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Abstract 32 

The extent to which human adaptations have persisted throughout history despite strong eroding 33 

demographic events such as admixture, genetic drift, and fluctuations in selection pressures 34 

remains unknown. Understanding which loci are particularly resilient to such forces may shed light 35 

on the traits that were important for humans throughout multiple time periods. Yet, detecting 36 

ancient selection events is challenging from modern and ancient DNA due to the data and/or signal 37 

being severely degraded. Here we use a domain-adaptive neural network (DANN) trained on 38 

simulated data and applied to ancient and modern DNA for sweep detection. We show that the 39 

DANN can account for simulation misspecification, or discrepancies between the simulations and 40 

real aDNA, thereby improving the ability to detect sweeps in real data. Application of the DANN 41 

to more than 800 ancient and modern human genomes spanning the last 7000 years recovered 16 42 

known sweeps at loci including LCT, HLA, KITLG, and OCA2/HERC2, and revealed 32 novel 43 

sweeps. All identified sweeps were classified as hard, consistent with historically low population 44 

sizes. While some sweeps were lost over time, 14 sweeps at loci involved in a range of functions 45 

including neuronal, reproductive, pigmentation, and signaling traits were found to persist from the 46 

most ancient time periods into the most recent time periods. Notably, the same top haplotype 47 

remained at high frequency across time at 9 of these 14 sweeps. Together, these results indicate 48 

that hard sweeps predominated in ancient human history and that several ancient selective events 49 

were resilient to strong admixture events and experienced sustained selective pressures.  50 

 51 
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Introduction 60 

The growing availability of ancient DNA (aDNA) has revolutionized our ability to study 61 

how evolution has shaped human populations over the past ~12,000 years. The transition from 62 

mobile hunter-gatherer groups to sedentary, agriculture-based societies introduced profound 63 

selective pressures including shifts in diet, sustained contact with domesticated animals, and 64 

heightened pathogen exposure1,2. During this same period, repeated waves of migration and 65 

admixture among Western Hunter-Gatherers, Anatolian early farmers, and Steppe pastoralists 66 

continually reshaped the genetic landscape of Eurasia. These demographic events may have diluted 67 

or masked historical selective sweeps in present-day genomes3, leaving the prevalence, 68 

persistence, and modes of selective sweeps across Eurasian populations largely unresolved. 69 

Characterizing the targets as well as the mode and tempo of positive selection in aDNA 70 

can reveal the mechanisms and rate of human evolutionary change. However, the ability to detect 71 

adaptation in aDNA can be challenging for a number of reasons, including low read coverage, 72 

short read lengths, high levels of missing data, and the complex, often poorly characterized 73 

demographic history of human populations. Despite these challenges, several studies have shown 74 

that directional selection in humans may have been widespread3–5. However, these studies have 75 

largely been powered to detect classic ‘hard’ sweeps, in which a single adaptive variant rising to 76 

high frequency leaves behind a characteristic dip in diversity with a single dominant haplotype. In 77 

addition to hard sweeps, there may have been ‘soft’ sweeps, whereby multiple adaptive variants 78 

rise to high frequency simultaneously given large mutational inputs or abundant standing genetic 79 

variation (SGV) at the onset of selection6,7. Soft sweeps are more challenging to detect given that 80 

they leave behind more subtle signatures in the data due to there being multiple haplotypes rather 81 

than a single haplotype at high frequency8,9 . Given the combination of data challenges, which can 82 

generate misleading signals that appear adaptive but actually stem from demographic forces or 83 

data artifacts10–13, and the difficulty in detecting soft sweeps, it remains unknown how many 84 

historical sweeps have been missed and whether they were hard or soft.  85 

Deep learning methods have emerged as a powerful tool in population genetics to address 86 

a wide variety of inference problems from genomic data including demographic inference14,15 , 87 

estimating recombination rates16,17 and detecting selection16,18–21. In particular, convolutional 88 

neural networks (CNNs) have proven particularly effective in detecting selective sweeps, largely 89 
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due to their ability to extract complex patterns from noisy, high-dimensional population genetic 90 

data. Notably, CNNs can natively handle multi-dimensional input, leveraging the full richness of 91 

raw genotype matrices without reducing it to a small set of summary statistics16,18. Despite their 92 

flexibility and strong performance on modern data and other organisms16,19, deep learning methods 93 

have not yet been applied to aDNA to detect selection.  94 

A key limitation to current approaches is that they rely on large amounts of labeled training 95 

data, which are typically generated through simulations based on simplified models that are 96 

restricted in their ability to fully capture the complexities of real genomic data. Discrepancies 97 

between simulated and real datasets can arise from inaccurate assumptions about demography, 98 

mutation and recombination rates, or from data artifacts. Additionally, modeling features such as 99 

large effective population sizes (Ne), heterogeneous recombination landscapes, or complex 100 

demographic histories can be computationally intensive17,22, making such simulations impractical 101 

at the scale required for deep learning.  102 

This mismatch between simulated training data and real genomic data, known as a 103 

simulation mis-specification23, can reduce model accuracy and lead to inferences from data that 104 

are not robust. Several strategies have been proposed to address this issue including adaptive re-105 

weighting of training examples15,24,25. Domain adaptive neural networks (DANNs)26,27, have 106 

recently been proposed as another alternative to mitigate simulation mis-specification26.   107 

Domain adaptation aims to improve generalization by enabling a model trained on data 108 

from a source domain, in this case simulated data, to perform well on a target domain with different 109 

properties, such as real population genomic data28. This technique is widely applied in computer 110 

vision; for example, facial recognition models trained on high-quality studio images can be 111 

adapted to perform more reliably on lower-quality surveillance footage. It is also used in natural 112 

language processing, where models trained on reviews of books may require adaptation to 113 

accurately interpret sentiments in reviews of other products. In biology, domain adaptation has 114 

been used to predict transcription factor binding across distinct species29. Building on these 115 

applications, Mo and Siepel demonstrated that domain adaptation could also be leveraged to 116 

improve population genetic predictions, including detecting selective sweeps, inferring selection 117 

strength, and estimating recombination rates in the face of demographic misspecification26 .  118 

Given the unique challenges of aDNA, domain adaptation presents a powerful framework 119 

for characterizing selection across different periods of human history. Here we propose a novel 120 
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application of a DANN to distinguish between hard sweeps, soft sweeps, and neutrality in aDNA 121 

and modern DNA. We find that hard sweeps were common throughout human history, consistent 122 

with historically low population sizes, and that several sweeps have persisted over multiple time 123 

periods, implying shared selective pressures over human history and resilience to major 124 

demographic events.  125 

 126 

Results 127 

Data 128 

In this work, we train a DANN to detect selective sweeps from 708 aDNA samples from 129 

