
Databases and ontologies

monarchr: an R package for querying biomedical
knowledge graphs
Shawn T. O’Neil1,� , Brian M. Schilder2 , Kevin Schaper1, Corey Cox1, Daniel Korn1,
Sarah Gehrke1, Christopher J. Mungall3 , Melissa A. Haendel1

1Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
2Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States
3Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
�Corresponding author. Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 5000 D Genetic Medicine Building, Chapel
Hill, NC 27599, United States. E-mail: shawn@tislab.org.
Associate Editor: Christina Kendziorski

Abstract
Summary: Biomedical knowledge graphs (KGs) aggregate and provide a wealth of information, linking genes and their variants, diseases, phe
notypes, and much more. While these data are available in raw and API-hosted form, to date, functionality for working with KGs in the R pro
gramming language has been limited. We introduce monarchr, a package for querying and manipulating KG data. Support for the expansive
Monarch Initiative KG is built in, and monarchr can accommodate any KG in the Knowledge Graph eXchange (KGX) format. This tidy-inspired in
terface offers researchers an intuitive, iterative approach to querying and visualizing KG data.
Availability and implementation: Source code, documentation, and installation instructions are available at https://github.com/monarch-initia
tive/monarchr.

1 Introduction
Knowledge graphs (KGs) are collections of heterogeneous
data representing known relationships between entities. They
are frequently represented as labeled-property graphs, where
both nodes (entities) and edges (relationships) may be anno
tated with additional attributes (Di Pierro et al. 2023). In bio
medical contexts, KGs may represent relationships between
genes and their molecular functions, diseases and their phe
notypes, genetic variants and the diseases they cause, or a
combination of these and others. The Monarch Initiative
hosts a large biomedical KG for public consumption, the
Monarch KG, which includes over 1M entities and 8M rela
tionships across dozens of entity and relationship types. This
database is widely used for research, and Monarch provides
access via website, the monarch-py Python package, REST
API, and other modalities (Putman et al. 2024). R is widely
used in biomedical applications, including the integration,
analysis, and visualization of diverse biological and clinical
datasets (Giorgi et al. 2022). Here we describe monarchr,
an R package for querying both the Monarch and other bio
medical KGs. Backed by the tidygraph and igraph librar
ies (Csardi and Nepusz 2006, Pedersen 2020), monarchr
provides a flexible and user-friendly interface for extracting
and manipulating KG data.

Graph data structures in general are well supported in R
(Butts 2005, Csardi and Nepusz 2006, Pedersen 2020), but
packages specific to KGs are few. Related packages include
kgraph for constructing KGs from tabular data (Charlton

and Yuan 2025), sparql for querying RDF-formatted KGs
(Van Hage et al. 2013), and Neo2R for querying the popular
Neo4j labeled-property graph database (Godard 2024). Some
packages are designed for specific KGs: gkgraphR queries
the Google KG (Correia 2021), fella utilizes a KG repre
sentation of the KEGG database for pathway enrichment
(Picart-Armada et al. 2018), and DeepTimeKB specializes in
KGs for geological sciences (Ma et al. 2022). Closely related
to (and often incorporated in) KGs are ontologies, which are
carefully constructed to allow logical reasoning over hierar
chical subclass and other relationships (Smith 2003). R pack
ages focusing on ontologies include ontologyX for
importing, manipulating, and plotting ontologies (Greene
et al. 2017), simona (and ontologyX) for semantic similarity
(Gu 2024), ontoFAST for rapid annotation of ontologies
(Tarasov et al. 2022), and rols for querying the EBI ontol
ogy lookup API (Gatto 2013). Beyond generic graph libraries
such as NetworkX, Python-based packages for KG access
and management are many, often focused on specific applica
tions like embedding or semantic similarity computations
(Broscheit et al. 2020, Cappelletti et al. 2022, Zhapa-
Camacho et al. 2023). Monarch’s own monarch-py library
offers access to node and relationship data via SQLite or Solr
backend, returning sets of Entity and Association objects
from query lists.

