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Abstract
Quantitative models of sequence-function relationships are ubiquitous in computational
biology, e.g., for modeling the DNA binding of transcription factors or the fitness land-
scapes of proteins. Interpreting these models, however, is complicated by the fact that
the values of model parameters can often be changed without affecting model predic-
tions. Before the values of model parameters can be meaningfully interpreted, one must
remove these degrees of freedom (called “gauge freedoms” in physics) by imposing addi-
tional constraints (a process called “fixing the gauge”). However, strategies for fixing the
gauge of sequence-function relationships have received little attention. Here we derive
an analytically tractable family of gauges for a large class of sequence-function relation-
ships. These gauges are derived in the context of models with all-order interactions, but
an important subset of these gauges can be applied to diverse types of models, including
additive models, pairwise-interaction models, and models with higher-order interactions.
Many commonly used gauges are special cases of gauges within this family. We demon-
strate the utility of this family of gauges by showing how different choices of gauge can
be used both to explore complex activity landscapes and to reveal simplified models that
are approximately correct within localized regions of sequence space. The results pro-
vide practical gauge-fixing strategies and demonstrate the utility of gauge-fixing for model
exploration and interpretation.

Author summary
Biophysics and other areas of quantitative biology rely heavily on mathematical models
that predict biological activities from DNA, RNA, or protein sequences. Interpreting the
parameters of these models, however, is not trivial. Here we address a core challenge
for model interpretation–the presence of “gauge freedoms”, i.e., directions in parameter
space that do not affect model predictions and therefore cannot be constrained by data.
Our results provide an explicit mathematical method for removing these unconstrained
degrees of freedom–a process called “fixing the gauge”–that can be applied to a wide
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range of commonly use models of sequence-function relationships, including models
that describe interactions of arbitrarily high order. These results unify diverse gauge
fixing methods that have been previously described in the literature for specific types of
models. We further show how our gauge-fixing approach can be used to simplify com-
plex models in user-specified regions of sequence space. This work thus overcomes a
major obstacle in the interpretation of quantitative sequence-function relationships.
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Introduction
One of the central challenges of biology is to understand how functionally relevant infor-
mation is encoded within DNA, RNA, and protein sequences. Unlike the genetic code, most
sequence-function relationships are quantitative in nature, and understanding them requires
finding mathematical functions that, upon being fed unannotated sequences, return values
that quantify sequence activity [1]. Multiplex assays of variant effects (MAVEs), functional
genomics methods, and other high-throughput techniques are rapidly increasing the ease
with which sequence-function relationships can be experimentally studied. And while quan-
titative modeling efforts based on these high-throughput data are becoming increasingly suc-
cessful, in that they yield models with ever-increasing predictive ability, major open ques-
tions remain about how to interpret both the parameters [2–12] and the predictions [13–17]
of the resulting models. One major open question is how to deal with the presence of gauge
freedoms.

Gauge freedoms are directions in parameter space along which changes in model param-
eters have no effect on model predictions [18]. Not only can the values of model parameters
along gauge freedoms not be determined from data, differences in parameters along gauge
freedoms have no biological meaning even in principle. Many commonly used models of
sequence-function relationships exhibit numerous gauge freedoms [19–35], and interpreting
the parameters of these models requires imposing additional constraints on parameter values,
a process called “fixing the gauge”.

The gauge freedoms of sequence-function relationships are most completely understood
in the context of additive models (commonly used to describe transcription factor binding
to DNA [19,22,35]) and pairwise-interaction models (commonly used to describe proteins
[20,21,23–34]). Recently, some gauge-fixing strategies have been described for all-order inter-
action models, again in the context of protein sequence-function relationships [30,31,34].
However, a unified gauge-fixing strategy applicable to diverse models of sequence-function
relationships has yet to be developed.

Here we provide a general treatment of the gauge fixing problem for sequence-function
relationships, focusing on the important case where the set of gauge-fixed parameters form a
vector space. These “linear gauges” predominate in the literature (though there are exceptions
[36,37]), and have the useful property that differences between vectors of gauge-fixed parame-
ter values are directly interpretable. We first demonstrate the relationship between these linear
gauges and L2 regularization on parameter vectors, and then derive a mathematically tractable
family of gauges for the all-order interaction model. Importantly, a subset of these gauges–the
“hierarchical gauges”–can be applied to diverse models beyond just the all-order interaction
model (including additive models, pairwise-interaction models, and higher-order interaction
models) and include as special cases two types of gauges that are commonly used in practice
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(“zero-sum gauges” [23,28] and “wild-type gauges” [9,23,33]). We then illustrate the proper-
ties of this family of gauges by analyzing two example sequence-function relationships: a sim-
ulated all-order interaction landscape on short binary sequences, and an empirical pairwise-
interaction landscape for the B1 domain of protein G (GB1). The GB1 analysis, in particular,
shows how different hierarchical gauges can be used to explore, simplify, and interpret com-
plex functional landscapes. A companion paper [38] further explores the mathematical ori-
gins of gauge freedoms in models of sequence-function relationships, and shows how gauge
freedoms arise as a consequence of the symmetries of sequence space.

Results
Preliminaries and background
In this section we review how gauge freedoms arise in commonly used models of sequence-
function relationships, as well as strategies commonly used to fix the gauge. In doing so, we
establish notation and concepts that are used in subsequent sections.

Linear models. We define quantitative models of sequence-function relationships as
follows. LetA denote an alphabet comprising 𝛼 distinct characters (written c1,… , c𝛼), let S
denote the set of sequences of length L built from these characters, and let N = 𝛼L denote the
number of sequences in S . A quantitative model of a sequence-function relationship (hence-
forth “model”) is a function f(s;𝜃) that maps each sequence s in S to a real number. The vec-
tor 𝜃 represents the parameters on which this function depends and is assumed to comprise
M real numbers. sl denotes the character at position l of sequence s. We use l, l′, etc. to index
positions (ranging from 1 to L) in a sequence and c, c′, etc. to index characters inA.

A linear model is a model that is a linear function of 𝜃. Linear models have the form

f(s;𝜃) = 𝜃 ⋅ x⃗(s) =
M
∑
i=1
𝜃ixi(s), (1)

where x⃗(⋅) is a vector ofM distinct sequence features and each sequence feature xi(⋅) is a
function that maps sequences to the real numbers. We refer to the spaceℝM in which x⃗(⋅)
lives as feature space, and the specific vector x⃗(s) as the embedding of sequence s in feature
space. We use E to denote the vector space spanned by the set of embeddings x⃗(s) for all
sequences s in S . We emphasize that E is often a proper subspace ofℝM (i.e., has dimension
less thanM). Indeed, this is what causes f to have gauge freedoms.

