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Abstract

Understanding the relationship between biological sequences, such as DNA, RNA or protein sequences,
and their resulting phenotypes is one of the central goals of genetics. This task is complicated by epistasis,
i.e., the context dependence of mutational effects. Advances in high-throughput phenotyping now make
it possible to study these relationships at unprecedented scale, generating large datasets that measure
phenotypes for tens or hundreds of thousands of sequences. However, standard regression models for
analyzing such datasets often make unrealistic assumptions about the generalizability of mutational effects
and epistatic coefficients across genetic backgrounds. Deep neural networks offer greater flexibility but
suffer from limited interpretability and lack uncertainty quantification. Here, we introduce a family of
interpretable Gaussian process models for sequence-function relationships that capture epistasis through
flexible prior distributions that generalize classical theoretical models from the fitness landscape literature.
In particular, these priors are parameterized by interpretable site-, allele-, and mutation-specific factors
controlling the degree to which specific mutations decrease the predictability of the effects of other
mutations. Using GPU acceleration to scale to large protein, RNA, and genome-wide SNP datasets, our
models consistently deliver superior predictive performance while yielding interpretable parameters that
both recover known features and uncover novel epistatic interactions. Overall, our methods provide new
insights into the structure of the genotype-phenotype map and offer scalable, interpretable approaches for
exploring complex genetic interactions across diverse biological systems.
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Introduction

Understanding how genetic sequences (DNA, RNA, and proteins) encode biological function remains one of
the major open challenges in biology. Deciphering sequence-function relationships is crucial for understanding
and predicting evolution [1-8] as well as for uncovering the genetic factors underlying human genetic and
infectious diseases and cancer [9-11]. It is also essential for designing and engineering sequences with desired
properties, such as maximizing the expression or activity of a protein of interest [12H14] or breeding crops and
livestock with improved yield or tolerance to stress and pathogens [15H18|. Recent advances in high-throughput
phenotyping technologies, such as deep mutational scanning and massively parallel reporter assays, have led
to the rapid proliferation of datasets measuring functionality across large libraries of sequence variants [19].
These approaches have been applied to proteins |9} 20-37], regulatory sequences [38-48| and even genome-wide
genetic variation [49-52|, providing valuable insights into protein function and gene regulation. However,
building models that capture the structure of these empirical sequence-function relationships and accurately
predict phenotypes for novel genotypes remains challenging, in part because mutational effects often change
due to the presence of other mutations |3, |5, |7, [8, [53H56].

Existing methods for modeling sequence-function relationships often make strong assumptions about the
structure of this background dependence of mutational effects. For example, an additive model assumes
that the effects of mutations are constant, such that the observed mutational effects in the data can be
generalized to any novel background [57]. Pairwise interaction models relax this assumption by allowing
mutational effects to vary, but still assume that the epistatic interaction between any pair of mutations is
itself background-independent [58]. Perhaps surprisingly, this background independence of double-mutant
epistatic coefficients implies that for any pairwise interaction model, the mean predicted phenotype changes
quadratically as a function of the number of mutations from the wild type (or any arbitrarily chosen focal
sequence)—a strong restriction on the types of geometric features such models can represent [55]. As a result,
simple regression models often lack the flexibility to account for the full complexity of epistasis in empirical
sequence-function relationships [55] and are frequently outperformed in prediction tasks by more expressive
methods, such as neural networks |34} [35| |46, 59-66]. However, while neural networks are able to make more
accurate predictions than traditional regression models, they provide limited capabilities for interpretability
and uncertainty quantification, which reduces their utility.

Gaussian process models offer an alternative class of highly flexible models [55] |58, 67H74| that provide
better interpretability and uncertainty quantification. These models work by defining a prior probability
distribution over the space of possible sequence-function relationships and then computing the posterior
distribution given the data [75], where in particular the prior distribution can be defined by interpretable
parameters that control the predictability of mutational effects across different genetic backgrounds [55] and
the posterior distribution provides a natural means to quantify uncertainty. While our previously described
prior distributions for sequence-function relationships are isotropic, this is, they assume that every mutation
has the same effect on the predictability of other mutations |55, 58| [70], empirical evidence suggests substantial
heterogeneity. Different mutations can vary widely in how they affect predictability at other positions |28,
76] and in the total fraction of genetic variance explained by their interactions [77], with key mutations
dramatically altering the effects of mutations elsewhere in the sequence |30, [77H79].

In this paper, we introduce a new family of anisotropic Gaussian process priors that capture heterogeneity
in how mutations influence the predictability of other mutations based on two key principles. First, each
position, allele, or mutation is assigned a decay factor that controls how much it affects the predictability of
mutations at other positions. Second, when several mutations occur together, their effects on the predictability
of other mutations are assumed to combine multiplicatively. These design choices enable us to generalize
previously proposed theoretical models of fitness landscapes in several key directions 55| |77, [80], particularly
by allowing us to generate families of complex random fitness landscapes using a moderately sized set of
interpretable parameters, each tied directly to the behavior of individual mutations. We combine these new
priors with recent advances in Gaussian process inference and modern GPU infrastructure [81-83| to analyze
diverse high-throughput phenotyping experiments, including nearly complete genotype-phenotype maps for
protein GB1 [84] and human 5’ splice sites [42], a dataset for the longer AAV2 capsid protein [35], and a
genome-wide dataset for yeast [50]. We then use our Gaussian process framework for a range of data-analytic
tasks, including: (i) identifying sites, alleles, and mutations with strong effects on the predictability of other
mutations, (ii) making phenotypic predictions for specific genotypes of interest and quantifying the uncertainty
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in these predictions, (iii) predicting the effects of all single point mutations across different genetic backgrounds
and assessing our confidence in whether those effects have changed, and (iv) reconstructing combinatorially
complete landscapes for moderately sized subsets of mutations. Overall, by studying these diverse systems, we
find that mutations exhibit highly heterogeneous effects on the predictability of other mutations. By modeling
this heterogeneity explicitly, we capture the background dependence of mutations with greater granularity
and precision, thereby substantially enhancing the predictive power of our models.

Results

Gaussian processes for learning sequence-function relationships

To model sequence-function relationships, we use Gaussian process regression, which places a Gaussian prior
distribution over the space of functions mapping genotypes to their phenotypes. This prior is fully specified
by its mean and a covariance function, or kernel, k(z, '), which defines the covariance of phenotypes between
each possible pair of sequences x and 2’ under the prior. Gaussian process regression makes predictions based
on the data y by computing the posterior mean for any genotype x

E[f(2)ly] = ky (Kpp + E) "'y, (1)

where Kgp and F are square matrices modeling the prior covariance and noise variance for the set of measured
genotypes B, and k,, is the vector encoding the covariance between the genotype x whose phenotype we wish
to predict and the set B of measured genotypes. A key advantage of Gaussian process regression is that it
also provides a full characterization of the prediction uncertainty via the posterior covariance matrix (see
Supplement .

Because Eq. [1] is a generic result applicable to all Gaussian process regression problems [75], the key
determinant of model behavior and performance is the choice of the prior defined by the kernel function.
In previous work, we introduced priors parameterized by biologically interpretable quantities such as the
average squared epistatic coefficient [58, [70] or the variance associated with genetic interactions of each
possible order [55]. These priors also control how the predictability of mutational effects decays with genetic
distance [55].

