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Abstract

The neocortex is organized into functionally specialized areas. While the functions and underlying neural circuitry
of individual neocortical areas are well studied, it is unclear how these regions operate collectively to form percepts
and implement cognitive processes. In particular, it remains unknown how distributed, potentially conflicting
computations can be reconciled. Here we show that the reciprocal excitatory connections between cortical areas
orchestrate neural dynamics to facilitate the gradual emergence of a ‘consensus’ across areas. We investigated the
joint neural dynamics of primary (V1) and higher-order lateromedial (LM) visual areas in mice, using simultaneous
multi-area electrophysiological recordings along with focal optogenetic perturbations to causally manipulate neural
activity. We combined mechanistic circuit modeling with state-of-the-art data-driven nonlinear system identification,
to construct biologically-constrained latent circuit models of the data that we could further interrogate. This approach
revealed that long-range, reciprocal excitatory connections between V1 and LM implement an approximate line
attractor in their joint dynamics, which promotes activity patterns encoding the presence of the stimulus consistently
across the two areas. Further theoretical analyses revealed that the emergence of line attractor dynamics is a signature
of a more general principle governing multi-area network dynamics: reciprocal inter-area excitatory connections
reshape the dynamical landscape of the network, specifically slowing down the decay of activity patterns that encode
stimulus features congruently across areas, while accelerating the decay of inconsistent patterns. This selective dynamic
amplification leads to the emergence of multi-dimensional consensus between cortical areas about various stimulus
features. Our analytical framework further predicted the timescales of specific activity patterns across areas, which we
directly verified in our data. Therefore, by linking the anatomical organization of inter-area connections to the features
they reconcile across areas, our work introduces a general theory of multi-area computation.

The neocortex is segregated into distinct areas that are special-1

ized for specific functions. This organization allows for de-2

composing complex problems into simpler sub-computations,3

such as the extraction of low-level features from intricate vi-4

sual scenes. However, cognition arises from the holistic inte-5

gration of these processes, making it essential that the different6

areas work in concert and remain consistent with each other.7

It is unclear how such coordination is achieved, and in partic-8

ular how any conflict that might arise between local subunits9

can be globally resolved.10

Anatomically, cortical areas are densely interconnected11

through reciprocal long-range inter-area connections [Felle-12

man and Van Essen, 1991], whose organization is markedly13

distinct from that of local circuits within a cortical area. For14

instance, both excitatory and inhibitory neurons have local15

innervation, while only excitatory neurons have long-range16

projections that may target other areas [Douglas and Martin,17

2004, Markram et al., 2004, Harris and Shepherd, 2015]. The18

functional role of these distinct connectivity rules is not clear;19

it remains unknown how excitatory inter-area connections20

coordinate cortical activity and unify local sub-units into co-21

herent global computations. To address this, we combined22

mechanistic modelling of cortical circuits with data-driven in-23

ference of circuit dynamics. This approach allowed us to build24

models of cortical activity that not only explained neural re-25

sponses quantitatively, but also captured the causal effects of26

optogenetic perturbations and had biologically interpretable27

components – including local and long-range connections –28

whose functional significance we could interrogate.29

We focused on the joint activity dynamics of the primary (V1)30

and higher-order (LM) visual areas in mice during visual31

processing. We used simultaneous multi-channel recordings32

from V1 and LM performed while mice were presented with33

a 500 ms-long visual stimulus – one of two stationary gratings34

oriented at 45◦ or -45◦(Figure 1A-B). Mice were trained to35

perform a go/no-go task, discriminating the two stimuli. In36

some trials, neural activity in either V1 or LM (varying across37

animals) was perturbed in brief 150 ms time windows, using38

optogenetic activation of inhibitory parvalbumin-expressing39

(PV+) interneurons expressing channelrhodopsin-2 (ChR2)40

(Figure 1C) [Javadzadeh and Hofer, 2022].41

We built circuit models that explicitly incorporated known42

aspects of cortical circuit organization, in particular the exci-43

tatory nature of long-range connections between areas and44
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Figure 1: Modeling input-driven dynamics in the V1-LM network during visual processing. (A) Head-fixed, stationary mice
were presented with two differently oriented stationary grating stimuli (45° or -45°), only one of which was rewarded. Mice reported
the rewarded stimulus by licking a spout, which triggered the delivery of the reward (go/no-go). Paired neural recordings were
performed in retinotopically matched regions of V1 and LM with silicon probes in PV-Cre mice. (B) Trial- and neuron-averaged
spiking activity in no-go trials in V1 (left) and LM (right). A total of 194 neurons in V1 and 228 neurons in LM were recorded
in 7 mice across a total of 513±110 (mean ± std) correct trials per mouse across two stimuli. (C) Top: In some trials, either V1
or LM was silenced through light-mediated activation of parvalbumin-expressing inhibitory cells expressing ChR2. The light
onset was randomly chosen in each trial amongst 8 different times, spanning the duration of the stimulus uniformly (at 65 ms
intervals), with a total of 449±98 (mean ± std) silencing trials per mouse. Bottom: Neuron- and trial-averaged spiking activity
of the optogenetically stimulated PV+ neurons (top) and all other neurons (bottom) in an example animal, for one laser delay.
(D) Biologically-constrained latent circuit model of V1-LM, with dynamics driven by 3 external inputs whose time course is inferred
on a single trial basis. Dashed lines indicate the time-varying standard deviations of the (zero-mean) prior distributions over these
inputs. Solid lines and shaded areas indicate posterior mean and standard deviation respectively, in one example trial, estimated
from 100 posterior samples and smoothed with a running average of 25ms for visualization. (E) Left: Inferred time course of inputs
for three example trials. Each column shows three input channels for one trial (optogenetic perturbation in blue, go stimulus in
green, and no-go stimulus in red). The prior standard deviation (dashed line) indicates the presence of each input in the trial: no-go
stimulus in the first trial, go stimulus paired with optogenetic perturbation in the second trial, and no-go stimulus paired with
optogenetic perturbation in the third trial. Shaded area is the posterior standard deviation. Right: Trial-averaged time course of the
three input channels, aligned to the input onset, shown as mean and standard deviation (shaded area) of the posterior mean across
all trials. For each input channels, trial averages were calculated from trials where that input was present. All traces were smoothed
with a running average of 25ms for visualization. (F) Example readout matrix (C in Equation 2) in the fitted model, depicting the
mapping from the latent units (columns, divided into two areas, and into excitatory (red) / inhibitory (blue) subpopulations within
each area) to the recorded neurons (rows; blue bars mark PV cells identified by optogenetic perturbations in LM). (G) Top: Average
recorded activity in V1 (left) and LM (right) during the no-go visual stimulus in an example animal. Bottom: Corresponding activity
of the excitatory (red) and inhibitory (blue) latent units. Shaded areas around mean traces in B, C, and G denote 95% confidence
intervals (±2 s.e.m.).

local excitation-inhibition dynamics. In these models, the time45

course of spiking activity in V1 and LM was explained by the46

recurrent dynamics of the latent circuit (Figure 1D). These dy-47

namics were driven by time-varying inputs that we inferred48

for each trial, reflecting any unobserved signals external to49

the V1-LM circuit such as sensory or optogenetic stimuli.50

Specifically, the latent circuit’s activity z(t) evolved according51

to52

τż(t) = −z(t) +WΦ(z(t)) +Bu(t), (1)

where τ = 20 ms is the characteristic neuronal membrane53

time constant, W is the latent circuit connectivity, Φ(·) is a54

soft-rectified nonlinear activation function, and u is a set of55

trial-specific external input signals that enter the dynamics56

through the input matrix B (Methods). The activity of this57

latent circuit was used to describe firing rate fluctuations in58
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the observed V1 and LM neurons, according to59

r(t) = exp(Cz(t) + d), (2)