One-hot models. One-hot models are linear models based on sequence features that indi-
cate the presence or absence of specific characters at specific positions within a sequence [1].
Such models play a central role in scientific reasoning concerning sequence-function relation-
ships because their parameters can be interpreted as quantitative contributions to the mea-
sured function due to the presence of specific biochemical entities (e.g. nucleotides or amino
acids) at specific positions in the sequence. These one-hot models include additive models,
pairwise-interaction models, all-order interaction models, and more. Additive models have
the form

fadd(s) = 𝜃0x0(s) +∑
l
∑
c
𝜃cl xcl (s), (2)

where x0(s) is the constant feature (equal to one for every sequence s) and xcl (s) is an additive
feature (equal to one if sequence s has character c at position l and equal to zero otherwise;
note that c is used here as a superscript and not a power). Pairwise interaction models have
the form
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fpair(s) = 𝜃0x0(s) +∑
l
∑
c
𝜃cl xcl (s) +∑

l<l′
∑
c,c′
𝜃cc′ll′ x

cc′
ll′ (s), (3)

where xcc
′

ll′ (s) is a pairwise feature (equal to one if s has character c at position l and character
c′ at position l′, and equal to zero otherwise). All-order interaction models include interac-
tions of all orders and have the form

fall(s) =
L
∑
K=0

∑
l1<…<lK

∑
c1 ,…,cK

𝜃c1…cKl1…lK x
c1…cK
l1…lK (s), (4)

where xc1c2…cKl1l2…lK (s) is a K-order feature (equal to one if s has character ck at position lk for all k,
and equal to zero otherwise; K = 0 corresponds to the constant feature).

Gauge freedoms. Gauge freedoms are transformations of model parameters that leave all
model predictions (i.e., the values f (s) at all sequences s) unchanged. The gauge freedoms of a
general sequence-function relationship f(⋅, ⋅) are vectors g⃗ inℝM that satisfy

f(s;𝜃) = f(s;𝜃 + g⃗) for all s∈ S . (5)

For linear models, gauge freedoms g⃗ satisfy

Xg⃗ = 0⃗, (6)

where X is the N × M design matrix having rows x⃗(s) for s∈ S . In linear models, gauge free-
doms thus arise when sequence features (i.e., the columns of X) are not linearly independent.
In such cases, the space E spanned by sequence embeddings is a proper subspace ofℝM, the
space G of gauge freedoms is also a proper subspace, and G is orthogonal to E.

Each linear relation between multiple columns of X yields a gauge freedom. For example,
additive models have L gauge freedoms arising from the L linear relations,

x0(s) =∑
c
xcl (s), (7)

for all positions l. Pairwise models have L gauge freedoms arising from the L additive model
linear relations in Eq (7), and (L2)(2𝛼 – 1) additional gauge freedoms arising from the linear
relations

xcl (s) =∑
c′
xcc

′

ll′ (s) and xc
′

l′ (s) =∑
c
xcc

′

ll′ (s) (8)

for all characters c, c′ and all positions l and l′, with l < l′ (see 2 for details). More generally,
the gauge freedoms of one-hot models arise from the fact that summing any K-order feature
xc1…cKl1…lK over all characters ck at any chosen position lk yields a feature of order K–1. A proof
that all gauge freedoms arise from such constraints is given in our companion paper [38].

Parameter values depend on choice of gauge. Gauge freedoms pose problems for the
interpretation of model parameters (e.g., when interpreting attribution maps from genomic
AI models [40]) because, when gauge freedoms are present, different choices of model param-
eters can give the exact same model predictions. Thus, unless constraints are placed on the
values of allowable parameters, individual parameters will have little biological meaning
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Fig 1. Choice of gauge impacts model parameters. (A–C) Parameters, expressed in three different gauges, for an additive model describing the (negative) binding
energy of the E. coli transcription factor CRP to DNA. Model parameters are from [37]. In each panel, additive parameters 𝜃cl are shown using both (top) a heat map
and (bottom) a sequence logo [39]. The value of the constant parameter 𝜃0 is also shown. (A) The zero-sum gauge, in which the additive parameters at each position
sum to zero. (B) The wild-type gauge, in which the additive parameters at each position quantify activity differences with respect to a wild-type sequence, swt. The
wild-type sequence used here (indicated by dots on the heat map) is the CRP binding site present at the E. coli lac promoter. (C) The maximum gauge, in which the
additive parameters at each position quantify differences with respect to the optimal character at that position. Note that, while the value of each additive parameter
𝜃cl varies between panels A-C, differences of the form 𝜃cl – 𝜃c

′
l are preserved.

https://doi.org/10.1371/journal.pcbi.1012818.g001

when viewed in isolation. To interpret model parameters, one therefore needs to adopt con-
straints that eliminate gauge freedoms and, as a result, make the values of model parame-
ters unique. Geometrically, this means restricting model parameters to a subspace Θ, called
“the gauge”, on which these constraints are satisfied. This process of choosing constraints (i.e.,
choosing Θ) is called “fixing the gauge”. There are many different gauge-fixing strategies. For
example, Fig 1 shows an additive model of the DNA binding energy of CRP (an important
transcription factor in Escherichia coli [41]) expressed in three different choices of gauge.

Fig 1A shows parameters expressed in the “zero-sum gauge” [23,28] (also called the “Ising
gauge” [28], or the “hierarchical gauge” [9]). In the zero-sum gauge, the constant parame-
ter is the mean sequence activity and the additive parameters quantify deviations from this
mean activity. The name of the gauge comes from the fact that the additive parameters at each
position sum to zero. The zero-sum gauge is commonly used in additive models of protein-
DNA binding [35,42–47]. As we will see, zero-sum gauges are readily defined for models with
pairwise and higher-order interactions as well.

