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Abstract 

The rice genome underpins fundamental research and breeding, but the Nipponbare 

(japonica) reference does not fully encompass the genetic diversity of Asian rice. To address 

this gap, the Rice Population Reference Panel (RPRP) was developed, comprising high-quality 

assemblies of 16 rice cultivars to represent japonica, indica, aus, and aromatic varietal groups. 

The RPRP has been consistently annotated, supported by extensive experimental data and 

here we report the computational assignment, characterization and dissemination of stably 

identified pan-genes. We identified 25,178 core pan-genes shared across all cultivars, 

alongside cultivar-specific and family-enriched genes. Core genes exhibit higher gene 

expression and proteomic evidence, higher confidence protein domains and AlphaFold 

structures, while cultivar-specific genes were enriched for domains under selective breeding 

pressure, such as for disease resistance. This resource, integrated into public databases, 

enables researchers to explore genetic and functional diversity via a population-aware 

“reference guide” across rice genomes, advancing both basic and applied research. 
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Introduction 

Rice is one of the most important crops for human nutrition and will be central to efforts to 

feed 9.8 billion people by 2050. Breeding efforts are targeted with increasing yields and 

nutrition, while also making rice more resistant to biotic and abiotic stresses, which will be 

exacerbated by a changing climate. Asian cultivated rice Orzya sativa L. has previously been 

classified in different varietal groups, based on historic domestication events – mostly notably 

indica (Xian) and japonica (Geng), with other recognised groups including those described as 

aus, aromatic (Basmati) and admixed1. 

An important resource underpinning both basic and applied rice research is the rice reference 

genome sequence, originally released via two draft assemblies circa 2002 (for indica and 

japonica)2,3, and then with one finished genome three years later by the International Rice 

Genome Sequencing Project (IRGSP), with an annotation set (gene models, gene and protein 

sequences) released in 20054. The IRGSP canonical reference (IRGSP RefSeq) genome is 

derived from the japonica variety - Nipponbare, despite indica rice accounting for a much 

larger share of the international market. In the last 20 years, there have been multiple efforts 

to annotate the IRGSP reference, using different software packages and supporting data. 

From these efforts, two primary annotation sets have persisted – those developed by the Rice 

Annotation Project Database (RAP-DB)5 (example gene identifier: Os01g0918300), and the 

Rice Genome Annotation Project at Michigan State University6 (MSU) (example: 

LOC_Os01g68950). RAP-DB is still actively updating its database, while the MSU annotations 

have been frozen since 2014, with the latter being the more widely used/reference 

annotations (for historical reasons). 

In order to study genetic variation, significant efforts have been made to identify variants on 

a large scale from high-throughput short DNA read sequencing, for example via the rice 3000 

genomes project1,7. These projects can identify single nucleotide polymorphisms (SNPs) or 

short insertions and deletions, relative to the reference genome to which they are mapped. 

However, they cannot be used to find larger structural rearrangements of chromosomes, call 

variants relative to any regions absent from the reference genome used, or define accurate 

gene models for regions of chromosome absent from the reference genome. 

Fully assembled genomes allow researchers to study chromosomal rearrangements and 

potentially identify gene gain or loss in different rice varieties. A collection of “platinum-

standard” genomes assemblies, called the Rice Population Reference Panel (RPRP, and also 

called the “MAGIC-16”)8,9, has been created, including 15 new genomes (plus the IRGSP 

RefSeq) aimed specifically at covering a significant portion of the population genetic diversity 

of Oryza sativa. These genomes have now been annotated using a consistent pipeline (as 

described in Zhou et al.8), including support from long read transcriptome data in every 

variety, which is able to give strong experimental evidence for the correct splicing prediction 

of gene models. As new genomes are sequenced, assembled and annotated, they have the 

potential to act as a powerful resource for rice researchers, for example to find genes/variants 
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present in only certain varieties, or where genes are differentially alternatively spliced across 

varieties. However, there are currently no stable/consistent nomenclature gene identifiers 

across the rice pan-genome, and it is not straightforward to determine the relationships 

between orthologous genes. 