In this section, we review our previously developed method, empirical variance component regression (VC
regression) [55|, propose three new methods that model how specific mutations influence the predictability of
mutational effects at other sites, and analyze the flexibility in the set of expected variance components that
can be under each prior.

Empirical variance component regression

In [55|, we introduced a family of flexible priors in which the kernel function for a pair of genotypes = and '
separated by d mutations is given by

14
Ba,2') = k(d) = 3 MWi(d), (2)
k=1

where Wy, (d) is a kernel that captures the covariance structure of pure k-th order interactions (given by a family
of orthogonal polynomials known as the Krawtchouk polynomials, see [55] 85| for details) and A; > 0 is the
expected variance of k-th order interactions under the prior. Importantly, this family of priors coincides with a
well-studied class of theoretical random fitness landscapes where the covariance in phenotypes and mutational
effects is completely determined by the Hamming distance between genotypes or genetic backgrounds [85(88].
These isotropic random landscapes are parameterized by the expected variance components of additive effects,
pairwise, and each possible type of higher-order interaction between mutations. These variance components
then control how fast the correlation in mutational effects between genetic backgrounds decays with the
genetic distance between them.

Traditionally, the scalability of Gaussian process regression has been limited to fitting tens of thousands
of training data points because computation of Eq. [I] and hyperparameter optimization scale cubically with
dataset size |75, [81]. In the original proposal of VC regression 55|, we inferred the model hyperparameters
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from the data by minimizing the discrepancy between the prior covariance and the empirical phenotypic
covariance using weighted least squares [89] and exploited a sparse representation of the kernel matrix for
the full sequence space to compute the posterior mean and covariances via iterative methods [55], [74]. This
strategy allowed us to scale our methods to sequence spaces with up to 10 million sequences, equivalent to 12
nucleotides for DNAs/RNAs, 24 biallelic loci, or 5 sites for proteins.

Here, we alleviate these constraints on sequence length and alphabet size by leveraging recent developments
in Gaussian process inference techniques and modern GPU computation using GPyTorch [81] and KeOps [83]
to instead work with the dense matrix Kpp (Eq. [1) whose dimensions depend on the size of the training
data but not on the size of sequence space. These modern machine learning libraries implement algorithms
that combine the power of GPUs and iterative methods to compute posterior means and covariances more
efficiently, allowing computations for datasets with up to roughly 1 million observations [82]. Moreover, these
techniques also enable a more principled approach for inferring hyperparameters, such as the Ag, via evidence
maximization [75|. In other words, we find the combination of kernel hyperparameter values that maximize
the likelihood of observing the empirical data (see Supplement . These improvements make our methods
scalable to large datasets without constraints on the size of sequence space.

Connectedness model

By tuning the relative contributions of different orders of epistatic interaction, VC regression allows priors
that can reproduce any distance-dependent correlation function for mutational effects. However, the isotropic
assumption that all mutations have equal effects on the predictability of other mutations still limits the
expressivity of these priors. In this section, we introduce our first new model, which relaxes this isotropic
assumption by allowing mutations at each site to exert a site-specific characteristic effect on the predictability
of the phenotypic effects of mutations at other sites.

To construct the model, we introduce a site-specific decay factor ¢, for each of the ¢ positions (p =1,..., 7).
Biologically, §,, captures how much a mutation at site p disrupts the predictability of mutational effects across
genetic backgrounds. For example, if two genotypes differ only at position p, then the correlation under the
prior in the effects of mutations at all other positions is precisely 1 — d,. A small §, suggests that mutations
at p have minimal effects on the effects other mutations, while a large , indicates strong epistatic influence.

To generalize this idea to genetic backgrounds differing at multiple sites, we assume that the effects of
different mutations on the predictability of other mutations combine multiplicatively. That is, mutating an
additional position g further reduces the original correlation by a factor of 1 — d,, producing an expected
correlation of (1 —4,)(1 —d,). This results in a biologically interpretable kernel function, where the covariance
between two sequences decreases according to the cumulative effect of their mutational differences:

k(xax/) =0’ H (1- 519)7 (3)

PiTpFTY,

where o2 represents the shared variance across all genotypes. Importantly, the decay factors 6, not only
control the phenotypic correlation between different sequences, but also the correlation in mutational effects
in genetic backgrounds that differ at specific positions p, given by Hp(l — 0p) (see Supplement .

Our prior is closely related to the ‘connectedness model’ [77], a statistical model of Gaussian fitness
landscapes first proposed for studying evolution of the distribution of fitness effects for adapting populations.
The connectedness model is parameterized by ¢ site-specific probabilities 0 < p1,, < 1, corresponding to the
tendency for each site p to be involved in epistatic interactions. In particular, the strength of interactions
among any set of positions is proportional to the product of their corresponding 1, factors.

In Supplement [T.4] we show that Eq. [J] provides a slight generalization of the connectedness model and
that the two site-specific factors i, and d,, are related through the following equation:

_ Qpp
%= T (o Dy’ W

Interestingly, we show that our connectedness kernel in Eq. [3| remains a valid (i.e. positive-definite) kernel
for some ¢, > 1, which would correspond to probabilities p, > 1 in the original connectedness model. In
such cases, introducing a mutation with a decay factor d, larger than one leads to anticorrelated phenotypes
and mutational effects. This added flexibility enables the model to capture a broader range of epistatic
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patterns than the original connectedness model, although empirical support for this so-called egg box |28, [76]
correlation structure remains limited. In addition, while the original connectedness model was proposed for
biallelic genotypic spaces, our connectedness kernel is compatible with an arbitrary number of possible alleles
per site.

The relationship between the connectedness kernel and the VC regression kernel can be clarified by
examining how each generalizes a simple kernel where the correlation between genotypes decays geometrically
with Hamming distance d(z,z’), i.e. k(z,2') = 02p~4=2")  This geometric decay kernel includes the
exponential kernel as a special case (8 > 0). The exponential kernel itself arises when applying the standard
radial basis function (RBF) kernel to one-hot encoded sequences |67} 87|, when the magnitude of epistatic
interactions decays exponentially with interaction order (i.e. Ay = e~°*¥) |55, 73| 87| and as the diffusion
kernel on the Hamming graph [69, (90]. Our VC regression kernel can then be viewed as a generalization of the
geometric kernel to allow the A\ to deviate from this strict multiplicative scaling while retaining the isotropic
property of the geometric kernel. In contrast, the connectedness kernel offers a different generalization: whereas
the geometric decay kernel treats all mutations the same (8 = (1 — d) and J, = §), the connectedness kernel
introduces a detailed dependence on the mutated sites through site-specific decay factors (or equivalently,
site-specific epistatic strengths). Interestingly, both the VC regression and the connectedness priors have the
same number of hyperparameters so that comparing their performance provides an indication as to the relative
importance of precisely matching the contribution of higher-order epistasis versus incorporating site-to-site
heterogeneity in the extent of epistasis.

Jenga model

The connectedness model introduces flexibility to the prior by allowing the extent to which mutational effects
generalize across genetic backgrounds to depend on which specific sites are mutated. One limitation of this
approach is that it treats all mutations at a given site equally. In practice, however, some alleles may be more
likely than others to participate in genetic interactions and to influence the predictability of mutations at
other sites. In this section, we generalize the connectedness model by allowing the decay in the correlation
of mutational effects to depend not only on the mutated sites, but also on which specific alleles have been
altered.