Despite the availability of these tools, there remain several
key challenges that monarchr aims to address. Access to the
cloud-hosted Monarch Initiative KG is integrated for ease of

Received: 2 June 2025; Revised: 26 August 2025; Accepted: 21 September 2025
© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2025, 41(10), btaf549
https://doi.org/10.1093/bioinformatics/btaf549
Advance Access Publication Date: 26 September 2025
Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/10/btaf549/8266340 by C
old Spring H

arbor user on 27 O
ctober 2025

https://orcid.org/0000-0001-6220-7080
https://orcid.org/0000-0001-5949-2191
https://orcid.org/0000-0002-6601-2165
https://orcid.org/0000-0001-9114-8737
https://github.com/monarch-initiative/monarchr
https://github.com/monarch-initiative/monarchr

use, but unlike other KG-specific tools (gkgraphR, fella,
and DeepTimeKB), monarchr supports any KG formatted
in the Knowledge Graph eXchange (KGX) standard defined
by KGHub (Caufield et al. 2023). This makes monarchr
useful for a wide variety of applications, especially as KGX
repositories grow in popularity. While RDF and Neo4j data
bases provide natural KG storage, these require specialized
query syntax (SPARQL and Cypher, respectively) that can be
challenging and unintuitive for programmers with limited ex
posure to these languages. Finally, ontology-only tools such
as simona, ontoFAST, and ontologyX are not applicable
to more general KGs. While packages like tidygraph,
igraph, and kgraph support general graph operations,
many KG-specific operations such as property-based neigh
borhood searches and transitive queries require cumbersome
implementations. In contrast, monarchr enables sophisti
cated queries, interactive exploration, and dynamic visualiza
tion for both Neo4j-hosted and file-based KGs via a
composable and tidy-inspired interface (Wickham 2023).

2 Implementation
2.1 Engines
KGs supported by monarchr must conform to the KGX
format, which requires nodes to have single-valued id (e.g.
“MONDO:0019391”) and multi-valued category (e.g.
c(“biolink:Entity”, “biolink:Gene”)) attributes
(Caufield et al. 2023). While it is a relatively new standard,
KGHub’s registry catalogs over 40 biomedical KGs in KGX
format as of 2025 and provides a venue for KG sharing.
Edges are directed and required to have single-valued
subject, predicate, and object attributes (e.g.
“MONDO:0019391”, “biolink:has_phenotype”, and
“HP:0004322”). As allowed by KGX, nodes and edges may
have additional (single- or multi-value) attributes such as name
or description, listed by summary() described below.

Access to KG data is mediated by an engine abstraction,
with support for two kinds of engines: a file_engine
ingesting KGX-TSV .tar.gz files, and a neo4j_engine
for connecting to Neo4j databases. Engines provide addi
tional features beyond mediating KG access. Both engine
types support preferences, allowing the definition of a pri
mary category, or pcategory, for nodes. The KGX stan
dard supports multiple category entries as a multi-valued list,
but does not specify an ordering or “primary” category. For
example, Noonan syndrome (MONDO:0018997) has catego
ries biolink:BiologicalEntity, biolink:Disease,
biolink:NamedThing, and others. The default set of pref
erences, designed for Biolink-compatible KGs, specifies
biolink:Disease as one of a set of preferred categories
defining the node’s pcategory. This dramatically simplifies
operations over groups of nodes (e.g. extracting/counting the
number of disease nodes and gene nodes) without the need
for extensive user-defined wrapper functions. These are ad
justable and described in the Engine Preferences vignette.

Neo4j engines provide features specific to remote data ac
cess patterns, including query pagination and optional result
caching for the duration of the R session, boosting speed and
performance. Finally, a Monarch-specific monarch_engine
is provided, subclassing the neo4j_engine with additional
features provided by the Monarch Initiative API such as free-
text search (Putman et al. 2024). Engines are simply established

as file_engine(filename), neo4j_engine(url),
and monarch_engine(), with optional parameters for
preferences and other features. This makes it exceedingly sim
ple to reuse scripts with different KGs by swapping out
the engine.

