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Abstract
Summary: Biomedical knowledge graphs (KGs) aggregate and provide a wealth of information, linking genes and their variants, diseases, phe
notypes, and much more. While these data are available in raw and API-hosted form, to date, functionality for working with KGs in the R pro
gramming language has been limited. We introduce monarchr, a package for querying and manipulating KG data. Support for the expansive 
Monarch Initiative KG is built in, and monarchr can accommodate any KG in the Knowledge Graph eXchange (KGX) format. This tidy-inspired in
terface offers researchers an intuitive, iterative approach to querying and visualizing KG data.
Availability and implementation: Source code, documentation, and installation instructions are available at https://github.com/monarch-initia 
tive/monarchr.

1 Introduction
Knowledge graphs (KGs) are collections of heterogeneous 
data representing known relationships between entities. They 
are frequently represented as labeled-property graphs, where 
both nodes (entities) and edges (relationships) may be anno
tated with additional attributes (Di Pierro et al. 2023). In bio
medical contexts, KGs may represent relationships between 
genes and their molecular functions, diseases and their phe
notypes, genetic variants and the diseases they cause, or a 
combination of these and others. The Monarch Initiative 
hosts a large biomedical KG for public consumption, the 
Monarch KG, which includes over 1M entities and 8M rela
tionships across dozens of entity and relationship types. This 
database is widely used for research, and Monarch provides 
access via website, the monarch-py Python package, REST 
API, and other modalities (Putman et al. 2024). R is widely 
used in biomedical applications, including the integration, 
analysis, and visualization of diverse biological and clinical 
datasets (Giorgi et al. 2022). Here we describe monarchr, 
an R package for querying both the Monarch and other bio
medical KGs. Backed by the tidygraph and igraph librar
ies (Csardi and Nepusz 2006, Pedersen 2020), monarchr 
provides a flexible and user-friendly interface for extracting 
and manipulating KG data.

Graph data structures in general are well supported in R 
(Butts 2005, Csardi and Nepusz 2006, Pedersen 2020), but 
packages specific to KGs are few. Related packages include 
kgraph for constructing KGs from tabular data (Charlton 

and Yuan 2025), sparql for querying RDF-formatted KGs 
(Van Hage et al. 2013), and Neo2R for querying the popular 
Neo4j labeled-property graph database (Godard 2024). Some 
packages are designed for specific KGs: gkgraphR queries 
the Google KG (Correia 2021), fella utilizes a KG repre
sentation of the KEGG database for pathway enrichment 
(Picart-Armada et al. 2018), and DeepTimeKB specializes in 
KGs for geological sciences (Ma et al. 2022). Closely related 
to (and often incorporated in) KGs are ontologies, which are 
carefully constructed to allow logical reasoning over hierar
chical subclass and other relationships (Smith 2003). R pack
ages focusing on ontologies include ontologyX for 
importing, manipulating, and plotting ontologies (Greene 
et al. 2017), simona (and ontologyX) for semantic similarity 
(Gu 2024), ontoFAST for rapid annotation of ontologies 
(Tarasov et al. 2022), and rols for querying the EBI ontol
ogy lookup API (Gatto 2013). Beyond generic graph libraries 
such as NetworkX, Python-based packages for KG access 
and management are many, often focused on specific applica
tions like embedding or semantic similarity computations 
(Broscheit et al. 2020, Cappelletti et al. 2022, Zhapa- 
Camacho et al. 2023). Monarch’s own monarch-py library 
offers access to node and relationship data via SQLite or Solr 
backend, returning sets of Entity and Association objects 
from query lists.

Despite the availability of these tools, there remain several 
key challenges that monarchr aims to address. Access to the 
cloud-hosted Monarch Initiative KG is integrated for ease of 
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use, but unlike other KG-specific tools (gkgraphR, fella, 
and DeepTimeKB), monarchr supports any KG formatted 
in the Knowledge Graph eXchange (KGX) standard defined 
by KGHub (Caufield et al. 2023). This makes monarchr 
useful for a wide variety of applications, especially as KGX 
repositories grow in popularity. While RDF and Neo4j data
bases provide natural KG storage, these require specialized 
query syntax (SPARQL and Cypher, respectively) that can be 
challenging and unintuitive for programmers with limited ex
posure to these languages. Finally, ontology-only tools such 
as simona, ontoFAST, and ontologyX are not applicable 
to more general KGs. While packages like tidygraph, 
igraph, and kgraph support general graph operations, 
many KG-specific operations such as property-based neigh
borhood searches and transitive queries require cumbersome 
implementations. In contrast, monarchr enables sophisti
cated queries, interactive exploration, and dynamic visualiza
tion for both Neo4j-hosted and file-based KGs via a 
composable and tidy-inspired interface (Wickham 2023).

