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Abstract

Summary: Biomedical knowledge graphs (KGs) aggregate and provide a wealth of information, linking genes and their variants, diseases, phe-
notypes, and much more. While these data are available in raw and API-hosted form, to date, functionality for working with KGs in the R pro-
gramming language has been limited. We introduce monarchr, a package for querying and manipulating KG data. Support for the expansive
Monarch Initiative KG is built in, and monarchr can accommodate any KG in the Knowledge Graph eXchange (KGX) format. This tidy-inspired in-
terface offers researchers an intuitive, iterative approach to querying and visualizing KG data.

Availability and implementation: Source code, documentation, and installation instructions are available at https://github.com/monarch-initia

tive/monarchr.

1 Introduction

Knowledge graphs (KGs) are collections of heterogeneous
data representing known relationships between entities. They
are frequently represented as labeled-property graphs, where
both nodes (entities) and edges (relationships) may be anno-
tated with additional attributes (Di Pierro et al. 2023). In bio-
medical contexts, KGs may represent relationships between
genes and their molecular functions, diseases and their phe-
notypes, genetic variants and the diseases they cause, or a
combination of these and others. The Monarch Initiative
hosts a large biomedical KG for public consumption, the
Monarch KG, which includes over 1M entities and 8M rela-
tionships across dozens of entity and relationship types. This
database is widely used for research, and Monarch provides
access via website, the monarch-py Python package, REST
API, and other modalities (Putman et al. 2024). R is widely
used in biomedical applications, including the integration,
analysis, and visualization of diverse biological and clinical
datasets (Giorgi et al. 2022). Here we describe monarchr,
an R package for querying both the Monarch and other bio-
medical KGs. Backed by the tidygraph and igraph librar-
ies (Csardi and Nepusz 2006, Pedersen 2020), monarchr
provides a flexible and user-friendly interface for extracting
and manipulating KG data.

Graph data structures in general are well supported in R
(Butts 2005, Csardi and Nepusz 2006, Pedersen 2020), but
packages specific to KGs are few. Related packages include
kgraph for constructing KGs from tabular data (Charlton

and Yuan 2025), spargl for querying RDF-formatted KGs
(Van Hage et al. 2013), and Neo2R for querying the popular
Neo4j labeled-property graph database (Godard 2024). Some
packages are designed for specific KGs: gkgraphR queries
the Google KG (Correia 2021), fella utilizes a KG repre-
sentation of the KEGG database for pathway enrichment
(Picart-Armada et al. 2018), and DeepTimeKB specializes in
KGs for geological sciences (Ma et al. 2022). Closely related
to (and often incorporated in) KGs are ontologies, which are
carefully constructed to allow logical reasoning over hierar-
chical subclass and other relationships (Smith 2003). R pack-
ages focusing on ontologies include ontologyX for
importing, manipulating, and plotting ontologies (Greene
et al. 2017), simona (and ontologyX) for semantic similarity
(Gu 2024), ontoFAST for rapid annotation of ontologies
(Tarasov et al. 2022), and rols for querying the EBI ontol-
ogy lookup API (Gatto 2013). Beyond generic graph libraries
such as NetworkX, Python-based packages for KG access
and management are many, often focused on specific applica-
tions like embedding or semantic similarity computations
(Broscheit et al. 2020, Cappelletti et al. 2022, Zhapa-
Camacho et al. 2023). Monarch’s own monarch-py library
offers access to node and relationship data via SQLite or Solr
backend, returning sets of Entity and Association objects
from query lists.

Despite the availability of these tools, there remain several
key challenges that monarchr aims to address. Access to the
cloud-hosted Monarch Initiative KG is integrated for ease of
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use, but unlike other KG-specific tools (gkgraphR, fella,
and DeepTimeKB), monarchr supports any KG formatted
in the Knowledge Graph eXchange (KGX) standard defined
by KGHub (Caufield ez al. 2023). This makes monarchr
useful for a wide variety of applications, especially as KGX
repositories grow in popularity. While RDF and Neo4j data-
bases provide natural KG storage, these require specialized
query syntax (SPARQL and Cypher, respectively) that can be
challenging and unintuitive for programmers with limited ex-
posure to these languages. Finally, ontology-only tools such
as simona, ontoFAST, and ontologyX are not applicable
to more general KGs. While packages like tidygraph,
igraph, and kgraph support general graph operations,
many KG-specific operations such as property-based neigh-
borhood searches and transitive queries require cumbersome
implementations. In contrast, monarchr enables sophisti-
cated queries, interactive exploration, and dynamic visualiza-
tion for both Neo4j-hosted and file-based KGs via a
composable and tidy-inspired interface (Wickham 2023).