where C is a readout matrix specifying the way in which each60

recorded neuron relates to the latent units, and d is a vector of61

constant offsets. Action potentials were modelled as Poisson62

processes given these time-varying firing rates.63

The latent circuit was partitioned into two areas, which64

mapped onto V1 and LM neurons respectively. Moreover,65

the recurrent connectivity matrix W was constrained so that66

each area was composed of separate populations of excitatory67

and inhibitory units, and long-range connections between68

the two areas originated exclusively from the excitatory units69

(Methods). Although we did not know the E/I identities of70

most of the recorded neurons, we used a specific sparsity71

penalty on C to discourage any nonsensical, simultaneous as-72

sociation of a neuron with both E and I latents subpopulations73

(Methods). This soft constraint encouraged the model to learn74

to label each neuron as either E or I.75

To fit the model, we used iLQR-VAE [Schimel et al., 2022], a76

method ideally suited to learning the dynamics of a circuit77

when the detailed time course of external inputs is unknown78

and must therefore be inferred in each trial. Importantly, here79

we did have some knowledge of what input signals might have80

driven the circuit in a given condition and when. iLQR-VAE81

lets us incorporate such information in the form of condition-82

specific, time-varying statistical priors over the input u(t)83

in Equation 1. Thus, we used three input channels reflect-84

ing the two visual stimuli and the optogenetic perturbation85

events. The mapping from inputs to latents, B, was con-86

strained such that the input channel with the optogenetic87

perturbation prior could only target the inhibitory latents of88

the stimulated area for each animal. For each channel, we89

learned two prior variances: the higher variance was used90

during the time the corresponding stimulus was on, and the91

lower one outside those epochs (Figure 1D, dashed lines). This92

encouraged the model to use larger inputs when the stimuli93

were present, while retaining flexibility with respect to their94

exact time course. iLQR-VAE then inferred this time course on95

a single trial basis, by computing a posterior distribution over96

the input signals in each channel conditioned on the observed97

neural data (Figure 1D and E, solid lines).98

The parameters of the model (W , B, C, d and the prior vari-99

ances) were obtained by maximizing the likelihood of the ob-100

served spike trains. For each animal, we performed multiple101

fits starting from random initializations (Methods), and found102

that each fit robustly attributed a definite E or I identity to103

each observed neuron (Figure 1F). For most fits (78.24%), the104

model correctly labelled all of the directly photo-stimulated105

neurons (known to be PV+ inhibitory cells) as inhibitory (Fig-106

ure 1F, cyan mark); we rejected the few models where these107

cells were mislabelled. Finally, for each animal we selected108

the model with the best goodness of fit on held-out data (see109

below, and Methods).110

The model captures trial-by-trial variability111

We first characterized how well the learned models captured112

single trial activity in our recorded neurons. For each trial,113

we could leave one neuron out, and let the model infer the114

time course of its firing rate given the activity of the other115

neurons (Figure 2A). Based on this single-trial firing rate, the116

model then attributed a (Poisson) likelihood to each spike117

for that neuron. On average, this single-trial likelihood was118

greater than that predicted by the PSTH of the same cell ob-119

tained by averaging over the other trials in the same condition120

(Figure 2B, ‘residual likelihood’). In other words, our latent121

circuits captured the spatio-temporal structure of our record-122

ings beyond condition averages. Accordingly, our models also123

captured the structure of pairwise covariances in neural activ-124

ity (Figure S2). Importantly, the models did not significantly125

suffer from the circuit constraints we imposed; they explained126

the single-trial data just as well as fully unconstrained models127

(Figure 2A-B, gray; Methods).128

The model infers circuit dynamics that are consistent129

across animals and captures key aspects of V1-LM130

cortical physiology131

That constrained and unconstrained models explain the data132

equally well, despite being entirely different families of dy-133

namical systems, raises a concern: have our constrained mod-134

els learned dynamics that really capture the mechanics of the135

underlying V1-LM circuit?136

A first indication of faithful dynamics reconstruction is the con-137

sistency of the learned solutions across animals. We evaluated138

the distance between the inferred latent flow fields between139

pairs of animals, accounting for an arbitrary rotation of the140

latent state space for each animal (Methods). This analysis141

revealed that the dynamics learned by our constrained latent142

circuits were broadly consistent across animals – indeed more143

consistent than in unconstrained models (Figure 2C).144

As a second, stronger test of accurate dynamics reconstruc-145

tion, we probed the responses of our models to internal per-146

turbations of the inhibitory cells, and compared those to the147

responses observed in the V1-LM data during optogenetic148

perturbations. Specifically, we simulated single perturbation149

trials by directly providing positive input to the inhibitory150

latent units of the relevant area for the entire duration of151

the photo-stimulation, whilst replaying the external inputs152

inferred on a control trial (no photo-stimulation) for the rel-153

evant condition (go vs. no-go). We adjusted the amplitude154

of each perturbation input (four parameters per animal) in155

order to match the trial-averaged norm of the responses of156

the known PV cells in the stimulated area. We then evalu-157

ated the model-predicted change in firing rates in the other158

neurons (per-condition averages). These predictions were pos-159

itively correlated with the corresponding firing rate changes160

observed in the data (Figure 2D; average Pearson ρ = 0.34).161

In contrast, models trained using only no-perturbation tri-162

als failed to capture the sensitivity of the V1-LM circuit to163

photoinhibition (Figure 2D, gray; average Pearson ρ = 0.12),164

highlighting the importance of optogenetic manipulations for165

accurate neural system identification.166

As a third indication that our model has learned the correct cir-167

cuit structure, we looked at the excitatory/inhibitory identity168

that it assigned to each neuron in our recordings. Whilst we169

used the assigned identity of the known PV cells in the photo-170

stimulated area as a criterion for model selection, we could171

study the identity assigned to the other recorded neurons. In-172

hibitory neurons in the cortex are known to exhibit a bimodal173

distribution of spike widths: fast-spiking (PV) interneurons174

exhibit narrow spike waveforms, whilst other (non-PV) neu-175

rons have slower action potentials similar to that of excitatory176

neurons [Rudy et al., 2011]. Consistent with this known aspect177

of cortical electrophysiology, we found that the neurons which178

the model deemed inhibitory had a bimodal distribution of179

spike widths (Figure 2E). The mode of the histogram corre-180

sponding to broader spikes aligned well with the distribution181

of spike widths in the neurons classified as excitatory by the182
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Figure 2: Circuit-constrained models cap-
ture the statistics and underlying mechanisms
of neural activity (A) Top: trial-averaged em-
pirical firing rates, smoothed with a running
average of 25 ms, for 4 example neurons in
one animal. Different colors denote the two
visual stimuli (red and green) and one silenc-
ing condition (cyan). Middle: corresponding
model-predicted firing rates in individual tri-
als (4 trials per condition), given the spikes ob-
served concurrently in all other neurons. Bot-
tom: corresponding spike rasters in the same
three conditions, for the same four neurons.
(B) Residual log-likelihood of the predicted fir-
ing rates of active cells (test trials, see Meth-
ods) for the constrained (‘C’, black) and un-
constrained (‘UC’, orange) models. n = 246
neurons across 7 animals, ‘C’ vs. ‘UC’ paired
p-value = 6 × 10−7, unpaired p-value = 0.23.
(C) Between-animal similarity in model dynam-
ics, linearized around the stimulus-period ac-
tivity. Similarity is computed as an average
pairwise Procrustes distance (see Methods), cal-
culated separately for constrained (‘C’) and
unconstrained (‘UC’) models (paired p-value
= 6.7 × 10−6). (D) Left: trial-averaged activity
of two example neurons, obtained either from
the data (control no-go trials in black and one
perturbation condition in blue), or by running
the learned dynamics forward given condition-
specific inputs and artificial perturbations (see
Methods; control no-go trials in gray and one
perturbation condition in cyan). The top cell
is directly perturbed by the optogenetic pertur-
bation, while the bottom cell is only indirectly
affected. Center: change of neural activity (rel-
ative to control trials) predicted by the model

in response to a simulated optogenetic perturbation, as a function of the experimentally observed response difference between
laser and corresponding control trials. These are shown for all cells in V1 and LM that were not directly perturbed, and in one
animal. r denotes the Pearson correlation coefficient between the predicted and true change (see Methods and Figure S3). Right:
distribution of Pearson correlation coefficients (c.f.ṁiddle) across animals, for models trained with perturbation data (black) and
without perturbation data (gray)(Paired p = 0.0003). (E) Histograms of spike widths for the neurons labeled by the model as
excitatory (top, red) and inhibitory (bottom, blue; known PV cells shown in cyan). Insets show the average spike waveforms
(± 2 sem) for those neurons lying around the marked peaks. (F) Distribution across animals of the maximum real part of the
eigenvalues of the latent circuit dynamics, linearized either before (gray) or during (black) stimulus presentation (pooled across
both go and no-go trials). This is shown for the full model (left), and in the absence of inhibition (right; see Methods). (G) Effective
connectivity (see Methods) plotted against noise correlations in control no-go trials, for pairs of latent circuit units. This is shown
at model initialization (top gray), and after training (bottom black).

model.183

Finally, the dynamics inferred by the model are consistent184

with previous studies of the mammalian visual cortex. In185

particular, the network operates in the inhibition-stabilized186

regime (Figure 2F; Ozeki et al., 2009, Ahmadian and Miller,187

2021), whereby the excitatory subnetwork is unstable on its188

own but stabilized by feedback inhibition. In fact, the net-189

work is inhibition-stabilized even in the absence of visual190

stimulation, as previously shown in mouse V1 [Sanzeni et al.,191

2020]. Moreover, noise correlations in the latent circuit reflect192

the strength of excitatory connectivity between pairs of latent193

units (Figure 2G), as observed in mouse visual cortex [Ko194

et al., 2011]. Importantly, this relationship was not present at195

initialization, but arose after fitting the model to the data.196

Contribution of external and recurrent inputs in shap-197

ing cortical visual responses198

Having established the validity of our model fits, we then199

used the resulting latent circuits to dissect the roles of vari-200

ous structural components of the V1-LM network in shaping201

its sensory responses. To do this, we focused on several key202

features of the learned latent circuit connectivity, systemati-203

cally and individually down-modulated their strengths, and204

quantified the effect of these modulations on the circuit’s re-205

sponses to sensory stimuli. Only no-go trials, with no reward206

or licking-related movement, were used for this analysis (Fig-207

ure 3)208

We began by dissociating external and recurrent inputs to209
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Figure 3: Maintenance of activity via a slow mode emerging from interacting E/I networks (A) Left top: Schematic showing the
external (teal) and recurrent (burnt orange) inputs in the V1-LM circuit. Left bottom : Average external and recurrent inputs, in
no-go trials across all animals (shaded area denotes 2 sem). Middle top : Average network activity in no-go trials in an example
animal, as we scale down the gain of the external inputs (see Methods). We use gain values of 0.8, 0.9 and 1, ordered from light
to dark. The grey and black bars denote the stimulus onset and during the stimulus. Middle bottom : Same as top, for recurrent
inputs. Right : Sensitivity, i.e change in the response of the network (see Methods) as we scale down (by γ) the external (burnt
orange) or recurrent (teal) inputs. This is shown at stimulus onset (top; first 100ms of the stimulus) and during the stimulus
presentation (bottom; 100-500 ms after stimulus onset). (B) Same as (A), but comparing local and long-range recurrent inputs (see
Methods). (C) Trial-averaged firing rate of an example neuron during no-go trials, smoothed at 25 ms (top) and the trial-averaged
inferred external input to the circuit, averaged over all latent units (bottom). The colors indicate different time segments. (D)
Flow field of the dynamics for the same animal as (C), projected in the subspace defined by the top 2 PCs of the latent activity
(see Methods). The color bar indicates the magnitude of the velocity. The trajectory represents the projection of the trial-averaged
inferred latent activity in no-go trials, with time segments color-coded as in (C). (E) Velocity of the autonomous latent dynamics (i.e
latent dynamics in the absence of external input), averaged either over the pre-stimulus period (-400-0 ms), around stimulus onset
(0-100 ms), or during the stimulus (100-500 ms). (F) Relaxation time constants (mean ± 2 sem across all animals; see Methods)
of the linearized dynamics in the 100-500 ms time window of no-go trials. This is shown for constrained models in black and
unconstrained models in orange. The inset shows the absolute value of the imaginary to real ratio of the eigenvalues corresponding
to the slowest direction. (G) Distribution across animals of the line attractor score (see Methods) of the dynamics, linearized around
the mean activity in the 100-500 ms time window of no-go trials, for the constrained (black) and unconstrained (orange) models.
(H) Flow field of the V1-only (top) or LM-only (bottom) dynamics, for the same example animal and trials as in (D), projected in the
subspace defined by the top 2 PCs of the latent trajectories in each area (see Methods). (I) Distribution across animals of the lowest
relaxation time constant of the dynamics in the full networks (constrained models) and the V1-only or LM-only networks. The
gray box corresponds to the distribution of slowest time constants in networks of the size of a single area, randomly sub-selected
from the full networks. (J) Line attractor score of the V1-LM network, as we scale down the long-range (left) or within-area (right)
connections by a factor γ.
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the latent circuit. Whilst the average external input to each210

