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Individuals with neurofibromatosis type 1 (NF1) are prone
to the evolution of neurodevelopmental symptomatology
including motor delays, learning disabilities, autism, and
attention deficits. Caused by heterozygous germline
mutations in the NF1 gene, this monogenic condition
offers unique opportunities to study the genetic
etiologies for neurodevelopmental disorders and the
mechanisms that underlie their formation. Although
numerous small animal models have been generated to
elucidate the causes of these alterations, there is little
consensus on how to align preclinical observations with
clinical outcomes, harmonize findings across species,
and consolidate these insights to chart a cohesive path
forward. Capitalizing on expertise from clinicians;
human, animal, and cellular model research scientists;
and bioinformatics researchers, the first Cognition and
Behavior in NF1 (CABIN) meeting was convened at the
Banbury Center of Cold Spring Harbor Laboratory in
October 2024. This Perspective summarizes the state of
our understanding and a proposed plan for future
investigation and exploration to improve the quality of
life of those with NF1.

Individuals with the neurofibromatosis type 1 (NF1) neu-
rogenetic syndrome are at increased risk for the develop-
ment of benign and malignant tumors, resulting in its
frequent classification as a cancer predisposition syn-
drome. However, a substantial number of affected chil-
dren exhibit cognitive and behavioral problems that
impact on their scholastic performance, social relation-
ships, and future employment opportunities (Hyman
et al. 2005). Studies consistently show that NF1 is associ-
ated with a 0.6–0.8 standard deviation reduction in IQ,
with verbal and nonverbal intellectual skills equally af-
fected (Payne et al. 2019; Ottenhoff et al. 2020). Against
this background, asmany as 80%of childrenwithNF1 ex-
perience deficits across specific domains, including exec-
utive function (Payne et al. 2012, 2021; Hou et al. 2020),
attention (Isenberg et al. 2013), visuoperception (Maier
et al. 2024), and language skills (Thompson et al. 2010;
Haebich et al. 2023). These cognitive difficulties often un-
derlie the increased rates of co-occurring neurodevelop-
mental conditions associated with NF1, such as learning
difficulties (Barquero et al. 2015; Arnold et al. 2021), atten-
tion deficit hyperactivity disorder (ADHD) (Payne et al.
2012; Hou et al. 2024), autism (Garg et al. 2013; Morris
et al. 2016; Chisholm et al. 2022), and auditory processing
difficulties (Rance et al. 2021).
The preponderance of these neurobehavioral abnormal-

ities suggests delays and disruptions in normal brain
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development, perhaps resulting from primary or second-
ary effects of germline NF1 gene mutations on neurons
in the fetal or postnatal central nervous system. Under-
standably, the focus of much of the research in the NF1
field has centered on tumors, which has led to knowledge
gaps relevant to future basic science investigations, pre-
clinical modeling, drug discovery, and clinical translation
to improved patient care for individuals with these neuro-
cognitive challenges. To galvanize change in the field,
Cold Spring Harbor Laboratory and Penny’s Flight Foun-
dation hosted a focused cross-disciplinary conference at
the Banbury Center on October 21–23, 2024. To our
knowledge, this meeting was the first conference of its
kind, bringing together experts in NF1 cognition and
behavior (Table 1) spanning clinical care, preclinical small
animal modeling, drug discovery, and informatics (Fig. 1),
and incorporating individuals from the NF1 community,
including family members and representatives from NF
advocacy organizations. The meeting was structured to
include (1) brief formal presentations from members of
each of the four working groups, (2) working group break-
out sessions, and (3) entire group discussions. On day 3 of

the conference, each working group presented an initial
summary to the entire collective, which was then refined
through group discussion and consensus. In this way, the
Cognition and Behavior in NF1 (CABIN) collective identi-
fied key unmet needs and future opportunities for progress
in the field and charted a course forward, leveraging the
strengths of the four working groups and incorporating
guidance and prioritization from stakeholders. This per-
spectivewaswritten by the two coleaders of eachworking
group and the three main conference co-organizers (Kaleb
H. Yohay, David H. Gutmann, and Linda Van Aelst).