2 Implementation
2.1 Engines
KGs supported by monarchr must conform to the KGX 
format, which requires nodes to have single-valued id (e.g. 
“MONDO:0019391”) and multi-valued category (e.g. 
c(“biolink:Entity”, “biolink:Gene”)) attributes 
(Caufield et al. 2023). While it is a relatively new standard, 
KGHub’s registry catalogs over 40 biomedical KGs in KGX 
format as of 2025 and provides a venue for KG sharing. 
Edges are directed and required to have single-valued 
subject, predicate, and object attributes (e.g. 
“MONDO:0019391”, “biolink:has_phenotype”, and 
“HP:0004322”). As allowed by KGX, nodes and edges may 
have additional (single- or multi-value) attributes such as name 
or description, listed by summary() described below.

Access to KG data is mediated by an engine abstraction, 
with support for two kinds of engines: a file_engine 
ingesting KGX-TSV .tar.gz files, and a neo4j_engine 
for connecting to Neo4j databases. Engines provide addi
tional features beyond mediating KG access. Both engine 
types support preferences, allowing the definition of a pri
mary category, or pcategory, for nodes. The KGX stan
dard supports multiple category entries as a multi-valued list, 
but does not specify an ordering or “primary” category. For 
example, Noonan syndrome (MONDO:0018997) has catego
ries biolink:BiologicalEntity, biolink:Disease, 
biolink:NamedThing, and others. The default set of pref
erences, designed for Biolink-compatible KGs, specifies 
biolink:Disease as one of a set of preferred categories 
defining the node’s pcategory. This dramatically simplifies 
operations over groups of nodes (e.g. extracting/counting the 
number of disease nodes and gene nodes) without the need 
for extensive user-defined wrapper functions. These are ad
justable and described in the Engine Preferences vignette.

Neo4j engines provide features specific to remote data ac
cess patterns, including query pagination and optional result 
caching for the duration of the R session, boosting speed and 
performance. Finally, a Monarch-specific monarch_engine 
is provided, subclassing the neo4j_engine with additional 
features provided by the Monarch Initiative API such as free- 
text search (Putman et al. 2024). Engines are simply established 

as file_engine(filename), neo4j_engine(url), 
and monarch_engine(), with optional parameters for 
preferences and other features. This makes it exceedingly sim
ple to reuse scripts with different KGs by swapping out 
the engine.

2.2 Queries
All engines provide two crucial functions: fetch_nodes() 
and expand(). The former is used to fetch an initial set of 
nodes (but no edges) as a local (in-memory) graph. The latter 
takes such a graph and expands it to include additional 
neighboring nodes and edges from the backing KG. All 
results (local graphs) are returned as tbl_kgx objects, which 
extend tbl_graph objects from the tidygraph package 
supporting user-friendly node- and edge-table representa
tions. Although only engines interact with backing KG data, 
returned tbl_kgx graphs keep track of the engine that pro
duced them, allowing additional expansions using R pipe 
operators. Consider the following example:

## Initialize engine
monarch_engine() j>
## Fetch Noonan and Alstrom syndrome nodes
fetch_nodes(query_ids ¼ c(“MONDO:0018997”,

“MONDO:0008763”)) j>
## Expand to include phenotypes
expand(predicates ¼“biolink:has_phenotype”)

Here, an instantiated engine is first sent to fetch_nodes 
(), returning a graph with two nodes and no edges. Next, 
expand() uses the graph’s attached engine to further pull all 
adjacent edges with predicate biolink:has_phenotype, 
resulting in a graph with the original nodes connected to 
newly added edges and phenotype nodes. The expand func
tion is expected to take a local graph, and always returns a 
supergraph of its input.