neuron was mostly transient, i.e. confined to the onset and211

offset of the sensory stimulus, the corresponding recurrent212

input remained elevated for the whole stimulus duration (Fig-213

ure 3A, left), mirroring the period of sustained activity across214

two areas during the stimulus epoch (recall Figure 1G). Even215

modest down-scaling of all recurrent weights during the stim-216

ulus (Figure 3A, center bottom, black bar) could nearly abolish217

these sustained responses. Similar down-scaling of recurrent218

connectivity during stimulus onset (Figure 3A, center bottom,219

gray bar) had a weaker effect (Figure 3A, right; compare top220

and bottom green curves). Modulation of the external input221

weights had a weaker effect still (Figure 3A, center and right),222

indicating that sustained activity arose primarily from recur-223

rent connections, with external inputs triggering the onset224

response.225

Next, we characterized the differential contributions of local226

vs. long-range connections. While the net local inputs were227

smaller and negative (inhibition-dominated; Haider et al.,228

2013), the long-range inputs were stronger (and positive by229

design; Figure 3B, left) leading to positive net recurrent in-230

puts. Moreover, modulating local and long-range connection231

strengths separately revealed that stimulus-epoch sustained232

activity depended strongly on long-range interactions, but233

more weakly on within-area interactions. Together, these sen-234

sitivity analyses suggest a mechanism for sustained sensory235

responses in the V1-LM circuit that relies on across-area re-236

verberation of activity, mediated by bidirectional long-range237

connections.238

Sustained sensory responses are maintained by ap-239

proximate line attractor dynamics across V1 and LM240

To further characterize the origin and properties of V1-LM241

reverberation induced by transient inputs (Figure 3C), we242

analyzed the activity flow field in the latent circuits. In the243

subspace defined by the two principal components of latent244

activity, the autonomous flow of the latent circuit’s dynamics245

(i.e. latent trajectories obtained in the absence of external in-246

puts) primarily converged towards a line of slow dynamics247

(Figure 3D, one example mouse). Consistently across mice, the248

latent state trajectories underlying the neural data spent most249

of the stimulus epoch near this line of weak flow, only briefly250

leaving this region at stimulus onset and offset in response to251

transient external inputs (Figure 3E). This picture is highly sug-252

gestive of line attractor dynamics [Ganguli et al., 2008, Mante253

et al., 2013, Nair et al., 2023, Sylwestrak et al., 2022], a regime254

characterized by slow decay of activity along a select direction255

in state space, with all other directions decaying more rapidly.256

Mathematical analysis of the time constants present in the257

latent circuits (Figure 3F, Methods) revealed such a gap, with258

local dynamics around the stimulus-evoked response largely259

dominated by a slow mode with a timescale of ∼ 400 ms,260

which is 20 times longer than the characteristic time constant261

of single neurons in our model (20 ms). Although the second262

longest time constant was also slow (≫ 20 ms) – a point we263

will return to below (Figure 4) – it was significantly shorter264

than the slowest, reflected in a high “line attractor score” (Fig-265

ure 3G; Methods).266

Importantly, the approximate line attractor we identified in the267

latent models arose from the constraints we imposed on the268

structure of the circuit. Indeed, whilst unconstrained model269

fits did also produce slow dynamics (Figure 3G, orange), they270

exhibited less consistent line attractor scores, primarily be-271

cause their slowest modes were occasionally oscillatory (and272

therefore planar; inset). Moreover, we found that the line273

attractor arose specifically from the long-range excitatory in-274

teractions between V1 and LM. First, the line attractor score275

was sensitive to modulation of the long range, but not the276

local, connections (Figure 3J). Second, each area considered277

separately (i.e. with long-range connections removed) did not278

exhibit any line attractor (Figure 3H) and had substantially279

faster dynamics (Figure 3I). Although weaker reverberation of280

activity in those isolated areas could in principle reflect their281

smaller sizes, randomly thinning both latent sub-circuits by282

eliminating half of their units did yield significantly slower283

dynamics than those of the isolated areas (Figure 3I, gray).284

A minimal model of the V1-LM circuit explains the285

emergence of a line attractor286

To understand the circuit mechanisms that underlie the emer-287

gence of a line attractor across V1 and LM, we considered288

simplified models of multi-area excitation/inhibition (E-I) net-289

works. As a starting point, we recall a canonical model of290

cortical E-I circuits, with one E and one I population recur-291

rently connected as shown in Figure 4A (top), with E-I weight292

parameters e and i. In these networks, activity can be generi-293

cally decomposed into two main motifs (Figure 4A, middle):294

E-I imbalance (with the E population firing more than aver-295

age, and the I population firing less; dashed boxes) and E-I296

balance (both populations firing in the same way; solid boxes).297

In this modal decomposition, the recurrent connectivity is298

more easily interpreted: it acts to transiently amplify any mo-299

mentary imbalance in network activity into balanced activity300

(Figure 4A, “Schur basis”; Murphy and Miller, 2009). Whilst301

E-I imbalance is typically short-lived, balanced activity may302

linger depending on the level of excitatory dominance in the303

recurrent connectivity (Figure 4A, bottom; Supplementary304

Material S2).305

Next, we extended the canonical single-area E/I model to306

two interacting areas, yielding an idealized reduction of our307

latent circuit models of V1 and LM. In this model, each area308

is modelled as an E-I circuit as above, and they interact via309

long-range excitatory connections of strength ℓ (Figure 4B).310

Mathematical analysis of this model revealed a similar kind of311

feedforward connectivity as for single-area E-I networks, now312

for two different sets of unbalanced/balanced modes. In the313

first set, the two areas fluctuate congruently such that their314

patterns of E-I activities – whether balanced or unbalanced –315

are aligned (“agree”, green boxes). In the other set, these pat-316

terns are anti-aligned across the two areas (“disagree”, purple317

boxes). Recurrent connectivity now acts separately on each318

set, with transient amplification of congruent/incongruent E-I319

imbalance into the corresponding balanced pattern. Notably,320

long-range excitatory connectivity has an opposite effect on321

each set of modes: it acts to slow down activity where the322

two areas agree, and speed up the decay of any disagreement323

(Figure 4E; Supplementary Material S2). This separation of324

timescales gives rise to approximate line attractor dynamics325

in the combined circuit (Figure 4G), as observed in the latent326

circuit models we had obtained from data (recall Figure 3D-327

G). Moreover, the model clarifies that the line attractor arises328

specifically from long-range connections as previously shown329

in Figure 3H-J. In addition, the model confirms that the line330

attractor score (which depends directly on the timescale sep-331

aration) should grow with the strength of those long-range332

connections as in Figure 3J.333

Notably, this simplified model of V1-LM interactions not only334

provided a qualitative explanation for the emergence of a line335
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Figure 4: Network time constants in min-
imal models of interconnected E/I circuits
(A) In a canonical E-I circuit (top), momen-
tary activity can always be expressed as a
linear combination of two modes (middle):
an “unbalanced” mode (dashed outline) and
a “balanced” mode (solid outline). Recur-
rent E-I connectivity is equivalent to feedfor-
ward connectivity from the unbalanced to the
balanced mode (bottom; Murphy and Miller,
2009). The unbalanced mode exhibits fast
dynamics, whereas the balanced mode can
evolve more slowly depending on the degree
of excitatory dominance (c.f. D). (B) Minimal
E-I model of V1 and LM (top), where connec-
tivity within each area is of the same form
as in (A), and each area excites the other via
long-range connections of strength ℓ. In this
model, activity can be decomposed into four
modes (middle): a pair of balanced & unbal-
anced modes in which V1 and LM activities
are anti-aligned (purple, ‘disagree’), and a sim-
ilar pair in which they align (green, ‘agree’).
These two pairs of modes are decoupled, and
interactions within each pair are effectively
feedforward (bottom). The dynamics are slow-
est along the mode of balanced agreement (c.f.
E), resulting in an approximate line attractor.
(C) This minimal model can be extended to
accommodate selectivity to ±45◦ visual grat-
ings, by splitting each E/I population into two
differentially selective subpopulations. All
connection types (local E, local I, long-range
E) are composed of an unselective baseline
and a selective (like-to-like) components (top).
This connectivity structure gives rise to two
versions (unselective, pale / selective, dark)
of each of the four modes in B (middle), and
results in slow dynamics in the two modes
of balanced agreement (approximate ‘plane
attractor’). (D-F) Time constants of the bal-
anced mode(s) for each model (colors as in
A-C), as a function of key connectivity pa-
rameters. In (F), only the two slow modes
are shown. (G) Flow field of the dynamics of
the model in (B) in the activity plane spanned
by the two balanced modes, showing conver-
gence onto the ‘agree’ mode. Each line is ob-
tained by integrating the network’s dynamics
starting from a different initial condition in
that plane. (H) Autocorrelation function of

the neural data pre- (left half) and during stimulus (right half) projected onto the ‘agree (resp. disagree) balanced’ modes (green resp.
purple). These two modes correspond to the sum (resp. difference) of the average V1 and LM spiking activities. Traces are mean
± 95% confidence intervals. pre: ∆max = 0.06, p < 10−5. during: ∆max = 0.13, p < 10−5. (I) Same as (H), but for neural activity
projected onto the pair of unselective agree/disagree modes (left) and analogous selective versions (right) defined in the main text.
unselective, pre: ∆max = 0.035, p = 0.0006. unselective, during: ∆max = 0.11, p < 10−5. selective, pre: ∆max = 0.022, p = 0.003.
selective, during: ∆max = 0.054, p < 10−5.

