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Abstract: Cellular memory is the competence of cells to preserve information from past
experiences and respond aptly. This memory is maintained and controlled by gene regula-
tory networks (GRNs). GRNs are crucial for understanding why some cells are resistant to
treatment, particularly for cancer. In our study, we created a new mathematical model to
understand how “noise” affects cellular memory in GRNs, focusing on a “double positive
feedback loop”. Our theoretical perspective article equipped with mathematical modeling
exhibits how noise and feedback loops interact in GRNs. It also proposes a potential
theoretical avenue for future therapy. By targeting the mechanisms that maintain drug
resistance in cells, we aim to develop therapies that can restore the sensitivity of cancer
cells to treatment.

Keywords: gene regulatory networks; cellular memory; noise; information theory; drug
resistance

1. Introduction
Cellular memory is an invisible thread that holds together an individual’s experience

through their own genetic arrangements. However, disorder in genetic structures leads
to disease, when memory fails to protect, leading to chaos rather than harmony in the
genetic regulatory system. Retaining cellular memory after multiple rounds of cell division
is essential for ensuring proper tissue/organ function, and also for coordination of complex
cellular processes [1,2]. Cellular memory is pivotal to the organism for the preservation
and survival of these expression and to maintain functionality over its lifespan [3].

Cellular memory lies at the transcriptional state of a cell [4]. It operates through
bistable configurations which alters between active (“on”) and inactive (“off”) modes,
ensuring essential gene expression [5]. This phenomenon is particularly relevant for
diseases like cancer, where cellular memory contributes to key characteristics, such as
drug resistance. Abnormal genetically expressed cells are prone to switch between a drug-
susceptible state and a drug-resistant state. The ability of genetically identical cells to exhibit
distinct behaviors, known as cellular heterogeneity, provides another layer of complexity to
cellular memory. This heterogeneity often arises from non-genetic transcriptional variations
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under identical conditions [6–12]. These non-genetic differences create subpopulations of
cells capable of evading treatment, leading to relapse in patients [13]. Among these, rare pre-
resistant cells stand out as critical drivers of drug resistance. These cells display temporary
features due to upregulation of multiple marker genes. Hence, potential approaches need to
be considered for disrupting drug resistance [14]. Therefore, cellular intermediate memories
suffer through multiple cell divisions, generating vulnerability to transitions and potential
therapeutic approaches needed to maintain “cellular memory” [1,15].

A gene regulatory network (GRN) is a collection of genes which interact to control
genetic expression levels within a cell. It provides a powerful framework for understanding
cellular memory and regulatory mechanisms [16,17]. GRNs play a central role in sustaining
transcriptional memory, as their feedback loops stabilize gene expression patterns over
time [18]. Positive autoregulation helps lock genes into active states, ensuring stability once
a transcriptional state is established. Double positive feedback loops—where two genes
mutually enhance each other′s expression—are especially critical for maintaining bistable
gene expression states, reinforcing the memory required for consistent cell functions [19].
However, GRNs are susceptible to disruption; random fluctuations in gene expression,
or noise, accumulate over successive cell divisions and can destabilize the mutual rein-
forcement within feedback loops [20]. This destabilization jeopardizes transcriptional
memory, potentially leading to a loss of cellular identity, as seen in pathological conditions
such as cancer, where disrupted memory states contribute to malignancy [21,22]. Despite
these challenges, advances in cellular and synthetic biology offer promising strategies
for manipulating cellular memory. Emerging tools in cellular reprogramming allow for
precise modifications of transcriptional states, enabling the conversion of specialized cells
into pluripotent stem cells or other functional types, paving the way for personalized
regenerative medicine [23,24]. Clustered regularly interspaced short palindromic repeats
(CRISPR)-based genetic and epigenetic editing technologies further enhance our ability to
dynamically modulate GRNs, restoring healthy transcriptional states and targeting diseases
caused by disrupted networks, such as cancer and neurodegenerative disorders [25,26].
Synthetic biology enables the design of synthetic memory circuits that program cellular
behaviors with high precision, facilitating biological computing and targeted therapeutic
interventions. By reprogramming cellular memory on demand, synthetic biology holds
promise for addressing diseases like cancer, where pathological memory states contribute
to drug resistance and therapeutic failure [27–29]. Small molecule inhibitors can disrupt
the signaling pathways that stabilize aberrant memory states, prompting cells to revert
to healthier configurations, while peptide nucleic acids (PNAs) offer potential strategies
for modulating the DNA-binding regions of master regulators within GRNs to alter gene
expression and force transitions in cellular memory states [30,31].