2.2 Queries
All engines provide two crucial functions: fetch_nodes()
and expand(). The former is used to fetch an initial set of
nodes (but no edges) as a local (in-memory) graph. The latter
takes such a graph and expands it to include additional
neighboring nodes and edges from the backing KG. All
results (local graphs) are returned as tbl_kgx objects, which
extend tbl_graph objects from the tidygraph package
supporting user-friendly node- and edge-table representa
tions. Although only engines interact with backing KG data,
returned tbl_kgx graphs keep track of the engine that pro
duced them, allowing additional expansions using R pipe
operators. Consider the following example:

Initialize engine
monarch_engine() j>
Fetch Noonan and Alstrom syndrome nodes
fetch_nodes(query_ids ¼ c(“MONDO:0018997”,

“MONDO:0008763”)) j>
Expand to include phenotypes
expand(predicates ¼“biolink:has_phenotype”)

Here, an instantiated engine is first sent to fetch_nodes
(), returning a graph with two nodes and no edges. Next,
expand() uses the graph’s attached engine to further pull all
adjacent edges with predicate biolink:has_phenotype,
resulting in a graph with the original nodes connected to
newly added edges and phenotype nodes. The expand func
tion is expected to take a local graph, and always returns a
supergraph of its input.

The fetch_nodes() function allows fetching by node
identifier as illustrated above, or via a logical expression over
node attributes to fetch nodes in bulk (including regular ex
pression matching). For example, biolink:Gene nodes in
the Monarch KG have an additional in_taxon_label at
tribute. The following code fetches all human genes:

monarch_engine() j>
Get all human genes
fetch_nodes(in_taxon_label == “Homo sapiens” &

“biolink:Gene” %in_list% category)

Although node category is multi-valued, we do not over
ride %in%, which implements different semantics when ap
plied to multi-valued (list) data in standard R (entry %in%
a_list does not indicate which values of a_list con
tain entry).

While expand() does not support logical expressions
over arbitrary edge or edge attributes, several parameters al
low defining which nodes and edges are included in the ex
pansion. Users may specify a set of edge predicates to follow,
and/or a set of node categories to restrict to, and/or the direc
tion of edges to follow.

As discussed earlier, many KGs subsume ontologies, where
transitive relationships play a significant role. Directional,
transitive expansion is thus supported by expand() as well;
fetching the subtype hierarchy for Noonan syndrome
(MONDO:0018997) is as simple as:

2 O’Neil et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/41/10/btaf549/8266340 by C

old Spring H
arbor user on 27 O

ctober 2025

monarch_engine() j>
Get the initial disease node
fetch_nodes(query_ids ¼ “MONDO:0018997”) j>
Get disease subtypes
expand(predicates ¼ “biolink:subclass_of”,

direction ¼ “in”,
transitive ¼ TRUE)

or use descendants()

Convenience functions descendants() and ancestors()
are provided for transitive inward and outward biolink:sub
class_of expansions, respectively. Repeated (but not fully tran
sitive) expansions are supported with expand_n(); while
descendants() includes all subclass nodes, expand_n
(predicates ¼ “biolink:subclass_of”, direction
¼ “in”, n¼2) includes only two levels of subclasses.
Together, these functions allow users to grow networks easily
and precisely.

2.3 Exploration, visualization, and other features
KGs are frequently complex: the Monarch KG utilizes over
100 distinct node categories and two dozen relationship pred
icates. While name and description are common optional
attributes, different node and edge types include more spe
cialized attributes, such as in_taxon_label for biolink:
Gene nodes and frequency_qualifier for biolink:
has_phenotype edges. The Biolink data model is well-
documented (Unni et al. 2022), but in practice this complex
ity presents challenges in effective KG exploration and use.

To support exploration, an engine’s summary() lists
available node categories, edge predicates, and node and edge
properties. It also silently returns a list of this information, as
well as a named list of available categories and predicates,
which can be used for auto-completion in RStudio. Beyond
basic counts, sampling strategies also support exploration,
but a random sample is unlikely to illustrate the diversity of
information available. Instead, engines provide an exam
ple_graph() function, which fetches a sample of nodes
and edges guaranteed to represent every available node cate
gory and edge predicate. We refer interested readers to the
Exploring Knowledge Graphs vignette for details
and examples.

Graphs in monarchr inherit from tidygraph, which in
turn inherit from igraph, and are thus compatible with a va
riety of R network visualization libraries, including ggraph
and igraph for static plots, and visNetwork, networkD3,
and threejs for interactivity (Network Visualization using
“vis.js” Library [R package visNetwork version 2.1.2] 2022,
D3 JavaScript Network Graphs from R [R package
networkD3 version 0.4.1] 2025; Pedersen 2024, Lewis
2025). The included plot() provides basic visualization via
ggraph, and cytoscape() for exporting to the Cytoscape
desktop application via the RCy3 library (Gustavsen et al.
2019, Shannon et al. 2003). The Visualizing Knowledge
Graphs vignette provides examples.