attractor, it also matched the dynamics of our latent circuit336

models quantitatively. Indeed, with optimally chosen parame-337

ters, this 4-dimensional network could account for 65% of the338

impulse response of the (linearized) 16-dimensional network339

(Figure S7).340

Importantly, the simplified model of V1-LM interactions out-341

lined above makes a prediction that can be tested indepen-342

dently of our latent circuit model fits. Specifically, V1-LM343

activity projected along the balanced-agree mode should ex-344

hibit slower fluctuations than along the balanced-disagree345

mode. To verify this prediction experimentally without rely-346

ing on the latent circuit model, we estimated the contribution347
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of each of these two modes to the momentary activity of the348

recorded neurons in our dataset. This was done by separately349

averaging the activity of V1 and LM neurons to estimate local350

balance in each area, and then taking the sum (agree) and the351

difference (disagree) of these local averages. As predicted, we352

found that the empirical ‘balanced-agree’ mode had a longer353

autocorrelation decay time than its ‘disagree’ counterpart (Fig-354

ure 4H; Methods), both before (left) and during (right) the355

presentation of the sensory stimulus.356

More generally, the model predicts slower dynamics along the357

balanced-agree mode compared to any other mode, including358

the unbalanced modes. Testing this more general prediction359

without referring to our latent circuit models is difficult, be-360

cause estimating momentary E-I imbalance in V1 or LM di-361

rectly from the neural data requires knowing the E-I identities362

of all cells. Nevertheless, identifying these modes based on363

model-predicted cell identities (c.f. Figures 1 to 3) allowed us364

to confirm this more general prediction (Figure S6A).365

Multi-area consensus on stimulus presence and iden-366

tity via selective long-range interactions367

The selective slowing down of activity patterns where V1 and368

LM “agree”, and concurrent quenching of patterns where they369

disagree, can be seen as a circuit mechanism for consensus370

building (Figure 4G). We wondered about the generality of371

this mechanism: whilst the minimal 2-area model of Figure 4B372

gives rise to consensus regarding whether or not a stimulus is373

present, a similar mechanism could also underlie consensus374

about stimulus identity. We hypothesized that this second375

mode of consensus might also account for the second slowest376

mode in the learned dynamics (Figure 3F), which the simple377

reduced model introduced above was unable to explain.378

To explore this hypothesis, we took a similar modelling ap-379

proach as above. We constructed a more detailed reduced380

model of a 2-area network (Figure 4C) that incorporates fea-381

ture specificity in its connectivity (see Supplementary Material382

S2). Each area was split into two E-I sub-circuits that were383

differentially driven by two orthogonally oriented stimuli (cor-384

responding to go and no-go stimuli in our experiments). Re-385

current E-I connectivity in each area had a degree of specificity386

that we could vary, i.e. connectivity could be made stronger387

within, compared to between, the two local sub-circuits with388

different stimulus preference. Similarly, long range excita-389

tory connection strengths included both a baseline (ℓ0) and a390

specific (ℓs) component (Methods).391

The effect of the connectivity on the dynamics of this circuit392

could again be understood by considering a modal decompo-393

sition similar to Figure 4B, which included (i) patterns of E-I394

imbalance/balance, in which (ii) the two areas could either395

agree (green) or disagree (purple), and which (iii) were either396

stimulus selective (dark) or unselective (light). We found that397

this circuit would predominantly dwell in two of these ac-398

tivity modes: the ‘balanced-agree-selective’ mode, and the399

‘balanced-agree-unselective’ mode, both of which were charac-400

terized by long time constants. As before, all ‘unbalanced’ and401

‘disagree’ modes were associated with comparatively faster de-402

cay times. The slow decay of the ‘balanced-agree-unselective’403

mode relied on strong long-range connections regardless of404

specificity (ℓ0 or ℓs; Figure 4F, left), whilst the slow decay of405

the ‘balanced-agree-selective’ mode required strong specific406

long-range connections (ℓs; Figure 4F, right). Thus, this circuit407

supports the dynamic formation of a consensus across V1 and408

LM about both the presence of a stimulus and its identity.409

The presence of a second slow mode made this 8D reduced410

model an even better quantitative match to the linearized dy-411

namics of the full 16D model (Figure S8; 77.3% of variance412

captured in the impulse response). Additionally, we also veri-413

fied that the two slowest modes in the dynamics of our latent414

circuit models aligned well with the unselective and selective415

balanced-agree modes (Figure S6F).416

We could again articulate the model’s predictions regarding417

the relative timescales of these different activity modes, and418

use our neural recordings to test these predictions. In particu-419

lar, the model predicted that the network’s activity should420

fluctuate slower along the two main modes of consensus421

than along the corresponding modes of disagreement. To422

test this hypothesis independently of our model fits, we esti-423

mated the degree of engagement of each neuron in the four424

‘agree/disagree-selective/unselective’ modes based on its ob-425

served responses, and assessed the slowness of population426

activity projected onto these modes. Specifically, we first ex-427

tracted the sensitivity of each recorded population (V1 or LM)428

to the presence of a stimulus irrespective of its identity by429

taking the difference of its population activity vector after430

and before stimulus onset, denoted by vV1/LM
0 (Methods). We431

then defined the ‘agree-unselective’ mode as (vV1
0 , αvLM

0 ), and432

the ‘disagree-unselective’ mode as (vV1
0 ,−αvLM

0 ), where α is a433

scaling factor that accounts for unequal sampling of V1 vs. LM434

neurons in our recordings (Methods). Similarly, by computing435

the differences vV1/LM
s between population responses to the436

go and no-go stimuli, we could define the ‘agree-selective’437

and ‘disagree-selective’ modes as (vV1
s ,±αvLM

s ) respectively.438

We then projected the activity of all recorded neurons onto439

these four modes and computed the autocorrelations of the440

resulting signals (Figure 4I). As predicted by the model, ac-441

tivity fluctuated slower along both ‘agree’ modes, compared442

to the corresponding ‘disagree’ modes. This was true both443

for activity taken before and during the stimulus presentation.444

The relative slowness of the ‘agree-selective’ mode thus sug-445

gests some degree of specificity in the long-range connections446

between V1 and LM, consistent with experimental findings447

[Ding et al., 2023].448

Functional consequences of consensual dynamics449

To explore the functional significance of slow unselective and450

selective consensual dynamics across V1 and LM, we revisited451

our minimal selective model (Figure 5A, top), and examined452

its dynamics along the agree/disagree modes identified ear-453

lier. Specifically, we provided the model with a stimulus454

whose time course captured both the strong transient and455

weaker sustained characteristics of the input which we had456

inferred from the recorded spiking data (Figure 5A, middle).457

By varying the degree to which the stimulus drove (i) each458

area, as well as (ii) each sub-population therein, we could459

manipulate the degree of ‘input agreement’ between V1 and460

LM about (i) the presence of a visual stimulus and (ii) whether461

it is oriented at +45 or −45 degrees (Figure 5B and E, gray462

insets). We could then examine any emergent consensus in463

the network’s response. For example, the stimulus pattern464

shown in Figure 5B (gray) drives V1 and LM in opposite direc-465

tions, increasing V1 activity while suppressing LM (evidence466

for the presence of the stimulus in V1, and against it in LM).467

Mathematically, this stimulus recruits both the agree- and468

disagree-unspecific modes, leading to input ambiguity. In the469

absence of long-range connections between V1 and LM, the470

network’s response directly reflects this lack of consensus in471

the input (Figure 5B, left; C and D, black). However, with472

increasingly strong long-range connections, the network selec-473

8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.27.625691doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.27.625691
http://creativecommons.org/licenses/by-nc-nd/4.0/


200 ms

0

1

0 1

0

1

0 1 2

0

1

0 1

co
ns

en
su

s

-1

0

1

-1 0 1

co
ns

en
su

s

0

1

200 ms

0

1

200 ms

di
sa

gr
ee

(u
ns

el
.)

agree (unsel.)

ℓs = 0

= 0.5

= 0.9

di
sa

gr
ee

(s
el

.)

agree (sel.)

pr
oj

.
ne

tw
or

k
ac

tiv
ity

[a
.u

.]
pr

oj
.

ne
tw

or
k

ac
tiv

ity
[a

.u
.]

V1 LM

V1 LM

minimal model of
the V1-LM circuit

ℓs

ℓs

stim.

V1/LM input consensus

or

ℓs = 0 = 0.5 = 0.9

increasing
consensus

V1

LM

V1

LM

stimulus detection

stimulus discrimination

A B C D

E F G

Figure 5: Dynamic emergence of consensus via long-range connections in minimal models of interconnected E/I networks.
(A) Schematics of the minimal selective model of the V1-LM circuit, driven by an external stimulus that can target either one of
the two E/I pairs in each area depending on their orientation preference ( vs. ) with stylized time course shown at the bottom
displaying both transient and sustained elements. We allow for a variable degree of input coherence across V1 and LM (‘input
consensus’ dial). (B-D) Dynamics of V1-LM consensus for stimulus detection. (B) Network activity projected onto the ‘agree’
(green) and ‘disagree’ (purple) modes of balanced, unselective activity (green and purple insets; recall Figure 4B), in response to a
stimulus that drives V1 while suppressing LM albeit less strongly (gray inset). Response projections are shown for three values of
the specific long-range connection parameter ℓs (0, 0.5 and 0.9), with diamond marks indicating the point of maximum consensus
and triangular marks indicating 200ms after that. (C) Same data as in (B), with the projection of momentary, trial-averaged network
responses onto the ‘agree’ mode (green line in B) now plotted against its ‘disagree’ counterpart (purple line in B). Diamond and
triangular marks as in (B). (D) Same data as in (B-C), now showing the projections onto local unselective modes (presence vs.
absence of stimulus) in V1 and LM against each other. (E-G) Same as (B-D), for stimulus discrimination. In this case, V1 is strongly
driven by a stimulus whilst LM is more weakly driven by a stimulus (gray inset). The relevant agree/disagree modes are
now the selective modes (green and purple insets), corresponding to consensus about the identity of the stimulus, rather than its
presence/absence. As for detection, this conflicting stimulus gives rise to the correct consensus ( ) especially for large ℓs. This
happens even though the input itself presents more disagreement than agreement (F, black).

tively amplifies the input contribution to the agree-unselective474

mode, while suppressing it for the disagree-unselective mode,475

thus allowing an inter-area consensus to dynamically emerge476

on the presence of a stimulus (Figure 5B-D, orange). Impor-477

tantly, this consensus is contingent on bidirectional inter-area478

reverberation of activity, and is significantly diminished if the479

feedback connections from LM to V1 are ablated (Figure S9).480

Likewise, when the input to both areas has the same total481

magnitude but is conflicted about stimulus orientation (Fig-482

ure 5E, gray inset), specific long-range connections contribute483

to the emergence of a consensus about stimulus identity (Fig-484

ure 5E-G). Importantly, this consensus favors the alternative485

that is more strongly supported by the input (here, +45◦; see486

Figure 5G, dashed, for the opposite scenario). This is true even487

when the stimulus contributes more to the disagree-selective488

than to the agree-selective mode (as in the case shown here).489

Discussion490

Here, we set out to elucidate the role of long-range connec-491

tivity in orchestrating dynamics across cortical modules. By492

combining data-driven and mechanistic modelling, we devel-493

oped latent circuit models of observed neural activity across494

mouse V1 and LM, which were constrained by known proper-495

ties of cortical circuit organization. These models uncovered496

slow reverberation of activity through long-range connections497

between the two areas. Further mathematical modelling re-498

vealed how this dynamical motif constrains the activity of499

distributed cortical modules in a way that ensures consistency500

of computation, or ‘consensus’ between them.501

Issues with model identifiability and how to mitigate502

them Identifying dynamical interactions between brain areas503

from concurrent observations of their activity is in general504

an ill-posed problem. Indeed, when trying to account for ob-505

served neural activity using a network model, it is difficult to506

unequivocally tease apart external and recurrent contributions507

to the input that drives each neuron’s fluctuations [Pandar-508

inath et al., 2018, Schimel et al., 2022, Malonis et al., 2021,509

Soldado-Magraner et al., 2023], as neither input is directly510

observed. In principle, even when using rich single-trial data,511

no approach is immune to wrongly inferring a mechanism512

not actually present in the cortical circuit [Qian et al., 2024,513

Genkin and Engel, 2020]. Our approach mitigates this con-514

cern in two ways. First, we include responses to optogenetic515

perturbations in the dataset used to fit the model; thus, the516

time course of at least some of the external inputs to specific517

cells is known in at least some of the trials. Indeed, such per-518

turbations apply instantaneous, direct input to known cells,519

in contrast to e.g. sensory stimuli which enter the circuit of520

interest after largely unknown spatial and temporal filtering.521

Second, by introducing biological constraints into the model,522

we not only restrict the space of possible models that fit the523

recorded neural activity, but also expose the model to a series524

of experimentally testable validation criteria. For example, we525

9

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.27.625691doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.27.625691
http://creativecommons.org/licenses/by-nc-nd/4.0/