In the connectedness model, a mutation at site p reduces the correlation in mutational effects at other sites
by a factor of 1 — ¢,. Here, instead of assigning a uniform decay factor 4, to all mutations at site p, we assign
an allele-specific decay factor d7, such that mutating allele a to a new allele a’ results in an overall reduction

in correlation by 100 x (1 — dg)(1 — 65/) percent. Assuming that the effects of mutations on phenotypic
correlations across positions combine multiplicatively in this manner, we obtain a new distribution over the
space of all sequence-function relationships, with covariance characterized by the following kernel function:

k(z.a') =0 J] (1-05)1-0d2). (5)

PiTpFTy,

Importantly, this expression also generalizes to describe the decay in the predictability of mutational effects,
such that the correlation in these local effects is Hp(l —6p)(1 — 6;1), for all positions p segregating between
the two backgrounds (see Supplement .

It is easy to see that this model contains the connectedness model as a special case when all alleles at
a given position have a common decay factor. Furthermore, in the special case 65 = 1, according to Eq.
mutating allele a results in zero correlation in phenotypes or mutational effects. Indeed, if all alleles in Eq. |5|
have decay factors equal to 1, we recover the classical ‘House-of-Cards’ (HoC) model [80], in which mutating
any allele completely eliminates predictability in phenotypes or mutational effects—akin to how removing any
component from a house made of playing cards causes the entire structure to collapse. Thus, by allowing
alleles to have a continuum of effects on the overall correlational structure, our model can be viewed as
a generalization of the HoC model where different alleles at a site have different effects on the correlation
structure. We therefore refer to this new model of random fitness landscapes as the ‘Jenga model’, reflecting
the idea that some mutations may have negligible effects, while others can disrupt the entire correlational
structure, much like how specific blocks in the game Jenga can either be easily removed or cause the whole
tower to fall.
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The Jenga kernel is also closely related to the classical automatic relevance determination (ARD) kernel |75,
91| applied to the one-hot encoding of genotypes (see Supplement . However, one important difference
is that the allele-specific decay factors ¢, in the Jenga model are allowed to exceed one under conditions
that ensure the positive definiteness of the kernel on sequence space as a whole (see Supplement . As
a result, whereas the ARD kernel requires all correlations to be strictly positive, the Jenga kernel permits
negative correlations between phenotypes and mutational effects across adjacent genetic backgrounds, thereby
offering the flexibility to model eggbox-like patterns that could, in principle, be induced by mutations at some
positions.

General product model

In the Jenga model, the effect of a mutation on the correlation between genotypes is parameterized by
multiplying the two allele-specific factors, meaning that each allele makes the same contribution to the decay
in correlations for all mutations involving that allele. In this section, we relax this assumption to further
generalize the Jenga model. We do so by assigning a mutation-specific decay factor 5;’“/ to each pair of alleles

a,a’, such that mutating from a to a’ (or vice versa) reduces the overall correlation by a factor of (1 — 5;““/).
This yields the following general product kernel:

k(z,a') =0 J[ (-6 (6)

PiTpFTY,

Similar to the Jenga model and connectedness model, the correlation in mutational effects is given by the
product of the mutation-specific decay factors for sites segregating between the two genetic backgrounds:
I1,(1 — 52,

It is easy to see that Eq. [0] provides greater flexibility than the Jenga model, as the general product
kernel has (g) hyperparameters per site, whereas the Jenga model has only « hyperparameters. In fact,
Eq. [6] represents the most general form of a homoscedastic product kernel such that any product kernel with
uniform variance can be expressed in this form and can be guaranteed to remain positive definite through an
appropriate parameterization [92].

Variance components of the connectedness, Jenga, and general product kernels

We can understand certain aspects of the geometry of random fitness landscapes such as the connectedness
model, the Jenga model, and the general product model by quantifying how much of the overall phenotypic
variance is expected to be explained by epistatic interactions of different orders under these priors. While
VC priors are directly parameterized in terms of these expected variance components, our new random
fitness landscape models are parameterized by decay factors, which have a less straightforward relationship to
variance components.

In the Supplement using a general result for deriving variance components from arbitrary product
kernels, we show that all three models are capable of capturing epistatic interactions of every possible order
between any number of positions. Furthermore, we find that a single decay factor affects all expected variance
components, such that increasing any decay factor systematically shifts the variance toward higher-order
components.

We also find that there are certain combinations of expected variance components that cannot be obtained
by tuning the decay factors of our three new priors, for example, priors with interactions of a single order
alone (e.g., additive, pairwise). This behavior is more limited than in the VC kernel, which can match any
valid combination of expected variance components. Furthermore, we show that the set of expected variance
components under a prior from the connectedness model is in fact the same as that of based on the general
product model (see Supplement Theorem . Therefore, although the connectedness model has the fewest
hyperparameters, it is just as expressive as the general product and Jenga models in terms of realizable
combinations of expected variance components when used as prior distributions. Finally, although these new
priors can express only limited set of variance components in expectation, it is important to realize that the
posteriors can still capture arbitrary patterns of epistasis given sufficient data, since these priors produce a
positive density for any possible landscape.
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Applications to experimental genotype-phenotype datasets

In the previous section, we introduced new models of random sequence-function relationships in which the
decay in the predictability of mutational effects between genetic backgrounds is determined by the positions,
alleles, or mutations at which sequences differ. Importantly, the connectedness model, the Jenga model, and
the general product model form a hierarchical family, with each representing a generalization of the preceding
model. These kernels equip us with the flexibility to model complex epistasis in the data while allowing for a
balance between model expressivity, interpretability, and computational efficiency.

In this section, we implement these models as prior distributions in a Gaussian process framework for
modeling empirical genotype-phenotype datasets. We infer the site-, allele-, or mutation-specific decay factors
from the data by fitting the kernels in Eq. 3] Eq. [5} and Eq. [f] through evidence maximization, and we use
them for two main purposes. First, the inferred decay factors provide important broad-scale insights into the
structure of epistasis in the empirical sequence-function relationship by highlighting mutations that reduce
the predictability of other mutations. Second, we use the inferred decay rates as hyperparameters of a prior
distribution for Gaussian process regression to predict phenotypes for unobserved genotypes and to assess our
confidence in these predictions.

Application to protein GB1

We first applied our methods to the protein GBI dataset [84], which contains relative enrichment values of
nearly all 20* = 160,000 genotypes across four highly epistatic amino acid sites on the IgG-binding domain of
streptococcal protein G, where selection was imposed for IgG-binding.

To assess the predictive performance of our methods, we first fit several standard models for studying
sequence-function relationships to this dataset, including a simple additive model, a pairwise interaction model,
and a global epistasis model, which maps the sequence first to an underlying additive phenotype and then
onto the observation scale through a nonlinear monotonic function [61, (94} [95]. We also fit Gaussian process
regression models with the VC kernel and the geometric kernel, with the model hyperparameters optimized via
evidence maximization. The out-of-sample performance of these models under different proportions of training
data is summarized in Figure . We first found that the additive model achieves an R? of approximately 0.5
on the test data, and that adding a global nonlinear function to the additive phenotype increased the test
R? to slightly over 0.65. Adding pairwise interaction terms to the additive model without a global epistasis
nonlinearity resulted in a more substantial improvement, with test R? values close to 0.75 when the training
data proportion exceeded 10%. Next, we found that Gaussian process regression using the VC kernel and
geometric kernel show similar performance, achieving a test R? over 0.8 at high data density, corresponding
to a 5% improvement over the pairwise model.