Fig 1B shows parameters expressed in the “wild-type gauge” [9,23,33] (also called the
“lattice-gas gauge” [28] or the “mismatch gauge” [35]). In the wild-type gauge, the constant
parameter is equal to the activity of a chosen wild-type sequence (denoted swt), and additive
parameters are the changes in activity that result from mutations away from the wild-type
sequence. The wild-type gauge is commonly used to visualize the results of mutational scan-
ning experiments on proteins [48–52] or on long DNA regulatory sequences [53–58]. As we
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Fig 2. Geometry of gauge spaces for additive one-hot models. (A–C) Geometric representation of the gauge spaceΘ to which the additive parameters at each
position l are restricted in the corresponding panel of Fig 1. Each of the four sequence features (𝜃Al , 𝜃Cl , 𝜃Gl , and 𝜃Tl ) corresponds to a different axis. Note that the
two axes for 𝜃Gl and 𝜃Tl are shown as one axis to enable 3D visualization. Black and gray arrows respectively denote unit vectors pointing in the positive and negative
directions along each axis. G indicates the space of gauge transformations.

https://doi.org/10.1371/journal.pcbi.1012818.g002

will see, wild-type gauges are also readily defined for models with pairwise and higher-order
interactions.

Fig 1C shows parameters expressed in what we call the “maximum gauge”. In the maxi-
mum gauge, the constant parameter is equal to the activity of the highest-activity sequence,
and additive parameters are the changes in activity that result from mutations away from this
sequence. The maximum gauge is less common in the literature than the zero-sum gauge or
wild-type gauge, but has been used in multiple publications [36,37].

Linear gauges. Here and throughout the rest of this paper we focus on linear gauges,
i.e., choices of Θ that are linear subspaces of feature space. For example, the zero-sum gauge
and wild-type gauge (Fig 2A and 2B) are two commonly used linear gauges, whereas the
maximum gauge (Fig 2C) is not a linear gauge. Linear gauges are the most mathematically
tractable family of gauges. Linear gauges also have the attractive property that the difference
between any two parameter vectors in Θ is also in Θ. This property makes the comparison of
models within the same gauge straight-forward.

Parameters can be fixed to any chosen linear gauge via a corresponding linear projection.
Formally, for any linear gauge Θ there exists anM × M projection matrix P that projects any
vector 𝜃init along the gauge space G to an equivalent vector 𝜃fixed that lies in Θ, i.e.

𝜃fixed = P𝜃init. (9)

See S1 Text Sec 3 for a proof. We emphasize that P depends on the choice of Θ, and that P is
an orthogonal projection only for the specific choice Θ = E.

Parameters can also be gauge-fixed through a process of constrained optimization. Let Λ
be any positive-definiteM×Mmatrix, and let y⃗ = X𝜃init be the N-dimensional vector of model
predictions on all sequences. Then Λ specifies a unique gauge-fixed set of parameters that
preserves y⃗ via

𝜃fixed = argmin
�⃗� ∶X�⃗�=y⃗

∥𝜃∥Λ2 , where ∥𝜃∥Λ2 = 𝜃⊤Λ𝜃. (10)
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We call Λ the “penalization matrix” because it determines how much each direction in
parameter space is penalized in Eq (10). The resulting gauge space comprises the set of vec-
tors that minimize the Λ-norm ∥𝜃∥Λ in each gauge orbit, where the gauge orbit of a param-
eter vector 𝜃 is the set of equivalent vectors 𝜃+ g⃗ for all g∈G. The corresponding projection
matrix is

P =Λ–1/2(XΛ–1/2)+X, (11)

where ‘+’ indicates the Moore-Penrose pseudoinverse. See S1 Text Sec 3 for a proof. In what
follows, the connection between the penalization matrix Λ and the projection matrix P will be
used to help interpret the constraints imposed by the gauge space Θ.

One consequence of Eq (10) is that parameter inference carried out using a positive-
definite L2 regularizer Λ on model parameters will result in gauge-fixed model parameters in
the specific linear gauge determined by Λ (see S1 Text Sec 3). While it might then seem that
L2 regularization on parameter values during inference solves the gauge fixing problem, it is
important to understand that such regularization will also change model predictions (i.e., the
value of f ), whereas gauge-fixing itself influences only the values of parameters while keep-
ing the model predictions fixed. In addition, we show in S1 Text Sec 3 that, for any desired
positive-definite regularizer on model predictions and choice of linear gauge Θ, we can con-
struct a penalization matrix Λ that imposes the desired regularization on model predictions
and yields inferred parameters in the desired gauge. Thus while L2 regularization during
parameter inference can simultaneously fix the gauge and regularize model predictions, the
regularization imposed on model predictions does not constrain the choice of gauge.

Unified approach to gauge fixing
We now derive strategies for fixing the gauge of the all-order interaction model. We first intro-
duce a geometric formulation of the all-order interaction model embedding. We then con-
struct a parametric family of gauges for the all-order interaction model, and derive formulae
for the corresponding projection and penalization matrices. Next, we highlight specific gauges
of interest in this parametric family. We focus in particular on the “hierarchical gauges”,
which can be applied to a variety of commonly used models in addition to the all-order inter-
action model. The results provide explicit gauge-fixing formulae that can be applied to diverse
quantitative models of sequence-function relationships.

All-order interaction models. To aid in our discussion of the all-order interaction model
[Eq (4)], we define an augmented alphabetA′ = {∗, c1,… , c𝛼}, where c1,… , c𝛼 are the char-
acters inA and ∗ is a wild-card character that is interpreted as matching any character inA.
Let S ′ denote the set of sequences of length L comprising characters fromA′. For each aug-
mented sequence s′ ∈ S ′, we define the sequence feature xs′(s) to be 1 if a sequence smatches
the pattern described by s′ and to be 0 otherwise. In this way, each augmented sequence s′

serves as a regular expression against which bona fide sequences are compared.
Assigning one parameter 𝜃s′ to each of theM = (𝛼 + 1)L augmented sequences s′, the

all-order interaction model can be expressed compactly as

fall(s;𝜃) = ∑
s′∈S′

𝜃s′xs′(s). (12)

In this notation, the constant parameter 𝜃0 is written 𝜃∗⋯∗, each additive parameter 𝜃cl
is written 𝜃∗⋯c⋯∗, each pairwise-interaction parameter 𝜃cc′ll′ is written 𝜃∗⋯c⋯c′⋯∗, and so on.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012818 March 20, 2025 7/ 24

https://doi.org/10.1371/journal.pcbi.1012818


ID: pcbi.1012818 — 2025/3/20 — page 8 — #8

PLOS COMPUTATIONAL BIOLOGY Gauge fixing for sequence-function relationships

(Here c occurs at position l, c′ occurs at position l′, and⋯ denotes a run of ∗ characters).
We thus see that augmented sequences provide a convenient way to index the features and
parameters of the all-order interaction model.