were able to exclude models that would wrongly label known526

PV cells as excitatory, and explicitly simulate the effect of cell527

type-specific photo-activation to predict the corresponding528

neural responses. Finally, our model ultimately made qual-529

itative predictions about the relative timescales of activity530

in different cross-area modes, which we were able to verify531

completely independently of our specific model fits (Figure 4).532

Generalizing to other mechanistic models Mechanistic533

models of cortical circuits have classically focused on captur-534

ing the average behaviour of large neuronal populations, and535

have proven remarkably effective at explaining non-trivial536

qualitative features such as oscillations, global E/I balance,537

normalization effects, surround suppression, etc [Rubin et al.,538

2015, Kraynyukova and Tchumatchenko, 2018]. However, it539

remains unclear how these models should be extended to ac-540

count for more detailed aspects of a circuit’s behaviour, and541

how their parameters could be constrained quantitatively us-542

ing large-scale time series of neural data. Our work outlines543

a systematic path for distilling detailed recordings of large544

neuronal populations into the parameters of rich mechanistic545

models.546

Role of long-range connections in sustaining activity547

in the cortex Our models and analyses make experimentally548

testable predictions. Specifically, we predict that stimulus-549

specific external input to the visual cortex is predominantly550

restricted to stimulus onset and offset, while the sustained551

cortical responses are supported by long-range cortical con-552

nections. Notably, the transient time course of our inferred553

external input resembles recent recordings from the visual554

thalamus (dLGN, Siegle et al., 2021). Paradoxically, despite555

the transient nature of feedforward thalamic input, intact tha-556

lamic activity was shown to be essential for sustained cortical557

responses: silencing the thalamus via optogenetic activation558

of the thalamic reticular nucleus (TRN) leads to a rapid de-559

cay of activity in V1 [Reinhold et al., 2015]. At first glance,560

this appears to also contradict our predictions. However, it is561

important to consider that TRN activation inhibits not only562

dLGN but also higher-order thalamic areas (e.g., pulvinar),563

which are thought to modulate corticocortical interactions564

[Sherman and Guillery, 2011, Saalmann and Kastner, 2011].565

This could effectively isolate V1 from other cortical areas. In-566

deed, the rapid decay of cortical activity observed in Reinhold567

et al. [2015] is consistent with the fast decay time constants568

we identified in the isolated dynamics of our model’s V1 pop-569

ulation. More broadly, beyond visual networks, sustained570

cortical activity in decision making or motor planning has571

also been shown to rely on multi-area interactions [Li et al.,572

2016, Guo et al., 2017].573

Role of long-range connections in consensus building574

Here, we have found that the coupled dynamics of V1 and575

LM implement a form of consensus algorithm, whereby the576

two areas progressively get to reconcile their views about the577

presence of a stimulus and its coarse orientation. The fairly578

simple nature of this consensus arguably reflects the simplicity579

of our experimental go/no-go task. However, we hypothe-580

size that dynamic consensus is a general feature of cortical581

dynamics that could play out at finer scales and be modulated582

to meet complex behavioural demands. Importantly, achiev-583

ing fine-grained consensus would require detailed specificity584

in long-range connections between cortical areas. Just how585

such specificity could be achieved and regulated by behav-586

ioral context or learning is largely unknown. One possible587

mechanism would exploit trans-thalamic pathways, which588

appear to systematically mirror direct cortico-cortical path-589

ways [Halassa and Sherman, 2019, Shepherd and Yamawaki,590

2021]. Detailed gain modulation of thalamic neurons involved591

in those pathways (e.g. pulvinar, known to send functionally592

specific projections to V1; Furutachi et al., 2024) could provide593

sufficient flexiblity for regulating multiple modes of consen-594

sus between cortical areas. Indeed, Mo et al. [2024] showed595

that inhibiting the trans-thalamic pathway between primary596

and higher-order somatosensory cortices in mice leads to a597

loss of learning-induced texture selectivity, but no change in598

overall cell responsiveness to tactile stimuli. Our model of Fig-599

ure 5 would attribute such effects to a decrease in specific long-600

range connectivity affecting consensus in the selective mode601

useful for stimulus discrimination, but not affecting the uns-602

elective mode useful for stimulus detection. More generally,603

richer forms of consensus arising from fine-grained connec-604

tivity could serve more complex computations, for example605

the integration and reconciliation of bottom-up sensory infor-606

mation with top-down prior expectations [Knill and Pouget,607

2004]. By integrating data from large-scale functional connec-608

tomics [MICrONS Consortium et al., 2021] with multi-area609

neural recordings during more complex tasks, our theoretical610

approach is ideally positioned to test such hypotheses and611

uncover the richer dynamics of brain-wide consensus.612
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Methods613

Experimental procedures614

No new experimental data were collected for the purposes of this study. The acquisition and pre-processing of615

data used in this study are described in detail in Javadzadeh and Hofer [2022]. From the total of 14 mice included616

in Javadzadeh and Hofer [2022], we sub-selected 7 mice for inclusion in this study, based on the criterion that the617

electrophysiological recordings contained at least one well-isolated single unit that was identified by the optogenetic618

perturbations as PV+. Models were fit using all trial types, but only trials in which the mice performed the task619

correctly were included in subsequent analyses, unless specified otherwise. The spiking activity of the recorded620

neurons was binned at 5ms resolution, and for visualization, smoothed with a running average of 25ms or 5 bins621

(Figures 1B,C,G,2A,D,3C).622

Latent circuit model of V1/LM data623

Latent circuit dynamics We modelled latent circuit dynamics as an input-driven recurrent neural network described624

by a standard firing rate equation [Dayan and Abbott, 2005]. Specifically, the circuit’s n-dimensional ‘latent state’ z625

evolved according to626

τż(t) = −z(t) +WΦ(z(t)) +Bu(t) (3)

where τ = 20ms is a single-neuron characteristic time constant, W is a matrix of recurrent connectivity (see below),627

B is a matrix of input weights, and Φ(z) = 1
2 (z +

√
z2 + 0.1) is a soft rectified-linear activation function. Note the628

presence of external inputs u(t) described in detail below. The spiking activities of our N recorded neurons were then629

modelled as conditionally independent Poisson processes given the latent circuit’s activity, z(t), with momentary630

firing rates r(t) given by:631

r(t) = exp
[
Cz(t) + d

]
(4)

y(t)|z(t) ∼ Poisson(rdt). (5)

Here, C is a N × n matrix of output weights and d is an N-dimensional vector of constant offsets. Equation 3 was632

discretized using a time step dt = 5ms. All model parameters were optimized to fit the electrophysiological data (see633

below, ‘Network training procedure’). Critically, W , C and B were constrained to reflect biophysical properties of the634

V1-LM network (see below; schematics in Figure 1D-F).635

Note that Equation 3 does not include a constant input term. We found that including such a bias term caused the636

model to fall into local minima, consistently learning solutions with worse residual log-likelihoods (see Figure S1E).637

External inputs Our model captures trial-by-trial variability in neural activity not only via the Poisson sampling638

step in Equation 5, but also – and more importantly – through trial-by-trial fluctuations in the external inputs u(t).639

These (deterministically) produce variations in latent circuit activity according to Equation 3, and therefore also in640

the neurons’ firing rates (Equation 4). In the language of probabilistic modelling, the external inputs u constitute the641

model’s latent variables.642

Simultaneously inferring dynamics and external input is a fundamentally ill-posed problem, which our probabilistic643

model addresses by placing task-informed, non-stationary prior distributions on the latent inputs. Specifically, we644

used three input channels – i.e. u(t) ≡ [u0(t), u1(t), u2(t)]⊤, each entering the latent circuit through input weights645

given by the corresponding column of the n × 3 matrix B (Equation 3). For each input channel i, we assumed ui(t)646

to be (a priori) independently and normally distributed across time steps – ensuring that any continuous/smooth647

fluctuations in firing rates could only be accounted for by recurrent dynamics in the latent circuit. Moreover, the648

variance of this Gaussian prior was given a channel- and trial-specific temporal profile reflecting the known timing of649

the corresponding stimulus:650

ui(t) ∼ N (0, Σi
0 + Σiei(t)) (6)

e0(t) = 1 if laser on, 0 otherwise (7)
e1(t) = 1 if go stimulus on, 0 otherwise (8)
e2(t) = 1 if no-go stimulus on, 0 otherwise (9)

where Σi
0 and Σi are two positive variance parameters optimized alongside all other model parameters (see below).651

Given that the laser input in our experiments had a direct effect only on inhibitory neurons, we constrained the652

first column of B (associated with u0(t)) to be zero for all sub-populations except for the inhibitory neurons of the653

targeted area. Additionally, we ensured that the weights of this column of B were all positive. Finally, to eliminate the654

degeneracy that exists between the scale of the inputs u(t) (set by Σi
0 and Σi as detailed above) and the scale of the655

matrix B, we constrained the norm of each column of B to be equal to
√

n/m (where n is the number of units in the656

latent circuit, and m = 3 is the number of input channels).657
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Constraints on the latent circuit connectivity We partitioned the latent circuit’s activity z(t) into two halves,658

corresponding to the V1 and LM subcircuits respectively (see Figure 1D). Within each subcircuit, we took the first659

half of the latent units to be excitatory, and the other half to be inhibitory. This partitioning of the circuit into four660

sub-populations allowed us to enforce Dale’s law, as well as the purely excitatory nature of long-range projections, by661

constraining the recurrent weight matrix W to have the following structure:662

W =


WV1

EE −WV1
EI W LM→LM

EE 0

WV1
IE −WV1

II W LM→V1
IE 0

WV1→LM
EE 0 W LM

EE −W LM
EI

WV1→LM
IE 0 W LM

IE −W LM
II


, (10)

with all elements of the various W ◦
• blocks constrained to be positive. We enforced the sign constraints in our model663

by passing elements of W through a positive nonlinearity, and multiplying W with a mask matrix containing the sign664

of each element. We note that, in related work, Jha et al. [2024] proposed a method to learn linear latent dynamical665

systems constrained to follow Dale’s law using a constrained quadratic optimization approach.666