With the performance of these baseline methods established, we proceeded to fit our three new methods
to quantify site-, allele-, or mutation-specific effects on the predictability of other mutations and examine how
accounting for heterogeneity at various levels of the correlational structure improves predictive performance.
First, we found that the connectedness model indeed reveals heterogeneous effects across the four amino
acid positions. Specifically, we found the site-specific decay factors inferred using evidence maximization
showed a nearly seven-fold difference (d39 = 0.23, d49 = 0.08, d41 = 0.54, d54 = 0.38; Figure ) This suggests
that mutating sites 41 and 54 have the strongest effect on the predictability of phenotypes and mutational
effects, such that the same mutations have an average correlation of 0.53 across backgrounds segregating
only at site 41 or 54, and an average correlation of 0.28 when both sites segregate (see Eq. . In contrast,
mutations at site 40 have a much smaller effect on the predictability of other mutations, such that for genetic
backgrounds segregating only at site 40 the same mutations have an average correlation of 0.92. This rank
order between sites is consistent with previous analysis showing that higher-order interactions in this dataset
are enriched among site 39, 41 and 54, due to steric interactions [23] |84]. We found that using these decay
factors to parameterize the connectedness kernel for Gaussian process regression yields a slight improvement
in predictive accuracy over both VC regression and geometric kernel regression (Figure )

We next fit the Jenga model to the data and examined how specific alleles at each position affect the
correlation in phenotype and mutational effects. We first present the inferred allele-specific decay factors as a
heatmap in Figure [[B. The decay factors exhibit substantial heterogeneity across alleles. For example, at
position 40, mutations involving Gly and Pro result in more than a 50% reduction in correlation, whereas
mutations involving other amino acids have minimal or negligible effects. The Jenga model heatmap is also
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Figure 1: Application to the genotype-phenotype dataset for protein GB1. (A) Model predictive performance,
measured by the R? on held-out data, as a function of the fraction of data used for training. Error bars
represent one standard deviation across three independent subsets of sequences used for training at each
proportion. (B) Inferred position- and allele-specific decay factors under the connectedness model (top) and
Jenga model (bottom), respectively. Black squares highlight the allele of the wild-type sequence at each
position. (C) The Jenga prior is able to capture information about the three main fitness peaks of the GB1
landscape . In each panel, dots represent genotypes and lines denote single point mutations between
genotypes. Squared distances between dots optimally approximate the commute times between genotypes
under a weak-mutation evolutionary model under selection for high phenotypic values (see Methods).
Genotypes are colored by their correlations with three genotypes VDGV, WWLG and LICA, each representing
a local fitness peak. Correlations were calculated using the Jenga kernel with hyperparameters inferred using
evidence maximization. The complete GBI fitness landscape for the evolutionary model was constructed
using the maximum a posteriori estimate under the Jenga model. (D, E) Inferred mutation-specific decay
factors under the general product model for positions 41 and 54. These matrices show great heterogeneity in
the influence of mutations at a given site on the predictability of mutational effects at other sites both in
terms of the degree of influence conferred by mutations between different pairs of alleles and in the effect of
mutations between the same pair of alleles at different sites.
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consistent with the aforementioned steric interaction model [23| |84]. This is most evident at position 41,
where amino acids with the highest decay factors tend to have either small side chains (e.g., Gly and Ala)
or bulky ones (e.g., Leu, Trp, and Phe). These mutations likely cause the largest disruption to the optimal
pattern of steric interactions, possibly resulting in nonfunctional proteins and consequently a breakdown in
the correlation of mutational effects. Finally, we observed a modest improvement in R? for the Jenga model
over the connectedness model, which was comparable in magnitude to the improvement of the connectedness
model over VC regression (Figure [TA).

To gain some intuition as to how Jenga regression works, we examined the qualitative structure of the
Jenga kernel using a visualization technique to understand how the correlations incorporated into the Jenga
kernel relate to the structure of the genotype-phenotype map. In Figure[I[C, we first represented all 160,000
genotypes in the GBI fitness landscape using a 2-dimensional embedding generated using a method similar to
diffusion maps|74, [93]. The method is based on modeling how a population would evolve across this fitness
landscape, and results in a triangular structure with three high-fitness clusters, i.e. fitness peaks, occupying
the corners and separated by a central mass of low-fitness genotypes. Importantly, we previously found that
the local structure within each cluster is mainly additive such that the effects of mutations are well-correlated
across backgrounds within clusters but not between clusters [58, 96]. We next chose a focal sequence from
each of the three clusters and colored each sequence by its correlation with this focal sequence under the Jenga
prior (Figure ) We observe that all three high-fitness genotypes exhibit strong correlation with neighboring
genotypes within the same cluster, and that this correlation decays to near zero outside each cluster. This
indicates that the model predominantly uses mutational effects observed within the same cluster to make
predictions for a focal genotype, and thereby in essence is fitting multiple independent models across different
regions of the fitness landscape. For comparison, we also present the same visualization for all models fit to
the GB1 data in Figure [SI} Unlike the highly localized correlation structure of the Jenga prior, the isotropic
priors (which only depend on the number of mutations separating two sequences and not their identity, e.g.
the VC and geometric priors) show strong to moderate correlation between each focal genotype and genotypes
across the whole landscape. The key reason for this qualitative difference is that the geometric kernel can
only capture the typical or average effect of mutations on the predictability of other mutations. Thus, two
genotypes that are mutationally adjacent will still have a high correlation even if the mutation that separates
them is particularly epistatic. In contrast, the Jenga model’s ability to account for variation in epistatic
effects across alleles enables it to model the lack of correlation between adjacent genotypes when separated by
strong-effect mutations, while allowing distant genotypes to maintain high correlation if separated only by
mutations with small decay factors. As a result, the Jenga kernel more closely reflects the structure of the
GB1 landscape, which likely contributes to its improved predictive accuracy.

Finally, we fit our most flexible model, i.e., the general product model. Unlike the Jenga model, which
assigns decay factors to individual alleles at each position, the general product model directly characterizes
the effects of all mutations. This added flexibility yields another modest improvement in predictive accuracy,
comparable in magnitude to the improvement achieved by the Jenga model over VC regression (Figure [1JA).
To investigate the cause of this improvement, we visualized the mutation-specific decay factors as 20 x 20
matrices. We first examined the matrices for positions 41 and 54 in Figures[I]D and [I[E, and then considered
side-by-side comparisons of the matrices inferred by the general product model with those constructed by
multiplying the corresponding allele-specific decay factors from the Jenga model (Figure[S2)). We found that
the effects of some mutations in the general product prior can sometimes be well approximated by the Jenga
prior; for example, mutating Gly at position 41 uniformly induces strong epistasis in both the Jenga model
and the general product priors. However, there are also mutations with mutation specific decay factors that
deviate from the Jenga prior’s expectation. For example, according to Figure [I[E, the three aromatic residues
Tyr, Phe, and Trp at position 54 are largely interchangeable, but under the Jenga prior, mutations among
these residues are expected to have moderately large epistatic effects on other mutations (Figure [S2). This
difference arises because the Jenga prior can only encode the average epistatic effects of each allele, whereas
the actual effects of mutations at position 54 have a more subtle dependence on the physical properties of the
specific alleles involved.
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Figure 2: Application to the high-throughput dataset for 5 splice site of SMN1 exon 7. (A) Model predictive
performance, measured by the R? on held-out data, as a function of the fraction of data used for training.
Error bars represent one standard deviation across three independent subsets of sequences used for training
at each proportion. (B) Empirical correlations between pairs of sequences. Black dots show the average
correlation for all pairs of sequences at a given Hamming distance. Gray dots show the correlation between
genotypes segregating at specific sets of positions for each distance class. Values on the x-axis were jittered to
facilitate visualization. (C) Inferred position- and allele-specific decay factors under the connectedness model
(top) and Jenga model (bottom), respectively. Black squares highlight the canonical 5" splice site nucleotides
complementary to the Ul snRNA template. (D) Two-dimensional histogram comparing the observed Percent
Spliced In (PSI) values against predictions of the Jenga model on test 5 splice sites, comprising 10% of the
measured genotypes.