2 Implementation
2.1 Engines

KGs supported by monarchr must conform to the KGX
format, which requires nodes to have single-valued id (e.g.
“MONDO:0019391”) and multi-valued category (e.g.
c(“biolink:Entity”, “biolink:Gene”)) attributes
(Caufield et al. 2023). While it is a relatively new standard,
KGHub’s registry catalogs over 40 biomedical KGs in KGX
format as of 2025 and provides a venue for KG sharing.
Edges are directed and required to have single-valued
subject, predicate, and object attributes (e.g.
“MONDO:0019391”, “biolink:has phenotype”, and
“HP:0004322"). As allowed by KGX, nodes and edges may
have additional (single- or multi-value) attributes such as name
or description, listed by summary () described below.
Access to KG data is mediated by an engine abstraction,
with support for two kinds of engines: a file engine
ingesting KGX-TSV .tar.gz files, and a neo4j engine
for connecting to Neo4j databases. Engines provide addi-
tional features beyond mediating KG access. Both engine
types support preferences, allowing the definition of a pri-
mary category, or pcategory, for nodes. The KGX stan-
dard supports multiple category entries as a multi-valued list,
but does not specify an ordering or “primary” category. For
example, Noonan syndrome (MONDO:0018997) has catego-
ries biolink:BiologicalEntity, biolink:Disease,
biolink:NamedThing, and others. The default set of pref-
erences, designed for Biolink-compatible KGs, specifies
biolink:Disease as one of a set of preferred categories
defining the node’s pcategory. This dramatically simplifies
operations over groups of nodes (e.g. extracting/counting the
number of disease nodes and gene nodes) without the need
for extensive user-defined wrapper functions. These are ad-
justable and described in the Engine Preferences vignette.
Neo4j engines provide features specific to remote data ac-
cess patterns, including query pagination and optional result
caching for the duration of the R session, boosting speed and
performance. Finally, a Monarch-specific monarch engine
is provided, subclassing the neo4j engine with additional
features provided by the Monarch Initiative API such as free-
text search (Putman et al. 2024). Engines are simply established
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as file engine(filename), neo4j engine (url),
and monarch engine (), with optional parameters for
preferences and other features. This makes it exceedingly sim-
ple to reuse scripts with different KGs by swapping out
the engine.

2.2 Queries

All engines provide two crucial functions: fetch nodes ()
and expand (). The former is used to fetch an initial set of
nodes (but no edges) as a local (in-memory) graph. The latter
takes such a graph and expands it to include additional
neighboring nodes and edges from the backing KG. All
results (local graphs) are returned as tbl kgx objects, which
extend tbl graph objects from the tidygraph package
supporting user-friendly node- and edge-table representa-
tions. Although only engines interact with backing KG data,
returned tbl kgx graphs keep track of the engine that pro-
duced them, allowing additional expansions using R pipe
operators. Consider the following example:

## Initialize engine
monarch_engine () |>
## Fetch Noonan and Alstrom syndrome nodes
fetch nodes (query ids = c(“MONDO:0018997",
“MONDO:0008763")) |>
## Expand to include phenotypes
expand (predicates =“biolink:has phenotype”)

Here, an instantiated engine is first sent to fetch_nodes
(), returning a graph with two nodes and no edges. Next,
expand () uses the graph’s attached engine to further pull all
adjacent edges with predicate biolink:has phenotype,
resulting in a graph with the original nodes connected to
newly added edges and phenotype nodes. The expand func-
tion is expected to take a local graph, and always returns a
supergraph of its input.