Clinical Working Group—tools and challenges in
assessing NF1 neurodevelopmental phenotypes

Although our understanding and description of the NF1
neurodevelopmental phenotype have been expanding
over time, neurodevelopmental disabilities in children
with NF1 remain underdiagnosed. This is in part due to
the limited involvement of neurodevelopmental and
behavioral specialists in the care of children with NF1;
the unique phenotypic presentation of NF1-related neuro-
developmental disability compared with idiopathic coun-
terparts (Garg et al. 2015; Morris et al. 2016; Chisholm
et al. 2022); the complex evolution of cognition, behavior,
and development in the context of progressive neurologi-
cal pathology; and the frequent diagnostic overshadowing
by severe, life-altering, medical comorbidities. Addition-
ally, screening tools administered at the point of care to
identify children at risk for developmental and/or behav-
ioral differences are uncommonly and inconsistently
used across NF clinical centers due to time, cost, expense,
limited clinician experience, and lack of consensus guide-
lines. Advancing our understanding of the cognitive and
behavioral effects of NF1 is critical to the early detection
of children at the highest risk for NF1-related neurodeve-
lopmental disabilities; however, it presents several signif-
icant challenges.

The first challenge lies in identifying the factors that
drive the marked variability in the cognitive and behavio-
ral effects of NF1. This heterogeneity likely arises from a
complex interplay of genetic,molecular, and environmen-
tal influences, compounded by the inherent variability in
NF1 gene expression and function across individuals with
NF1 (Anastasaki et al. 2015). A second challenge is to
synthesize the existing knowledge of theNF1 neurocogni-
tive phenotype to define its unique characteristics and
describe what “it” is. A combination of systematic re-
views, meta-analyses, and data from large, prospectively
collected cohorts would help move the field beyond the
single-domain approaches that have dominated to date.
By integrating cognitive, behavioral, and psychosocial do-
mains, a multidimensional framework should be created
that more accurately reflects the specific neurocognitive
profile driven byNF1 variants rather than relying onDiag-
nostic and Statistical Manual of Mental Disorders (DSM)
categories, which are consensus-based, human-defined,
symptom clusters that often co-occur in the general pop-
ulation but are not etiologically grounded.

Table 1. Cold Spring Harbor Laboratory Banbury CABIN
participants

Participants Affiliation

Robert Allaway, PhD Sage Bionetworks

Corina Anastasaki, PhD Washington University School of
Medicine

Jeremy Borniger, PhD Cold Spring Harbor Laboratory

Laurie Cutting, PhD Vanderbilt University

Kate and Chad Doerge Penny’s Flight Foundation

Aditi Gupta, PhD Washington University School of
Medicine

David Gutmann, MD,
PhD

Washington University School of
Medicine

Yang Hou, PhD Florida State University

Matthew Kayser, MD,
PhD

University of Pennsylvania
Perelman School of Medicine

Michael Lukey, PhD Cold Spring Harbor Laboratory

Stephanie Morris, MD Kennedy Krieger Institute

Yuan Pan, PhD University of Texas MD Anderson
Cancer Center

Jonathan Payne, DPsych Murdoch Children’s Research
Institute

Jacob Raber, PhD Oregon Health and Science
University

Elliott Robinson, PhD Cincinnati Children’s Hospital

Amita Sehgal, PhD Howard Hughes Medical Institute,
University of Pennsylvania

Seth Tomchik, PhD University of Iowa

Linda Van Aelst, PhD Cold Spring Harbor Laboratory

James Walker, PhD Massachusetts General Hospital,
Harvard Medical School

Kaleb Yohay, MD New York University Langone
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Several existing tools could be adapted to better charac-
terize theNF1 neurodevelopmental phenotype. For exam-
ple, a checklist similar to the TAND Checklist for
Tuberous Sclerosis Complex (de Vries et al. 2015)), could
be developed to systematically assess cognitive, behavio-
ral, and psychosocial challenges in individuals with
NF1. Given the well-documented deficits in executive
function and attention, alongwith challenges in language,
visuoperceptual skills, and social cognition, future neuro-
psychological assessments should prioritize domain-spe-
cific measures that capture the breadth of cognitive
differences in NF1 rather than relying solely on full-scale
IQ scores. In particular, real-world executive dysfunction
is a hallmark of NF1, yet traditional laboratory-based
tasks may fail to capture the full extent of these difficul-
ties (Payne et al. 2011). As such, the Behavior Rating In-
ventory of Executive Function (BRIEF) provides a more
ecologically valid assessment by measuring how execu-
tive function deficits manifest in daily life, complement-
ing performance-based measures. Similarly, although
cognitive assessments shed light on core deficits, evaluat-
ing adaptive behavior is equally critical, as individuals
with NF1 often demonstrate a disconnect between cogni-
tive abilities and everyday functioning (Eby et al. 2019).
Tools like the Vineland Adaptive Behavior Scales can pro-
vide insights into communication, socialization, and dai-
ly living skills, helping to contextualize cognitive profiles
within a broader functional framework. Taken together,
efforts focused on creating a standardized neurodevelop-
mental inventory for NF1 (NF1-NDI) would enable a
more comprehensive understanding of the NF1 neurocog-
nitive phenotype, agnostic of the DSM classification.
Such an approach has the potential to enhance the screen-
ing, diagnosis, andmonitoring of key neurodevelopmental
challenges for children with NF1, enabling clinicians and
researchers to track intervention responses while empow-
ering families and clinicians to provide holistic, individu-
alized management for these often-impairing difficulties.
A final challenge for the field is identifying which chil-