10


https://doi.org/10.1101/2025.08.15.670613
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.08.15.670613; this version posted August 19, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Application to human 5 splice site

Having demonstrated the performance of our methods on the protein GB1 dataset, we now apply our methods
to modeling an RNA sequence-function relationship. The experimental data consists of the activity of nearly
all variants covering 8 nucleotides on the 5’ splice site of exon 7 for the survival of motor neuron 1 (SMN1)
gene in a minigene construct [42], with splicing activity measured as the proportion of correctly spliced
transcripts (percent spliced in, PSI).

To generate performance baselines, we first fit the additive, pairwise epistatic, and global epistasis models
to the data. In Figure [2JA, we can see that the additive model exhibits poor predictive accuracy, with test
R? around 0.15. The pairwise model provides a substantial improvement, achieving an R? of 0.45 when the
training data proportion exceeds 20%. However, the pairwise model is outperformed by the global epistasis
model, which typically achieved an R? of approximately 0.6. This rank order is consistent with our previous
understanding of the SMN1 splicing landscape, which at a coarse scale can be approximated as a single-peaked
fitness landscape resulting from an additive fitness landscape transformed by a steep sigmoidal nonlinearity
on the measurement scale (Figure [S3]A) [55].

The limited predictive performance of these basic models suggest that the data contain a more complex
pattern of genetic interactions. In fact, the empirical distance-correlation function (Figure , black dots)
shows that correlation between pairs of sequences in the data cannot be accurately modeled by a linear or
quadratic function as expected under an additive or pairwise interaction model [55]. Instead, each mutation,
in average, seemed to decrease the correlation by about half, as expected under a geometric kernel. In line
with this, we found that Gaussian process regression with the VC kernel and the geometric kernel showed
similar performance throughout the range of training data density, with test R? increasing nearly linearly once
the training data proportion exceeded 20%, and surpassing 0.8 with dense training data. This improvement
over the global epistasis model can be attributed to their ability to fit higher-order epistasis, which can provide
a good approximation of the global nonlinearity while also capturing mutation-specific interaction patterns,
often referred to as specific epistasis [97], that the global epistasis model cannot capture.

However, when stratifying the empirical distance-correlation function depending on the sites at which
sequences differ (Figure , gray dots), we can see that the empirical correlations exhibit large variation within
each distance class, to the extent that two genotypes differing at up to five positions can be more correlated
than pairs separated by only one position. This observation suggests that mutations at different sites in the
SMN1 dataset have very heterogeneous effects on the predictability of other mutations. Consistent with this
observation, the connectedness model yielded an improvement in predictive performance, typically increasing
test R? by 3-4% over the VC and geometric kernels (Figure ) In Figure 7 we show the decay factors of
the connectedness prior inferred using evidence maximization. We can see that some positions when mutated
can reduce the correlation under the prior by over 80% (e.g. 6_1 = 0.86, 612 = 0.85, 613 = 0.89), while others
have more moderate effects on the correlation (§_3 = 0.36, 016 = 0.23). This allows the connectedness prior
to better capture the empirical correlation structure observed in Figure 2B than the VC regression prior,
which depends on mutational distance but not the specific sites at which sequences differ.

Next, we turn to the Jenga model to examine how changing specific alleles affects the predictability of
other mutations. We find that the allele-specific decay factors of the Jenga model inferred using evidence
maximization show substantial variation among alleles within each site (Figure ) Comparing the decay
factors of the connectedness model and the Jenga model, we find that the former provides a coarse approxi-
mation of the latter, such that sites with large allele-specific decay factors also tend to have large site-specific
decay factors under the inferred connectedness prior. On the other hand, the additional flexibility of the
Jenga model is reflected in a roughly 3% improvement in R? over the connectedness model at most training
data proportions.

Interestingly, we find that the alleles with the largest decay factors under the Jenga model often coincide
with the most preferred nucleotides under the global epistasis model (Figure ), which infers the presence
of a sharp, threshold-like effect, consistent with the biophysical intuition that PSI can be expressed as a
sigmoid function of the binding affinity between the 5" splice site and the Ul snRNA [43] |55] |98]. Because
mutating critical nucleotides (e.g., U at position +2) typically results in nonfunctional splice sites, subsequent
mutations have little to no effect since the splice site has already been rendered inactive. Consequently, these
critical alleles are inferred to have large decay factors in the Jenga model, as mutational effects in backgrounds
with and without the allele tend to be poorly correlated. This ability to incorporate different phenotypic
correlations for different mutations appears to result in a qualitatively better fit of the global nonlinearity, so
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that while VC regression produces a systematic nonlinear pattern of residuals (Figure ), inference under
the Jenga model produces a pattern of residuals for out-of-sample predictions centered on the observed values
(Figure ) Overall, these results show that beyond capturing specific epistatic interactions, our new models
continue to perform well in the presence of a strong global nonlinearity.

Finally, we applied our most flexible model, general product regression, to the data. Unlike in the protein
GBI example, allowing mutation-specific decay factors for SMN1 does not improve predictive performance
relative to the Jenga model (Figure ) Examination of the inferred mutation-specific decay factors shows
strong agreement with those implied by the Jenga model (Figure ), which accounts for their nearly
identical performance. A contributing factor to the differing behavior of these models across datasets may
be the alphabet size, as the difference in parameter count and expressivity between the Jenga and general
product models is much smaller in nucleotide space (4 alleles versus 6 allele pairs) than in amino acid space
(20 alleles versus 190 allele pairs).

Application to AAV2 capsid protein

So far, we have applied our methods to relatively small sequence spaces. To demonstrate their utility in larger
sequence spaces, we now apply them to a sequence—function dataset for the capsid protein of adeno-associated
virus 2 (AAV2). This dataset encompasses 42,328 variants targeting 28 amino acid sites (positions 561-588),
spanning buried, surface, and interface regions [35] 99|, with corresponding deep mutational scanning (DMS)
scores measuring viral production efficiency. Importantly, the sequence space for this example contains
2028 ~ 2.7 x 10% sequences, far larger than could be accommodated by our previous approaches |55, 58 |70\
74] which could only handle sequences spaces containing low millions of sequences.