Europe that we analyzed previously30, dated between ~7000 and 1345 years before present (BP) 130 

(Fig. 1A,B). These samples are from populations that underwent major admixture events, 131 

including the migration of Anatolian farmers into Europe and their admixture with local Mesolithic 132 

hunter-gatherers around 8,500 BP, as well as the mixing of European farmers with steppe 133 

pastoralists at the onset of the Bronze Age ~5000 BP31 (Fig. 1C). This transitional period is 134 

particularly important for studying adaptation, as it has been hypothesized that admixture has 135 

obscured selective sweep signatures in modern humans and as a result the extent of selection has 136 

likely been underestimated3.  137 

 138 

Based on direct radiocarbon dates and archaeological context, the samples were grouped 139 

into four chronological periods with 177 samples per period as follows (Fig. 1B): 140 

 141 

Neolithic (N): Individuals of European Hunter-Gatherer and Anatolian farmer ancestry dated 142 

between 6500 and 5019 BP. 143 

Bronze Age (BA): Individuals from the Bell Beaker cultures of Western and Central Europe, dated 144 

between 4495 to 3808 BP. 145 

Iron Age (IA): Individuals from Iron Age Britain and Western Europe dated between 3995 to 2350 146 

BP. 147 

Historic period (H): Individuals from Roman and late antique periods between 2300 to 1345 BP. 148 

  149 

To ensure data quality, we only included samples for which a number of criteria could be 150 

met (Methods), including requiring hybridization capture on at least 1.2 million positions, having 151 
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a minimum of 15,000 SNPs such that robust population genetic inferences could be performed, 152 

did not have significant contamination on the mtDNA or X chromosome (in males), were unrelated 153 

up to the third degree, and treated with the same Uracil-DNA Glycosylase process during library 154 

preparation. The last two bases were trimmed from each read to exclude the most damaged regions 155 

of aDNA. After selecting high quality samples, to have similar power to detect sweeps across 156 

different time periods, we chose the 177 hosts with highest coverage for each time period for 157 

further analysis, resulting in a total of 708 genomes (Table S1). These 177 hosts were subsequently 158 

down sampled per analysis window to the 150 individuals with the least amount of missing data. 159 

Additionally, we analyzed 99 modern European individuals (CEU) from the 1000 genomes 160 

project32. We restricted the 1000 genomes samples to the 1.2 million positions that were in the 161 

aDNA capture array. 162 

 163 

 164 
Figure 1. Location and age of samples included in study.  (A) The locations of the 708 ancient 165 

human samples colored by their corresponding time periods. (B) Archeological or radiocarbon 166 

dates for each sample in years before present (BP). Each data point represents one sample and the 167 

colors indicate broader groupings according to four time periods. (C) Diagram of West Eurasian 168 

population history. Modern Europeans are composed of three main ancestries: Western Hunter-169 
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Gatherers, Anatolian early farmers and Steppe pastoralists. The vertical grey segments represent 170 

distinct population branches and arrows represent population splits and admixture events. Shown 171 

are four main branches: the African (Mbuti) branch, Eurasian branch, West Hunter-Gatherers 172 

(WHG), Caucasus Hunter-Gatherers (CHG) and Eastern Hunter-Gatherers (EHG). Highlighted are 173 

the time ranges which our samples come from in the Eurasian branch. Also highlighted are the 174 

admixture proportions and timing of events. The red arrow depicts a major admixture event 175 

overlapping the timeframe during which our samples were collected.  The full schematic of the 176 

model with all associated parameters can be found in Souilmi et al. 2022 and original studies from 177 

which these parameters were estimated3,33–35 . 178 

 179 

Architecture of the DANN for sweep detection 180 

Before applying a DANN to aDNA, we tested its ability to (1) unlearn any differences 181 

between simulated and real data including underlying demography or missing data rates and (2) 182 

simultaneously distinguish between neutrality, hard sweeps, and soft sweeps. Since the goal of the 183 

DANN is to both classify sweeps from neutrality and unlearn differences between domains, a 184 

DANN differs from a more traditional neural network classifier by including not only a 185 

classification branch, but also including a discriminator branch that distinguishes between a source 186 

domain (e.g. simulations) and a target domain (e.g. real data) (Figure 2).  One strategy for domain 187 

adaptation, which we use here, is the addition of a gradient reversal layer (GRL)27. During 188 

backpropagation, the sign of the gradient of the loss of the discriminator is reversed through the 189 

GRL, penalizing features that discriminate between domains and promoting domain-invariant 190 

features that are essential for sweep classification (Methods).  191 

As input to the model, we provide images of haplotypes sorted by the frequency of most to 192 

least common haplotype. Because of the low coverage nature of aDNA as well as ascertainment 193 

bias in calling ancient SNPs, previous work has shown that heterozygous sites are not always 194 

reliably determined. To address this issue, we used our previous approach30 to ‘pseudo haploidize’ 195 

the data by randomly selecting one of the reads mapping to a position and assigning the genotypes 196 

of the read as the genotype of the sample at that site (Methods). This data was then used as input 197 

to the DANN. 198 

The images provided to the DANN are n×S bi-allelic genotypic matrices representing the 199 

allelic states at S=201 segregating sites across n=150 pseudo haplotypes, downsampled from an 200 
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initial sample of 177 by retaining those with the least missing data (Figure 2B). These parameters 201 

reflect our previous findings30 that a window size of 201 segregating sites, or approximately ~450 202 

kb in aDNA, is adequate for capturing signals of selection in this dataset using haplotype 203 

homozygosity statistics. In addition, sorting haplotype images based on haplotype distances or 204 

frequencies has been shown to be essential for strong performance of CNN models16,18,36. We 205 

tested three different sorting approaches each designed to emphasize either elevated haplotype 206 

homozygosity typical of hard sweeps, or the presence of multiple high-frequency haplotypes 207 

characteristic of soft sweeps (Methods, Fig. S1, Text S1).  208 

 209 

 210 
Figure 2.  Domain Adaptive Neural Network (DANN) for detection of selective sweeps. (A) 211 

DANN Architecture. Haplotype images from both the source and target domains are passed 212 

through a series of convolutional layers, with dimensionality reduced by max-pooling steps 213 
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(green). The output is flattened into a feature vector, which is then processed by two branches of 214 

fully connected layers: the classifier, which predicts the sweep class (blue), and the discriminator, 215 

which distinguishes between domains (yellow). During backpropagation, the gradient reversal 216 

layer (GRL) inverts the loss from the discriminator, discouraging the model from differentiating 217 

between the domains and promoting domain-invariant features. The grey arrows indicate the 218 

forward pass and black arrows indicate backpropagation. (B) Genomic data representation. 219 