dren within the first 1000 days of life are most likely to
benefit from early treatment, particularly as next-genera-
tion models identify promising therapies (Anastasaki
et al. 2022b; Payne 2025). Early intervention during this
critical developmental window has the potential to pre-
vent ormitigate neurocognitive and behavioralmanifesta-

tions associated with NF1. Achieving this, however,
depends on the identification of reliablemarkers or predic-
tors to effectively stratify risk and tailor treatments. Al-
though preliminary work in small cohorts indicates that
this is possible (Lorenzo et al. 2015; Slevin et al. 2024),
future efforts must focus on developing cognitive and
behavioral developmental charts through collaborative lon-
gitudinal cohorts and multidisciplinary approaches span-
ning neuropsychology, developmental neuroscience, and
genomics. Incorporating machine learning and wearable
technologies to uncover patterns in variability and pheno-
type expression holds the potential to create an invaluable
resource, enabling precisionmedicine approaches that opti-
mize developmental trajectories from the earliest stages.
However, to effectively capitalize on the efficiency of ma-
chine learning methodologies and generate clinically rele-
vant and accurate models, there will need to be concerted
efforts within the NF clinical and scientific communities
to adopt and adhere to a standardized lexicon (i.e., NF1 ter-
minology and medical coding)—a universal NF1 language.

Preclinical ModelsWorking Group—avatars to study NF1
neurodevelopmental phenotypes

Multiple preclinical animal and humanized avatars have
been developed to model NF1 cognitive and behavioral
phenotypes, including Drosophila, mice, rats, zebrafish,
pigs, and human induced pluripotent stem cell (hiPSC)-
derived models (Table 2; Diggs-Andrews and Gutmann
2013; Wegscheid et al. 2018; Atsoniou et al. 2024; Botero
and Tomchik 2024).
Drosophilawith genomic deletions of theNf1 fly ortho-

log have been used to model cognitive phenotypes with
abnormalities reported in body size, learning andmemory
(Guo et al. 2000; Buchanan and Davis 2010; Georganta
et al. 2021), circadian rhythms (Williams et al. 2001;
Bai et al. 2018), sleep (Bai and Sehgal 2015; Durkin et
al. 2023), grooming (King et al. 2016, 2020; Suarez et al.
2024), locomotion (van der Voet et al. 2016; Suarez et al.
2024), social behavior (Moscato et al. 2020), tactile sensi-
tivity (Dyson et al. 2022), and metabolism (Tong et al.
2007; Botero et al. 2021; Botero and Tomchik 2024; Sofela
et al. 2024). Although some of theDrosophila phenotypes
(e.g., learning and sleep disruptions) are reminiscent of the

Figure 1. Multilevel interrogation of cogni-
tion, attention, and social perception in NF1
requires experts from various disciplines us-
ing numerous complementary approaches.
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human NF1 condition, their strongest value in disease
modeling is arguably their utility as phenotypic platforms
to dissect both cell-autonomous and circuit-level effects
of Nf1 loss (The et al. 1997; Williams et al. 2001; Walker
et al. 2006). Given their largely conserved genetics and
intracellular signaling, fast generation turnover time
(10–14 days), and completely elucidated connectome

(Dorkenwald et al. 2024), Drosophila are easily amenable
to genetic screens (St Johnston 2002). For example, ana-
plastic lymphoma kinase (ALK) was identified in a Dro-
sophila Nf1 modifier screen (Gouzi et al. 2011) and
represents a promising target for cognitive symptoms in
mammals (such as the learning deficits) (Weiss et al.
2017; Weiss and Raber 2023). However, Drosophila

Table 2. Summary of the key features of current NF1 preclinical models

Species Mutation
Key behavioral/cognitive

deficits Strengths Limitations

Drosophila Nf1-null Deficits in learning, memory,
circadian rhythms, sleep,
locomotion, social behavior,
and tactile sensitivity

• Conserved genetic
sequence

• Conserved intracellular
signaling

• Fast and inexpensive
generation

• Completely mapped
connectome

• Amenable to large-scale
genetic screening

• Requirement for
biallelic Nf1 mutation
to elicit phenotype

• Neuronal circuits vary
greatly from the human
brain

Zebrafish nf1a/b-null Deficits in visual and auditory
habituation, motor learning,
and memory