The fetch nodes () function allows fetching by node
identifier as illustrated above, or via a logical expression over
node attributes to fetch nodes in bulk (including regular ex-
pression matching). For example, biolink:Gene nodes in
the Monarch KG have an additional in_taxon label at-
tribute. The following code fetches all human genes:

monarch_engine () |>

## Get all human genes

fetch nodes (in taxon label == “Homo sapiens” &
“biolink:Gene” %in list% category)

Although node category is multi-valued, we do not over-
ride %in% , which implements different semantics when ap-
plied to multi-valued (list) data in standard R (entry %in%
a_list does not indicate which values of a_list con-
tain entry).

While expand () does not support logical expressions
over arbitrary edge or edge attributes, several parameters al-
low defining which nodes and edges are included in the ex-
pansion. Users may specify a set of edge predicates to follow,
and/or a set of node categories to restrict to, and/or the direc-
tion of edges to follow.

As discussed earlier, many KGs subsume ontologies, where
transitive relationships play a significant role. Directional,
transitive expansion is thus supported by expand () as well;
fetching the subtype hierarchy for Noonan syndrome
(MONDO: 0018997) is as simple as:
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monarch engine () |>

## Get the initial disease node

fetch nodes (query ids = “MONDO:0018997") |>

## Get disease subtypes

expand (predicates = “biolink:subclass of”,
direction= “in”,
transitive = TRUE)

## or use descendants ()

Convenience functions descendants () and ancestors ()
are provided for transitive inward and outward biolink:sub-
class_of expansions, respectively. Repeated (but not fully tran-
sitive) expansions are supported with expand n(); while
descendants () includes all subclass nodes, expand n
(predicates = “biolink:subclass of”, direction
= “in”, n=2) includes only two levels of subclasses.
Together, these functions allow users to grow networks easily
and precisely.

2.3 Exploration, visualization, and other features

KGs are frequently complex: the Monarch KG utilizes over
100 distinct node categories and two dozen relationship pred-
icates. While name and description are common optional
attributes, different node and edge types include more spe-
cialized attributes, such as in_taxon_label for biolink:
Gene nodes and frequency qualifier for biolink:
has phenotype edges. The Biolink data model is well-
documented (Unni et al. 2022), but in practice this complex-
ity presents challenges in effective KG exploration and use.

To support exploration, an engine’s summary () lists
available node categories, edge predicates, and node and edge
properties. It also silently returns a list of this information, as
well as a named list of available categories and predicates,
which can be used for auto-completion in RStudio. Beyond
basic counts, sampling strategies also support exploration,
but a random sample is unlikely to illustrate the diversity of
information available. Instead, engines provide an exam-
ple graph() function, which fetches a sample of nodes
and edges guaranteed to represent every available node cate-
gory and edge predicate. We refer interested readers to the
Exploring  Knowledge Graphs vignette for details
and examples.

Graphs in monarchr inherit from tidygraph, which in
turn inherit from igraph, and are thus compatible with a va-
riety of R network visualization libraries, including ggraph
and igraph for static plots, and visNetwork, networkD3,
and threejs for interactivity (Network Visualization using
“vis.js” Library [R package visNetwork version 2.1.2] 2022,
D3 JavaScript Network Graphs from R [R package
networkD3 version 0.4.1] 2025; Pedersen 2024, Lewis
2025). The included plot () provides basic visualization via
ggraph, and cytoscape () for exporting to the Cytoscape
desktop application via the RCy3 library (Gustavsen et al.
2019, Shannon et al. 2003). The Visualizing Knowledge
Graphs vignette provides examples.

Other features supported by monarchr include saving
graphs in KGX format and functions to perform transitive
and related operations. These include rollups with custom ag-
gregation functions, transferring data between nodes over
edges (to support e.g. rolling up causal gene names over dis-
ease nodes), transitive closures, and transitive reductions.
Example usage of these functions is found in the Rollups and
Transitivity vignette.

3 Example: KG-based entity prioritization

Genetic, phenotypic, and related information are often used
in biostatistical methods. Phenome-Wide Association Studies
(PheWAS), e.g. examine how specific genetic or other varia-
tion is associated with a broad range of phenotypes, enabling
the discovery of pleiotropic effects, novel genotype-pheno-
type relationships, and drug targets (Bastarache ez al. 2022).
While this approach is widely used, identifying variants or
other features associated with diseases or drugs of interest
can be tedious. Similarly, characterizing an appropriate phe-
nome (set of phenotypes) to test can influence study quality
and statistical power, especially for rare diseases (Delavan
et al. 2018, Wan et al. 2025). Here we demonstrate how
monarchr can be used to identify variants, genes, and phe-
notypes in support of PheWAS and similar methods. We con-
sider Noonan syndrome, a multisystem genetic disorder
involving diverse gene-variant—phenotype relationships
(Roberts et al. 2013).

