell states. 

Molecular programs in Itgax+/Cd274high cells 
To better understand the molecular properties of Itgax+/Cd274high macrophages/monocytes that 
accumulated upon p53 knockdown in premalignant pancreatic epithelial cells, we leveraged our 
myeloid-specific embedding of dissociated single cell data from KCctrl or KCshp53 mice three 
weeks post injury (see Analysis of premalignant tumor microenvironment data). First, we 
identified Cd163, Maf, Itgax and Cd274 as four landmark genes that described progressive 
gene expression changes along the average gastric-progenitor niche axis in myeloid cells. 
Plotting and visualization of these four genes in UMAP embeddings of dissociated myeloid cells 
revealed that they captured gradual shifts in cell myeloid cell states in these data, consistent 
with spatial transcriptomics analyses (Fig. 11e). Moreover, we observed accumulation of 
Itgax+/Cd274high cells in KCshp53 samples, corroborating our findings in spatial data, and 
providing the opportunity to study this subpopulation in greater depth. We used the wald test in 
the diffxpy package (v0.7.4, https://github.com/theislab/diffxpy?tab=readme-ov-file) and library 
size as numeric covariates. We identified upregulated genes using the following thresholds: qval 
< 0.05, log2 fold-change > 1. To highlight the top upregulated and downregulated genes from 
this analysis, we identified genes with mean_expression > 1, thus reporting changes in genes 
that are robustly expressed in at least one of the subpopulations (Fig. 11g). 
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