Next we observe that xs′ can be expressed in a form that factorizes across positions. For
each position l, we define x∗l (s) = 1 for all sequences s and take xc1l ,… , xc𝛼l to be the standard
one-hot sequence features. xs′ can then be written in the factorized form,

xs′(s) =
L
∏
l=1

xs
′
l
l (s). (13)

From this it is seen that the embedding for the all-order interaction model, x⃗all(s), can be
formulated geometrically as a tensor product:

x⃗all(s) =
L

⨂
l=1

x⃗′l(s), where x⃗′l(s) =

⎛
⎜⎜⎜⎜
⎝

x∗l (s)
xc1l (s)
⋮

xc𝛼l (s)

⎞
⎟⎟⎟⎟
⎠

. (14)

See S1 Text Sec 4 for details.
Parametric family of gauges. We now define a useful parametric family of gauges for

the all-order interaction model. As we will show, this family includes all of the most com-
monly used gauges in the literature (but not some less commonly used gauges, e.g., the max-
imum gauge [36,37]). Each gauge in this family is defined by two parameters, 𝜆 and p. 𝜆 is a
non-negative real number that governs how much higher-order versus lower-order sequence
features are penalized [in the sense of Eq (10)]. p is a probability distribution on sequence
space that governs how strongly the specific characters at each position are penalized. This
distribution is assumed to have the form

p(s) = ps11 p
s2
2 ⋯p

sL
L , (15)

where pcl denotes the probability of character c at position l. This assumption excludes distri-
butions that have correlations between positions. But as we show below, choosing appropriate
values for 𝜆 and p nevertheless recovers the most commonly used linear gauges, including the
zero-sum gauge, the wild-type gauge, and more.

Gauges in the parametric family have analytically tractable projection matrices because
each gauge can be expressed as a tensor product of single-position gauge spaces. Let Θ𝜆,p

l be
the 𝛼-dimensional subspace ofℝ𝛼+1 defined by

Θ𝜆,p
l =V𝜆 ⊕Vpl

⟂ , (16)

where V𝜆 (a 1-dimensional subspace) and Vpl
⟂ [an (𝛼 – 1)-dimensional subspace] are defined

by

V𝜆 = span

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜
⎝

𝜆
1
⋮
1

⎞
⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

, Vpl
⟂ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜
⎝

0
vc1
⋮
vc𝛼

⎞
⎟⎟⎟⎟
⎠

∶
𝛼
∑
i=1

pcil vci = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

. (17)

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012818 March 20, 2025 8/ 24

https://doi.org/10.1371/journal.pcbi.1012818


ID: pcbi.1012818 — 2025/3/20 — page 9 — #9

PLOS COMPUTATIONAL BIOLOGY Gauge fixing for sequence-function relationships

The full parametric gauge, denoted by Θ𝜆,p, is defined to be the tensor product of these single-
position gauges:

Θ𝜆,p =
L

⨂
l=1

Θ𝜆,p
l . (18)

As detailed in S1 Text Sec 5, the corresponding projection matrix P𝜆,p is found to have ele-
ments given by

P𝜆,ps′t′ = ∏
l s.t.
s′l ∈A
t′l ∈A

(𝛿s′l t′l – p
t′l
l 𝜂)× ∏

l s.t.
s′l = ∗
t′l ∈A

(pt
′
l
l 𝜂)× ∏

l s.t.
s′l ∈A
t′l = ∗

(1 – 𝜂)× ∏
l s.t.
s′l = ∗
t′l = ∗

𝜂, (19)

where 𝜂 = 𝜆/(1 + 𝜆) and where the augmented sequences s′ and t′ respectively index rows and
columns. We thus obtain an explicit formula for the projection matrix needed to project any
parameter vector into any gauge in the parametric family.

Gauges in the parametric family also have penalization matrices of a simple diagonal form.
Specifically, if 0 < 𝜆 <∞ and p(s′) > 0 everywhere, Eq (10) is satisfied by the penalization
matrix Λ having elements

Λs′t′ = p(s′)𝜆o(s
′)𝛿s′t′ , (20)

where o(s′) denotes the order of interaction described by s′ (i.e., the number of non-star char-
acters in s′) and p(s′) is defined as in Eq (15) but with ps

′
l
l = 1 when s′l = ∗. See S1 Text Sec 5 for

a proof. Note that, although Eq (20) does not hold when 𝜆 = 0, when 𝜆 =∞, or when pcl = 0 for
any choice of c and l, one can still interpret Θ𝜆,p [which is well-defined in Eq (18) and Eq (19)]
as arising from Eq (10) under a limiting series of penalization matrices Λ.

Trivial gauge. Choosing 𝜆 = 0 yields what we call the “trivial gauge”. In the trivial gauge,
𝜃s′ = 0 if s′ contains one or more star characters [by Eq (19)], and so the only nonzero param-
eters correspond to interactions of order L. As a result,

fall(s,𝜃) = 𝜃s (21)

for every sequence s∈ S . Note in particular that the trivial gauge is unaffected by p. Thus,
the trivial gauge essentially represents sequence-function relationships as catalogs of activity
values, one value for every sequence. See S1 Text Sec 6 for details.

Euclidean gauge. Choosing 𝜆 = 𝛼 and choosing p to be the uniform distribution recovers
what we call the “euclidean gauge”. In the euclidean gauge, the penalizing norm in Eq (10) is
the standard euclidean norm, i.e.

||𝜃||2Λ =∑
s′
𝜃2s′ . (22)

In S1 Text Sec 6 we show that the euclidean gauge is equal to the embedding space E and that
parameter inference using standard L2 regularization (i.e. choosing Λ to be a positive multiple
of the identity matrix) will yield parameters in E.
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Equitable gauge. Choosing 𝜆 = 1 and letting p vary recovers what we call the “equitable
gauge”. In the equitable gauge, the penalizing norm is

||𝜃||2Λ =∑
s′
p(s′)𝜃2s′ =∑

s′
⟨ f2s′⟩p =∑

s′
|| fs′ ||2p, (23)

where fs′ = 𝜃s′xs′ denotes the contribution to the activity landscape corresponding to the
sequence feature s′, ⟨⋅⟩p denotes an average over sequences drawn from p, and || f ||2p =
∑s∈S p(s)f(s)

2 is the squared norm of a function f on sequence space with respect to p. The
equitable gauge thus penalizes each parameter 𝜃s′ in proportion to the fraction of sequences
that parameter applies to. Equivalently, the equitable gauge can be thought of as minimizing
the sum of the squared norms of the landscape contributions || fs′ ||2p rather than the squared
norm of the parameter values themselves. Unlike the euclidean gauge, the equitable gauge
accounts for the fact that different model parameters can affect vastly different numbers of
sequences and can thereby have vastly different impacts on the activity landscape. See S1 Text
Sec 6 for details.