This study explores the implications of manipulating cellular memory and GRNs,
particularly in modulating drug susceptibility and resistance in cells (Figure 1). Cellular
memory, governed by gene expression dynamics, plays a crucial role in determining how
cells respond to therapeutic agents. By analyzing transcriptional bursting—episodic and
stochastic fluctuations in gene expression—this research aims to uncover the variability in
cellular responses and to identify strategies for better controlling these dynamics. A key
aspect of this analysis is the mutual information shared between genes within GRNs, which
quantifies the dependency and communication between their expression states. Noise in
gene expression [32], arising from both extrinsic sources (such as variations in cellular com-
ponents like transcription factors) and intrinsic sources [33] (stemming from the stochastic
nature of transcription and translation), significantly impacts this mutual information [34].
High levels of noise can weaken communication within GRNs, disrupting gene coordina-
tion, which is essential for maintaining stable cellular memory states. Understanding the
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interplay between noise [35] and mutual information is crucial for developing therapeutic
interventions aimed at restoring or reprogramming cellular memory. However, in our
theoretical perspective article, which is a combination of unique mathematical modeling
frameworks and advanced therapeutic strategies (involving inhibitors, CRISPR tools, and
synthetic biology), we approach the interconnected reprogramming of cellular memory to
overcome drug resistance and to improve drug efficacy.

 

Figure 1. Overview of cellular memory, gene regulatory networks, and potential therapeutic strategies.
The diagram illustrates the transition of normal cells into mixed populations of drug-susceptible and
drug-resistant cells due to external or internal factors, including genetic mutations. Drug-resistant
and drug-susceptible daughter cells arise through cell division. Using CRISPR, PNA, or small
molecule-based synthetic biology approaches, memory can be restored, converting resistant cells back
to their original state. The lower section highlights the progression from Stage 1 (drug-susceptible) to
Stage 2 (drug-resistant), with potential blocking strategies to halt this transition. Genetic mutations
lead to increased genetic expression variability and internal noise, disrupting mutual information
sharing among cells. Restoring memory offers a path to therapeutic intervention.

2. Cellular Memory and GRNs in Drug Resistance and Susceptibility
Cell state transitions, which result in the loss of prior cellular memory, can take

place without direct genetic modifications. Shaffer et al. pioneered a lineage-tracing
approach to assess gene expression memory and identify cells undergoing such state
changes (Figure 2C). This technique, termed scMemorySeq [36], integrates single-cell RNA
sequencing (scRNA-seq) with cellular lineage barcoding to analyze the persistence of gene
expression states at a single-cell resolution [37]. Utilizing melanoma cells as a model, Bai
et al. monitored cell lineages transitioning from a drug-sensitive state to a state predisposed
to drug resistance [38]. Their investigation revealed that the TGF-β and PI3K pathways
play pivotal roles in regulating these transitions (Figure 2B). A significant takeaway from
this study is that modulating cell state transitions can substantially mitigate drug resistance.
Interestingly, altering specific signaling pathways can globally reconfigure gene expression
states, thereby influencing drug susceptibility [39]. For example, preconditioning cells
with a PI3K inhibitor (PI3Ki) shifted them into a MAPK-dependent transcriptional state,
thereby enhancing their sensitivity to MAPK inhibitors. While previous studies have
explored PI3Ki′s role in overcoming melanoma resistance, this research demonstrated
that even a short pretreatment with PI3Ki before targeted therapy substantially lowers
resistance [40]. This finding introduces a potential strategy to enhance drug sensitivity
across heterogeneous cell populations by transiently modifying gene expression states.
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Figure 2. (A) Graph depicting cell state transitions between drug-susceptible and drug-resistant
states. The green curve represents cells in a drug-susceptible state, while the red curve denotes cells
in a drug-resistant state. Arrows indicate dynamic transitions between these states, illustrating the
reversible nature of cellular states in response to external stimuli or treatment. (B) Represents a
conceptual energy landscape model illustrating the relationship between the cellular energy state and
drug susceptibility. The graph depicts two distinct energy minima, representing the drug-susceptible
state (green cell cluster) and the drug-resistant state (red cell cluster), separated by an energy barrier
(red line). The height of this barrier reflects the energy required for cells to transition between these
states, thus influencing the stability of each phenotype. (C) Schematic illustrating lineage dynamics
and memory retention. Green and red cells represent distinct cell states (e.g., drug-susceptible and
drug-resistant). Lineages maintaining memory show consistent end states (green or red) across all
progenies, while lineages losing memory exhibit mixed populations. The gray cells denote transient
intermediate states during state transitions. Arrows depict lineage progression and state switching
over time.