Structured sparsity constraint on the latents-to-neurons readout The matrix C in Equation 4, which determines667

how the firing rates of the recorded neurons (corresponding to rows) are assembled from the activity of the latent668

units (corresponding to columns), was constrained such that the neurons recorded in V1 (resp. LM) would only be669

associated with V1 (resp. LM) latent units. This was achieved by enforcing the following block structure (see Figure 1F):670

671

C =

latent units︷ ︸︸ ︷ sV1
E CV1

E sV1
I CV1

I 0 0

0 0 sLM
E CLM

E sLM
I CLM

I


 recorded

neurons

where each C◦
• is an element-wise positive matrix with unit-norm columns, and each corresponding s◦• is a positive672

scalar. This per-block column-wise normalization of C balances the model internally by ensuring that all the latent673

units within each sub-population have a comparable effect on the activity of the observed neurons. Moreover, the674

inclusion of separate scale factors s◦• allows the different E/I sub-populations to contribute to different degrees to the675

neural activity.676

Importantly, to facilitate interpretability of the latent circuit, we learned the model in such a way that it would677

unequivocally label each recorded neuron as being excitatory or inhibitory. We achieved this by included in the678

overall cost function (see below) a structured sparsity penalty on C that encourages each recorded neuron to be679

locally associated either with the excitatory latent units, or with the inhibitory latent units, but not with both types680

simultaneously. In other words, this penalty promotes parameter solutions in which the rows of C are non-zero either681

within the C◦
E block or within the C◦

I block (where ◦ denotes the relevant cortical area), but not within both. This682

penalty took the following form:683

Lsparsity = λ
√

∑
n∈neurons

∥(Can
E )n∥2 ∥(Can

I )n∥2 (11)

where an ∈ {V1, LM} is the cortical area where neuron n was recorded, (C◦
• )n denotes the nth row of the matrix block684

C◦
• , and ∥ · ∥ denotes the L2 norm. The scalar λ was set to 103 following a hyperparameter search.685

Definition of putative excitatory and inhibitory cells For models trained with the above constraints, we were686

able to assign each neuron a unique excitatory or inhibitory identity based on the learned readout matrix, C (see687

Figure 1D). For each neuron, we calculated the L2 norms of the corresponding readout weights originating from the688

excitatory and inhibitory latent sub-populations separately, and labelled the neuron as E or I according to which of the689

two norms was the largest.690

Network training procedure691

Our latent circuit model, together with the prior distribution over external inputs and the Poisson observation noise692

model described above (Equations 3, 5 and 6), constitute a probabilistic generative model whose parameters we693

directly optimized to fit our spiking data. To this end, we used iLQR-VAE [Schimel et al., 2022], a generic control-based694

algorithm for learning probabilistic, input-driven latent dynamics from neural population recordings. iLQR-VAE695

learns model parameters θ = (W ,B,C,d) that maximize a lower bound on the log likelihood of the data, log pθ(y).696

This evidence lower bound (ELBO; Kingma and Welling, 2013) is a standard objective, used when the true log697
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likelihood cannot be evaluated in closed-form, as is the case in our model. The ELBO, denoted by L, relies on an698

approximate posterior distribution over inputs, qϕ(u|y):699

L(y, θ, ϕ) = Eqϕ(u|y)

[
log pθ(y|u) + log pθ(u)− log qϕ(u|y)

]
≤ log pθ(y). (12)

(13)

In iLQR-VAE, qϕ(u|y) = N (µ(y), Σ) is parametrized as a Gaussian distribution, whose mean µθ(y) is defined as700

the most likely set of inputs given the data and the model parameters. This maximum a posteriori estimate can be701

efficiently obtained using the iLQR algorithm:702

µθ(y) = argmax
u

T

∑
t=1

log pθ(yt|u) + log pθ(ut) (14)

= iLQRsolve(y, θ) (15)

As in Schimel et al. [2022], we defined the covariance Σ as a trial-independent, separable matrix, i.e as the Kronecker703

product of a spatial factor Σs and a temporal factor Σt, which were learned throughout training and shared across all704

training trials.705

In summary, fitting our latent circuit model to the V1-LM spiking data involved jointly optimizing all model parameters706

θ and the approximate posterior parameters ϕ = {θ, Σs, Σt} to minimize the following combined objective:707

O(θ, ϕ) = −L(y, θ, ϕ) + Lsparsity(θ) (16)

Log-likelihood computations708

Computation of cross-validated log-likelihoods To validate the performance of our model, we computed its ability709

to predict the activity of held-out neurons, given firing rates inferred using the held-in neurons. We held out one710

neuron at a time. To predict the activity of held-out neuron j, we inferred inputs as µ̃k = iLQRsolve(ỹk
¬j, θ̃), where711

ỹk
¬j ∈ R(N−1)×T is the spike trains of all neurons, excluding neuron j, in trial k (and θ̃ are the model parameters with712

the j-th row of C and d masked out). We then computed the predicted firing rates for all (both held-in and held-out)713

neurons r̃k by unrolling the trajectories induced by the inputs µ̃k (using the full set of parameters θ). In turn, this714

allowed to compute the log-likelihood of the spikes in trial k for the held-out neuron j, as715

LLk
j = ∑

t
[yk

j (t) log(r̃k
j (t)dt)− r̃k

j (t)dt − log yj(t)!]. (17)

Computation of the empirical log-likelihood As a baseline to compare the model predictions to, we computed the716

empirical log-likelihood for a trial k by evaluating the predicted activity for every neuron using that neuron’s average717

activity across all the other trials from the same condition c, leading to a predicted firing rate time course718

rk
j,emp(t) =

1
Nc − 1 ∑

ℓ∈c, ℓ ̸=k
yℓ

j (t), (18)

where Nc is the number of trials in condition c. Given these empirical firing rates, we computed the empirical719

log-likelihood for neuron j at trial k as720

LLk
j,emp = ∑

t
[yk

j (t) log(rk
j,emp(t)dt)− rk

j,emp(t)dt − log yj(t)!]. (19)

Residual log-likelihood We define the residual log-likelihood for a given neuron j as LLk
j − LLk

j,emp. If this quantity721

is positive, it means that the prediction of the model for that neuron is more accurate than a prediction based on trial722

averaging, i.e., that the model is able to capture meaningful single-trial variability in the data. Residual likelihoods723

were calculated separately for each neuron across 18 different conditions (2 visual stimuli and 9 silencing condition for724

each visual stimulus), and then averaged across all trials and conditions.725

Model selection726

Choice of hyperparameters To select the model hyperparameters n and m (number of latent state variables and727

input channels, respectively), we used a 3-fold cross-validation approach. For each animal, we split the trials into 3728

subsets. Then, for each possible pair of subsets among these three, we trained a model using the data from that pair729

and subsequently computed the heldout log-likelihoods on the remaining subset. Finally, we averaged the results over730

the three pairs, over animals, and over neurons.731
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We first selected the optimal value of n for the model with three input channels (m = 3) corresponding to the visual732

and optogenetic stimuli, as described above. We explored model sizes ranging from n = 8 to n = 24 in increments of733

4, and selected the minimal value of n after which the residual log-likelihood stopped improving (see Figure S1A).734

Having selected and fixed the optimal value for n, we checked whether the choice m = 3 was optimal, using the same735

model selection procedure. When varying the number of input channels, we considered both (i) having multiple736

channels corresponding to each prior variance profile (c.f. Equations 7 to 9), i.e. multiple channels for each external737

stimulus ( Figure S1B), and (ii) the addition of channels with temporally unmodulated prior variance (see Figure S1C).738

Neither of those increased model performance relative to using m = 3, which is the minimal number of channels739

allowing to have one input per external stimulus. Note that models with additional input channels could in theory740

capture timing difference in the visual input to V1 and to LM. However, we found that having one channel per input741

yielded the best performance on the validation fold.742

Additionally, we compared our models to models with the same architecture but for which the inputs were not743

inferred, and were instead fixed to follow the envelope corresponding to each external stimulus. This implied that744

their time course was constrained to be the same for every trial of a given condition. Those models performed745

considerably worse than the models with inferred inputs (Figure S1D). Other model hyperparameters such as the746

spectral radius of W at initialization and the Adam learning rate were fixed to values that allowed robust training.747

Final hyperparameter choices are reported in Table 1. All trials, irrespective of behavioral outcome, were included for748

log-likelihood calculation and model selection.749

Selection of models for plotting and analysis For the constrained models, having set the hyperparameters as750

described above, we trained 10 models with different random seeds (i.e. different random initializations of the model)751

per animal. This was done to reduce the chance of getting stuck in local minima. Moreover, as our conclusions were752

dependent on the learned values of the long-range weights, and to avoid biasing our models, we varied the value753

of the long-range weights at initialization. More precisely, we varied the ratio of the norm of long-range weights to754

local weights at initialization between 1 and 1.6 in steps of 0.2. We discarded models that diverged during training755

(41 out of 280 models in total). Out of the remaining models, we then picked the best model for each animal, across756

initialization seeds and long-range weights, for further analyses and plotting. For each animal, the best model was757

selected by first sub-selecting the models that classified the known PV cells correctly as inhibitory (187 out of 239, i.e.758

78.24% of the models; see Figure S1F). Among these, we picked the model that yielded the highest cross-validated759

log-likelihood. Furthermore, we only included active cells (neurons whose spike count during the stimulus in control760

trials had a signal-to-noise ratio, i.e. mean/std over trials, larger than 1) for log-likelihood calculations.761

For the unconstrained models, we used 5 random initialization seeds. However, as inhibitory cell identities were762

not defined in these models, we picked the best model based only on the held-out log-likelihood criterion explained763

above.764

Calculating covariances765

In Figure S2, we calculated N × N noise covariance matrices in both data and model-predicted activity as:766

Σ =
1

T ∑c Kc

C

∑
c=1

Kc

∑
k=1

T

∑
t=1

(yk
t,c − yt,c)(y

k
t,c − yt,c)

T (20)

where c indexes conditions (2 visual stimuli and 9 silencing condition per stimulus), yk
t,c is a N × 1 vector denoting767

spike count of N neurons in 25ms bins, in control condition c (no optogenetic stimulation), trial k, and time t (Kc:768

number of trials in condition c,T: number of time points, N: number of neurons). yt,c is the trial-average activity in769

condition c. For calculating model covariances, we sampled pseudo-observations y from a Poisson distribution whose770

mean was taken to be the posterior predicted firing rates. All trials, irrespective of behavioral outcome, were used for771

calculating covariances. Variances in Figure S2 are the diagonal values of Σ and cross-covariances are its off-diagonal772

values.773

Linearization of the dynamics774

Around a (approximate) fixed point z f , the dynamics in Equation 3 can be Taylor-expanded to first order, leading to a775

linear dynamical system whose dynamics matrix is given by the Jacobian A:776

A = −I +WΦ′(z f )︸ ︷︷ ︸
Weff

(21)