Hierarchical gauge. Choosing arbitrary p and taking 𝜆→∞ yields what we call the
“hierarchical gauge”. When expressed in the hierarchical gauge, model parameters obey the
marginalization property,

∑
ck

pcklk 𝜃
c1…cK
l1…lK = 0, (24)

for all interaction orders K, all choices of K positions l1,… , lK, all choices of characters
c1,… , cK at these positions, and all choices of index k = 1,… ,K. This marginalization prop-
erty has important consequences that we now summarize. See S1 Text Sec 7 for proofs of these
results.

A first consequence of Eq (24) is that, when parameters are expressed in the hierarchi-
cal gauge, the mean activity among sequences matched by an augmented sequence can be
expressed as a simple sum of parameters. For example,

⟨fall⟩p = 𝜃0, (25)
⟨fall | c at l⟩p = 𝜃0 + 𝜃cl , (26)

⟨fall | c at l, c′ at l′⟩p = 𝜃0 + 𝜃cl + 𝜃c
′
l′ + 𝜃cc

′
ll′ , (27)

and so on. Consequently, the parameters themselves can also be expressed in terms of differ-
ences of these average values. For instance, 𝜃cl = ⟨ fall | c at l⟩p – ⟨ fall⟩p. Because p factorizes by
position, conditioning on having particular characters in a subset of positions is equivalent
to the probability distribution produced by drawing sequences from p and then fixing those
positions in the drawn sequences to those specific characters. Thus, 𝜃cl can also be interpreted
as the average effect of mutating position l to character c when sequences are drawn from p.
Similarly, 𝜃cc′ll′ is the average effect, when drawing sequences from p, of fixing the character at
position l to c and the one at l′ to c′ beyond what would be expected based on the effects of
changing l to c and l′ to c′ individually (i.e., epistasis). Higher-order coefficients have a sim-
ilar interpretation. The hierarchical gauge thus provides an ANOVA-like decomposition of
activity landscapes.

A second consequence of Eq (24) is that the activity landscape, when expressed in the hier-
archical gauge, naturally decomposes into mutually orthogonal components. Let 𝜎 denote
a set comprising all augmented sequences that have the same pattern of star and non-star
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positions, and let f𝜎 =∑s′∈𝜎 𝜃s′ xs′ be the corresponding component of fall. These landscape
components are p-orthogonal when expressed in the hierarchical gauge:

⟨f𝜎f𝜏⟩p = 𝛿𝜎𝜏 ∑
s′∈𝜎

p(s′)𝜃2s′ , (28)

where 𝜎 and 𝜏 represent any two such sets of augmented sequences. One implication of this
orthogonality relation is that the variance of the landscape (with respect to p) is the sum of
contributions from interactions of different orders:

varp[ f] =
L
∑
k=0

varp[ fk], (29)

where fk denotes the sum of all k-order terms that contribute to fall. Another implication is
that the hierarchical gauge minimizes the variance attributable to different orders of interac-
tion in a hierarchical manner: higher-order terms are prioritized for variance minimization
over lower-order terms, and within a given order parameters are penalized in proportion to
the fraction of sequences they apply to.

A third consequence of Eq (24) is that hierarchical gauges preserve the form of a large class
of one-hot models that are equivalent to all-order interaction models with certain parameters
fixed at zero (specifically, these models satisfy the condition that if a parameter for a sequence
feature is fixed at zero, all higher-order sequence features contained within that sequence fea-
ture also have their parameters fixed at zero). These models, which we call the “hierarchical
models,” include all-order interaction models in which the parameters above a specified order
are zero (e.g., additive models and pairwise-interaction models), but also include other mod-
els, such as nearest-neighbor interaction models. Projecting onto the hierarchical gauge (but
not other parametric family gauges) is guaranteed to produce a parameter vector where the
appropriate entries are still fixed to be zero.

Zero-sum gauge. The zero-sum gauge (illustrated in Figs 1A and 2A) is the hierarchical
gauge for which p is the uniform distribution. The name of this gauge comes from the fact
that, when p is uniform, Eq (24) becomes

∑
ck

𝜃c1…cKl1…lK = 0. (30)

Prior studies [12,15] have characterized the zero-sum gauge for the all-order interaction
model. Our formulation of the hierarchical gauge extends those findings and generalizes them
to gauges defined by non-uniformly weighted sums of parameters.

Wild-type and generalized wild-type gauges. The wild-type gauge (illustrated in Figs 1B
and 2B) is a hierarchical gauge that arises in the limit as p approaches an indicator function
for some wild-type sequence, swt. In the wild-type gauge, only the parameters 𝜃s′ for which
s′ matches swt receive any penalization, and all these penalized 𝜃s′ (except for 𝜃0) are there-
fore driven to zero by minimization of the Λ-norm. Consequently, 𝜃0 quantifies the activity
of the wild-type sequence, each 𝜃cl quantifies the effect of a single mutation to the wild-type
sequence, each 𝜃cc′ll′ quantifies the epistatic effect of two mutations to the wild-type sequence,
and so on. However, seeing the wild-type gauge as a special case of the hierarchical gauge pro-
vides the possibility of generalizing the wild-type gauge by using a p that is not the indicator
function on a single sequence but rather defines a distribution over one or more alleles per
position that can be considered as being “wild-type” (equivalently, the frequencies of some
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subset of position-specific characters are set to zero). Examples illustrating the utility of differ-
ent choices for p are provided below. These gauges all inherit the property from the hierarchi-
cal gauge that their coefficients relate to the average effect of taking draws from the probability
distribution defined by p and setting a subset of positions to the characters specified by that
coefficient. More rigorously, these gauges are defined by considering the limit as 𝜖 → 0+ of the
hierarchical gauge with factorizable distribution

p𝜖(s) =∏
l
[(1 – 𝜖)psll +

𝜖
𝛼 ] , (31)

where the psll ≥ 0 are the position-specific factors of the desired nonnegative vector of proba-
bilities p.