In the context of cancer, cellular memory over intermediate timescales has been as-
sociated with critical characteristics such as drug resistance. These memories, although
enduring across multiple cell divisions, remain reversible, making them vulnerable to
state transitions. Cells generally exist in either a drug-susceptible state or a drug-resistant
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state and can dynamically transition between these states (Figure 2A) [15,41]. Shaffer
et al. demonstrated that untreated melanoma cells inherently fluctuate between these
states, existing in both drug-susceptible and primed conditions. To uncover the molecular
regulators governing these transitions, the researchers employed scMemorySeq, a com-
bination of cellular barcoding and scRNA-seq, enabling the mapping of heritable gene
expression states and their shifts over time. Cellular barcoding facilitates high-throughput
lineage tracking, while scRNA-seq deciphers transcriptional states at a single-cell level [42].
Through analyzing gene expression within the same lineage, they inferred cellular memory.
When cellular memory persists, all descendant cells maintain the same transcriptional
state as the initial cell. By contrast, if memory is lost, lineages diversify, giving rise to
distinct gene expression profiles [15]. Applying scMemorySeq to BRAF V600E-mutated
WM989 melanoma cells, the researchers employed a barcode library encompassing both
drug-susceptible and primed states [43,44]. Their study, involving 12,531 melanoma cells
(with 7581 barcode-labeled cells), identified two primary transcriptionally distinct popula-
tions [15]. One cluster exhibited high expression of primed-state markers, including EGFR
and AXL, whereas another population predominantly expressed drug-susceptible genes,
such as SOX10 and MITF. These distinct states were consistently observed using Louvain
clustering and other dimensionality reduction techniques.

Cell signaling pathways (Table 1) play a crucial role in driving the transition between
drug-susceptible and drug-resistant states. Notably, the TGF-β signaling pathway facili-
tates the shift from the drug-susceptible state to the primed state. To validate this, Shaffer
et al. introduced a high-complexity transcribed barcode library into WM989 cells [13].
Using Louvain clustering, they classified cells as either primed or drug-susceptible, with
most primed-state cells expressing known marker genes. Their findings demonstrated that
exposure to TGFB1 increased the proportion of primed-state cells, marked by the upreg-
ulation of genes, such as NGFR, FGFR1, FOSL1, and JUN [45]. Conversely, transitioning
cells back to a drug-susceptible state was achieved using the PI3Ki treatment [46], which
led to a 93% reduction in primed-state cells across lineages. These findings collectively
highlight that both TGFB1 and PI3Ki actively drive state transitions. Importantly, the
observed changes in primed-state cell numbers were attributed to state switching rather
than broader population dynamics. This research underscores the potential of leveraging
transient signaling modulation to influence gene expression states and to enhance thera-
peutic susceptibility. By targeting key signaling pathways, clinicians may develop adaptive
treatment strategies to counteract drug resistance and to improve patient outcomes for
melanoma and potentially for other cancers [47].

Table 1. An overview of the key signaling pathways involved in cancer, along with their respective
inhibitors in targeted cancer types.

Signaling Pathways Inhibitors Chemical Structure of Inhibitors

TGF-β and PI3K signaling pathways
are key regulators of melanoma cell
survival, proliferation, and
metastasis; targeting them may
disrupt cancer adaptation
and resistance.

BRAFi (e.g., Vemurafenib) and MEKi
(e.g., Trametinib) target the MAPK
pathway, commonly mutated in
melanoma, and work synergistically
to inhibit tumor-promoting
signaling [48].
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Table 1. Cont.

Signaling Pathways Inhibitors Chemical Structure of Inhibitors

The HER2 signaling pathway, often
overexpressed in breast cancer,
promotes cell proliferation. Targeted
HER2 inhibitors block this signaling,
thereby reducing tumor growth.

Trastuzumab is a monoclonal
antibody that targets the extracellular
domain of HER2. It is widely used to
treat HER2-positive breast cancer
and has significantly improved
outcomes for patients with this
aggressive subtype [49].

Trastuzumab is a monoclonal
antibody (148 kDa) of the IgG1
subclass, it consists of two heavy
chains (~50 kDa each) and two light
chains (~25 kDa each).

The Epidermal Growth Factor
Receptor (EGFR) signaling pathway
promotes cell proliferation,
migration, and survival. Its
inhibition can effectively suppress
the growth of various cancers.

Cetuximab is a chimeric monoclonal
antibody (IgG1) that targets EGFR
and is primarily used to treat
colorectal cancer and head and neck
squamous cell carcinoma
(HNSCC) [50].