Genomic data is represented as images, with rows corresponding to sampled haplotypes and 220 

columns to segregating sites (201 SNPs). Each pixel represents the occurrence of a specific allele 221 

with major allele shown in red, minor allele in black, and missing data in white, coded as -1,1 and 222 

0 respectively. On the left, we show a haplotype image of a simulated partial hard sweep where no 223 

sorting was applied. To the right we show the same image but sorting the rows (haplotypes) by 224 

frequency. Although the colors are used for visualization, the data is treated as a black and white 225 

image, where alleles are biallelic (major vs. minor). 226 

 227 

Benchmarking DANN on simulated data 228 

To assess the ability of the DANN to correct for simulation misspecification we evaluated 229 

the model using simulated data for both the source and target domains. We performed simulations 230 

varying the degree of mismatch between the target and source domains in terms of demography 231 

and missing data rates, as we expected these two variables to contribute the largest amount of 232 

discrepancy between real data and simulations. In all scenarios evaluated, the target domain, used 233 

as a proxy for real aDNA, consisted of simulations of a previously inferred admixture model 234 

describing ancient Europeans3,33–35  (Fig. 1C) with missing data at the rate of 43% per base pair, 235 

reflecting the rates of missing data of the samples analyzed in this study (Methods, Fig. S2). To 236 

evaluate the ability of the DANN to correct for misspecification, we compared the performance of 237 

the DANN to that of a standard CNN lacking a discriminator branch but still having misspecified 238 

source and target domains. We evaluated the CNN on two test sets, one on a hypothetical best case 239 

scenario with matching target and source domains (hypothetical best case), and another one with 240 

mismatched domains (standard CNN, Fig. S3). This comparison allowed us to assess how much 241 

improvement the DANN could achieve under varying degrees of misspecification .  242 

We found that for all simulation scenarios, the DANN outperformed the CNN, albeit 243 

modestly, when the target and source domains did not match, demonstrating its ability to mitigate 244 
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misspecification (Fig. 3A, Fig S4). Moreover, we found that the DANN could correct for 245 

mismatch in demography better than mismatch in missing data rates between target and source 246 

domains with the DANN performing slightly better in mitigating the most extreme 247 

misspecification in demography (constant Ne vs. Admixture; area under the precision-recall curve 248 

(AUPRC) of 0.814) compared to the most extreme misspecification in missing data rates (5% vs 249 

43%; AUPRC =0.80) (Fig. 3A). This suggests that missing data introduces a more challenging 250 

form of misspecification, making it harder to correct using a domain-adaptive framework. 251 

Additionally, the DANN outperformed the haplotype homozygosity statistic H1237, recently 252 

applied to aDNA data30, with AUPRCs of 0.942 vs 0.898 for sweep detection, respectively 253 

(Fig. 3B, Fig S5,6).  Finally, we found that in a model trained on a source domain of constant Ne 254 

with 43% missing data and target domain of admixture with 43% missing data, the DANN had an 255 

AUPRC of 0.956 for hard sweeps and 0.844 for soft sweeps (Fig. S5). We found similar 256 

performance when we trained with real aDNA for the target domain in order to explicitly unlearn 257 

the differences between simulated and real data (Methods,  Fig. S8). 258 

 259 

 260 

 261 
Figure 3. Domain adaptive neural network improves the detection of selective sweeps in 262 

simulated data that mimics aDNA. (A) AUPRC of the DANN (yellow). This is compared with  263 

a hypothetical best case simulation benchmark CNN representing an upper bound on performance. 264 

This benchmark was trained and tested on the source domain (grey). Additionally in red is a 265 

standard application of the CNN tested on a misspecified domain with  mismatching demographic 266 

model and missing data (MD) compared to  the source domain. (B) Precision-recall curve for 267 
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detection of sweeps (hard and soft) from neutrality using a constant Ne model as a source domain 268 

and a human admixture model, both with an average of 43% missing data per site as a target 269 

domain.  270 

 271 

The ability to detect selective sweeps may vary with the strength of selection and the 272 

softness of the sweep. To systematically evaluate the performance of the DANN across a range of 273 

selection coefficients, we tested the model on weak (s~[0.005,0.05]) versus strong (s~[0.05,0.1]) 274 

selection, as well as on sweeps of varying softness modulated by rate of input of adaptive mutations 275 

θA = 4NeµA, where µA is the adaptive mutation rate. We found that when selection is strong, 276 

irrespective of the softness of the sweep, we could distinguish sweeps from neutrality correctly 277 

93% or more of the time (Fig. S7). However, when selection is weak, the ability to correctly 278 

distinguish a sweep from neutrality drops to 60%, especially in the scenarios where sweeps are 279 

extremely soft (θA =5).  This result implies that the DANN has the greatest ability to detect sweeps, 280 

either hard or soft, when selection is sufficiently strong. 281 

We next asked how often soft sweeps are misclassified as hard sweeps and vice versa, 282 

conditional on being distinguishable from neutrality (Fig. S7). We found that the majority of hard 283 

sweeps (82%) are correctly classified as hard, with this percentage increasing to 93% for strong 284 

selection. Similarly, we found that the majority of soft sweeps (~75%) are correctly classified as 285 

soft, with this percentage increasing to 86% as θA increases to 5 when the signatures of hard vs 286 

soft sweeps become most distinct.  287 

 288 

Application of the DANN to aDNA and modern humans 289 

Having confirmed the ability of the DANN to detect selective sweeps in simulations, we 290 

trained a DANN using empirical aDNA as the target domain and simulations generated under the 291 

admixture model shown in Figure 1 with a 43% missing data rate as the source domain. To identify 292 

selective sweeps in aDNA, we next applied the DANN to genome-wide aDNA data across all time 293 

periods. We used a sliding window of 201 SNPs, advancing each window by 10 SNPs. To ensure 294 

predictions are well supported by more than one window, we averaged the predicted probabilities 295 

every five consecutive, overlapping windows, generating the final class predictions (Methods). 296 

Each window was assigned to the class with the highest predicted probability from the model’s 297 

multiclass output (hard sweep, soft sweep, or neutral). We show the resulting scan across the 298 
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aDNA time transect in Fig. 4A, where windows predicted to be hard sweeps are shown in red, soft 299 

in blue, and neutral regions in grey. In addition, In Fig. 4B, we show a scan on the modern 300 

European population (CEU). This scan was generated using a different model trained on modern 301 

human data as the target domain (Methods). 302 

To avoid calling the same selective sweep multiple times, we grouped consecutive non-303 

neutral windows into a single ‘peak’. Additionally, to ensure distinct selective events, we further 304 

required peaks to be at least 1.5 Mb apart. Within each peak, we identified the representative 305 

window as the one with the highest sweep probability (the highest –log(probability of neutrality)). 306 