• Amenable to large-scale
screening

• Robust measurable visual,
auditory, and motor
behaviors

• Requirement for
concomitant
homozygous nf1a and
nf1b mutations to elicit
deficits

• Genome duplication
confounds genetic
translatability

• Not all observed
behaviors align with
clinical cohorts

Mice Nf1 heterozygous
(multiple
germline
mutations)

Deficits in spatial learning,
long-term potentiation, social
learning, sensory and novelty
responses, object recognition,
auditory cortex connectivity,
attention, early
communicative vocalization,
sleep, and motor learning

• Mammalian model
• Multiple genetically

engineered germline Nf1
mutant strains available

• Heterozygous Nf1
mutation-driven deficits

• Neuronal circuit structural
and molecular similarity to
the human brain

• Ability to engineer
precision strains with
patient-derived Nf1
mutations

• Not all behaviors align
with clinical cohorts

• Not all mouse strains
exhibit clinically
relevant deficits

• Treatments successful
in restoring behavioral
deficits in mice have
failed in patient clinical
trials

Minipigs NF1 heterozygous Deficits in spatial learning,
motor function, and glial and
neuronal function

• Large mammalian model
• Sufficiency of NF1

heterozygosity to elicit
clinically relevant NF1
pathophysiology

• Amenable to complex
behavior surveys

• Expensive generation
and maintenance

Human iPSC-
derived
neurons and
organoids

NF1 heterozygous
(multiple
mutations)

Deficits in neurofibromin
expression, dopaminergic
signaling, neuronal survival,
differentiation, and maturation

• Human cells amenable to
genetic editing

• Patient-derived cells
harboring NF1 patient-
derived NF1 mutations,
including large genomic
deletions

• Platform for personalized
targeting

• Lack of complexity
conferred by a whole
organism

Gutmann et al.
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models carry caveats, including the requirement for bial-
lelic Nf1 mutation and significant divergence in brain
connectivity.
Similar to Drosophila, zebrafish are also highly amena-

ble to genetic and therapeutic screening, especially during
their embryonic and larval stages (first 7 days postfertili-
zation). Additionally, both larval and adult zebrafish ex-
hibit robust, predictable, and measurable behaviors in
response to stress stimuli, allowing for behavioral end-
point assessments on a large scale (Nelson and Granato
2022). As vertebrates, Nf1-null zebrafish exhibit visual
(Randlett et al. 2019) and auditory habituation (Shin
et al. 2012) defects, as well as motor learning andmemory
abnormalities (Wolman et al. 2014). However, genetic
studies may be complicated by the fact that zebrafish
have a duplicated genome.
Although the use of zebrafish models is on the rise, a

large number of neurobehavioral studies have been per-
formed using mouse models of NF1. Using theseNf1mu-
tant mice, deficits in GABA-mediated hippocampal-based
spatial memory and long-term potentiation (Silva et al.
1997; Costa et al. 2002), social learning (Molosh et al.
2014; Petrella et al. 2016), sensory responsivity and novel-
ty responses (Robinson et al. 2019), object recognition
(Krenik et al. 2022), and auditory cortex connectivity
(Shofty et al. 2019) have been reported. Additional models
using conditional Nf1 inactivation have similarly re-
vealed deficits in spatial memory (Diggs-Andrews et al.
2013), comparable with mice withNf1 loss in dopaminer-
gic neurons (Anastasaki et al. 2015), as well as defects in
dopamine-regulated attention (Brown et al. 2010), early
communicative (ultrasonic) vocalization (Muddathir
et al. 1987), and sleep fragmentation (Anastasaki et al.
2019). Moreover, oligodendrocyte precursor-specific Nf1
mutation causes motor learning defects (Pan et al. 2024).
The major strengths of rodent models include their

amenability to neuronal circuit analysis in a mammalian
nervous system with structural similarity to humans and
their ability to delineate molecular mechanisms govern-
ing cognitive dysfunction. With the relatively recent ap-
preciation that neurofibromin has Ras-independent
functions and all germline NF1 gene mutations are not
functionally equivalent, precision mouse models are be-
ing engineered harboring NF1 patient-derived NF1 gene
mutations (Li et al. 2016; Toonen et al. 2016; Anastasaki
et al. 2022a, 2024), which could emerge as instrumental
next-generation tools for dissecting the basis for NF1 clin-
ical and behavioral heterogeneity. However, it should be
appreciated that not all cognitive and behavioral deficits
detected inNf1mutantmouse strains alignwith those en-
countered in people with NF1. To this end, treatments
such as lamotrigine and lovastatin, which demonstrated
positive preclinical benefits, have unfortunately only
demonstrated limited efficacy in clinical trials (Payne
et al. 2016; Stivaros et al. 2018; Ullrich et al. 2020; Jung
et al. 2023; Ottenhoff et al. 2025). To improve translatabil-
ity of future murine studies, efforts should be made to pri-
oritize the assessment of cognitive and behavioral
outcomes that directly mirror those evaluated in clinical
trials (Payne et al. 2019).