Cetuximab (152 kDa) is a chimeric
monoclonal antibody made up of
human and mouse components.

The KIT Pathway is a receptor
tyrosine kinase that, when mutated,
leads to unregulated cell growth in
gastrointestinal stromal tumors
(GISTs).

Imatinib is a tyrosine kinase
inhibitor that specifically targets KIT
mutations, especially KIT exon 9
mutations in gastrointestinal stromal
tumors (GISTs) [51].

FLT3 is a receptor tyrosine kinase
whose mutations drive early-stage
acute myeloid leukemia (AML). FLT3
inhibitors reduce leukemic cell
proliferation by targeting
these mutations.

Midostaurin is a first-generation,
multi-targeted kinase inhibitor that
blocks FLT3. It is primarily used in
acute myeloid leukemia (AML) with
FLT3 mutations and systemic
mastocytosis (SM) [52].

The mechanistic target of rapamycin
(mTOR) signaling pathway regulates
cell growth, survival, and
metabolism. The inhibition of mTOR
can slow down cancer progression.

Everolimus is an mTOR inhibitor
used to block the mTOR pathway,
which is often dysregulated in
cancers, including breast cancer [53].

 
 

The cyclin-dependent kinases
(CDK4/6) pathway regulates the cell
cycle and promotes cell division.
Inhibiting CDK4/6 can halt cell cycle
progression, leading to cancer
cell death.

Ribociclib is a selective CDK4/6
inhibitor that prevents cell cycle
progression from the G1 to S phase,
thereby halting cancer cell
proliferation and particularly
effective for Triple-Positive Breast
Cancer [54].
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Table 1. Cont.

Signaling Pathways Inhibitors Chemical Structure of Inhibitors

The Poly (ADP-ribose) polymerase
(PARP) pathway plays a key role in
DNA repair. PARP inhibitors block
this repair process, causing cancer
cell death—especially effective in
cancers with BRCA mutations.

Niraparib is a potent inhibitor of
PARP, particularly useful in ovarian
cancers, where defective DNA repair
mechanisms are common [55].

 

The JAK (Janus Kinase) signaling
Pathway regulates the immune
response and hematopoiesis. In
myelofibrosis, abnormal JAK activity
drives excessive cell proliferation.

Ruxolitinib is a JAK1/2 inhibitor
used to treat myelofibrosis by
blocking the JAK–STAT signaling
pathway, reducing cytokine
production [56].

N

N N
H

NN
NC

Ruxolitinib

3. Mathematical Modeling of Noise Dynamics and Mutual Information
in Gene Regulation

In this section, we develop mathematical models [57,58] to describe the key mech-
anisms of gene regulation underlying cellular memory [59–61]. These models focus on
capturing essential regulatory motifs, such as the double positive feedback loop (Figure 3),
which plays a crucial role in maintaining stable gene expression states [62,63]. Addi-
tionally, we explore the impact of gene regulation noise on information processing by
deriving analytical expressions for variances, covariances, and mutual information. These
metrics quantify the interplay between feedback mechanisms, noise, and the stability of
cellular memory.

A GRN motif can be described using the concentration or copy number of its gene
products. For a gene product X, synthesized at a constant rate kx, and degraded at
rate µx, the dynamics are as follows: dX

dt = kx − µxX. When a transcription factor
(TF) X activates production of a protein Y, it binds DNA D to form a complex [XD],
from which Y is produced and later degraded. The reaction dynamics are as follows:
X + D ⇌ [XD] → X + D + Y , Y → ∅ . Assuming rapid TF-DNA binding relative to pro-
duction, [XD] reaches a quasi-steady state. The fraction of DNA bound is approximated as
[XD]
DT

= X
Kxy+X , where Kxy = ko f f /kon. Substituting this into the equation for Y, we obtain

the following: dY
dt = kxy

X
Kxy+X − µyY. This is a Hill-type function where Kxy indicates

the TF concentration needed for half-maximal Y production. Lower Kxy values imply
higher promoter affinity and stronger activation (see the Supplementary Materials for the
detailed derivations).

The double positive feedback loop is a fundamental and widely studied motif in gene
regulation. In this system, two genes, X and Y, mutually enhance each other’s production,
creating a robust feedback mechanism. The dynamics of this system are described by the
following coupled ordinary differential equations [62,64,65]:

dX
dt

= kxy
Yn

Kn
xy + Yn − µxX + ξx(t) (1)

dY
dt

= kyx
Xn

Kn
yx + Xn − µyY + ξy(t) (2)
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Figure 3. Graphical representation of (A) double positive feedback loop, and (B) positive autoregula-
tory loop networks in the biological system.