In this work, we built a pan-gene set for Oryza sativa from the annotated RPRP genomes, 

using an algorithm we developed based on whole genome alignment10. We assigned stable 

identifiers for a pan-gene set, here defined as a collection of gene models across different 

varieties in the same genomic location, following whole genome alignment i.e. syntenic 

orthologs. The members within each pan-gene could also be described as Oryza sativa alleles 

within different genomes. However, even with support from experimental data, accurate 

gene model definition remains highly challenging – i.e. genes adjacent on a chromosome may 

be falsely merged, a gene may be falsely split into two, splicing of exons may be incorrectly 

defined, and predicting the correct start codon is frequently wrong11. As such, some pan-

genes will contain a mixture of some correct and some incorrect gene models, generated from 

the same (aligned) chromosomal region in different varieties. By bringing models together 

into assigned pan-genes, it allows work to begin to determine which gene models are correct 

and to refine annotations over time. Having defined pan-genes, we next explore their 

characteristics with respect to their occupancy across genomes, and the extent to which their 

gene expression and protein abundance is supported by experimental data from multiple 

sources. All gene annotation sets and pan-gene identifiers have been deposited into end-user 

focused databases – Ensembl Plants and Gramene (and protein sequences in UniProtKB), for 

straightforward user access. 
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Results 

RPRP gene sets 

We first collated gene models for the RPRP genomes, as a source for the creation of a pan-

Oryza-gene set. All 16 genomes, including the IRGSP RefSeq were annotated using a 

consistent pipeline and data source (see Methods). In addition, there are also RAP-DB and 

MSU gene sets for the IRGSP RefSeq, making 18 annotation sets in total from which we built 

the pan-gene set. The count of gene models for each genome used as input to the pan-gene 

set are provided in Table 1. Around 36,000 genes were found in all varieties, with the 

exception of Nipponbare, which has a greatly inflated gene count, due to the merging of three 

input sets (See “nipponbare_merged_GFF” at https://zenodo.org/records/14772953). 

Pan-gene sets, clusters and identifiers  

Our first objective was to analyze gene annotation sets from the RPRP genomes and assign 

pan-genes following whole genome alignment (WGA), indicative of synteny. The 

GET_PANGENES pipeline was used to create pan-genes, determine their occupancy statistics 

and assign long-term stable identifiers (Figure 1). Supplementary table S1 contains the matrix 

of pan-genes, with their stable identifier (column 1), then 16 further columns - one per input 

genome, containing transcript identifiers (if any) from each genome that have been mapped 

to that pan-gene. There are a total of 77,530 pan-genes, including 35,029 singletons i.e. pan-

genes containing transcripts from only one genome (17,383 singletons when MSU gene 

models are removed, which heavily inflate the count), leaving 42,501 pan-gene clusters 

containing two or more members. Figure 1A displays the distribution of pan-genes by 

occupancy class, demonstrating that most genes are core or cloud, and that shell genes are 

relatively rare in the pan-gene set.  

We also assessed the quality and robustness of pan-gene formation through multiple metrics, 

including descriptive statistics on gene length, exon count, sequence distance between 

members, and “MSA completeness” (Extended data figure 1, Supplementary table S2), 

demonstrating that the majority of pan-genes contain highly similar gene / protein sequences 

from different genomes. The metrics also allow for identification of pan-genes containing one 

or more inconsistent members, indicative of different overlapping gene predictions in some 

genomes (e.g. coding sequences predicted on different frames), which are likely artifacts of 

incorrect gene model prediction. 

Figure 1B demonstrates that the core set of genes converges at around 25,000 genes (24,931 

and 23,651 via Tettelin and Willenbrock methods, respectively), indicating this is the 

minimally core set contained within an Oryza sativa genome. Figure 1C displays the counts 

per variety of singletons from each genome, ranging from 457 to 1511 (mean = 766, median 

752), indicating consistency across different cultivars for the presence of these unique genes. 

For Nipponbare, the results are filtered to include singletons containing an OsNip-source  
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Table 1. Summary information on the RPRP genomes and their annotations.  
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*Breakdown by source, prior to merging: RAP-DB= 35,694, MSU=55,801 (including possible 

transposable elements), OsNip=37,007. 
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model, created using the same approach as the other 15 genomes to avoid artefactually high 

counts due to merging different input gene sets, giving a set of 964 genes in line with other 

genomes. Figure 1D shows the pan-gene cluster overlap across cultivars. In general, there is 

reasonable clustering by rice family (japonica vs aus vs indica). The merged Nipponbare 

annotation has lower overlap with other clusters, due to it having a much higher count of 

input genes. 

Genomic position of pan-genes 

In Extended data figure 2, we display the chromosomal location of genes within the pan-gene 

set, using a “pseudo-position” attribute (see Methods). There are sporadic cases of genes that 

are not collinear with respect to the reference genome, with a few notable systematic cases. 

These include a set of genes that are inverted on chromosome 1 for OsLima at position 600K-

800K bp with respect to all other genomes. Similarly, there are two inversions on aus genomes 

(N22 and Natal Boro) around the center of chromosome 1. Another notable case is on 

chromosome 6, where Nipponbare has a large inversion compared to the other 15 genomes. 