In addition to rodents, some groups have developed
swine models of NF1. NF1 mutant minipigs exhibit
behavioral alterations, including impaired spatial learning
(Isakson et al. 2018), and alterations in motor function
(Swier et al. 2024). The study of minipig cognitive pheno-
types is still in the early stages; however, alterations in gli-
al and neuronal function, including imbalances in
inhibitory GABAergic signaling, have been reported
(Swier et al. 2024). Although expensive to maintain, NF1
mutant minipigs spontaneously develop aspects of NF1
without further engineering and allow for an analysis of
complex behaviors more akin to people with NF1.
Finally, several groups have invested in hiPSC engineer-

ing to study the impact of germline NF1 mutations on
human brain development to complement studies per-
formed in small animal models of NF1. Particularly rele-
vant to neurodevelopment, hiPSCs can also be induced
to generate three-dimensional brain organoids, which
spontaneously assemble into organized “minibrain”
structures. In the context of NF1, hiPSC-derived neurons
in either 2D or 3D organoid cultures harboring different
patient NF1 mutations exhibit differential levels of both
neurofibromin protein and dopamine irrespective of RAS
activity (Anastasaki et al. 2015), reinforcingmurinemodel
observations of dopaminergic deregulation-mediated
learning deficits (Diggs-Andrews et al. 2013). Moreover,
hiPSCs can be generated from patients with specific types
of NF1 mutations, such as those with large genomic 17q
chromosome deletions who exhibit increased develop-
mental and cognitive delays relative to the general NF1
population. Studies using these patient-derived hiPSCs re-
vealed a gene (cytokine receptor-like factor-3 [CRLF3])
within the NF1 genomic locus that regulates neuronal
survival, differentiation, and maturation (Wegscheid
et al. 2021). The use of hiPSCs harboring NF1 patient-de-
rived NF1 germline mutations offers the promise of more
personalized strategies to treat NF1-associated neurobe-
havioral abnormalities.
Taken together, the combinatorial deployment of mul-

tiple preclinicalmodels that are individually best suited to
address distinct aspects ofNF1 clinical behavior are key to
identifying optimal treatment strategies for children with
NF1.

Therapeutic Intervention Working Group—approaches
to identifying treatments for NF1 neurodevelopmental
phenotypes

The effective management of NF1 neurobehavioral chal-
lenges requires a comprehensive approach that includes
pharmacological treatments, behavioral interventions,
and educational support. Current approaches to pharma-
cological treatments for neurobehavioral issues in NF1
have focused on addressing symptoms of cognitive perfor-
mance, ADHD, anxiety, and mood disorders. Although
several classes of drugs have shown promise in clinical
studies, there are currently nomedications specifically ap-
proved for NF1-associated cognitive or behavioral
challenges.

CABIN Task Force Perspective
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In the general population, first line treatment for
ADHD is stimulant medication, such as amphetamines
and methylphenidate (Cortese et al. 2018). Consistent
with preclinical studies in Nf1 mutant mice (Brown
et al. 2011; Diggs-Andrews et al. 2013), numerous studies
have shown that methylphenidate improves attention,
impulsivity, and hyperactivity in children (Lion-François
et al. 2014; Pride et al. 2018). Similarly, N-acetyl cysteine
(NAC), an antioxidant glutamate-modulating compound,
has been shown to improve motor function and learning
in Nf1 mutant mice (Mayes et al. 2013), prompting its
evaluation for ADHD/impulsive symptoms, executive
function, and working memory in children with NF1.
For individuals who do not respond well to stimulants
or experience undesirable side effects, nonstimulant
ADHD medications such as the α2a adrenergic agonist
guanfacine may be an effective alternative (Lukkes et al.
2020).

Other pharmacological treatment approaches have
been guided by insights from basic science discoveries.
The best-established function of neurofibromin is to regu-
late RAS/MEK signaling. Because statins inhibit 3-hy-
droxy-3-methylglutaryl coenzyme A reductase, leading
to impaired RAS post-translational modification, mem-
brane localization, and subsequently RAS/MAPK path-
way activation, they were initially evaluated in Nf1
mutant mice prior to testing in children with NF1 (Li
et al. 2005). Although safe, there is no current evidence
demonstrating that either lovastatin or simvastatin exert
a beneficial effect on cognitive function or behavioral
problems in children with NF1 (van der Vaart et al.
2013; Payne et al. 2016; Agouridis et al. 2023). Although
MEK inhibitors have been evaluated for their impact on
the neuropsychological profile of individuals with NF1
(Walsh et al. 2021; Lalancette et al. 2024), these have
been small-scale incidental studies occurring during trials
of MEK inhibitors for NF1-associated tumors and were
not primarily designed to evaluate cognitive outcome.