Here, X enhances the production of Y, and Y reciprocally enhances the production of
X. The synthesis rate constants kxy and kyx represent the rates of production for X and Y,
respectively. The Hill functions Yn

Kn
xy+Yn and Xn

Kn
yx+Xn describe the cooperative nature of this

feedback [66,67]. For the Hill function Yn

Kn
xy+Yn , Y represents the concentration of the protein

enhancing X, n is the Hill coefficient indicating cooperativity, and Kxy is the half-maximal
effective concentration of Y required to achieve half the maximum production of X. A
higher n reflects stronger cooperativity, while a lower Kxy indicates greater sensitivity to
Y. The sigmoidal shape of the Hill function ensures that the production of X is low at low
Y concentrations, but increases rapidly as Y exceeds Kxy. Similarly, Xn

Kn
yx+Xn describes how

X enhances the production of Y, with Kyx and n playing analogous roles. The terms µxX
and µyY represent the degradation rates of X and Y, respectively [67]. Together, these
interactions form a bistable feedback system, enabling the system to stably exist in the high
or low expression states of both X and Y. This biostability underpins cellular memory and
allows cells to maintain distinct gene expression patterns in response to environmental or
developmental signals [5,67].

The feedback loop is also subject to stochastic fluctuations, commonly referred to
as gene regulation noise. Noise originates from the random binding and unbinding of
transcription factors to gene promoters, resulting in variability in gene expression levels.
These fluctuations in transcriptional activity play a crucial role in determining the stability
and reliability of gene expression states. The random binding events are governed by factors
such as the binding affinity of transcription factors, their concentration, and the kinetics
of the binding process. As transcription factors randomly interact with the promoter,
the rate of gene expression fluctuates, leading to variability in the levels of the protein
products. Understanding the impact of such noise is essential for analyzing how cells
process information and sustain stable expression states despite the inherent randomness.
To quantify the effects of feedback and noise on cellular memory, we derive analytical
expressions for the variances and covariances of gene expression in the steady state. The
noise terms ξx(t) and ξy(t) are modeled as independent white Gaussian noise, with zero
mean and a noise correlation function as follows [68]:〈

ξi(t)ξ j
(
t′
)〉

=
〈
|ξi|2

〉
δijδ

(
t − t′

)
(3)
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By linearizing the system around the steady state [69–71] and considering small pertur-
bations from the mean values of X and Y, we solve the following Lyapunov equation [72,73]:

JΣ + ΣJT + D = 0 (4)

In this equation, J represents the Jacobian matrix of the system, Σ is the (co)variance
matrix, and D is the noise matrix. Solving this equation allows us to obtain the variances
Σ(X), Σ(Y), and the covariance Σ (X, Y) (see the Supplementary Materials for detailed
analytical calculations). These quantities are critical for calculating the mutual information
between X and Y. Mutual information (MI) quantifies how much knowing the value of one
gene product reduces uncertainty about the other, capturing how closely two variables,
X and Y, are related. When X and Y are strongly connected, MI is high, meaning that
knowing X gives substantial insight into Y; conversely, if X and Y are unrelated, MI is zero,
indicating that X provides no useful information about Y. For Gaussian random variables,
the mutual information between X and Y is given by the following equation [62,74]:

I(X; Y) =
1
2

log2

[
Σ(X)

Σ(X|Y )

]
(5)

This expression offers a clear measure of how feedback loops and noise affect the
shared information between gene products. MI thus reveals how noise and feedback
influence information flow in gene regulatory networks, providing insights into cellular
memory mechanisms. By examining these relationships, we better understand how cells
maintain stable gene expression patterns and consistently transmit information, even in the
presence of stochastic fluctuations. While our current model focuses on a two-node double
positive feedback loop for conceptual clarity, it is readily extendable to more complex gene
regulatory networks (GRNs) involving additional nodes and mixed feedback motifs. Many
GRNs contain diverse topologies—such as autoregulatory, double positive, and double
negative loops—known to support bistable or multistable behavior [17].

We begin by considering a basal gene expression level of X = 5 copies, where gene X
acts as a transcription factor that positively regulates the expression of gene Y by increasing
the synthesis rate parameter kyx. This, in turn, enhances the synthesis rate of protein Y
(X → Y). The newly synthesized protein Y then acts as a transcription factor for gene X,
further boosting the synthesis rate of protein X (Y → X). This reciprocal regulation forms an
interlocked positive feedback loop, where the expression levels of both genes continuously
influence each other. The system operates in a bistable manner, where one steady state
corresponds to both genes being ON, and another corresponds to both genes being OFF. A
signal that activates either protein X or Y can drive the system into the ON state, effectively
“locking” the genes in a high-expression state, supporting cellular memory.