We begin fetching the node for Noonan syndrome (by
name here, though note that such a query may match multi-
ple nodes), followed by descendants () equivalent to
expand (predicates = “biolink:subclass of”,
transitive = TRUE, direction = “in”). For illustra-
tion purposes, we create two expansions: first, sequence var-
iants directly connected to any of these subtypes in any way,
and second, sequence variants of genes associated with these
subtypes in any way. Note that because Monarch includes
data from different sources, some variants are present in both
expansions. After producing a union of the two graphs with
kg join() (an implementation of tidygraph’s graph -
join () with KG-specific functionality), we visualize it with
cytoscape () in Fig. 1.

noonans <- monarch_engine () |>
fetch nodes (name ="Noonan syndrome") |>

descendants ()
direct vars <- noonans |>
expand (categories = "biolink:SequenceVariant")

gene_vars <- noonans |>
expand (categories ="biolink:Gene") |>
expand (predicates =
"biolink:is sequence variant of")
all vars <- kg_join(direct_vars, gene_vars)
cytoscape (all_vars)

Since “biolink:is sequence variant of” is the
only predicate connecting genes and variants in the Monarch
KG, all vars could also be generated as noonans |> ex-
pand (categories = “biolink:Gene”) |> expand
(categories = “biolink:SequenceVariant”).

Each of these loci represents a potential PheWAS target of
study. The Human Phenotype Ontology lists over 18,000 phe-
notypes (Gargano et al. 2024); rather than considering all of
them, we can easily fetch only those connected to this set of
genes, diseases, and variants. Since the Monarch KG represents
phenotypes across many species, we use activate () and
filter () from tidygraph and dplyr to keep only those
associated with humans (resulting in 771 phenotypes, not
shown). Finally, while directly connected phenotypes (e.g.
Mitral valve prolapse (HP:0001634)) are likely of highest in-
terest, more generalized phenotypes may be of interest as well
(e.g. Abnormal mitral valve morphology (HP:0001633)).
Rather than fetch all ancestor phenotypes with ancestors ()
(the fully transitive complement to descendants () ), we fetch

G20z 19q0j0Q /Z Uo Jasn JogleH Bulids pioD Aq 0vE£9928/67SHeIq/01/ 1 /oI0IHE/SONEWLIOJUIOIG/WOD dNO"OIWapese//:sdy Woij papeojumoq



O'Neil et al.

Figure 1. All genetic variants and genes associated with Noonan syndrome or its subtypes. Nodes are colored by pcategory and visualized with
cytoscape () followed by adjustments in the Cytoscape GUI. Noonan syndrome and its subtypes are shown in the central ring, genes in middle, and

genetic variants at the periphery.

an additional two levels above the direct phenotype set with a
repeated expansion, before extracting only the nodes in tabular
format (2404, also not shown).

direct phenos <- all vars >
expand (categories =
"biolink:PhenotypicFeature") |>
# tidygraph, activate nodes table
activate (nodes) |>
# filter nodes to Human phenotypes
filter(str starts(id, "HP:"))
expanded phenos table <- direct phenos |>
expand n(predicates ="biolink:subclass of",
direction="out",
n=2)|>
nodes () # extract the nodes dataframe

4 Conclusion

Biomedical KGs collate vast amounts of data from diverse
sources, but effective use of this information requires tools to
match. The monarchr package provides first-class support for
the comprehensive Monarch Initiative KG, while also support-
ing other KGX KGs accessed either as files or hosted in Neo4j
labeled-property graphs. Paginated and session-cached queries
are fast, fetching up to 1400 nodes per second. Finally, a sim-
ple but compositional API supports exploration and analyses,
drawing on tidygraph and other R packages for data manip-
ulation and visualization. Planned future work will build on
these strengths with support of additional Monarch-specific
features such as semantic similarity search and text annotation,
and enhanced filtering flexibility in expand ().
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