Other features supported by monarchr include saving
graphs in KGX format and functions to perform transitive
and related operations. These include rollups with custom ag
gregation functions, transferring data between nodes over
edges (to support e.g. rolling up causal gene names over dis
ease nodes), transitive closures, and transitive reductions.
Example usage of these functions is found in the Rollups and
Transitivity vignette.

3 Example: KG-based entity prioritization
Genetic, phenotypic, and related information are often used
in biostatistical methods. Phenome-Wide Association Studies
(PheWAS), e.g. examine how specific genetic or other varia
tion is associated with a broad range of phenotypes, enabling
the discovery of pleiotropic effects, novel genotype–pheno
type relationships, and drug targets (Bastarache et al. 2022).
While this approach is widely used, identifying variants or
other features associated with diseases or drugs of interest
can be tedious. Similarly, characterizing an appropriate phe
nome (set of phenotypes) to test can influence study quality
and statistical power, especially for rare diseases (Delavan
et al. 2018, Wan et al. 2025). Here we demonstrate how
monarchr can be used to identify variants, genes, and phe
notypes in support of PheWAS and similar methods. We con
sider Noonan syndrome, a multisystem genetic disorder
involving diverse gene–variant–phenotype relationships
(Roberts et al. 2013).

We begin fetching the node for Noonan syndrome (by
name here, though note that such a query may match multi
ple nodes), followed by descendants() equivalent to
expand(predicates ¼ “biolink:subclass_of”,
transitive ¼ TRUE, direction ¼ “in”). For illustra
tion purposes, we create two expansions: first, sequence var
iants directly connected to any of these subtypes in any way,
and second, sequence variants of genes associated with these
subtypes in any way. Note that because Monarch includes
data from different sources, some variants are present in both
expansions. After producing a union of the two graphs with
kg_join() (an implementation of tidygraph’s graph_
join() with KG-specific functionality), we visualize it with
cytoscape() in Fig. 1.

noonans <- monarch_engine() j>
fetch_nodes(name ¼"Noonan syndrome") j>
descendants()

direct_vars <- noonans j>
expand(categories ¼ "biolink:SequenceVariant")

gene_vars <- noonans j>
expand(categories ¼"biolink:Gene") j>
expand(predicates ¼

"biolink:is_sequence_variant_of")
all_vars <- kg_join(direct_vars, gene_vars)
cytoscape(all_vars)

Since “biolink:is_sequence_variant_of” is the
only predicate connecting genes and variants in the Monarch
KG, all_vars could also be generated as noonans j> ex
pand(categories ¼ “biolink:Gene”) j> expand
(categories ¼ “biolink:SequenceVariant”).

Each of these loci represents a potential PheWAS target of
study. The Human Phenotype Ontology lists over 18,000 phe
notypes (Gargano et al. 2024); rather than considering all of
them, we can easily fetch only those connected to this set of
genes, diseases, and variants. Since the Monarch KG represents
phenotypes across many species, we use activate() and
filter() from tidygraph and dplyr to keep only those
associated with humans (resulting in 771 phenotypes, not
shown). Finally, while directly connected phenotypes (e.g.
Mitral valve prolapse (HP:0001634)) are likely of highest in
terest, more generalized phenotypes may be of interest as well
(e.g. Abnormal mitral valve morphology (HP:0001633)).
Rather than fetch all ancestor phenotypes with ancestors()
(the fully transitive complement to descendants()), we fetch

monarchr 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/10/btaf549/8266340 by C
old Spring H

arbor user on 27 O
ctober 2025

an additional two levels above the direct phenotype set with a
repeated expansion, before extracting only the nodes in tabular
format (2404, also not shown).

direct_phenos <- all_vars j>
expand(categories ¼

"biolink:PhenotypicFeature") j>
tidygraph, activate nodes table
activate(nodes) j>
filter nodes to Human phenotypes
filter(str_starts(id,"HP:"))

expanded_phenos_table <- direct_phenos j>
expand_n(predicates ¼"biolink:subclass_of",

direction ¼"out",
n ¼ 2) j>

nodes()# extract the nodes dataframe

4 Conclusion
Biomedical KGs collate vast amounts of data from diverse
sources, but effective use of this information requires tools to
match. The monarchr package provides first-class support for
the comprehensive Monarch Initiative KG, while also support
ing other KGX KGs accessed either as files or hosted in Neo4j
labeled-property graphs. Paginated and session-cached queries
are fast, fetching up to 1400 nodes per second. Finally, a sim
ple but compositional API supports exploration and analyses,
drawing on tidygraph and other R packages for data manip
ulation and visualization. Planned future work will build on
these strengths with support of additional Monarch-specific
features such as semantic similarity search and text annotation,
and enhanced filtering flexibility in expand().