Data containing the positions of genes within pan-gene clusters, and pseudo-positions of 

clusters can be found in Supplementary table S3. The GET_PANGENES approach uses whole 

genome alignment and does not enforce that genes must be located on the same 

chromosome. This enables the algorithm to identify cases where breeding (or natural 

selection) has caused regions of the chromosome to translocate, or potentially where there 

have been assembly errors. There are 1502 pan-genes that have occupancy > 2 and contain 

genes mapped to different chromosomes (Supplementary table S3), which researchers should 

consider when using genomics resources e.g. SNP mapping or allele mining.  

Pan-gene distribution across rice families 

Supplementary table S4 contains the proportions of genomes by sub-family (japonica, 

aromatic, aus, indica) that have a member within each pan-gene. For example, by filtering 

this data, one can identify genes that segregate by family e.g. 359 pan-genes found in all 

Japonica genomes but only 0 or 1 other genome, 229 pan-genes found in 8 or 9 Indica 

genomes but present in 0 or 1 other genomes, 336 pan-genes found in Aus varieties and 0 or 

1 other genomes. For multiple research and breeding purposes such genes are of high 

interest, particularly if there are QTLs mapped to these genomic regions. One of the current 

major limitations of genome wide association or other population SNP mapping studies is that 

the ISRFG RefSeq reference genome (IRGSP) is almost always used for read mapping, and 

locating genes nearby SNPs. Unfortunately, as we show here, there are 17,130 pan-genes that 

do not have an IRGSP gene model (5,634 with occupancy >=2), indicative of a large pool of 

genetic resources that is currently missed in most such studies.   
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Properties of pan-genes by occupancy 

We next explored the properties of pan-genes related to occupancy (Figure 2). We chose to 

focus on quality metrics derived from the RAP-DB reference gene annotations (for which most 

data already exist from different resources), and taking the occupancy statistic from the 

parent pan-gene. First, we assessed the quality of a given gene model, using the TRaCE12 

algorithm, and assigned a minimum annotation edit distance (AED) score, from three 

transcriptomic data sets, to assess the quality of the annotation. AED is calculated on a scale 

of 0-1 based on the sequence distance between the gene model and the best transcript, 

assembled from publicly available transcriptomics data.  

Figure 1. Pan-gene sets of rice MAGIC15 and Nipponbare cultivars. A) Count of input genome 

members (x-axis) “occupancy” 1-16 vs counts of pan-genes (pan-genes containing only one MSU gene 

model have been removed). B) Core-genome growth simulations after adding MAGIC15 cultivars in 

random order, using Tettelin13 (red) and Willenbrock14 (blue) functions, fitted after 20 permutation 

experiments. C) Counts of singletons i.e. genes per input genome present in clusters with no other 

gene models (for IRGSP, singleton count includes those with an OsNip (Gramene-generated) gene, for 

unbiased comparison); D) Matrix of % shared clusters and heat map of RPRP pan-genes. The 
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dendrograms were computed by complete linkage clustering and Euclidean distances computed 

among columns.  

 

Figure 2A shows the mean (minimum) AED score for all RAP-DB genes, against the occupancy 

of their parent pan-gene. We can observe that core (occupancy = 16) or softcore (15 or 16) 

clusters have significantly lower AED within core (mean=0.5) versus cloud pan-genes 

(mean=0.9) indicating that core genes are called with higher confidence using transcriptomic 

data sources. Of the core pan-gene, 83% have an assigned InterPro domain (Figure 2B), 

compared to 11% in singleton pan-genes (occupancy = 1). More detailed analysis of protein 

domains across all pan-genes is provided below. Core pan-genes are also significantly longer 

and are more likely conserved across the plant kingdom as indicated by their protein length 

and ortholog count (Figure 2C, D). 

There is a more complex trend for paralog count (Figure 2E), where there is no significant 

difference between paralog counts for cloud or shell, versus core sets. There appears to be a 

trend where shell genes have higher paralog counts. We hypothesize that there are two 

“competing” distributions here. We would expect that pan-genes of lower occupancy are 

more likely to have paralogs, as this set contains rapidly duplicating gene families (further 

discussed below), but are also enriched for faulty gene models, where paralogs cannot be 

identified. 