Here, Weff can be thought of as a matrix of “effective connectivity”.777

For a given trial k, we defined zk as the time-averaged activity either before or during stimulus, i.e zk = 1
∆ ∑T0+∆

t=T0
zk

t778

with ∆ = 400ms, T0 = −400ms for the pre-stimulus window and T0 = 100ms for the stimulus window (T0 is measured779
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relative to visual stimulus onset). This choice was motivated by the fact that the dynamics exhibited very small780

velocities in these time windows Figure 3E. We then defined z f =
1
K ∑k z

k.781

Computation of the dynamics distance782

In Figure 2C, we computed the similarity between the dynamics of the model for different animals, as a normalized783

Procrustes distance (see Williams et al., 2021 and Ostrow et al., 2023) between their linearized dynamics, i.e as :784

d(Ai,Aj) = min
U∈O(n)

1 −
Tr
[
A⊤

i (UAjU
⊤)
]

∥Aj∥F∥Ai∥F
, (22)

where Ai and Aj denote the linearized learned dynamics for animals i and j (obtained as described in Methods - Lin-785

earization of the dynamics), ∥ · ∥F denotes the Frobenius norm, and U is an orthogonal (rotation) matrix (optimization786

over U is necessary in order to account for the fact that the dynamics may be equivalent up to a rotation). We used the787

average distance d(Ai,Aj) across all pairs of animals (i.e. all (i, j) such that i > j), as our measure of consistency of the788

learned dynamics across animals.789

As shown in Ostrow et al. [2023], d(·, ·) is a valid distance metric, bounded between 0 and 1, which computes the790

similarity of the vector fields of two dynamical systems. While Ostrow et al. [2023] applied this analysis to dynamical791

systems identified via delay embedding of the dynamics, we instead apply it directly to the linearized dynamics of792

our model.793

To perform the minimization in Equation 22, we parametrized the orthogonal matrix U using a Cayley transformation794

[Ostrow et al., 2023]. As pointed out in Ostrow et al. [2023], the optimization landscape is disjoint for U matrices with795

detU = 1 and detU = −1. Thus, for each pair of dynamics matrices, we perform the optimization over matrices U796

such that detU = 1 as well as over matrices U such that detU = −1, and use the minimum distance across those two797

subsets.798

Comparing the model’s ability to capture the effect of optogenetic perturbations799

To evaluate how well the models captured the effect of artificial (optogenetic) perturbations (Figure 2D), we first800

evaluated the average inferred input during no-go, no-laser trials. We then ran the dynamics forward with those801

average inputs, whilst additionally perturbing the inhibitory population in either V1 and LM, depending on which802

population expressed ChR2 in our experiments (different across animals). We could then compare the neural responses803

predicted by the latent circuit model to the corresponding photo-stimulation responses observed in the experiments.804

Specifically, we used a simulated pulse of optogenetic input modeled as805

p(t) =

 1 if t ∈ [tlaser; tlaser + ∆]

0 otherwise
(23)

where tlaser is the onset time of laser stimulation in the relevant silencing condition in the experiments, and ∆ = 150 ms806

is the laser duration. We assumed that this input influenced the latent units via a weight vector Bp, whose elements807

were non-zero only for the inhibitory latent units of the stimulated area. We optimized the non-zero elements of Bp to808

maximize the log-likelihood for the spike trains of the known PV cells in the relevant perturbation trials. We then809

measured the average predicted perturbation-induced change (relative to no-perturbation), ∆r̂ = r̂control − r̂perturbation,810

in the rest of the neurons during the stimulation time window, and compared it to the same quantity, ∆r, measured in811

the data. We report the quality of fit as the Pearson correlation between ∆r̂ and ∆r. This is plotted for one animal in812

Figure 2D middle, and for the rest of the animals in Figure S3.813

As a comparison, we repeated the above for “control-only” models which were trained on control trials without814

optogenetic perturbation (2/3 of the control trials were used for training). We trained a minimum of 12 models per815

animal, and chose the best model following the same procedure used for the default models (see Selection of models816

for plotting and analysis). For one of the animals, no model resulted in correct classification of all PV neurons (from817

>30 trained models). For that animal, we only used the log-likelihood criterion for model selection.818

Spike width histograms819

We extracted the average spike waveforms for each neuron, and the spike width was defined as the width of this820

waveform at 10% of its full amplitude (Figure 2E).821

Analysis of the role of inhibition in the dynamics.822

To evaluate the role of inhibition in stabilizing the dynamics (Figure 2F), we measured the stability of our latent circuit823

dynamics, in the presence or absence of inhibition. We measured stability before and during stimulus presentation824

by computing the effective connectivity Weff (see Equation 21 in Methods - Linearization of the dynamics). We then825
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computed the largest real part of the eigenvalues of the effective linear dynamical system, λmax = maxi(ℜ(λi)) where826

λi are the eigenvalues of Weff. A (linearized) network is said to be “inhibition-stabilized” if λmax < 1 (stable) when827

computed on the full Weff, but λmax > 1 (unstable) when all the inhibitory weights in Weff are set to zero.828

Connectivity strength as a function of the response correlation829

In Figure 2G, we computed the noise correlation matrix of the mean-subtracted latent circuit responses of the V1830

excitatory subcircuit during control no-go trials z as follows :831

Σ = D− 1
2

[
1

KT
ΣK

k=1ΣT
t=1(zt,k − zt)(zt,k − zt)

T
]
D−1/2 (24)

where zt =
1
K ΣK

k=1zt,k and D is a diagonal matrix of single-neuron variances, i.e. Dii =
1

KT ΣK
k=1ΣT

t=1(z
i
t,k − zi

t)
2.832

In Figure 2G, we plot Σi,j for each pair of excitatory latent units (i < j) as a function of the corresponding (i, j)th
833

element of the effective connectivity matrix Weff computed based on the stimulus period as described by Equation 21.834

We repeated the same procedure for go-trials, with similar results (Figure S4).835

Calculating recurrent and external currents836

For analyses described in Figure 3A-B, we defined external and recurrent currents as ext(t) = ∑n
i=1(Bu)i(t) and837

rec(t) = ∑n
i=1(WΦ(z))i(t), respectively.838

Sensitivity of the networks839

In Figure 3A-B-J, evaluated the sensitivity of the latent circuit to changes in the inputs vs. changes in the recurrent840

weights by running the network dynamics forward, using the inputs inferred from the data for every test trial, but841

including a gain γ that we used to either scale down the input matrix B (see Equation 25), or the connectivity matrix842

W (see Equation 27):843

τżγu(t) = −zγu(t) +WΦ(zγu(t)) + γBu(t) (25)
oγu = exp(Czγu + d) (26)

vs.844

τżγw = −zγw(t) + γWΦ(zγw(t)) +Bu(t) (27)
oγw = exp(Czγw + d) (28)

We computed the sensitivity by measuring changes in the total activity in no-go trials, either before or during stimulus845

onset, and normalizing those to the activity obtained for γ = 1, i.e. S = ∑t2
t=t1

õγ(t)/ ∑t2
t=t1

õ(t) where õ(t) = o(t)−obs,846

with obs the average baseline (pre-stimulus) activity.847

We used the same approach to compute the sensitivity separately to either local or long-range weights, which was848

done by applying the gain to the corresponding local (WLM and WV1) or long-range blocks (WLM→V1 and WV1→LM)849

of the W matrix.850

Intrinsic flow and velocity851

In Figure 3D, we plot the velocity field of the intrinsic dynamics (i.e dynamics in the absence of external inputs),852

projected into the subspace spanned by the top two principal components (PCs) of the latent trajectories. Projections853

onto the PCs were only used for visualization purposes, and all analyses were performed using the full-dimensional854

dynamics.855

We first performed a singular value decomposition on the trial-averaged latent activity in no-go trials Z ∈ RN×T as856

Z = UΣVT , before defining Ũ = [U1,U2] ∈ RN×2 as the top 2 PCs. We then computed the projected velocity field at857

each point in the 2D space, x = (x, y), as v(x) ∈ R2, where:858

v(x) = ż(xŨT)Ũ (29)

and the function ż(·) was given by:859

τż(ξ) = −ξ+WΦ(ξ) (30)

To compute the velocity in Figure 3E, we similarly used Equation 30, but we used the no-go trial-averaged latent860

trajectories (without dimensionality reduction) for ξ. In Figure 3H, we followed the same procedure, but using the Z861

and W restricted to each area. In this case, the 2 PCs were similarly extracted from the area-restricted latents.862
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Network time constants and line attractor score863

For analyses in Figure 3F,G,I,J, we linearized the dynamics around the average value of the latents across trials and864

time, either during or before the stimulus, and computed the eigenvalues and eigenmodes of the linearized dynamics865

A (see Methods - Linearization of the dynamics).866

In this continuous-time linear dynamical system, each eigenmode j evolves in time according to e
λj
τ t, where τ is the867

single neuron time constant and λj the eigenvalue of mode j. The characteristic decay timescale of each mode is then868

given by τj =
τ

|Re(λj)|
.869

Assuming the modes are ordered such that 0 > Re(λ0) ≥ . . . ≥ Re(λn), i.e τ0 ≥ . . . ≥ τn, τ0 defines the slowest870

timescale in the dynamics.871

To calculate the time constants in the V1-only or LM-only networks in Figure 3I, we followed the same procedure872

but used W and Z restricted to each individual area to compute the linearized dynamics. When comparing the time873

constants of these single-area networks to the full network, in order to control for their smaller size, we constructed874

subnetworks of the size of each individual area, sampled randomly from the full network (500 random subsets, and875

excluding any subselection that would correspond to the V1 or LM network).876

To quantify the existence of a line attractor in the dynamics, we compute the “line attractor score", defined as in877

Nair et al. [2023] as a log ratio of the slowest to the second-slowest time constant of the network dynamics, i.e.878

log(τ0/τ1)/ log 2. A true line attractor would correspond to an infinite line attractor score. A score of 1 means that the879

slowest mode is twice as slow as the next mode. A score of 0 means that the first two slowest modes have the same880

time constant (as happens e.g. when these two modes define a plane with rotational dynamics, i.e, the imaginary parts881

of their eigenvalues are non-zero).882

Minimal E-I networks883

Our minimal E/I networks (Figures 4 and 5) are described as linear rate models, consisting of two areas, where each884

area’s connectivity is given by:885

Wlocal =

e −i

e −i

 (31)