Author contributions
Shawn Thomas O’Neil (Conceptualization [lead], Methodology
[lead], Project administration [supporting], Software [equal],

Visualization [lead], Writing—original draft [lead], Writing—
review & editing [lead]), Brian M. Schilder (Conceptualization
[supporting], Methodology [supporting], Software [equal],
Writing—original draft [equal], Writing—review & editing
[supporting]), Kevin Schaper (Conceptualization [supporting],
Data curation [lead], Methodology [supporting], Resources
[lead]), Corey Cox (Conceptualization [supporting], Data cura
tion [supporting], Methodology [supporting], Resources [sup
porting]), Daniel Korn (Data curation [supporting], Resources
[supporting]), Sarah Gehrke (Data curation [supporting],
Project administration [lead], Resources [supporting]),
Christopher Mungall (Conceptualization [supporting], Data
curation [supporting], Funding acquisition [equal], Resources
[supporting], Supervision [equal]), and Melissa Haendel
(Conceptualization [supporting], Data curation [supporting],
Funding acquisition [equal], Resources [supporting],
Supervision [equal])

Conflict of interest: None declared.

Funding
This work was supported by the National Institutes of
Health [5R24OD011883-12].

Data availability
Source code for monarchr is available via GitHub at https://
github.com/monarch-initiative/monarchr and Zenodo at
https://doi.org/10.5281/zenodo.14553217. The Monarch KG
is available at https://monarchinitiative.org and https://kghub.
org/kg-registry/resource/kg-monarch/kg-monarch.html.

References
Bastarache L, Denny JC, Roden DM. Phenome-wide association stud

ies. JAMA 2022;327:75–6.

Figure 1. All genetic variants and genes associated with Noonan syndrome or its subtypes. Nodes are colored by pcategory and visualized with
cytoscape() followed by adjustments in the Cytoscape GUI. Noonan syndrome and its subtypes are shown in the central ring, genes in middle, and
genetic variants at the periphery.

4 O’Neil et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/41/10/btaf549/8266340 by C

old Spring H
arbor user on 27 O

ctober 2025

https://github.com/monarch-initiative/monarchr
https://github.com/monarch-initiative/monarchr
https://doi.org/10.5281/zenodo.14553217
https://monarchinitiative.org
https://kghub.org/kg-registry/resource/kg-monarch/kg-monarch.html
https://kghub.org/kg-registry/resource/kg-monarch/kg-monarch.html

Broscheit S, Ruffinelli D, Kochsiek A et al. LibKGE—A knowledge
graph embedding library for reproducible research. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2020, 165–74.

Butts CT. Network: Classes for Relational Data. CRAN: Contributed
Packages, 2005. https://doi.org/10.32614/cran.package.network

Cappelletti L, Fontana T, Casiraghi E et al. GRAPE FOR fast and scal
able graph processing and random-walk-based embedding. Nat
Comput Sci 2023;3:552–68. https://doi.org/10.1038/s43588-023-
00465-8

Caufield JH, Putman T, Schaper K et al. KG-Hub-building and ex
changing biological knowledge graphs. Bioinformatics 2023;39:
btad418. https://doi.org/10.1093/bioinformatics/btad418

Charlton T, Yuan H. Knowledge Graphs Constructions and
Visualizations [R package kgraph version 1.2.0]. 2025.

Correia R. Accessing the Official “Google Knowledge Graph” API [R
package gkgraphR version 1.0.2]. 2021.

Csardi G, Nepusz T. The igraph software. Complex Systems. 2006.
D3 JavaScript Network Graphs from R [R package networkD3 version

0.4.1]. 2025.
Delavan B, Roberts R, Huang R et al. Computational drug reposition

ing for rare diseases in the era of precision medicine. Drug Discov
Today 2018;23:382–94.

Di Pierro D, Ferilli S, Redavid D. LPG-based knowledge graphs: a survey,
a proposal and current trends. Information (Basel) 2023;14:154.