We identified a total of 48 unique sweeps in ancient humans (Fig 4A) and 28 selective 307 

sweeps in modern humans. Among the 48 ancient human sweeps, over half the sweeps recurred 308 

across multiple periods with 5 detected in all periods, 8 in three, 12 in two, and 23 in only one 309 

(Fig. S9). Additionally, 18 ancient sweeps were found to persist in modern humans with 5 of these 310 

sweeps present in all ancient human time periods resulting in 58 unique peaks across all ancient 311 

and modern periods. To assess the robustness of our sweep inferences in ancient humans, we 312 

trained two additional models varying the source domain, and observed high concordance across 313 

models both in sweep detection and classification, with 44 sweeps overlapping in all three scans 314 

(Fig. S10A, Fig. S11, Table S2).  315 

Out of the 48 sweeps detected in ancient humans (Figure 4A), 16 overlap with recent 316 

studies3–5,30,38–40. Among these are 5 sweeps overlapping well known targets of selection 317 

highlighted in Fig. 4. The strongest signal across all time periods corresponds to the HLA region 318 

and neighboring gene ZKSCAN3. HLA encodes cell surface proteins that are involved in the 319 

adaptive immune system and has long been recognized as a target of selection41,42 and ZKSCAN3 320 

is involved in transcriptional regulation of autophagy-related genes and was reported as under 321 

selection in Mathieson et al. 2015. We also detect a sweep spanning the OCA2/HERC2 genes, 322 

which is associated with light eye color in Europeans38. We identify this signature across all four 323 

time periods, which was not observed in earlier scans across the same time transect30,40. Our scan 324 

also recovers a strong sweep signal at the LCT locus, which is associated with lactase persistence 325 

into adulthood43,44. This signal is restricted to the H period and the CEU population (Fig. 4), 326 

consistent with the rapid rise in frequency of the causal variant rs4988235 during this time. 327 

Notably, this allele was absent in Europe prior to the arrival of Steppe pastoralists in the Bronze 328 

Age and therefore could not have been under selection earlier30,38,40,45–47. We also highlight a sweep 329 
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overlapping the gene KITLG, associated with light hair and skin pigmentation and recently 330 

identified as a target of selection, and SLC22A4, associated with Crohn’s disease4. We summarize 331 

the number of sweeps that overlap with previous work in Table S3 and Fig. S12,S13. 332 

The remaining 32 ancient sweeps we identify represent novel candidates that, to our 333 

knowledge, have not been identified in previous studies. We do not consider peaks as novel 334 

candidates if they are within 1Mb away from genes that have been previously identified as sweep 335 

candidates3–5,30,38–40. To understand if the genes within these 32 peaks are enriched for any 336 

functions, we assigned peaks to genes by annotating all protein coding genes within 300 Kb 337 

distance upstream and downstream of the representative SNP of each peak using Ensembl Variant 338 

Effect Predictor (VEP) (Supplementary table S5). We next performed an enrichment analysis for 339 

previously identified genome-wide association study (GWAS) annotations on the set of mapped 340 

genes using Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA)48. 341 

We observed an enrichment in many GWAS categories related to anthropometric traits as well as 342 

disease and auto-immune related traits. These results are reported in Fig. S14. 343 
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 344 
Figure 4. Genome-wide selection scan with the DANN in ancient and modern data. Results 345 

for the DANN are shown for all four ancient time periods highlighted at the top of each panel (A) 346 

and for modern Europeans (B). The time period range is specified as years before present (BP). 347 

The y-axis shows the probability of selection -log(Pneu) predicted using the DANN, whereby a high 348 

value indicates the window is likely under selection. The x-axis shows the genomic position. The 349 

DANN was trained using a human admixture model with missing data as the source domain and 350 

aDNA data as target domain. Windows predicted as hard sweeps are colored in red and windows 351 
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predicted as soft are colored in blue. Sweeps previously reported in the literature are highlighted 352 

above the peaks. We highlight with purple vertical bands 14 sweeps that are present across the two 353 

ends of the major admixture event that occurred ~4.5 kya, that is sweeps that are detected in earlier 354 

periods (N or BA) and are also detected in later periods (H or CEU). 355 

 356 

Hard sweeps were common in ancient and modern humans  357 

We next analyzed whether sweeps discovered in aDNA and modern humans were 358 

predominantly hard or soft. The DANN classified all 58 sweeps (ancient and modern) in Fig. 4 as 359 

hard. In three cases, we observe that windows on the edges of the peak are classified as soft 360 

(chromosomes 6 and 15, Figs. 4 and S15). This pattern is consistent with the “soft shoulder 361 

effect”49, where recombination causes regions flanking a hard sweep to exhibit patterns that 362 

resemble a soft sweep. However, based on our peak calling approach, these flanking regions are 363 

not classified as independent soft sweeps. Instead, they are grouped with adjacent windows into a 364 

single peak, which is then labeled according to the window with the highest sweep probability. 365 

To evaluate whether the predicted hard sweeps may reflect a high rate of soft-to-hard sweep 366 

misclassification by the model, we use simulated data from the human admixture model to estimate 367 

the proportion of predicted hard sweeps that may actually correspond to soft sweeps misclassified 368 

as hard. Applying these rates (Fig. S16) to our ancient hard sweep predictions, we estimate that, 369 

conservatively, 83% of detected sweeps are hard and 15% are soft, indicating that despite any 370 

potential for misclassification, hard sweeps were likely common in ancient human populations. It 371 

is important to note, however, that these error rate estimates are rough approximations based on 372 

simulated data, as the true labels in real aDNA are unknown. 373 

Additionally, to assess robustness of our results to the underlying model of soft sweeps, we 374 

trained a model in which soft sweeps were simulated from standing genetic variation (SGV) rather 375 

than recurrent de novo mutations (Fig. S10B). We identified a total of 53 unique sweeps in aDNA, 376 

43 of which overlap with the scan trained on de novo soft sweeps. Of the 53 sweeps, 38 are 377 

classified as hard, 9 as soft and 6 change classification from hard to soft across time periods. 378 

However, we note that the predicted probabilities for soft sweeps are low, ranging from 0.34-0.44, 379 

where 0.33 is the probability of predicting either hard, soft or neutrality at random. By contrast, 380 

the predicted probabilities for hard sweeps range from 0.34-0.93, suggesting that the support for 381 

peaks classified as soft is weak.   382 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2025. ; https://doi.org/10.1101/2025.10.14.682443doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?WtkJUo
https://doi.org/10.1101/2025.10.14.682443
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