As in previous sections, we first fit the baseline additive and global epistasis models across increasing
proportions of training data (Figure ) Both models exhibit strong predictive performance, achieving test
R? values close to 0.6 and 0.8, respectively, as the training data proportion increases. The pairwise interaction
model performs comparably to the global epistasis model at higher sampling densities but is inferior at lower
sampling densities. We next fit the geometric, connectedness, Jenga, and general product models to the
AAV?2 dataset, selecting model hyperparameters via evidence maximization. We did not explicitly fit the VC
regression to this dataset because the dataset lacks pairs of sequences at all relevant distances, preventing
reliable estimation of the empirical autocorrelation function. The more expressive priors (Jenga and general
product models) consistently outperformed the geometric and connectedness priors when trained with over
30% of the data. In contrast, the simpler priors performed better when less training data was available, a
pattern that differs from our earlier results using nearly complete combinatorial data for short sequences.
This difference is expected, as this dataset samples only a small fraction of the possible sequence space, and
the number of hyperparameters to learn varies by an order of magnitude across models. For example, the
general product prior has 5,322 hyperparameters, compared to 562 for the Jenga prior and only 28 for the
connectedness prior.

In the previous examples, we found that the site-, allele-, and mutation-specific decay factors are often
related to the qualitative properties of complex sequence—function relationships and can help identify regions
of sequence space where mutational effects differ systematically. We next examine decay factors inferred
under different priors to guide exploration and interpretation of the AAV2 landscape. First, we found that the
site-specific decay factors d,, inferred by the connectedness prior show substantial variation across positions,
highlighting sites with little to no influence on the effects of other mutations (d575 = 0.08, 561 = 0.10)
and sites with strong influence (d565 = 0.37, d569 = 0.52, Figure ) The Jenga prior exhibits even greater
heterogeneity in the inferred decay factors, revealing that the identity of the mutated allele can matter more
than the site itself. For example, while position 569 has the highest site-specific decay factor under the
connectedness prior, the Jenga model shows that this effect is driven primarily by the Asn allele (5455 = 0.43),
with other substitutions at the same position showing minimal influence on predictability (5§ggAS“ < 0.08). To
explore this further, we used the Gaussian process framework to compare posterior distributions of mutational
effects in the wild-type background and in the presence of an Asn569Gln substitution (Figure ) In the
wild-type background, mutations had widespread effects, but in the Asn569GIn background, these effects
became largely neutral. This pattern reflects an essential role for Asn569 in capsid assembly, as all measured
sequences lacking Asn at position 569 were non-functional (Figure ), with little apparent influence from
genetic background (Figure ) Structurally, Asn569 forms hydrogen bonds with nearby residues, including
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Figure 3: Application to the AAV?2 capsid protein. (A) Model predictive performance measured by test R2
on held-out data, shown as a function of the proportion of training data. Error bars represent one standard
deviation across three random subsets of training sequences at each proportion. (B) Inferred decay factors for
each of the 28 positions under the connectedness model (top) and for 20 amino acids at each position under
the Jenga model (bottom). Black squares indicate the wild-type allele at each position. (C) Distribution
of raw DMS scores for sequences with Asn at position 569 (dark gray) compared to sequences with other
amino acids at that site (light gray). (D) Raw DMS scores as a function of net charge across amino acids
579-588, indicating that intermediate charge levels are associated with higher viral production. (E) Inferred
mutation-specific decay factors from the general product model for position 576. (F) Distribution of raw DMS
scores for sequences with an aromatic residue (Tyr, Phe, or Trp) at position 576 (dark gray) compared to
sequences with other amino acids at that site (light gray).
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522 and 507 in AAV2 (Figure ), and these interactions are conserved across multiple AAV serotypes
(Figure , E). Even the conservative Asn569GIn substitution is predicted to introduce steric clashes that
likely destabilize the capsid (Figure [S5F).

Next, rather than focusing on a single position, we examined a region spanning positions 579-588, located
in a solvent-exposed loop (Figure ), where the positively charged residues Arg and Lys exhibit consistently
high decay rates (Figure ) In the wild-type background, mutational effect estimates reveal that Arg and
Lys are generally deleterious throughout this region, whereas substitutions from positively charged to neutral
or negatively charged residues, such as Glu and Asp, tend to be beneficial (Figure ) These patterns led us
to hypothesize that the functional constraint in this region is charge-dependent. Supporting this hypothesis,
mutations that reduce the overall charge, such as R588Q), are estimated to become neutral when introduced
in an Asn587Glu background (Figure ) or even deleterious when combined with an additional Arg585Glu
substitution (Figure ) To directly test this charge-balance hypothesis, we stratified the experimental data
by the net charge in the 579-588 region. Consistent with our expectations, only sequences with a net charge
between -4 and 42 could be functional, while those with excessive positive or negative charge were invariably
non-functional. This suggests that an intermediate charge in this region is required, but not sufficient, for
capsid assembly (Figure [3D).

We also examined the mutation-specific decay factors across all positions under the general product model
(Figure . These values highlight the extensive variability and idiosyncrasy in amino acid exchangeability
across different positions and biochemical contexts. Several positions exhibit mutation-specific decay factors
that are incompatible with those expected under the Jenga prior, where mutations within groups are not
expected to alter the effects of other mutations, whereas mutations across groups are. This pattern resembles
position 54 in the GB1 dataset (Figure ) For instance, mutation-specific decay factors at position 576
exhibit two distinct groups: aromatic and non-aromatic residues (Figure ) Consistent with this hypothesis,
the estimated mutational effects in the wild-type context were largely preserved in the presence of a Tyr576Phe
substitution (Figure ), whereas other substitutions, like Tyr576Cys, systematically reduced the effects of
other deleterious mutations (Figure ) Moreover, measured sequences without an aromatic at position
576 were generally non-functional (Figure ), thereby limiting the ability of other deleterious substitutions
to further contribute to loss of function. This pattern is consistent with structural evidence: the wild-type
Tyr576 occupies a hydrophobic pocket at the interface between two monomers, a location likely incompatible
with non-aromatic residues (Figure [S5[).

Application to a genome-wide genotype-phenotype map

So far, we have applied our methods to genotype—phenotype maps for proteins and regulatory RNA sequences.
Here, we extend our approach to a genome-wide genotype—phenotype map. We analyze a dataset derived from
a large barcoded segregant library for haploid yeast |50]. Specifically, we modeled the relative fitness under
lithium exposure for nearly 20,000 segregants with high-quality genotype data, focusing on the 83 previously
identified quantitative trait loci (QTLs) spread across 15 chromosomes [50].

We fit the baseline additive, pairwise interaction, and geometric models to different proportions of the
training data. All three models exhibit highly similar prediction performance across both low and high
training data densities and converge to a test R? of approximately 0.69 (Figure ) The failure of these
epistatic models to substantially outperform the additive model suggests a lack of pervasive genetic interactions
across genomic loci. We next fit connectedness regression, which in bi-allelic datasets such as this one is
equivalent to both the Jenga and general product kernel regression models. Interestingly, we observed a
consistent improvement in predictive performance relative to the baseline additive and epistatic models across
all proportions of training data, achieving a test R? of 0.76 on held-out data when including at least 50%
of the data (Figure ) This result suggests that loci likely have heterogeneous epistatic contributions and
differ in their influence on the predictability of mutations at other positions, highlighting the importance of
accounting for this heterogeneity to achieve high predictive performance.