The expression levels of genes X and Y are modulated by adjusting the rate parameters
kyx and kxy, which influence the activity of RNA polymerase and the mRNA production
rate per unit time. By increasing these parameters, the gene expression levels of both X
and Y are increased. The nonlinear interactions between these genes, amplified by the
cooperative binding of transcription factors to their respective promoter regions, generate
noise in the system. As gene expression increases, it requires more transcription factors to
activate the genes, which results in a higher demand for these molecules. This increased
demand for transcription factors, combined with the inherent stochastic nature of their
availability and binding, introduces further noise into the system. The more complex
the regulation, the greater the fluctuations in gene expression, further contributing to the
overall instability and unpredictability of the system.
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The increase in gene expression variability is evident in the rise of variance and
covariance of genes X and Y. As shown in Figure 4A, the variance of X increases with
the expression level, indicating higher fluctuations in its copy number. Similarly, the
variance of Y, depicted in Figure 4B, follows the same trend, confirming that both genes
experience greater expression variability under high-expression conditions. The covariance
between genes X and Y, shown in Figure 4C, also increases, further illustrating the growing
instability in gene expression. In a well-regulated feedback loop, the coordinated activation
of the two genes ensures a stable and predictable expression pattern. However, as stochastic
fluctuations become more pronounced, they weaken the stability of this regulation. This
loss of coherence is further quantified by a decline in mutual information, as shown in
Figure 4D, which measures the degree to which the expression level of one gene can reliably
predict the expression level of the other. When mutual information is high, gene X and
gene Y are tightly coordinated, reinforcing each other’s expression in a stable manner.
As mutual information decreases, their correlation weakens, making gene expression
increasingly erratic. This loss of mutual information reflects the progressive breakdown
of the feedback mechanism, ultimately impairing the ability of the system to retain the
memory of prior gene expression states. The increase in stochastic noise and the reduction
in mutual information thus contribute to the destabilization of the high-expression state,
making it more susceptible to random shifts between active and inactive states.

Figure 4. (A) The variance of X, (B) the variance of Y, (C) the covariance between X and Y, and
(D) the normalized mutual information between X and Y as the gene expression level increases.
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The parameters used include n = 1, kxy = kyx = 5 min−1, and µx = µy = 0.5 min−1. Additionally,
Kxy = Kyx = ⟨X⟩ = ⟨X⟩, where ⟨. . .⟩ denotes the mean copy number of the gene product. Analytical

results are represented by lines, while results from the Gillespie stochastic simulation analysis [75,76]
are depicted with symbols.

This disruption in gene regulation has direct consequences for cellular phenotypes,
particularly in the context of drug resistance. In many biological systems, drug resistance
is governed by a bistable regulatory network, where one state corresponds to drug sus-
ceptibility and the other to resistance. The double positive feedback loop ensures that,
once resistance-associated genes are activated, they remain expressed, maintaining the
resistant state even after drug removal. However, as noise increases and mutual infor-
mation decreases, the ability of the system to sustain the resistant state is compromised.
The reduction in mutual information implies that the regulatory connection between the
two genes becomes weaker, making the resistant state more prone to stochastic transitions.
As a result, cells that were previously locked in a resistant state can spontaneously revert
to a drug-susceptible state. This phenomenon could explain the heterogeneous response
observed in populations where some cells lose resistance despite previous adaptation to
drug exposure [77–79].

These findings suggest that high levels of gene expression, while reinforcing the
resistant state under stable conditions, can ultimately introduce excessive fluctuations that
destabilize this state [80]. This increased variability enhances the probability of resistance
loss, leading to re-sensitization to drug treatment. From a therapeutic perspective, this
highlights the potential for interventions that amplify gene expression noise or disrupt
the coordination of resistance-associated genes. By targeting the regulatory instability
caused by excessive gene expression, it may be possible to drive resistant cells back into a
drug-susceptible state, thereby improving the effectiveness of drug treatments.