Gargano MA, Matentzoglu N, Coleman B et al. The human phenotype
ontology in 2024: phenotypes around the world. Nucleic Acids Res
2024; 52: D1333–46.

Gatto L. Rols: An R Package to Query EBI’s Ontology Lookup Service
(OLS). bioconductor.jp, 2013.

Giorgi FM, Ceraolo C, Mercatelli D. The R language: an engine for bio
informatics and data science. Life (Basel) 2022;12:648.

Godard P. Neo4j to R [R package neo2R version 2.4.2]. 2024.
Greene D, Richardson S, Turro E. ontologyX: a suite of R packages for

working with ontological data. Bioinformatics 2017;33:1104–6.
Gustavsen JA, Pai S, Isserlin R et al. RCy3: network biology using cyto

scape from within R. F1000Res 2019;8:1774.
Gu Z. Simona: a comprehensive R package for semantic similarity

analysis on bio-ontologies. BMC Genomics 2024;25:869.
Lewis BW. Interactive 3D Scatter Plots, Networks and Globes [R pack

age threejs version 0.3.4]. 2025.

Ma C, Morrison SM, Muscente AD et al. Incorporate temporal topol
ogy in a deep-time knowledge base to facilitate data-driven discov
ery in geoscience. Geosci Data J 2022. https://doi.org/10.1002/
gdj3.171

Network Visualization using “vis.js” Library [R package visNetwork
version 2.1.2]. 2022.

Pedersen TL. tidygraph: A tidy API for graph manipulation. R package
version. 2020, 1.

Pedersen TL. An Implementation of Grammar of Graphics for Graphs
and Networks [R package ggraph version 2.2.1]. 2024.

Picart-Armada S, Fern�andez-Albert F, Vinaixa M et al. FELLA: an R
package to enrich metabolomics data. BMC Bioinformatics 2018;
19:538.

Putman TE, Schaper K, Matentzoglu N et al. The monarch initiative in
2024: an analytic platform integrating phenotypes, genes and dis
eases across species. Nucleic Acids Res 2024; 52: D938–49.

Roberts AE, Allanson JE, Tartaglia M et al. Noonan syndrome. Lancet
2013;381:333–42.

Shannon P, Markiel A, Ozier O et al. Cytoscape: a software environ
ment for integrated models of biomolecular interaction networks.
Genome Res 2003;13:2498–504.

Smith B. Ontology. In: Floridi L (ed.). The Blackwell Guide to the
Philosophy of Computing and Information. Blackwell,
2003, 153–166.

Tarasov S, Mik�o I, Yoder MJ. ontoFAST: an R package for interactive
and semi-automatic annotation of characters with biological ontol
ogies. Methods Ecol Evol 2022;13:324–9.

Unni DR, Moxon SAT, Bada M, et al.; Biomedical Data Translator
Consortium. Biolink model: a universal schema for knowledge
graphs in clinical, biomedical, and translational science. Clin Transl
Sci 2022;15:1848–55.

Van Hage WR, Kauppinen T, Graeler B et al. Al SPARQL Client.
CRAN: Contributed Packages, 2013.

Wan NC, Grabowska ME, Kerchberger VE et al. Exploring beyond di
agnoses in electronic health records to improve discovery: a review
of the phenome-wide association study. JAMIA Open 2025;
8: ooaf006.

Wickham H. Tidy Design Principles. 2023.
Zhapa-Camacho F, Kulmanov M, Hoehndorf R. mOWL: python li

brary for machine learning with biomedical ontologies.
Bioinformatics 2023; 39: btac811.

© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2025, 41, 1–5
https://doi.org/10.1093/bioinformatics/btaf549
Applications Note

monarchr 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/10/btaf549/8266340 by C
old Spring H

arbor user on 27 O
ctober 2025

https://doi.org/10.32614/cran.package.network
https://doi.org/10.1038/s43588-023-00465-8
https://doi.org/10.1038/s43588-023-00465-8
https://doi.org/10.1093/bioinformatics/btad418
https://doi.org/10.1002/gdj3.171
https://doi.org/10.1002/gdj3.171

	Active Content List
	1 Introduction
	2 Implementation
	3 Example: KG-based entity prioritization
	4 Conclusion
	Author contributions
	Funding
	Data availability
	References