To further investigate the heterogeneous contribution of loci to the predictability of mutational effects,
we examined locus-specific decay factors across the 83 focal QTLs (Figure ) Our analysis revealed that
fitness variation is dominated by a single QTL located near the gene ENAI (§pna1 = 0.43), which encodes a
Na® /LiT ATPase pump involved in Na® and Li* eflux. As expected, this ENA1 QTL also has a strong main
effect, with genotypes carrying the beneficial BY or deleterious RM allele showing strongly shifted phenotypic
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Figure 4: Connectedness regression applied to genome-wide genotype-phenotype data measuring relative
fitness of Saccharomyces cerevisiae under lithium exposure. (A) Model predictive performance, measured
by the R? on held-out data, as a function of the fraction of data used for training. Error bars represent
one standard deviation over three independent subsets of sequences used for training at each proportion.
(B) Inferred decay factors for the 83 QTLs across the genome under the connectedness model. QTLs are
named by the gene at which they are located or their closest gene in the reference genome S288C. (C) Fitness
distribution of segregants stratified by their allele at the ENA1 locus. (D) Representation of the complete
genotype-phenotype map across the 16 loci with the highest inferred decay factors (mapped to the closest
genes: ENA1, HAL9, MKT1, PHOS8/, HAP1, HAL5, TAO3, BUL2, PTR2, NRT1, SUP/5, DPH5, MLF3,
SUS1, IRA2, VIP1) and an additional pseudo-locus representing the genetic background across all other loci
(RM vs. BY). The posterior mean fitnesses of the 2'7 = 131,072 possible genotypes are plotted against their
Hamming distances to the genotype with the highest predicted fitness when combined with the ENA 1 FM
variant. Nodes represent genotypic combinations and are colored according to the allele at the ENA1 locus.
Edges connect genotypes separated by single point mutations. Values on the x-axis were jittered to facilitate
visualization. (E) Comparison of the estimated mutational effects in the RM background in the presence of
RM vs. BY alleles at the ENA1 locus. Labeled QTLs highlighted in black correspond to loci with the largest

decay factors after ENA1, as shown in (B). Error bars represent one standard deviation of the posterior
distribution.
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distributions (Figure [4C).

To examine how the ENA1 QTL reshapes the genotype—phenotype map, we computed the posterior
distribution for the complete combinatorial landscape involving all possible genotypes at the 16 loci with
the largest decay factors, with the background (BY or RM) encoded as an additional locus (Figure [@D). In
contrast to the AAV2 example, where mutations at Asn569 caused complete loss of function and eliminated
the effects of all other mutations, the deleterious ENA1®M allele modulates the effects of many mutations
without uniformly suppressing them. Indeed, in this altered genetic context, previously neutral or deleterious
variants can become beneficial, allowing combinations that achieve a relative fitness of —0.08, higher than the
fitness of both the RM (—0.30) and BY (—0.18) wild-type strains.

To investigate how the ENAI QTL influences the effects of other QTLs in more detail, we computed the
posterior distribution of the mutational effect for each of the other QTLs in the presence of ENA1#M or
ENA1PY in an otherwise RM genetic background (Figure ) Whereas the effect of some QTLs with large
decay factors, such as HAP1, remain deleterious in the presence of both FNA1 alleles, we find 3 QTLs whose
effects substantially change depending on the ENA1 locus (Figures and .

The first of these QTLs is near HALY, a known regulator of ENA1 expression [100]. We found that
the HAL9YPY allele is neutral in the ENA1BY background, but beneficial in the presence of the deleterious
ENA1RM allele, suggesting that HAL9PY likely compensates for the deleterious ENA 1M via up-regulation of
ENA1. Similarly, we found that for the second QTL, which mapped to PHO84, the BY allele is beneficial
only in the ENA1%M background (Figure ) As PHO8 is a high-affinity proton-phosphate symporter [101]
and uses the proton gradient to import inorganic phosphate in the cell, it may influence the efficiency of
a secondary detoxification mechanism involving the Na™, LiT-proton antiporter NHA 1, which is known to
become relevant in ENA1-deficient cells [100]. Finally, we found that the BY allele of a previously reported
large-effect QTL near MKT1 |50, [102] is detrimental in the presence of ENA12Y but becomes beneficial
when combined with the deleterious ENA1%M allele (Figure ) MKT1 is a pleiotropic gene with known
effects across multiple environments |50} [102], potentially by stabilizing specific mRNAs in a PBP1- and
PUF3-dependent manner |103|, although its interaction with genes involved in Lit homeostasis, has not been
previously reported to our knowledge. Importantly, the effects of these QTLs do not only depend on ENAI,
but also vary across a wider range of genetic backgrounds (Figure . For instance, the beneficial effect of
HAL9PY in the presence of ENA1%M is stronger in an RM rather than a BY genetic background across all
other loci (Figure upper left).

In summary, this yeast example demonstrates that our proposed models can infer genome-wide genotype-
phenotype maps using data not only from engineered sequence libraries but also from high-throughput
phenotyping of segregating variation in large populations. The high predictive performance of connectedness
regression on held-out genotypes provides evidence of an important contribution of genetic interactions and
coordinated epistasis to genome-scale genotype-phenotype maps, allowing us to detect and quantify novel
genetic interactions and to exhaustively reconstruct small portions of even astronomically large genotype-
phenotype maps (e.g., Figure , showing a non-trivial sub-landscape consisting of 131,072 genotypes out of
the 283 ~ 10%° possible genotypes in this system).

Discussion

In this study, we introduced a family of models motivated by a simple yet informative aspect of epistasis:
some mutations change the predictability of mutational effects more than others. Our methods provide a
comprehensive framework for studying empirical sequence-function relationships by both allowing accurate
phenotypic prediction for genotype-phenotype maps containing all orders of genetic interaction and providing
biologically interpretable summaries of the structure of epistasis. The strong performance of these models
across four empirical datasets, encompassing sequence-function relationships for proteins, RNAs, and complex
traits, provides further evidence that heterogeneity across mutations in the degree to which they alter the
effects of other mutations is likely a general feature of empirical sequence-function relationships, corresponding
to genotype-phenotype maps that are rugged in some directions but smooth in others.

Our contribution also addresses a longstanding limitation of Gaussian process approaches: scalability
to long sequences and large datasets. Classically, Gaussian processes could only be applied exactly to
datasets containing fewer than low tens of thousands of observations [75], and while our previous methods
exploited symmetries in biological sequence space to accommodate hundreds of thousands to low millions of
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observations|55) [58, {70l |74], they remained applicable only to short sequences. By leveraging recent advances
in GPU acceleration|81H83], we can now overcome these previous constraints on sequence length, allowing us
to provide software that can scale to longer protein sequences and genome-scale QTLs. Despite working in
these astronomically large sequence spaces, our modeling framework maintains a high degree of interpretability
because our hyperparameters have a definite genetic meaning in terms of how much each mutation reduces
the predictability of other mutations. Moreover, by displaying these decay factors in heatmaps, we can at a
glance identify the key alleles at each site most involved in epistatic interactions (e.g. Figure ) or subsets of
amino acids that behave equivalently at a given site (e.g. Figure , Figure , both of which can help guide
the choice of mutations for follow-up experiments, and as we show, motivate biological hypotheses to explain
the observed pattern of epistasis.