To further validate whether the peaks detected by the DANN are in fact hard sweeps, we 383 

visualized the central window of all peaks detected in Figure 4. By visual inspection, we observe 384 

a single haplotype at high frequency across all windows, consistent with partial hard sweeps, as 385 

highlighted in 24 examples in Fig. S17. These windows are distinct from windows classified as 386 

soft on chromosome 6 of period H (Fig. S18), whereby multiple haplotypes are at high frequency, 387 

and distinct from windows classified as neutral, whereby no haplotypes are at high frequency (Fig 388 

S18). 389 

In addition to the above, to further confirm inferences about the softness of sweeps made 390 

by the DANN, we compute the value of the haplotype homozygosity statistics H12 and H2/H137 391 

for the sweep candidates detected in Figure 4A. These statistics have been previously used to detect 392 

and classify hard and soft selective sweeps, with both hard and soft sweeps showing elevated H12, 393 

and soft sweeps exhibiting higher H2/H1 values than hard sweeps37. Using an approximate 394 

Bayesian computation (ABC) approach to estimate whether each (H12, H2/H1) pair observed in 395 

the aDNA is more likely to arise under a hard or soft sweep model (Fig. S19), we find that of the 396 

23 sweep candidates with elevated H12 values in the 95th percentile of values under neutrality, 22 397 

peaks are better supported by a hard sweep model (BF<1) with 15 showing strong support 398 

(BF<0.5). 399 

Finally, to assess if our DANN is able to recover known soft sweeps,we applied the DANN 400 

to a North American population of Drosophila melanogaster that has three well established soft 401 

sweeps that have been identified empirically at Ace50–52, CHkov153,54 and Cyp6g155,56. The sweeps 402 

at Ace and Cyp6g1 arose from recurrent de novo mutations while the sweep from CHkov1 arose 403 

from standing genetic variation. To run the scan on this data, we trained a new DANN using the 404 

D. melanogaster data as the target domain and simulated data from a constant Ne model with 405 

parameters relevant to this population for the source domain (Methods). Our model is able to 406 

recover all three known positive controls and classify them as soft sweeps (Fig. S20). Additionally 407 

we find that soft sweeps dominate across the autosomes of this population and that hard sweeps 408 

are enriched on the X chromosome relative to the autosomes, consistent with our previous findings 409 

that hemizygosity on the X results in an abundance of hard sweeps57,58. 410 

 411 

 412 

 413 
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Selective sweeps through time 414 

The massive admixture events in which large fractions of the European population 415 

experienced genetic turnover may have important implications for the ability to detect selective 416 

sweeps over time. Previous work has suggested that sweeps in ancient populations may no longer 417 

be detectable in modern time periods due to a masking effect of admixture and drift3,30. Of 418 

relevance to our dataset, 33% of the Anatolian population from which our samples were derived 419 

was replaced by samples from the CHG population ~4.5kya, overlapping samples from the BA 420 

and IA periods (Fig. 1B, C). We asked whether sweeps detected before this admixture event are 421 

detectable subsequently, as this would imply resilience to major events and shared selective 422 

pressures through time. 423 

To investigate the potential impact of admixture events on sweep detection across time, we 424 

quantified the overlap in selective sweep signals across the five time periods studied here. We 425 

found that among the ancient time periods (N-H), 35 sweeps are detectable in only one or two time 426 

periods, suggesting that admixture and drift may in fact have an impact on sweep detection. 427 

However, at the same time, 14 sweeps that were identified before the admixture event in either the 428 

N or BA time periods were also present after the admixture event in the H time period and modern 429 

humans. This suggests that admixture events may not obscure all ancient sweeps and that some 430 

sweeps are subject to sustained selection pressures over time (Fig. S9).  431 

The genes identified in these 14 selective sweeps persisting across human epochs fall into 432 

a few functional categories: These include neural and cognitive functions encoded by AUTS2, 433 

ASCL1, and SEMA6A, of which AUTS2 was previously discovered to putatively be under 434 

selection59, neuronal signaling and calcium channels encoded by CACNB4,  exocytosis encoded 435 

by EXOC6B60, and previously4,38 discovered adaptations at pigmentation genes OCA2, HERC2, 436 

and KITLG. Most of these genes are either found solo within the coordinates of their respective 437 

selective sweeps, or with few other genes, narrowing the targets of selection. Contained in peaks 438 

with more genes are metabolic and nutrient processing genes like PAH and SLC38A9, 439 

reproductive and germ cell genes such as DDX4, SPAG4, and protein quality control and signaling 440 

genes like LTN1, USP16, CCT8, and MAP3K7CL (Table S4). Together, the gene categories 441 

present in the 14 sweeps persisting through history highlight functional classes, particularly 442 

cognitive and pigmentation, that were potentially of great importance throughout the past 7000 443 
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years of history. Future work, however, is needed to fully understand the nature of positive 444 

selection at these loci.  445 

We next asked whether lack of overlap of sweep signals is correlated with the admixture 446 

event 4.5kya. To do so, we measured the overlap in sweeps between pairs of ancestral time periods 447 

(N-H) using the Jaccard similarity index (J), which measures the proportion of shared elements 448 

between two sets relative to their union (Methods). We asked whether these observed Jaccard 449 

values were larger or smaller than expected under a null where sweeps are randomly distributed 450 

across time periods. We found that the farthest time periods, N and H, which have the admixture 451 

event separating them, had significantly less sharing of sweeps than expected by chance (J=0.17, 452 

p-val=0.03, permutation test, Fig. S21, Methods). This is consistent with some sweeps detected in 453 

the earliest time period (N) being lost due to the impact of admixture and/or drift over long 454 

timescales. However, the absence of sweeps in later periods may, in some cases, reflect limited 455 

power rather than true biological loss. Additionally, we found that two sets of consecutive time 456 

periods, (BA, IA) and (IA and H), have higher than expected sweep sharing (J= 0.44-0.45, p-val 457 

<0.05, permutation test, Fig. S21, Methods), indicating that on shorter time scales sweeps can 458 

persist. 459 

Next, we asked whether sweeps that are shared across multiple time periods persist because 460 

the same haplotype carrying the adaptive allele remained under selection, or whether the original 461 

haplotype was replaced by a distinct haplotype, potentially introduced through admixture. To test 462 

this, we calculated whether the most frequent haplotypes of peaks across time periods are more 463 

similar than would be expected based on the average divergence between random pairs of 464 

haplotypes (Fig. S22, Fig. 5). Out of the 14 sweeps detected on either end of the major admixture 465 

event spanning our dataset (Fig. 4), 9 of these share the same top haplotype across at least 4 time 466 

periods, including periods where our method does not detect the sweep. This implies that the 467 

sweeping haplotype frequently persisted despite widespread admixture. In Fig. 5A, we highlight 468 

6 examples of these sweeps. Among these we include a more recent sweep at the LCT locus where 469 

the recent rise of the adaptive haplotype is particularly evident. 470 

In addition to sweeps that persist across multiple time periods, we also tracked the 471 

frequency of the top haplotype in cases where the sweep is only detected in the earliest period (Fig. 472 