Another approach involves targeting GABAergic dys-
regulation, which underlies working memory impair-
ments seen in people and mice with NF1 (Costa et al.
2002; Cui et al. 2008; Shilyansky et al. 2010; Violante
et al. 2013) using transcranial noninvasive brain stimula-
tion (Garg et al. 2022). Whereas anodal transcranial direct
current stimulation (atDCS) can reduce GABA in the
stimulated cortex in NF1 subjects, it does not improve
task performance. Additionally, Nf1 mutation in mouse
hippocampal interneurons alters hyperpolarization-acti-
vated cyclic nucleotide-gated channel 1 (HCN1)-induced
hyperpolarization (Omrani et al. 2015), which can be re-
versed by lamotrigine, an antiseizure and mood-stabiliz-
ing drug safely used in children for decades. Although
lamotrigine effectively rescues electrophysiological and
hippocampal-based cognitive deficits in Nf1 mice, it did
not result in cognitive improvements in adolescents
with NF1 (Ottenhoff et al. 2025). As other functions
of neurofibromin in neurons become revealed through
experimentation, additional targeted therapies might
emerge. In this regard, reduced sleep in Nf1 mutant flies
has been linked to metabolic deficiency, mitochondrial

defects, and reduced nicotinamide adenine dinucleotide
(NAD) (Sofela et al. 2024). NAD is often used as a dietary
supplement and could be readily assessed for NF1-related
sleep deficits. We recognize that variability in phenotypes
and treatment responses in individuals with NF1 (Wang
et al. 2021) and regulatory challenges to use new therapeu-
tics in the clinic (Medlinskiene et al. 2021) are potential
barriers to clinical translation.

Beyond medicinal strategies, nonpharmacological ap-
proaches are a cornerstone of managing neurobehavioral
issues in NF1. First, cognitive behavioral therapy (CBT)
is an evidence-based therapeutic approach that helps indi-
viduals manage pain, anxiety, depression, social difficul-
ties, and sleep deficits by teaching coping strategies,
problem-solving skills, and cognitive restructuring. As
one example, the iCanCope-NF application has been as-
sessed for various outcomes including pain and pain-relat-
ed activity limitations, sleep functioning, and emotional
functioning (depression and anxiety) with some success
(Buono et al. 2022, 2023). Second, educational support
and academic accommodations are frequently provided
in school. These may include extended test times, prefer-
ential seating, or modifications to assignments to address
cognitive delays or learning disabilities. Special education
services, speech therapy, and occupational therapy addi-
tionally provide targeted support to enhance academic
and social development (Chambers et al. 2018). Several in-
dependent trials have demonstrated reading improve-
ments (Barquero et al. 2015; Arnold et al. 2016) and
ameliorated short-termmemory, attention, and executive
functioning (Hardy et al. 2021) with training/intervention
in childrenwithNF1. Third, social skills training can help
individuals with NF1 develop appropriate social behav-
iors, interpret social cues, and build meaningful relation-
ships. Social skills programs often involve role-playing,
modeling, and guided interactions to enhance interper-
sonal communication and reduce social anxiety. A recent
study using a telehealth intervention (the Program for the
Education and Enrichment of Relational Skills [PEERS])
showed initial feasibility for children with NF1 (Glad
et al. 2024). Similarly, resiliency training using stress
and symptom management programs tailored for those
with NF1 improve coping abilities and may help success-
ful navigation of psychosocial challenges associated with
NF1 (Lester et al. 2020; Presciutti et al. 2023). Last, educa-
tion and support for families are crucial in managing the
neurobehavioral challenges of NF1. Parents benefit from
learning about the nature of the disorder, available re-
sources, and effective strategies for supporting their
child’s development. Family therapy, as well as Internet
support groups, are also beneficial for improving commu-
nication and reducing stress associated with managing
behavioral issues at home (Martin et al. 2018).

Although there has been much progress in the field, we
still have a limited understanding of the critical develop-
mental periods in which interventions might be most ef-
fective for NF1. As such, future studies are needed to
address this knowledge gap. Furthermore, developing
new biomarkers to assess positive outcomes following
treatment, even in the absence of significant behavioral
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or cognitive improvements, would be valuable to evaluate
novel therapeutic interventions. Before moving forward
with large-scale, costly clinical trials, small-scale experi-
mental clinical trials should be considered to assess how
these interventions affect the brains of people with NF1.
Finally, the latest developments in clinical trial method-
ologies (Baud 2024) should be considered for inclusion as
part of these future intervention studies.