Applications
We now demonstrate the utility of our results on two example models of complex sequence-
function relationships. First, we study how the parameters of the all-order interaction model
behave under different parametric gauges in the context of a simulated landscape on short
binary sequences. Although a number of studies have reported combinatorially complete
landscapes in diverse biological systems (e.g., [46,47,59–65], focusing on this small simulated
landscape allows us to better observe the nontrivial collective behavior that model parameters
exhibit across different choices of gauge. Second, we examine the parameters of an empir-
ical pairwise-interaction model for protein GB1 using the zero-sum and multiple general-
ized wild-type gauges. We observe how these different hierarchical gauges enable different
interpretations of model parameters and facilitate the derivation of simplified models that
are approximately correct in different localized regions of sequence space. The results pro-
vide intuition for the behavior of the various parametric gauges, and show in particular how
hierarchical gauges can be used to explore and interpret real sequence-function relationships.

Gauge-fixing a simulated landscape on short binary sequences. To illustrate the conse-
quences of choosing gauges in the parametric family, we consider a simulated random land-
scape on short binary sequences. Consider sequences of length L = 3 built from the alphabet
A = {0, 1}, and assume that the activities of these sequences are as shown in Fig 3A. The cor-
responding all-order interaction model has (𝛼+ 1)L = 27 parameters, which we index using
augmented sequences: 1 constant parameter (𝜃∗∗∗), 6 additive parameters (𝜃0∗∗, 𝜃1∗∗, 𝜃∗0∗,
𝜃∗1∗, 𝜃∗∗0, 𝜃∗∗1), 12 pairwise parameters (𝜃00∗, 𝜃01∗, 𝜃10∗, 𝜃11∗, 𝜃0∗0, 𝜃0∗1, 𝜃1∗0, 𝜃1∗1, 𝜃∗00,
𝜃∗01, 𝜃∗10, 𝜃∗11), and 8 third-order parameters (𝜃000, 𝜃001, 𝜃010, 𝜃011, 𝜃100, 𝜃101, 𝜃110, 𝜃111).

We now consider what happens to the values of these 27 parameters when they are
expressed in different parametric gauges, Θ𝜆,p. Specifically, we assume that p is the uniform
distribution (though analogous results hold for other choices of p) and vary the parameter 𝜆
from 0 to∞ (equivalently 𝜂 varies from 0 to 1). Note that each entry in the projection matrix
P𝜆,p (Eq 19) is a cubic function of 𝜂 due to L = 3. Consequently, each of the 27 gauge-fixed
model parameters is a cubic function of 𝜂 (Fig 3B). In the trivial gauge (𝜆 = 0, 𝜂 = 0), only the
8 third-order parameters are nonzero and the values of these parameters correspond to the
values of the landscape at the 8 corresponding sequences. In the equitable gauge (𝜆 = 1, 𝜂 =
1/2), the spread of the 8 third-order parameters about zero is larger than that of the 12 pair-
wise parameters, which is larger than that of the 6 additive parameters, which is larger than
that of the constant parameter. In the euclidean gauge (𝜆 = 2,𝜂 = 2/3), the parameters of all
orders exhibit a similar spread about zero. In the hierarchical gauge (𝜆 =∞, 𝜂 = 1), the spread
of the 8 third-order parameters about zero is smaller than that of the 12 pairwise parameters,
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Fig 3. Binary landscape expressed in various parametric family gauges. (A) Simulated random activity landscape
for binary sequences of length L = 3. (B) Parameters of the all-order interaction model for the binary landscape as
functions of 𝜂 = 𝜆/(1+𝜆). Values of 𝜂 corresponding to different named gauges are indicated. Note: because the
uniform distribution is assumed in all these gauges, the hierarchical gauge is also the zero-sum gauge.

https://doi.org/10.1371/journal.pcbi.1012818.g003

which is smaller than that of the 6 additive parameters, which is smaller than that of the con-
stant parameter. Moreover, the marginalization and orthogonality properties of the hierarchi-
cal gauge fix certain parameters to be equal or opposite to each other, e.g., 𝜃1∗∗ = –𝜃0∗∗ and
the third order parameters are all equal up to their sign, which depends only on whether the
corresponding sequence feature has an even or odd number of “1”s.

This example illustrates generic features of the parametric gauges. For any all-order inter-
action model on sequences of length L, the entries of the projection matrix P𝜆,p will be L-
order polynomials in 𝜂. Consequently, the values of model parameters, when expressed in
the gauge Θ𝜆,p, will also be L-order polynomials in 𝜂. In the trivial gauge, only the highest-
order parameters will be nonzero. In the equitable gauge, the spread about zero will tend to
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be smaller for lower-order parameters relative to higher-order parameters. In the euclidean
gauge, parameters of all orders will exhibit similar spread about zero. In the zero-sum gauge,
the spread about zero will tend to be minimized for higher-order parameters relative to lower-
order parameters. The nontrivial quantitative behavior of model parameters in different para-
metric gauges thus underscores the importance of choosing a specific gauge before quantita-
tively interpreting parameter values.

Hierarchical gauges of an empirical landscape for protein GB1. Projecting model
parameters onto different hierarchical gauges can facilitate the exploration and interpretation
of sequence-function relationships. To demonstrate this application of gauge fixing, we con-
sider an empirical sequence-function relationship describing the binding of the GB1 protein
to immunoglobulin G (IgG). Wu et al. [60] performed a deep mutational scanning experi-
ment that measured how nearly all 204 = 160, 000 amino acid combinations at positions 39,
40, 41, and 54 of GB1 affect GB1 binding to IgG. These data report log2 enrichment values for
each assayed sequence relative to the wild-type sequence at these positions, VDGV (Fig 4A
and 4B). Using these data and least-squares regression, we inferred a pairwise-interaction
model for log2 enrichment as a function of protein sequence at these L = 4 variable positions.
The resulting model comprises 1 constant parameter, 80 additive parameters, and 2400 pair-
wise parameters (Fig 4C). While the model fits the data reasonably well (Fig 4D; R2 = 0.82),
the deviation from measurements is still greater than that expected by experimental uncer-
tainty and can be further reduced by using a more complex model (e.g., one that includes a
global epistasis nonlinearity [9,67]). Nevertheless, the pairwise-interaction model serves well
to illuminate the utility of different gauge-fixing strategies. To understand the structure of
the activity landscape described by the pairwise interaction model, we now examine the val-
ues of model parameters in multiple hierarchical gauges. Explicit formulae for implementing
hierarchical gauges for pairwise-interaction models are given in S1 Text Sec 8.

Fig 4C shows the parameters of the pairwise interaction model expressed in the hierar-
chical gauge corresponding to a uniform probability distribution on sequence space (i.e.,
the zero-sum gauge). In the zero-sum gauge, the constant parameter 𝜃0 equals the average
activity of all sequences. We observe 𝜃0 = –4.68, indicating that a typical random sequence is
depleted approximately 20-fold relative to the wild-type sequence, which the pairwise inter-
action model assigns a score of –.21. This finding confirms the expectation that a random
sequence should be substantially less functional than the wild-type sequence.