Our work also advances the ongoing process of unification and integration between theoretical and empirical
approaches to fitness landscapes |5, |7} 8l |104]. In particular, an important advantage of Gaussian processes
is that we can use well-characterized families of random fitness landscapes as priors for empirical data
analysis [77, 8588 [105]. By learning the hyperparameters for these priors via evidence maximization, our
methods effectively identify the ensemble of theoretical landscapes whose patterns of epistasis are most
similar to those in the observed data. At the same time, our proposal of the Jenga and general product
kernel models provides an opportunity to analyze the dynamics of adaptive evolution and the accessibility of
mutational paths under these more realistic forms of anisotropy [77]. Our work is also closely connected to the
existing fitness landscape literature via our decay factors, which are conceptually related to the generalized -y
statistics |28, [76] that measure the correlation in mutational effects across pairs of genetic backgrounds that
differ by a specific mutation. We derive the mathematical relationship between the ~ statistics and our decay
factors in Supplement [T.3]

This work is also situated within a broader literature on Gaussian process approaches to modeling
genotype-phenotype relationships [67H69, |L106H{111]. Previously, anisotropy has typically been introduced by
incorporating external information, e.g. by building Gaussian processes over sequence embeddings [106, [107], by
incorporating structural information [67], or by using information from sequence alignments [110]. By contrast,
the models introduced here learn anisotropy directly from the data. In terms of expressiveness, our models are
also similar in their motivations to deep neural networks that can act as general function approximators [34, |35,
46}, 59H66], but Gaussian processes offer advantages in terms of interpretability and uncertainty quantification.
One key advantage of DNNs is their ability to accommodate nonlinear transformations of model outputs,
enabling them to capture global or nonspecific forms of epistasis |60, [61} |65, 112, [113]. In contrast, adding
similar nonlinearities to Gaussian process models introduces non-Gaussian likelihoods requiring additional
approximations, such as Laplace approximation [75] or variational inference [114H116]. Nonetheless, our new
anisotropic Gaussian process models appear to consistently outperform global epistasis models except at very
low training data densities. These new models also performed particularly well on the SMN1 dataset, which
includes a strong global nonlinearity, and captured this nonlinear structure much better than our previous
isotropic priors [55] While our models achieved excellent predictive performance, they also reveal several
promising directions for future research. The connectedness, Jenga, and general product kernel priors by
construction encode a form of “coordinated epistasis,” where the mutations with the largest effects also tend
to be the most epistatic, a pattern consistent with many empirical observations [51, [117H120]. However,
more work is needed to develop priors that capture not just how epistatic each mutation tends to be, but
also provide more fine-grained summaries of which sites or mutations tend to interact with each other [121].
Another limitation is that while our priors allow anisotropy in the predictability of mutational effects, they
are nonetheless homoskedastic, assigning uniform phenotypic variance across functionally distinct regions of
sequence space. Developing heteroskedastic priors, where phenotypic variance varies across sequence space
would better capture the expectation that functionally inert regions are less variable than those containing
functionally active sequences. However, it is important to note that these are limitations on the inductive
biases expressible through the prior, rather than limitations of the Bayesian regression models themselves.
In particular, these models are capable of learning arbitrary genotype-phenotype maps, and any additional
structure will still be reflected in the posterior, even if not directly encoded in the prior.
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Methods

Data processing

GB1 protein data was processed as previously described [55] 58|. Briefly, we used the number of sequencing
reads for each sequence x in the input sample (ci"?%!) and in the selected sample (c3¢) reported in [84] to
estimate the log-enrichment ratio relative to the wild-type sequence y, as a measure of the binding strength.
Moreover, we estimated the error variance o2 of this estimate [122]:

405 el +0.5
Yz = 1Og ( input > - lOg < input <7)
PRt 0 5 P05

ol = ! L ! T (8)
T znput +05 c;el +0.5 CZLtpUt +05 fuefl 4 0. 5

SMN1 5 splice site data was downloaded from https://github.com/davidmccandlish /vcregression, which
used data from the original publication [42]|. Briefly, assuming a log-normal distribution in 1-7 replicates, for
each different 5’ splice site sequence x, the bias corrected geometric mean of the enrichment ratio was used as
an estimate of the median enrichment ratio when the enrichment ratio was strictly positive for all replicates.
Otherwise, the median of enrichment scores was used to estimate the phenotype ... Sequence-specific variance
02 was estimated as indicated below, where s2 is the sample variance of the log-enrichment ratios if all
replicates were strictly positive and were measured in at least two samples or the median of all s2 for sequences

x with at least two replicate measurements:
ol = (e“"i — 1) 62?"“+si, (9)
see [55] for more details.

AAV?2 capsid data was downloaded from the ProteinGym database [123] and used as provided with-
out external estimates of the experimental variance (the Gaussian process fit still included an experimental
noise term with a learned uniform variance, see below).

Yeast fitness data was downloaded from the Dryad repository (https://doi.org/10.5061/dryad.1rn8pkOvd).
This dataset provided estimates of the mean vy, and variance o2 of the relative fitness for each barcoded
segregant x. We used the reported genotype probabilities p, ; for each position 4 across all £ loci to compute a
segregant-level genome uncertainty U; as previously reported [50]

Zp-lzt p.LL (10)

We kept only the 19833 (20%) segregants with lowest genome uncertainty for further analysis. We modeled the
relative fitness in high Li* concentration as a function of the 83 previously reported Quantitative Trait Loci
(QTL) [50]. QTLSs were labeled by associating them with the closest protein-coding gene within a 10kb window
from the BY4741 genome annotation downloaded from the Saccharomyces Genome Database (SGD) |124].

Global epistasis models

Global epistasis models for each data set were fit using MAVE-NN v1.0.2 [61] with an unregularized additive
genotype-phenotype map, a monotonic global epistasis non-linearity, and Gaussian homoskedastic noise.
Models were trained by minimizing the variational information with a batch size equal to the size of the
dataset for 5000 epochs with a learning rate of 0.01 to ensure model convergence. All other parameters were
set to their default values.
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Gaussian process models

Gaussian process models for the different datasets were fit using our newly developed library EpiK. EpiK
implements the proposed prior distributions for performing Bayesian inference using GPyTorch [81] and
KeOps [83] for GPU-accelerated inference of Gaussian process models. Specifically, we use a zero mean
Gaussian process prior and a Gaussian likelihood with known experimental variance o2 when available and fit an
additional noise term o2 for additional sequence-independent variance (see Supplement [1.1)). Hyperparameters
of each kernel were optimized by maximizing the Bayesian evidence using the Adam optimizer with a learning
rate of 0.02 for 500 iterations. For accurate estimation of the evidence, we use a maximum number of 600
Lanczos vectors with 100 random vectors for trace estimation when approximating the log-determinant term
(see Supplement . Site-specific product kernels (geometric, connectedness, Jenga and general product
kernels) were initialized to have a prior variance equal to the empirical phenotypic variance and uniform
decay factors across mutations and sites, which decay exponentially with the number of mutations down to
0.1 at the maximal distance between sequences. As the evidence is a non-convex function with potential
local optima, to obtain the final estimates for the decay factors when fitting the complete dataset, we run
5 independent optimizations with different random initializations and kept the hyperparameter values that
minimized the evidence along the 5 different optimizations. However, in practice, we see convergence to the
same optima independent of the random initialization [75|.

Visualization of GB1 sequence-function map

We used the maximum a posteriori (MAP) estimate for the complete sequence-function map of protein GB1
inferred with the complete dataset under the Jenga model to generate a low-dimensional representation using
gpmap-tools [74], in which squared distances optimally approximate the time to evolve between pairs of
sequences under a model of molecular evolution where the population evolves under selection for higher log
relative enrichment ratios. The different diffusion axes capture directions in which evolution is the slowest
and typically separate qualitatively different sets of sequences with high phenotypic values that are separated
by at least partial fitness valleys [58], |70} 93]. Selection strength was set such that the stationary distribution
of the resulting Markov chain had a phenotypic mean that matches the wild-type phenotypic value.
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