Informatics Working Group—multimodal tools to
examine complex neurodevelopmental phenotypes

The emergence of artificial intelligence (AI), smartphone,
and wearable techniques in the informatics and data sci-
ence communities has shown great promise, particularly
for complex and rare diseases like NF1. These advance-
ments enable innovative utilization of existing data sets
and facilitate the collection of intensive longitudinal
data, providing insights unattainable through traditional
methods.
AI-based risk prediction models can be developed using

existing, large-scale data sets, enabling systematic tracking
of NF1 disease surveillance and management. These mod-
els hold the potential to function as real-time clinical deci-
sion support tools at the point of care. Real-world clinical
databases, like electronic health records (EHRs), provide
large and diverse health care data to develop AI models
for individuals with NF1, compared with research databas-
es that have fewer participants and collect limited data el-
ements. The EHR is a comprehensive and longitudinal
collection of clinically significant data regarding individual
patient health including laboratory results, vital signs, co-
morbidities, medications, imaging, and clinical assess-
ments. EHR data consist of both structured tables (e.g.,
demographics and laboratory results) and unstructured
data (e.g., clinical and imaging notes). Although structured
data are useful for developing AI models, critical informa-
tion relevant to treatment and management of a clinical
condition often resides in relatively inaccessible unstruc-
tured clinical notes within the EHR. For this reason, algo-
rithms using natural language processing (NLP) and large
language models (LLMs) need to be developed that can
use structured and unstructured clinical data extracted
from the EHR and extract clinical important information
such as family history of NF1, allergies, symptoms, and
other comorbidities, as well as any psychometric data
such as cognitive and behavioral test scores. In addition,
imaging data from the EHR can also provide useful infor-
mation, as previously reported for optic pathway glioma
(OPG) identification and progression (Pisapia et al. 2020).
Supervised learning or machine learning (ML) models

can also be used to develop early-warning predictivemod-
els for diagnosing various NF1 clinical features, enabling
timely and accurate intervention strategies. The few stud-
ies published to date that have applied a ML strategy to
develop predictive models for clinical features associated
with NF1 (Sbidian et al. 2010; Morris et al. 2021) demon-
strate that this approach can be used to create and verify
predictive phenotype models useful for risk stratification

and disease management in NF1. The ML models most
widely used for similar clinical prediction problems in-
clude random forest (Breiman 2001), support vector classi-
fier (Cortes and Vapnik 1995), logistic regression, and
gradient boost classifier (Friedman 2001), all of which
achieve good predictive performance in studies using
EHR data (Lingren et al. 2016; Zhang et al. 2019; Zhao
et al. 2019). In addition to ML models, deep learning
(DL) models are also useful for identifying temporal pat-
terns in the EHR, as DL models encode longitudinal con-
cepts such as event trends, episodes, cycles, and
abnormalities (Wang et al. 2013). Temporal neural net-
work models have been used to predict clinical interven-
tion time and mortality in the intensive care unit
setting (Catling and Wolff 2020), as well as specific medi-
cal conditions and medication uses (Choi et al. 2016;
Jagannatha and Yu 2016), which could be applied for spe-
cific questions in children and adults with NF1.
In addition to supervised learning approaches, unsuper-

vised learning methods such as clustering can group indi-
viduals with similar characteristics (e.g., genetic markers,
clinical symptoms, or other relevant features). By identify-
ing and examining the characteristics of these subgroups,
risk factors and endophenotypes identified in preclinical
studies can be validated using real-world clinical data ob-
tained from clinical registries (Tabata et al. 2020; Bergqv-
ist et al. 2022). In an analogous manner, EHRs can be used
to conduct similar studies on large and diverse data sets
and provide more generalizable subphenotypes of NF1
(Baksh et al. 2023).
Smartphones and wearable devices provide opportuni-