5B), clearly highlighting how, in some cases, a haplotype at high frequency in N is lost or masked 473 

in subsequent periods. The temporal patterns highlighted in Fig. 5A,B are strikingly different from 474 
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those in regions classified as neutral by the DANN (Fig. 5C), where no haplotype reaches high 475 

frequency and the distances between top haplotypes fluctuate. 476 

 477 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2025. ; https://doi.org/10.1101/2025.10.14.682443doi: bioRxiv preprint 

https://doi.org/10.1101/2025.10.14.682443
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

Figure 5.  Persistence of top haplotype across time. (A) Six examples where the most frequent 478 

haplotype persists across multiple time periods. (B) Three examples of sweeps that become 479 

masked after time period N. (C) Three examples of neutral windows across all time periods. In all 480 

panels, the blue line (left y-axis) shows the frequency of the top haplotype in four ancient 481 

populations (N–H) and in a modern population (CEU). The gray line (right y-axis) shows the 482 

normalized Hamming distance between the top haplotype in each time period and the top 483 

haplotype in CEU in the case of (A) or in period N in the case of (B), (C). The horizontal red 484 

dashed line marks the 1st percentile of the distance between random haplotype pairs, with values 485 

above this threshold indicating distinct haplotypes. We highlight with a star (*) the epochs for 486 

which the window was classified as a sweep using the DANN. 487 

 488 

Discussion  489 

In this study, our goal was to characterize the targets and mode of adaptation in ancient 490 

humans. To do this, we implemented a domain adaptive neural network that is able to detect and 491 

classify selective sweeps in aDNA data and is robust to model misspecification. We applied our 492 

model to empirical aDNA from 708 individuals spanning ~7000 years in the past as well as 99 493 

modern Europeans, and identified 48 unique ancient hard selective sweeps and 28 modern hard 494 

sweeps, recovering both previously known and novel candidates of selection. Finally, we found 495 

that while some sweeps identified in the Neolithic have been masked in more recent time periods, 496 

14 sweeps spanning neuronal, reproductive, pigmentation, and signalling traits, can be found in 497 

the earliest and latest time periods despite the impacts of drift and admixture. 498 

Past studies on humans have generally found few clear examples of hard sweeps in modern 499 

genomes61,62. Souilmi et al. proposed that this paucity of classic sweeps reflects the impact of 500 

complex population history, in particular the masking of sweep signatures by strong admixture 501 

events. Using SweepFinder263, which is primarily powered to detect completed hard sweeps, they 502 

identified 57 sweeps across ancient Eurasian human genomes, including many sweeps that are 503 

undetectable in modern data. Our DANN recovers several sweeps that show a similar pattern: Out 504 

of the 24 sweeps detected in the most ancient time period of our study, the Neolithic, 41% are not 505 

detected in the following periods (Fig. S9, Fig. 5B). However, our results also reveal additional 506 

dynamics not previously captured: the persistence of sweeps across time periods, even those most 507 

impacted by admixture. First, we observed sweeps in which the top haplotype is shared across 508 
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multiple time periods, even when the sweep is not detected by the DANN in all time intervals. 509 

This pattern might reflect standing genetic variation, where the haplotype has not been driven by 510 

selection to a high enough frequency to be detected by the DANN. We also detect cases where the 511 

same top haplotype appears in non-consecutive periods, suggesting more complex evolutionary 512 

dynamics such as fluctuating selection or a temporary replacement of the top haplotype driven by 513 

admixture or migration that obscure detection of the sweep in some time intervals. 514 

The finding that hard sweeps were common in aDNA suggests that adaptation in humans 515 

has largely been mutation limited, or that standing genetic variation available to seed adaptation 516 

was low. Even accounting for a 16% misclassification rate of soft sweeps as hard sweeps 517 

(Fig. S16), hard sweeps remain the dominant mode of selection in aDNA. The high frequency of 518 

hard sweeps in the data is consistent with the notion that hard sweeps are expected to dominate in 519 

populations with small population sizes, where the input of new adaptive mutations is low7,64. In 520 

ancient human populations, the effective population size is estimated to be relatively small35 ( 521 

Ne~104), therefore the input of new adaptive mutations was likely moderate (𝛩A ~ 0.001), making 522 

adaptation through hard sweeps likely. Nonetheless, given the inherent challenges of 523 

distinguishing between hard and soft sweeps, especially in regions of the parameter space where 524 

their genomic signatures overlap, additional work will be needed to fully resolve the rapidity of 525 

human adaptation.  526 

Domain adaptation provides meaningful improvement on supervised machine learning 527 

methods for analyzing genomic data. With the significant increase in available aDNA samples 528 

over the past decade65,66, domain adaptation may be especially valuable, as aDNA analyses may 529 

be susceptible to false positives due to unmodeled or unknown demographic events as well as the 530 

overall poor quality of the data. Domain adaptation was recently applied to SIA, a method that 531 

detects selection using the ancestral recombination graph (ARG) inferred from sequence data20,26. 532 

Here, we bypass ARG inference, which is computationally intensive and can introduce an 533 

additional layer of misspecification, by working directly with haplotype matrices. In other recent 534 

work, site frequency spectra were used as inputs to the DANN, though this summary statistic 535 

removes any linkage signal between SNPs67. By working with haplotypes18, we can fully leverage 536 

all available data without the need for additional inferences, making it more straightforward and 537 

better suited hard vs soft sweep inference in aDNA. This framework is generalizable and in future 538 
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work could be extended to other organisms with low coverage data or where the demography is 539 

not fully characterized.  540 

Our findings highlight the power of deep learning for uncovering signatures of selection in 541 

aDNA data. By applying a DANN to aDNA data, we find that hard sweeps have played an 542 

important role in the evolutionary history of humans. Moreover, our approach opens the door to a 543 

range of future applications of deep learning in aDNA to study adaptation, including incorporating 544 

time as an explicit variable to examine how selection has fluctuated across historical periods or 545 

extending our approach to detect other modes of selection. As aDNA datasets continue to grow 546 

and deep learning methods for population genetics continue to improve, so will our ability to 547 

disentangle the evolutionary forces that have shaped genetic diversity through human history. 548 

 549 

Methods 550 

 551 

Ancient DNA data 552 

Data was downloaded from the Allen Ancient DNA Resource (AADR version 51; 553 

https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-554 

day-and-683). This includes genome-wide data from human populations from Holocene Europe 555 

with samples dating from ~7,000 years before present (BP) to ~1,345 BP, covering the Neolithic 556 

(N), the Bronze Age (BA), the Iron Age (IA) and the Historical periods (H) (Fig. 1).  557 