The additive parameters in the zero-sum gauge are shown in the rectangular heat map in
Fig 4C, and each additive parameter is equal to the difference between the mean activity of
the set of sequences containing the corresponding amino acid at the relevant position relative
to the mean activity of random sequences. We observe that the wild-type sequence receives
positive or near-zero contributions at every position, including a contribution from the most
positive additive parameter, corresponding to G at position 41. The additive parameters at
positions 39, 40, and 54 that contribute to the wild-type sequence, however, are not the largest
additive parameters at these positions. Moreover, the additive parameters that contribute to
the wild-type sequence only sum to 2.32, meaning that even in the zero-sum gauge (which
minimizes the variance due to pairwise parameters), of the total difference (4.47) between
the wild-type score and the average sequence score, almost half (2.15) is due to contributions
from pairwise parameters.

The pairwise parameters in the zero-sum gauge are shown in the triangular heat map in
Fig 4C. Here, each pairwise parameter is equal to the difference between (i) the observed
mean of the sequences containing the specified pair of characters at the specified pair of posi-
tions, and (ii) the expected mean activity based on the mean activity of sequences containing
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Fig 4. Landscape exploration using hierarchical gauges. (A) NMR structure of GB1, with residues V39, D40, G41, and V54 shown (PDB: 3GB1,
from [66]). (B) Distribution of log2 enrichment relative to wild-type measured by [60] for nearly all 160,000 GB1 variants having mutations at
positions 39, 40, 41, and 54. (C) Pairwise interaction model parameters inferred from the data of [60], expressed in the uniform hierarchical gauge
(i.e., the zero-sum gauge). Boxes indicate parameters contributing to the wild-type sequence, VDGV. (D) Performance of pairwise-interaction
model. Axes reflect log2 enrichment values relative to wild-type. Each dot represents a randomly chosen variant GB1 protein assayed by [60]. For
clarity, only 5,000 of the ∼160,000 assayed GB1 variants are shown. (E) Probability logos [39] for uniform, region 1, region 2, and region 3 sequence
distributions. Distributions of pairwise interaction model predictions for each region are also shown. (F) Model parameters expressed in the region
1, region 2, and region 3 hierarchical gauges. Dots and tick marks indicate region-specific constraints. Probability densities (panels B and D) were
estimated using DEFT [45]. Pairwise interaction model parameters were inferred by least-squares regression using MAVE-NN [39]. Regions 1, 2,
and 3 were defined based on [64]. NMR: nuclear magnetic resonance. GB1: domain B1 of protein G.

https://doi.org/10.1371/journal.pcbi.1012818.g004
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the individual characters at those positions together with the grand mean activity. We observe
that the three largest-magnitude pairwise contributions to the wildtype sequence are from
the pair G41V54 (1.25), V39G41 (0.91), and D40G41 (-0.44), indicating that position 41 is
a major hub of epistatic interactions contributing to the wild-type sequence. Moving to the
landscape as a whole, we observe that the largest magnitude pairwise interactions link posi-
tions 41 and 54. Moreover, the strongest positive pairwise contributions are obtained when a
small amino acid (G or A) is present at position 54, and a G, C, A, L, or P is present at posi-
tion 41 (see also [49]). This finding provides insight into the chemical nature of the epistatic
interactions that facilitate wild-type GB1 binding to IgG.

Previous work [64,68] identified three disjoint regions of sequence space (region 1, region
2, and region 3) that contain high-activity sequences as judged by the GB1 measurements
of Wu et al. [60]. Region 1 comprises sequences with G at position 41; region 2 comprises
sequences with L or F at position 41 and G at position 54; and region 3 comprises sequences
with C or A at position 41 and A at position 54. To investigate the structure of the GB1 land-
scape within these three regions, we defined probability distributions that were uniform in
each region of sequence space and zero outside (Fig 4E; see S1 Text Sec 8 for formal defi-
nitions of these regions). We then examined the values of the parameters of the pairwise-
interaction model, with the parameters expressed in the hierarchical gauges corresponding
to the probability distribution p(s) for each of the three regions (the “region 1 hierarchical
gauge”, “region 2 hierarchical gauge”, and “region 3 hierarchical gauge”). Since some char-
acters at positions 41 and 54 have their frequencies set to zero, these hierarchical gauges
are in fact generalized wild-type gauges, and the additive and pairwise parameters can be
interpreted in terms of the mean effects of introducing mutations to these specific regions of
sequences space.

In the region 1 hierarchical gauge (Fig 4F, top), the additive parameters for position 41
quantify the effect of mutations away from G, and the additive parameters for positions 39,
40, and 54 quantify the average effect of mutations conditional on G at position 41. From the
additive parameters at position 54, we observe that cysteine (C) and hydrophobic residues
(A, V, I, L, M, or F) increase binding, and that proline (P) and charged residues (E, D, R, K)
decrease binding. From the additive parameters at position 40, we observe that amino acids
with a 5-carbon or 6-carbon ring (H, F, Y, W) increase binding, suggesting the presence
of structural constraints on side chain shape, rather than constraints on hydrophobicity or
charge. The largest pairwise parameters all involve mutations from G at position 41 to another
amino acid, and careful inspection of these pairwise parameters show that they are roughly
equal and opposite to the additive effects of mutations at the other three positions. This indi-
cates a classical form of masking epistasis, where the typical effect of a mutation at position
41 results in a more or less complete loss of function, after which mutations at the remaining
three positions no longer have a substantial effect.

In the region 2 hierarchical gauge (Fig 4F, middle), the additive parameters at position 54
quantify the average effect of mutations away from G contingent on L or F at position 41, the
additive parameters at position 41 quantify the average effects of mutations away from L or
F contingent on G at position 54, and the additive parameters at positions 39 and 40 quan-
tify the average effects of mutations contingent on L or F at position 41 and on G at position
54. From the values of the additive parameters, we observe that mutations away from L or F at
position 41 in the presence of G at position 54 are typically strongly deleterious (mean effect –
3.39), and that mutations away from G at position 54 in the presence of L or F at position 41
are also strongly deleterious (mean effect –3.75). However, the pairwise parameters linking
positions 41 and 54 are strongly positive (mean effect 2.85), again indicating a masking effect
where the first deleterious mutation at position 41 or 54 results in a more or less complete loss
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of function, so that an additional mutation at the other position has little effect. Note also the
similar but less extreme pattern of masking between the large effect mutations at positions 41
and 54 with the milder mutations at positions 40 and 41, whose interaction coefficients are
of the opposite sign of the additive effects at positions 40 and 41. Similar results hold for the
region 3 hierarchical gauge, where mutations at positions 41 and 54 have masking effects on
each other as well as on mutations in the other two positions (Fig 4F, bottom). However, we
can also contrast patterns of mutational effects between these regions. For example, mutating
position 54 to G (a mutation leading towards region 2) on average has little effect in region 1
but would be deleterious in region 3. Similarly, if we consider mutations leading from region
2 to region 3, we can see that mutating 41 to C in region 2 typically has little effect whereas
mutating 41 to A is more deleterious.