ties to collect rich intensive longitudinal data critical for
individualized interventions. Neurobehavioral function
(e.g., cognitive, socioemotional, and behavioral) can fluc-
tuate across time and context. For example, processing
speed, executive function, and memory performance
may decline when individuals are tired or in distracting
environments (Bielak et al. 2019; Weizenbaum et al.
2020), whereas adolescent ADHD symptoms peak in the
afternoon on school days, but not on non-school days (Pe-
dersen et al. 2020). Understanding when and under what
conditions neurobehavioral functionworsens or improves
in the daily lives of individuals with NF1 is an essential
step for developing personalized interventions to improve
their neurobehavioral function. In sharp contrast to tradi-
tional neuropsychological assessments that typically ask
about experiences over prior weeks or months, the use
of smartphone-based ecological momentary assessment
(EMA) collects real-time neurobehavioral function data
in daily life settings, reduces recall bias, increases accessi-
bility for participants in diverse regions, and provides in-
formation on intraindividual variability and contextual
predictors. As such, smartphone-based EMA neurobeha-
vioral measures have shown reliability and validity in
various populations, including individuals with mild cog-
nitive impairments (Brouillette et al. 2013; Moore et al.
2017; Sliwinski et al. 2018; Bartels et al. 2020). Moreover,
wearable devices like smartwatches and biosensors can
collect continuous data on factors influencing neurobeha-
vioral function, such as physical activity, sleep, heart rate
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variability, and environmental exposure, which are pas-
sively collected over extended periods (Diaz et al. 2016;
Reid et al. 2017; Godino et al. 2020).

Integrating wearable devices and EMA with multilevel
modeling (MLM) (Kranzler et al. 2018; Pedersen et al.
2020; Chen et al. 2024) or personalized machine learning
models (Shah et al. 2021) offers valuable opportunities to
predict neurobehavioral problems within the context of
an individual’s unique physiological, psychosocial, life-
style, and environmental factors. These personalized pre-
diction models for neurobehavioral function could serve
as a foundation for developing tailored, “just in time”
adaptive interventions (JITAIs) leveraging smartphone
and wearable technologies. Furthermore, innovative mul-
tiscale modeling and analysis (MMA) entail identifying
higher-order motifs comprising measurable data points
that span multiple scales and data types, such as clinical
(structured, text, and imaging) and biomolecular pheno-
types and behavioral and environmental factors alongside
computable knowledge resources (publications and ontol-
ogies). Use of MMA techniques that combine clinical and
biomolecular-scale patient features with correlative bio-
medical knowledge resources will enable the identifica-
tion of actionable prognostic marker complexes that can
be used to improve disease staging and management in
NF1. Such MMA techniques have become increasingly
prevalent when investigating complex disease pheno-
types (Blois 1988; Payne et al. 2009, 2010; Tsafnat and
Coiera 2009). These techniques provide a comprehensive
framework for improving NF1 disease management and
understanding rare disease phenotypes.

Perspectives and future directions

Drawing from the diverse expertise of the CABIN team
members, we outlined several key directions for further
investigation. First, there is a great need to define what
the relevant NF1-specific neurobehavioral phenotypes
are in patients and which should be modeled in small an-
imal disease avatars. To this end, existing assessment
tools should be adapted to better characterize the NF1
neurodevelopmental phenotype. This will require devel-
oping a common nomenclature and lexicon and a

standardized battery of tests for the practitioner. Addi-
tionally, a longitudinal natural history study will be
necessary to identify periods for early detection and miti-
gation (Fig. 2). Second, preclinical and clinical behavioral
testing paradigms should be developed that harmonize be-
tween humans and other species used in laboratory-based
investigations. Additionally, cross-species phenotypes
should be tabulated and compared. This would allow for
the use of the most relevant preclinical model to assess
therapies that target that specific human cognitive or
behavioral deficit. Third, as the neurobehavioral subphe-
notypes become better categorized, targeted therapies de-
signed to ameliorate that specific endophenotype can be
identified and refined. This would necessitate prioritizing
and repurposing drugs according to the phase of symptom
evolution, as well as the identification of biomarkers of
disease activity for implementation in future clinical tri-
als. Fourth, we recommend full integration of informatics
into all phases of research. Its capacity to transform

Figure 2. Information gathered from a longi-
tudinal natural history study of cognitive and
behavioral delays in childrenwithNF1would
facilitate the identification of potential time
intervals for risk assessment, early detection,
prevention, and treatment (mitigation).

Figure 3. Proposed CABIN iterative approach to understanding
and translating discoveries from the laboratory to clinical care, in-
volving expertise from specialists in clinical science, laboratory
research, drug discovery, informatics, and preclinical evaluation.
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population-based research, provide real-time assess-
ments, and integrate data at multiple scales makes it an
integral and obligate component. In this manner, one
could envision an iterative cycle of discovery, preclinical
evaluation, and clinical translation (Fig. 3). Fifth, the coal-
ignment of preclinical and clinical trials, coupledwith the
use of optimized clinical trial designs, increases the likeli-
hood that promising interventions will be discovered for
NF1-associated cognitive and behavioral abnormalities.
Last, the energy and passion of the participants have al-
ready resulted in the establishment of new research ef-
forts, which will be the subject of the planned CABIN
meeting to be held at the BanburyCenter inOctober 2025.
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