This work integrates a classical gene regulatory motif with an information-theoretic
framework to quantitatively explain how gene expression noise impacts mutual informa-
tion and cellular memory, particularly in drug resistance. While it is known that higher
expression can increase noise, we go beyond this intuition by deriving analytical expres-
sions for variance, covariance, and mutual information using stochastic modeling and
Lyapunov analysis. We explicitly quantify how increasing expression strength degrades
mutual information, a rarely addressed aspect in models of bistability, and bridge infor-
mation theory with gene regulatory dynamics to understand how feedback and noise
affect epigenetic state stability. Contextualized by experimental data from Shaffer et al.
on drug-resistant melanoma, our model provides a mechanistic explanation for reversible
resistance: an elevated expression initially stabilizes resistance but ultimately amplifies
noise, eroding memory. This framework not only deepens theoretical insight but suggests
that targeting gene expression noise or mutual information could destabilize resistant states,
offering a potential strategy for therapeutic re-sensitization.

4. Inhibition of Cellular Memory with Selective Inhibitor
Selective inhibitors are powerful tools for disrupting cellular memory by targeting

the pathways that sustain specific cellular states. Researchers are exploring strategies
to induce state transitions, which may reset cellular behavior and enhance therapeutic
efficacy. A study by Shaffer et al. tested a sequential dosing approach on melanoma
cells, where cells were first pretreated with state modulators, such as TGFB1 or PI3K
inhibitors (PI3Ki), followed by treatment with targeted therapies, like BRAFi/MEKi. For
the TGFB1 pretreatment, the strategy induced state switching, leading to a more rapid
elimination of drug-sensitive cells while reducing the development of resistant populations
after BRAFi/MEKi therapy. However, the priming effect of the TGFB1 pretreatment was
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less pronounced compared to the use of TGFBR inhibitors (TGFBRi). When PI3Ki was used
as a pretreatment, it resulted in a 62% decrease in resistant colonies and a 57% reduction
in resistant cells compared to BRAFi/MEKi alone. Additionally, combining PI3Ki with
BRAFi/MEKi was highly effective, eliminating almost all resistant cells. However, this
combination treatment caused significant systemic toxicity, suggesting the need for lower
doses in clinical trials to minimize adverse effects.

Shaffer et al. also tested a pretreatment regimen involving TGFB1 and PI3Ki prior to
BRAFi/MEKi administration. In this approach, cells were pretreated for five days before
receiving four weeks of BRAFi/MEKi therapy. The TGFB1 pretreatment led to a faster
elimination of drug-susceptible cells compared to BRAFi/MEKi alone, and resulted in
fewer resistant cells at the end of the treatment period. By contrast, pretreatment with
TGFBRi had a minimal impact on resistance, indicating it did not significantly alter the
progression of drug resistance. The PI3Ki pretreatment reduced the number of resistant
cells and colonies, further supporting its potential as an effective strategy. However, the
combination of PI3Ki with targeted therapy led to toxicity, highlighting the necessity for
clinical trials that explore lower dosages to reduce side effects.

5. CRISPR’s Role in “Reverse Drug Resistance”
CRISPR is an advanced technology for genetic modification [81]. Basically, it is a

powerful gene-editing tool which allows for precise modifications to the DNA of living
organisms [82]. Due to specific genetic expression, cells that are susceptible to drugs become
drug-resistant in some portions [15]. When cells switch states (from drug-susceptible
to drug-resistant), they lose memory of their prior state, and alter the drug effectivity.
However, in this direction, CRISPR can potentially inhibit genetic switching related to drug
resistance in various ways (Figure 5).

The impact of drug resistance is one of the main obstacles in the treatment of cancer.
Mutations in some genes of different cellular signaling pathways are associated with
drug resistance. CRISPR can target these genes and knock down those specific genes
which are responsible for cellular drug resistance, making the cells susceptible to the
drug again [83,84]. Moreover, the CRISPR/Cas9 system might revert resistance to gene
mutations and identify potential resistance targets in drug-resistant breast cancer [78].

CRISPR can target the regulatory genes which control expression of resistance factors.
By altering the regulation of certain genes, CRISPR can prevent the cells either from
switching the resistance state or promote the loss of resistance [85,86]. Moreover, CRISPR
may combine with other therapeutic strategies (PNAs, antibiotics, or targeted cancer
therapy) for higher efficiency to reverse drug resistance. It will involve not only targeting
resistance genes but enhancing the effectiveness of the drugs by editing genes [87]. CRISPR
with fluorescent marker may be applied for real-time monitoring of specific epigenetic
modifications for “reverse drug resistance” in living cells. It may help to track the genetic
regulation after different inducements through the CRISPR treatment during genetic state
switching [83–85].
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Figure 5. CRISPR-based genetic mutation elimination for restoration of cellular function against
genetic diseases. The CRISPR-Cas9 gene-editing mechanism for targeted genomic modification. The
process begins with guide RNAs (gRNAs) directing the Cas9 nuclease to a specific DNA sequence
(highlighted in red), where Cas9 induces double-strand breaks (DSBs). These breaks activate cellular
repair pathways, either through non-homologous end joining (NHEJ), which introduces insertions or
deletions (indels) to disrupt the target gene, or homology-directed repair (HDR), which uses a repair
template (highlighted in blue) to facilitate precise genetic modifications. The resulting edits alter gene
expression, leading to functional changes in the cell, as depicted by the cascading arrows. The orange
dotted line represents the cellular boundary, emphasizing that these processes occur within the cell.