We focused our analyses on the most reliable samples in our dataset. The criteria we used 558 

to select samples are the same as in our previous work30 and include enrichment for 1240k nuclear 559 

targets with an in-solution hybridization capture reagent, removal of individuals with high 560 

indication of contamination (see 30) , and inclusion of unrelated individuals up to the third degree. 561 

Additionally, like in our previous work we selected 177 individuals with the highest coverage 562 

across all time periods, resulting in a total of 708 aDNA samples (Table S1). Finally, since aDNA 563 

coverage is low and thus both alleles at heterozygous sites may not be sampled, and, since there is 564 

ascertainment bias of alleles towards the SNPs included in the aDNA capture array68  we pseudo-565 

haploidized the data by randomly selecting one of the reads that mapped to a given position and 566 

assigned that read as the genotype of the sample at that site30. 567 

 568 

 569 
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Simulations 570 

        We performed simulations of neutrality, hard sweeps and soft sweeps. We use two different 571 

demographic models: a constant Ne =104 model and a human admixture demographic model that 572 

accounts for the major migratory movements contributing to the genetic diversity of contemporary 573 

Europeans3,33–35 (Fig. 1C). 574 

We simulated a total of 400,000 neutral simulations and 400,000 selective sweep 575 

simulations (200,000 hard sweeps and 200,000 soft sweeps) under each demographic model.  576 

Constant mutation rates and recombination rates were applied to each simulated genome and were 577 

drawn uniformly as follows: μ ~U[1e-8,1.5e-8] and 𝜌 ~U [3e-9,2e-8]. Simulations were performed 578 

using SLiM 4.169,70 followed by recapitation with msprime71. 579 

We simulated hard sweeps by introducing a single adaptive mutation to the center of the 580 

chromosomal segment of length 450kb. We restarted the simulation and re-introduced the adaptive 581 

mutation if the mutation was lost. The simulation was allowed to proceed until the adaptive 582 

mutation reached a partial frequency (PF) drawn from a uniform distribution PF ~ U[0.5,0.95]. In 583 

all simulations, 177 individuals were sampled and subsequently downsampled to the 150 584 

individuals with the least amount of missing data, reflecting the same procedure applied to aDNA.   585 

We simulated soft sweeps from recurrent de novo mutations by introducing adaptive 586 

mutations to the center of the chromosome at a rate determined by parameter 𝛩A = 4Ne μA, where 587 

Ne  is the effective population size and  μA the mutation rate of the adaptive mutation. The value of 588 

𝛩A was drawn from a uniform distribution 𝛩A ~U[1,5] as soft sweeps are expected when 𝛩A >= 589 

17,64. Finally, the selection strength, s, for both hard and soft sweep simulations was drawn from a 590 

uniform distribution s ~U[0.005,0.1]. 591 

Additionally, we simulated sweeps arising from standing genetic variation (SGV) by 592 

drawing the frequency of the adaptive mutation prior to the onset of selection from a uniform 593 

distribution finit ~ U[0.025,0.1]. Given the computational constraints of simulating a sweep from 594 

the SGV jointly with a complex admixture model, we only simulated SGV sweeps using the 595 

constant Ne model. Additionally, to improve computational efficiency, we used a hybrid approach 596 

where we first simulated a neutral process with msprime and selected a mutation mi at  frequency 597 

finit. The resulting tree and mutation id of the variant mi was then fed to SLiM, where mi was 598 

assigned a selective advantage and allowed to rise in frequency, producing a sweep from SGV. 599 
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Simulations were processed to mimic the missing data rate observed in aDNA data. 600 

Missing data was added to each site following a beta distribution with a mean of 0.43 per SNP and 601 

a standard deviation of 0.28, mimicking the distribution of missing data observed in aDNA (Fig. 602 

S2). Additionally, we pseudo-haploidized the data by randomly selecting one allele from each 603 

sampled individual at each site30. Finally, since we ran our scan in 201 SNP windows in aDNA, 604 

spanning roughly 450Kbs, we randomly selected 201 SNPs from the simulated chromosome. 605 

 606 

DANN model architecture 607 

The input to the DANN are raw genomic “images” or haplotype matrices (Fig. 2B), where 608 

rows represent pseudo-haplotypes from each individual and columns represent the ordinal position 609 

of each variant site in the sample. These haplotype matrices have dimensions n x L, where n=150 610 

pseudo-haplotypes and L=201 SNPs in a given window.  In these images, the color of each pixel 611 

represents the occurrence of the major or minor allele16,18,36. We transformed the alleles into binary 612 

values such that the major allele was coded as -1 and minor allele as 1. Missing data was coded as 613 

0. Images were sorted by frequency of most to least frequent haplotype. In text S1 we test the 614 

effectiveness of alternative sorting approaches and window sizes.   615 

The feature extractor of the DANN consists of two convolutional layers each containing 616 

64 filters with kernel size of 3x3 and ReLu activation (Fig. 2A). Each convolutional layer is 617 

followed by 2x2 max-pooling. The last pooling layer is then flattened into a feature vector that is 618 

shared between the two subsequent branches of the network: the classifier and the discriminator. 619 

Each branch consists of two fully-connected dense layers of 128 neurons each. We use ReLu 620 

activation functions and set a dropout rate of 0.5 after each dense layer. The classifier outputs a 3-621 

neuron softmax layer with the predicted probabilities for each of the three classes: hard sweep, soft 622 

sweep, or neutral. The discriminator outputs a single sigmoid output layer, which predicts whether 623 

the haplotype image comes from the source or target domain.  624 

An important component of the DANN is a Gradient Reversal Layer (GRL) between the 625 

feature vector and the discriminator branch. During the feed-forwards step of training, the GRL is 626 

inactive and the data is passed along to the next layers. During backpropagation, the GRL inverts 627 

the gradient of the loss before passing it back to the feature extraction layer27. This operation 628 

penalizes features that discriminate between source and target domains, encouraging the model to 629 

learn domain-invariant features critical for accurate classification. 630 
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Model training 631 

We implemented the domain-adaptive neural network model described above using 632 

TensorFlow (v2.18.0). All models were trained with the Adam optimizer and a batch size of 64.  633 

The classifier branch utilized a categorical cross-entropy loss function, while the discriminator 634 

branch used a binary cross-entropy loss function. We fed labeled data from simulations into the 635 

classifier branch to compute the class prediction loss (𝐿!"#$$%&%'(	). Simultaneously, we fed a mix 636 

of unlabeled data from the source domain (simulations) and target domain (aDNA data) into the 637 

discriminator branch to compute the discriminator loss (𝐿*%$!(%+%,#-.(). During back propagation, 638 

the feature extractor’s weights were updated based on a combination of the gradient from the 639 

classifier loss and the reversed gradient from the discriminator loss. We use the same simulated 640 

data for both branches, however the data is shuffled differently in each mini-batch. The real 641 

empirical aDNA data was used on the discriminator branch only. To achieve this training 642 

approach, we implement a custom data generator using the Sequence class 643 

(‘tf.keras.utils.Sequence’)  that acts as a data generator interface for training Keras models.   644 