Where e and i are the strength of excitatory and inhibitory connections respectively. The activity in the full network886

evolves as:887

τṙ = −r+ Wr+ u(t) (32)

where u(t) is an external input which is zero unless otherwise specified,888

r =


rE

V1

rI
V1

rE
LM

rI
LM


and W =


e −i ℓ 0

e −i ℓ 0

ℓ 0 e −i

ℓ 0 e −i


(33)

and ℓ is the strength long-range excitatory connections. This is the minimal network architecture depicted in Figure 4B.889

We can show that the orthonormal basis Q consisting of vectors Q = [ba,ua, bd,ud] (‘b’ for ‘balanced’, ‘u‘ for890

‘unbalanced’; ‘a’ for ‘agree’, ‘d‘ for ‘disagree’), where:891

ba =
1
2


1

1

1

1


ua =

1
2


1

−1

1

−1


bd =

1
2


1

1

−1

−1


ud =

1
2


1

−1

−1

1


(34)
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is a Schur basis of W such that W̃ = QTWQ is an upper triangular matrix:892

W̃ =


e − i + ℓ e + i + ℓ 0 0

0 0 0 0

0 0 e − i − ℓ e + i − ℓ

0 0 0 0


(35)

This upper triangular form describes feedforward connectivity in the new basis Q, and reveals the existence of two893

separate functional subnetworks, respectively describing the dynamics of agreement and disagreement between V1894

and LM. The dynamics of each functional subnetwork are characterized by feedforward (balanced) amplification from895

unbalanced to balanced modes [Murphy and Miller, 2009]. More details can be found in Supplementary Section S2.1896

for more details, including elements of interpretation of the Schur decomposition.897

We also considered a version of the above minimal model that also incorporated a notion of selectivity for go vs.898

no-go stimuli (Figure 4C). Specifically, we split every E and I population in V1 and LM into two sub-populations,899

one receiving direct go input, and the other receiving direct no-go input. This resulted in a circuit with 8 units, with900

recurrent connectivity parameterized as:901

W =



e + es e −(i + is) −i ℓ+ ℓs ℓ 0 0

e e + es −i −(i + is) ℓ ℓ+ ℓs 0 0

e + es e −(i + is) −i ℓ+ ℓs ℓ 0 0

e e + es −i −(i + is) ℓ ℓ+ ℓs 0 0

ℓ+ ℓs ℓ 0 0 e + es e −(i + is) −i

ℓ ℓ+ ℓs 0 0 e e + es −i −(i + is)

ℓ+ ℓs ℓ 0 0 e + es e −(i + is) −i

ℓ ℓ+ ℓs 0 0 e e + es −i −(i + is)



(36)

The Schur decomposition of this network, along with its interpretation in terms of time constants, can be found in902

Section S2.903

Autocorrelation of neural data904

The autocorrelation of the agree (a) and disagree (d) neural activity patterns across V1 and LM are defined as,905

respectively, the sum and difference of the average empirical spike counts binned at 5 ms (s(t)), within each area, i.e.,906

ak(t) =
1

nV1
∑

i∈V1
si

k(t) +
1

nLM
∑

i∈LM
si

k(t) (37)

dk(t) =
1

nV1
∑

i∈V1
si

k(t)−
1

nLM
∑

i∈LM
si

k(t) (38)

ãk(t) = ak(t)−
1
K ∑

k′∈K
ak′(t) (39)

d̃k(t) = dk(t)−
1
K ∑

k′∈K
dk′(t). (40)

We define the autocorrelation of the agree mode as the autocovariance normalized to the overall variance:907

Ca
k(τ) =

⟨ãk(t)ãk(t + τ)⟩t

⟨ãk(t)ãk(t)⟩t
(41)

where ⟨·⟩t denotes an average over time bins t that are such that both t and t + τ fall within the relevant time window.908

This time window was [−400 : 0] ms (‘pre’) or [100 : 500] ms (‘during’) relative to stimulus onset. The autocorrelation of909

the disagree mode, Cd
k (τ), is defined analogously. See Figure S6B for a distribution of marginal variances (denominator910

in Equation 41) in the agree and disagree modes.911

In Figure 4 (H and I), we report the mean autocorrelation and its standard error across all correct control go and no-go912

trials and all animals. Note that mean subtraction in Equation 39 was done separately per animal/condition for go913

and no-go trials.914
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Our minimal models of V1-LM dynamics (Figure 4B-C) also make predictions for the decay timescales of balanced vs.915

unbalanced modes. Estimating the autocorrelation time constant of these modes required estimating the E/I identity916

of each recorded neuron. For this, we used the identities inferred by the latent circuit models, and computed the917

momentary contributions of the balanced and unbalanced agree (ab, au) or disagree (db, du) modes to the recorded918

activity as:919

ab(t) =
1

nV1E
∑

i∈V1E

si
k(t) +

1
nV1I

∑
i∈V1I

si
k(t) +

1
nLME

∑
i∈LME

si
k(t) +

1
nLMI

∑
i∈LMI

si
k(t) (42)

au(t) =
1

nV1E
∑

i∈V1E

si
k(t)−

1
nV1I

∑
i∈V1I

si
k(t) +

1
nLME

∑
i∈LME

si
k(t)−

1
nLMI

∑
i∈LMI

si
k(t) (43)

db(t) =
1

nV1E
∑

k∈V1E

sk(t) +
1

nV1I
∑

k∈V1I

sk(t)−
1

nLME
∑

k∈LME

sk(t)−
1

nLMI
∑

k∈LMI

sk(t) (44)

du(t) =
1

nV1E
∑

k∈V1E

sk(t)−
1

nV1I
∑

k∈V1I

sk(t)−
1

nLME
∑

k∈LME

sk(t) +
1

nLMI
∑

k∈LMI

sk(t) (45)

Having defined these projections, we follow the same procedure as in Equation 39 - Equation 41 to calculate autocorre-920

lations. Results are shown in Figure S6A921

Quantifying autocorrelation differences922

To quantify the difference between the autocorrelation functions of neural activity projected onto the agree vs. disagree923

modes (Figure 4H and I), we first identified the time lag at which the average agree/disagree autocorrelation function924

reached its maximum (tmax). We then quantified the difference between agree and disagree autocorrelation functions925

at this time point (∆max).926

Projected autocorrelations for selective/unselective modes927

In Figure 4I, to estimate the time course of the selective and unselective modes from the neural data, we computed two928

indices for each neuron. The first measured ‘unselective’ responsiveness, i.e. how much more each neuron responded929

to either stimuli (go/no-go), relative to baseline. The second index measured ‘selective’ responsiveness, i.e. how much930

each neuron preferred the go stimulus over the no-go stimulus. This resulted in two vectors of indices:931

wunsel =
1

TK ∑
k

∑
c=go, no-go

(
500

∑
t=0

sc
k(t)−

0

∑
t=−500

sc
k(t)

)
(46)

wsel =
1

TK ∑
k

(
40

∑
t=0

s
go
k (t)−

40

∑
t=0

s
no−go
k (t)

)
(47)

We then used these indices to compute weighted averages of the neural activity at each time step, aunsel
k (t) =932

wunselT
sk(t) and asel

k (t) = wselT
sk(t).933

The distributions of unselective and selective weights (wunsel and wsel) across V1 and LM neurons are shown in934

Figure S6D-E, and their relationship with one another is shown in Figure S6C. The elements of wunsel were biased935

towards positive values (Figure S6D), as most recorded neurons responded to visual stimuli by increasing their firing936

rates. For wsel, in contrast, the distribution was symmetric. This is because we measured responses early during937

stimulus presentation, i.e. likely before any go-stimulus-related behavior could break the symmetry in the neural938

responses to the two stimuli (Figure S6E). The choice of a small time window to compute wsel also ensured that the939

selective index for a neuron was not corrupted by its unselective stimulus responsiveness, i.e that wsel were not directly940

correlated with wunsel (Figure S6C). This was important to establish that the slow time constant of the autocorrelation941

in agree-selective mode was not simply due to the correlation of this mode with the agree-unselective one, but instead942

depended on the stimulus selectivity of neurons.943

Alignment of the latent circuits’ eigenmodes onto agree unselective/selective modes944

For our latent circuit models, we could ask whether their two agree modes (unselective and selective) bore any relation-945

ship with their two slowest eigenmodes. Eigenmodes were computed for the Jacobian of the latent circuit dynamics946

linearized around the average activity in no-go trials during stimulus presentation (see Methods - Linearization of947

the dynamics), and were sorted from slowest to fastest according to their associated eigenvalues. Similarly, we could948

estimate the latent circuit’s unselective and selective agree modes by computing, for each latent unit, similar indices of949

unselective/selective responsiveness as we had computed for recorded neurons in Figure 4I (c.f. Equations 46 and 47).950

For the selective indices, activity of the latent circuit during the onset period (0-100ms from the stimulus presentation)951

was used, as the latent circuit activity was strongly driven by external inputs during this time window (Figure 3A).952
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This yielded two normalized vectors, whose overlaps with the eigenvectors we evaluated, by calculating the absolute953

value of their dot product. These overlaps are shown in Figure S6F.954

Details of Figure 5955

In Figure 5, we simulated the linear dynamics of the minimal circuit model of Figure 4C, i.e. Equations 32 and 36 with956

parameters τ = 10 ms, e = 2, i = 2, es = 0, is = 0, ℓ = 0, and ℓs taking values in the set {0, 0.5, 0.9}. The input to957

the network was u(t) = α(t/τ′)u0 with τ′ = 15 ms, i.e. it was the product of a scalar temporal envelope (Figure 5A,958

bottom) α(t) =
[
t3e−t + 1

2 (1 − e−t))
]

H(t − tstim) (where H(·) denotes the Heaviside function) and a spatial input959

pattern u0 which expressed how much each subpopulation was driven by the ‘visual’ stimulus. For Figure 5B-D, we960

set u0 = (1, 0, 1, 0,−0.6, 0,−0.6, 0)T , whereas for Figure 5E-G we set u0 = (1, 0, 1, 0, 0, 0.6, 0, 0.6)T (c.f. gray insets).961

Statistics962

We used two-sided Wilcoxon rank-sum tests for independent group comparisons, and two-sided Wilcoxon signed-rank963

tests for paired tests, unless otherwise stated.964

symbol value unit description

n 16 - number of latent units

m 3 - number of latent inputs

τE 20 ms excitatory latents time constant

τI 20 ms inhibitory latents time constant

η 0.004 - learning rate

k 10 - scaling of the optimizer square root decay

r 0.6 - spectral radius of W at initialization

λ 1000 - scale of the regularization for C

Fe 0.5 - fraction of excitatory neurons

Table 1: Model hyperparameters.
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