Besides using the interpretation of hierarchical gauge parameters as average effects of
mutations to understand how mutational effects differ in different regions of sequence space,
we hypothesized that by applying different hierarchical gauges to the pairwise interaction
model, one might be able to obtain simple additive models that are accurate in different
regions of sequence space. Our hypothesis was motivated by the fact that the parameters of
all-order interaction models in the zero-sum gauge are chosen to maximize the fraction of
variance in the sequence-function relationship that is explained by lower-order parameters.
To test our hypothesis, we defined an additive model for each of the four hierarchical gauges
described above (uniform, region 1, region 2, and region 3) by projecting pairwise interac-
tion model parameters onto the hierarchical gauge for that region, then setting all the pairwise
parameters to zero. We then evaluated the predictions of each additive model on sequences
randomly drawn from each of the four corresponding probability distributions (uniform,
region 1, region 2, and region 3). The results (Fig 5) show that the activities of sequences sam-
pled uniformly from sequence space are best explained by the additive model derived from
the zero-sum gauge, that the activities of region 1 sequences are best explained by the additive
model derived from the region 1 hierarchical gauge, and so on for regions 2 and 3. In particu-
lar, additive models derived using region-specific gauges are far more accurate in their respec-
tive regions than is the additive model derived using the uniform (i.e., zero-sum) gauge. This
shows that projecting a pairwise interaction model (or other hierarchical one-hot model) onto
the hierarchical gauge corresponding to a specific region of sequence space can sometimes be
used to obtain simplified models that approximate predictions by the original model in that
region.

Discussion
Here we report a unified strategy for fixing the gauge of commonly used models of sequence-
function relationships. First we defined a family of analytically tractable gauges for the all-
order interaction model. We then derived explicit formulae for imposing any of these gauges
on model parameters, and used these formulae to investigate the mathematical properties of
these gauges. The results show that these linear gauges include all of the most commonly used
gauges in the literature (even though most possible gauges, both linear and nonlinear, are not
members of this family). We also find that a subset of these gauges (the hierarchical gauges)
can be applied to diverse lower-order models including additive models, pairwise-interaction
models, and higher-order interaction models.

Next, we demonstrated the family of gauges in two contexts: a simulated all-order interac-
tion landscape on short binary sequences, and an empirical pairwise-interaction landscape
for the protein GB1. The GB1 results, in particular, show how applying different hierarchi-
cal gauges can facilitate the biological interpretation of complex models of sequence-function
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Fig 5. Model coarse-graining using hierarchical gauges. Shown are data for 500 random 4 aa sequences gener-
ated using each of the four distributions listed in Fig 4E (i.e., uniform, region 1, region 2, and region 3). Vertical
axes show log2 enrichment (relative to wild-type) as predicted by additive models of GB1 derived by model trun-
cation using region-specific zero-sum gauges (from Fig 4C and 4F). Horizontal axes show predictions of the full
pairwise-interaction model. Diagonals indicate equality. GB1: domain B1 of protein G.

https://doi.org/10.1371/journal.pcbi.1012818.g005

relationships and the derivation of simplified models that are approximately correct in local-
ized regions of sequence space.

Our study was limited to linear models of sequence-function relationships. Although lin-
ear models are used in many computational biology applications, more complex models are
becoming increasingly common. For example, linear-nonlinear models (which include global
epistasis models [9,67,69,70] and thermodynamic models [37,39,71–74]) are commonly used
to describe fitness landscapes and/or sequence-dependent biochemical activities. The gauge-
fixing strategies described here remain applicable to the linear part of linear-nonlinear mod-
els. We note, however, that such models often have additional gauge freedoms, such as diffeo-
morphic modes [75,76], that also need to be fixed before parameter values can be meaning-
fully interpreted.
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Sloppy modes are another important issue to address when interpreting quantitative mod-
els of sequence-function relationships. Sloppy modes are directions in parameter space that
(unlike gauge freedoms) do affect model predictions but are nevertheless poorly constrained
by data [77,78]. Understanding the mathematical structure of sloppy modes, and developing
systematic methods for fixing these modes, is likely to be more challenging than understand-
ing gauge freedoms. This is because sloppy modes arise from a confluence of multiple factors:
the mathematical structure of a model, the distribution of data in feature space, and measure-
ment uncertainty. Nevertheless, understanding sloppy modes is likely to be as important in
many applications as understanding gauge freedoms. We believe the study of sloppy modes
in quantitative models of sequence-function relationships is an important direction for future
research.

Deep neural network (DNN) models present perhaps the biggest challenge for parameter
interpretation. DNNmodels have had remarkable success in quantitatively modeling biolog-
ical sequence-function relationships, most notably in the context of protein structure predic-
tion [79,80], but also in the context of other processes including transcriptional regulation
[81–83], epigenetics [84–86], and mRNA splicing [87,88]. It remains unclear, however, how
researchers might gain insights into the molecular mechanisms of biological processes from
inferred DNNmodels. DNNs are by nature highly over-parameterized [89–91], making the
direct interpretation of DNN parameters infeasible. Instead, a variety of attribution methods
have been developed to facilitate DNNmodel interpretations [92–95]. Existing attribution
methods can often be thought of as providing additive models that approximate DNNmod-
els in localized regions of sequence space [96], and the presence of gauge freedoms in these
additive models needs to be addressed when interpreting attribution method output (as in
[40,97]). We anticipate that, as DNNmodels become more widely adopted for mechanistic
studies in biology, there will be a growing need for attribution methods that provide more
complex quantitative models that approximate DNNmodels in localized regions of sequence
space [16]. If so, a comprehensive mathematical understanding of gauge freedoms in para-
metric models of sequence-function relationships will be needed to aid in these DNNmodel
interpretations.
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