The fetch_nodes() function allows fetching by node 
identifier as illustrated above, or via a logical expression over 
node attributes to fetch nodes in bulk (including regular ex
pression matching). For example, biolink:Gene nodes in 
the Monarch KG have an additional in_taxon_label at
tribute. The following code fetches all human genes:

monarch_engine() j>
## Get all human genes
fetch_nodes(in_taxon_label == “Homo sapiens” &  

“biolink:Gene” %in_list% category)

Although node category is multi-valued, we do not over
ride %in%, which implements different semantics when ap
plied to multi-valued (list) data in standard R (entry %in% 
a_list does not indicate which values of a_list con
tain entry).

While expand() does not support logical expressions 
over arbitrary edge or edge attributes, several parameters al
low defining which nodes and edges are included in the ex
pansion. Users may specify a set of edge predicates to follow, 
and/or a set of node categories to restrict to, and/or the direc
tion of edges to follow.

As discussed earlier, many KGs subsume ontologies, where 
transitive relationships play a significant role. Directional, 
transitive expansion is thus supported by expand() as well; 
fetching the subtype hierarchy for Noonan syndrome 
(MONDO:0018997) is as simple as:
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monarch_engine() j>
## Get the initial disease node
fetch_nodes(query_ids ¼ “MONDO:0018997”) j>
## Get disease subtypes
expand(predicates ¼ “biolink:subclass_of”,

direction ¼ “in”,
transitive ¼ TRUE)

## or use descendants()

Convenience functions descendants() and ancestors() 
are provided for transitive inward and outward biolink:sub
class_of expansions, respectively. Repeated (but not fully tran
sitive) expansions are supported with expand_n(); while 
descendants() includes all subclass nodes, expand_n 
(predicates ¼ “biolink:subclass_of”, direction 
¼ “in”, n¼2) includes only two levels of subclasses. 
Together, these functions allow users to grow networks easily 
and precisely.

2.3 Exploration, visualization, and other features
KGs are frequently complex: the Monarch KG utilizes over 
100 distinct node categories and two dozen relationship pred
icates. While name and description are common optional 
attributes, different node and edge types include more spe
cialized attributes, such as in_taxon_label for biolink: 
Gene nodes and frequency_qualifier for biolink: 
has_phenotype edges. The Biolink data model is well- 
documented (Unni et al. 2022), but in practice this complex
ity presents challenges in effective KG exploration and use.

To support exploration, an engine’s summary() lists 
available node categories, edge predicates, and node and edge 
properties. It also silently returns a list of this information, as 
well as a named list of available categories and predicates, 
which can be used for auto-completion in RStudio. Beyond 
basic counts, sampling strategies also support exploration, 
but a random sample is unlikely to illustrate the diversity of 
information available. Instead, engines provide an exam
ple_graph() function, which fetches a sample of nodes 
and edges guaranteed to represent every available node cate
gory and edge predicate. We refer interested readers to the 
Exploring Knowledge Graphs vignette for details 
and examples.

Graphs in monarchr inherit from tidygraph, which in 
turn inherit from igraph, and are thus compatible with a va
riety of R network visualization libraries, including ggraph 
and igraph for static plots, and visNetwork, networkD3, 
and threejs for interactivity (Network Visualization using 
“vis.js” Library [R package visNetwork version 2.1.2] 2022, 
D3 JavaScript Network Graphs from R [R package 
networkD3 version 0.4.1] 2025; Pedersen 2024, Lewis 
2025). The included plot() provides basic visualization via 
ggraph, and cytoscape() for exporting to the Cytoscape 
desktop application via the RCy3 library (Gustavsen et al. 
2019, Shannon et al. 2003). The Visualizing Knowledge 
Graphs vignette provides examples.

Other features supported by monarchr include saving 
graphs in KGX format and functions to perform transitive 
and related operations. These include rollups with custom ag
gregation functions, transferring data between nodes over 
edges (to support e.g. rolling up causal gene names over dis
ease nodes), transitive closures, and transitive reductions. 
Example usage of these functions is found in the Rollups and 
Transitivity vignette.