 645 

The relative contribution of the model’s branches can be adjusted via the hyperparameter 646 

𝜆, such that  647 

	𝐿𝑡𝑜𝑡𝑎𝑙 =	𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟	 + 𝜆𝐿𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟	. 648 

If 𝜆=0 then the GRL is effectively “off” and only the classifier branch learns to classify sweeps 649 

without attempting to unlearn domain differences. Conversely, when  𝜆=1 the GRL is fully “on”, 650 

assigning equal importance to the tasks of classifying sweeps and unlearning domain differences 651 

simultaneously. Following the approach proposed by Ganin & Lempitsky 201427, we gradually 652 

increased 𝜆 from 0 to 1 in order to reduce potential  noisy signal from the discriminator at early 653 

stages of training. In Ganin & Lempitsky 2014  𝜆 is defined as: 654 

𝜆	 =	
2

1<	'=>(@A⋅>)
− 1, 655 

Where p is the training progress changing linearly from 0 to 1 and is defined as p= epochi / nepochs, 656 

with nepochs =30 total epochs and i=1,..nepochs. In all models trained for this paper we set 𝛾 =10. 657 

 We trained the DANN for a total of 30 training epochs. Each epoch took ~282s to train on 658 

a single A100 GPU. During training, the discriminator loss gradually increased as the model 659 

“unlearned” the misspecification between the source and target. The loss eventually plateaued at 660 

~0.693, consistent with the value expected when the domains become indistinguishable under 661 
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binary cross-entropy loss. Simultaneously, we observed that the classifier loss monotonically 662 

decreased as it learned to distinguish between neutrality, hard sweeps, and soft sweeps (Fig. S23). 663 

First, we trained and tested the DANN on simulated source and target domains. In this 664 

scenario, we had labeled data from both domains, allowing us to evaluate the performance of the 665 

DANN using a validation set from the target domain. In this setting, we selected the model weights 666 

from the training epoch that achieved the lowest classifier validation loss when testing on the 667 

validation dataset from the target domain. 668 

 Next, we trained and tested the DANN but this time using simulated data generated under 669 

a human admixture model with an average of 43% missing data per site as the source domain and 670 

aDNA data as the target domain. We included all aDNA data for training, where the data only 671 

passed through the discriminator branch, not the classifier, since their labels are unknown. The 672 

classifier only sees the aDNA data during inference (next section), avoiding any data leakage. In 673 

this setting, we could not directly evaluate the performance of the model on a target validation set 674 

due to the lack of labeled data. Instead, we assessed performance on simulated data by computing 675 

the AUPRC for each class at every training epoch and then averaging across the three classes. We 676 

restricted model selection to epochs beyond epoch four, when the GRL begins to influence training 677 

(𝜆 > 0.5), and chose the epoch with the highest average AUPRC. 678 

 679 

DANN genome-wide scan 680 

We performed a genome-wide scan across all autosomes and all four time periods of aDNA 681 

data from this study. We also include a scan on 99 samples of modern humans from the CEU 682 

population from the 1000 Genomes Project32. This modern data scan was generated using a 683 

different DANN than the one used on ancient samples, trained on CEU data as the target domain.  684 

To apply the model to all autosomes, we use a sliding window of 201 SNPs, advancing 685 

each window by 10 SNPs. To refine the predictions and reduce noise, we then averaged the 686 

predicted probabilities every five consecutive, overlapping windows, generating the final 687 

predictions used for the scan. The DANN outputs a probability for each of the three classes 688 

(neutral, hard sweep or soft sweep). Each window was assigned to the class with the highest 689 

probability. To make sure we are identifying distinct selective events, we grouped consecutive 690 

non-neutral windows into a single peak and required peaks to be at least 1.5 Mb apart. Each peak 691 

was represented by the window with lowest probability of neutrality, in other words, the strongest 692 
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signal within the peak. The classification of this representative window (hard or soft sweep) was 693 

used to classify the whole peak. 694 

 695 

ABC for hard/soft sweep classification with H12 and H2/H1 statistics 696 

  697 

 We assessed whether the predictions for hard vs soft sweeps in the data made by the DANN 698 

are consistent with predictions made with the haplotype homozygosity statistics, H12 and H2/H1, 699 

that can jointly discriminate between hard and soft sweeps37. H2/H1 is expected to be small for 700 

hard sweeps and large for soft sweeps, conditional on H12 being larger than expected under 701 

neutrality. As such, we only analyzed 23 peaks in total that had an H12 value greater than the 95th 702 

percentile of H12 values from 400,000 neutral simulations under the human admixture model as 703 

these were least likely to be neutral. 704 

We used an approximate Bayesian computation approach to evaluate if a pair of (H12, 705 

H2/H1) values in the data are more likely under a hard vs soft sweep model. To do so, we compare 706 

observed values in the data to values measured from simulations of hard sweeps and soft sweeps 707 

under the human admixture model. We calculated Bayes factors (BFs) for the observed data by 708 

taking the ratio of the number of soft sweep and hard sweep simulations with a Euclidean distance 709 

<0.1 from each (H12, H2/H1) data point37. 710 

 711 

Jaccard index and permutation test 712 

 713 

 To quantify the overlap of peaks across different time periods, we calculated a Jaccard 714 

similarity index (J) quantifying peak overlap between pairs of time periods. J measures the 715 

proportion of shared elements between two sets relative to their total combined elements and its 716 

defined as  717 

𝐽(𝐴, 𝐵) = |	E	∩	G	|	
|E	∪	G|

, 718 

or in other words, the number of shared elements in sets A and B divided by the total number of 719 

elements in A and B. In this scenario A and B represent the peaks identified in two distinct time 720 

periods, such as IA and H. J(IA,H) is obtained by dividing the number of peaks that are shared 721 

between IA and H by the total number of peaks found across both periods. 722 
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Next, to identify whether the value of J was statistically significant, we performed a 723 

permutation test where we randomly shuffled the peaks and time periods, such that peaks were 724 

randomly distributed across time. We did this 5,000 times generating a null distribution of 725 

expected values of J. The p-value of the observed J value is given by the proportion of test statistics 726 

from the null distribution that are as extreme or more extreme than the observed value for a pair 727 

of time periods. 728 

 729 

Code availability 730 

All code developed and used in this study will be made publicly available via a GitHub repository 731 

upon acceptance of the manuscript. 732 
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