6. Cellular Memory for Next-Generation Therapeutic Breakthroughs
Synthetic biologists have envisioned what may be possible once we can reliably

and predictably re-engineer biology. While building novel genetic circuits both in vitro
and in vivo has been a pursuit of synthetic biologists for several years, most of these
have yet to find utility in real-world applications. Nevertheless, these early efforts have
proven useful both as research tools and in gaining a better understanding of natural
biological mechanisms.

Synthetic biology is advancing the design of genetic devices that enable the study
of cellular and molecular biology in mammalian cells. These genetic devices use diverse
regulatory mechanisms to both examine cellular processes and achieve precise and dy-
namic control of cellular phenotype. Synthetic biology tools provide novel functionality to
complement the examination of natural cell systems, including engineered molecules with
specific activities and model systems that mimic complex regulatory processes. Cellular
memory is responsible for the autoregulatory feedback loop present in the gene regulatory
network in cellular systems. Negative feedback loops can reduce the noise in a biological
system, and increase the responsiveness of the system to changes [67]. Using a set of
synthetic transcriptional repressors, researchers compared the expression noise from a
simple negative regulation system composed of a dox-inducible LacI repressor to that from
a system in which autoregulatory negative feedback of the repressor was implemented via
transcriptional modulation. The system encoding the negative feedback loop displayed
significantly reduced levels of total transcriptional noise in mammalian cells, whereas the
negative regulation system increased the intrinsic transcriptional noise. The above study
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indicates that a synthetically incorporated autoregulatory negative feedback loop in place
of an autoregulatory feedback loop can rupture cellular memory.

Natural receptors, which detect specific endogenous inputs, can be engineered to
generate a non-native output response. There are several examples of a native receptor
being redirected to elicit a novel transcriptional response. One such approach exploits
the modular structure of the receptor protein notch in the delta notch signaling pathway.
In separate studies, both Struhl and Adachi and Sprinzak et al. showed that this notch
receptor transcription factor module can be replaced by a synthetic transcription factor
(Gal4-AD) so that, when activated in vivo, this chimeric notch receptor can activate genes
targeted by the new transcription factor [88,89]. We can introduce the synthetic circuit to
modulate cell signaling pathway and to stop the switching behavior of the cell from drug
susceptible to a primed state (Figure 6).

 
Figure 6. Schematic diagram for disease therapy based on shattering the gene regulatory network,
and mutated cellular memory.

7. Conclusions
Herein, we present a potential mathematical model based on an information–

theoretical framework. It precisely measures noise within a biological network to interpret
cellular memory in the context of drug resistance in cancer cells. Our approach revises the
concept of transcriptional bursting in gene networks with double positive feedback loops,
establishing a connection between mutual information and biological noise. This proposed
model offers a clear depiction for the shifting of stable drug-resistant state transitions into a
drug-susceptible state.

In addition, we proposed several strategies for disrupting cellular memory and over-
coming drug resistance. These include cell signaling inhibitors, CRISPR technology, and
synthetic biology. These selective inhibitors play a crucial role in disrupting cellular mem-
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ory by targeting the pathways that maintain specific cellular states, offering the potential to
reset cellular behavior and improve therapeutic outcomes.

This mathematical model, combined with both theoretical and simulated results,
provides valuable insights into designing drugs that can disrupt cellular memory. We
believe our perspective can open new avenues for researchers to address the current
challenges in overcoming drug resistance in cells. However, the therapeutic implications of
our proposed model for stabilizing cellular states in cancer and genetic disorders require
experimental validation and precise modulation of gene regulatory networks (GRNs) across
diverse cellular contexts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells14120903/s1, Figure S1: Numerical simulation of gene ex-
pression S regulated by self-produced transcription factors [75,76]. The blue line represents the case
with a Hill coefficient n = 1, while the red line corresponds to n = 2. Black lines indicate analytical
solutions. The parameters used in the simulation are kss = 5 min−1, µs = 0.5 min−1, and Kss = 〈S〉
(copy numbers), [62,64–67,70–73,90–97].
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