3 Example: KG-based entity prioritization
Genetic, phenotypic, and related information are often used 
in biostatistical methods. Phenome-Wide Association Studies 
(PheWAS), e.g. examine how specific genetic or other varia
tion is associated with a broad range of phenotypes, enabling 
the discovery of pleiotropic effects, novel genotype–pheno
type relationships, and drug targets (Bastarache et al. 2022). 
While this approach is widely used, identifying variants or 
other features associated with diseases or drugs of interest 
can be tedious. Similarly, characterizing an appropriate phe
nome (set of phenotypes) to test can influence study quality 
and statistical power, especially for rare diseases (Delavan 
et al. 2018, Wan et al. 2025). Here we demonstrate how 
monarchr can be used to identify variants, genes, and phe
notypes in support of PheWAS and similar methods. We con
sider Noonan syndrome, a multisystem genetic disorder 
involving diverse gene–variant–phenotype relationships 
(Roberts et al. 2013).

We begin fetching the node for Noonan syndrome (by 
name here, though note that such a query may match multi
ple nodes), followed by descendants() equivalent to 
expand(predicates ¼ “biolink:subclass_of”, 
transitive ¼ TRUE, direction ¼ “in”). For illustra
tion purposes, we create two expansions: first, sequence var
iants directly connected to any of these subtypes in any way, 
and second, sequence variants of genes associated with these 
subtypes in any way. Note that because Monarch includes 
data from different sources, some variants are present in both 
expansions. After producing a union of the two graphs with 
kg_join() (an implementation of tidygraph’s graph_
join() with KG-specific functionality), we visualize it with 
cytoscape() in Fig. 1.

noonans <- monarch_engine() j>
fetch_nodes(name ¼"Noonan syndrome") j>
descendants()

direct_vars <- noonans j>
expand(categories ¼ "biolink:SequenceVariant")

gene_vars <- noonans j>
expand(categories ¼"biolink:Gene") j>
expand(predicates ¼

"biolink:is_sequence_variant_of")
all_vars <- kg_join(direct_vars, gene_vars)
cytoscape(all_vars)

Since “biolink:is_sequence_variant_of” is the 
only predicate connecting genes and variants in the Monarch 
KG, all_vars could also be generated as noonans j> ex
pand(categories ¼ “biolink:Gene”) j> expand 
(categories ¼ “biolink:SequenceVariant”).

Each of these loci represents a potential PheWAS target of 
study. The Human Phenotype Ontology lists over 18,000 phe
notypes (Gargano et al. 2024); rather than considering all of 
them, we can easily fetch only those connected to this set of 
genes, diseases, and variants. Since the Monarch KG represents 
phenotypes across many species, we use activate() and 
filter() from tidygraph and dplyr to keep only those 
associated with humans (resulting in 771 phenotypes, not 
shown). Finally, while directly connected phenotypes (e.g. 
Mitral valve prolapse (HP:0001634)) are likely of highest in
terest, more generalized phenotypes may be of interest as well 
(e.g. Abnormal mitral valve morphology (HP:0001633)). 
Rather than fetch all ancestor phenotypes with ancestors() 
(the fully transitive complement to descendants()), we fetch 
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an additional two levels above the direct phenotype set with a 
repeated expansion, before extracting only the nodes in tabular 
format (2404, also not shown).

direct_phenos <- all_vars j>
expand(categories ¼

"biolink:PhenotypicFeature") j>
# tidygraph, activate nodes table
activate(nodes) j>
# filter nodes to Human phenotypes
filter(str_starts(id,"HP:"))

expanded_phenos_table <- direct_phenos j>
expand_n(predicates ¼"biolink:subclass_of",

direction ¼"out",
n ¼ 2) j>

nodes()# extract the nodes dataframe

4 Conclusion
Biomedical KGs collate vast amounts of data from diverse 
sources, but effective use of this information requires tools to 
match. The monarchr package provides first-class support for 
the comprehensive Monarch Initiative KG, while also support
ing other KGX KGs accessed either as files or hosted in Neo4j 
labeled-property graphs. Paginated and session-cached queries 
are fast, fetching up to 1400 nodes per second. Finally, a sim
ple but compositional API supports exploration and analyses, 
drawing on tidygraph and other R packages for data manip
ulation and visualization. Planned future work will build on 
these strengths with support of additional Monarch-specific 
features such as semantic similarity search and text annotation, 
and enhanced filtering flexibility in expand().
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