Pan-genes with softcore/core occupancy have significantly higher gene expression values 

compared to cloud genes, with singleton pan-genes (occupancy=1) frequently having no 

detectable signals – these could be pseudo-genes or genes only transcribed under particular 

conditions not assessed in the source data (Figure 2F). Prediction of a 3D protein structure for 

core/softcore and shell pan-genes can be done by AlphaFold with high confidence (Median + 

IQR score 78.1 + 20.6 for core, 75.0 + 23.4 for softcore and 70.3 + 27.2 for shell pan-genes), 

whereas a protein structure for cloud pan-genes has a median score of 54.7 + 16.6 indicating 

lower confidence (Figure 2G). Cloud genes thus appear to be enriched with low-quality gene 

models (short sequences, no InterPro domains, weaker structure models), which is further 

supported by peptide-based evidence, derived from experimental proteomics studies (further 

details below), where about 9.9% singleton pan-genes are supported by more than two 

peptides per gene. In contrast, 52.1% core RAP-DB genes show more than two peptides per 

gene as evidence for the pan-gene cluster (Figure 2H).  
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Figure 2. Exploration of pan-genes and their properties by their occupancy. The x-axis shows the pan-

gene occupancy for each cluster, the y-axis shows data derived from RAP-DB gene models within those 

clusters (clusters containing no RAP-DB model are excluded): A) mean of minimum AED score from 

three transcriptomic data sets; B) proportion of genes that contain a significant match to an InterPro 

domain; C) Mean count of amino acids; D) boxplot showing the counts of orthologs derived from 
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Ensembl Compara (see Methods); E) boxplot showing counts of paralogs; F) boxplot of mean 

quantitative gene expression data log2(FPKM+1), sourced  from 11,726 rice RNA-Seq samples; G) 

Boxplot of mean prediction score (pLDDT) from corresponding AlphaFold2 model;  H) Percentage of 

clusters with genes having peptide evidence ( n >2 per gene).  

 

Support for rice pan-proteome 

To determine experimental support for the rice pan-genes, we performed large-scale re-

analysis of public proteomics (mass spectrometry) data, against a comprehensive protein 

database derived from all possible gene models within the pan-gene set. We searched 19 

public datasets (~30 million MS/MS spectra), sourced and pooled from multiple rice varieties 

to maximize total coverage. All datasets were from “shotgun” methods, i.e. proteins were 

digested into a total peptide pool prior to LC-MS/MS. As a result, for peptides that can match 

to more than one gene product (per genome), it is not straightforward to determine which is 

the correct assignment. Using an all peptide-to-protein mapping, we demonstrate potential 

peptide-based evidence using >200,000 distinct peptides for 435,196 gene models and 

293,844 genes present in 28,658 pan-genes. 

Taking a parsimonious approach where a peptide can only be mapped to one protein, we 

found around 13K genes in each genome with at least two peptides, indicating strong 

evidence for the gene’s protein coding potential (Figure 3A). In agreement with the previous 

set of observations, we find a significantly higher number of peptides mapped to core and 

soft-core pan-genes than cloud pan-genes (Figure 3B).  Out of all the peptides mapped to all 

the proteins, ~73% (n = 168,151) of the peptides mapped to proteins in all 16 rice accessions 

indicating good support for these pan-genes, and that in general, based on current evidence, 

there is little deviation in sequences for readily detectable rice proteins across the pan-

genome (Figure 3C).  

We further demonstrate the relationship between proteomics evidence (those genes with or 

without proteomics evidence) and AED score (derived from transcriptomes mapped to the 

RAP-DB gene representative of each pan-gene cluster) in Figure 3D. Proteins without 

experimental support tend to have high AED scores (ranging from 1 to 0.8, depending on 

genomes occupancy), whereas those with experimental support and high occupancy have low 

AED scores, indicative of well-supported, high-confidence gene models.  
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Figure 3. Experimental proteomics data support for pan-genes. A) Count of proteins per annotation 

set with at least two supporting peptides, B) log counts of peptide sequences versus genome 

occupancy, C) absolute counts of peptides mapped to proteins from 1-16 genomes, D) scatter plot of 

mean (min) AED score across three transcriptomics datasets for those (RAP-DB) gene products with 

or without peptide evidence, by genome occupancy of the containing pan-genes; dotted line = linear 

regression; indicating that gene products with peptide evidence have better (lower AED) support from 

transcriptomics data.  

 

Exploring the predicted protein domains of pan-genes 

We ran InterProScan15 over all input proteins available within the pan-gene set, assigning 

Pfam16 and InterPro17 domains. For each pan-gene, we assigned additional datatypes and 

statistics, including the total number of different domains identified, the genomes (and 

proteins) containing those domains, and a representative domain for the cluster (most 

common across genomes), available in Supplementary table S5. We then assigned which 

proteins within a pan-gene cluster contain the representative domain, and which proteins are 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2025. ; https://doi.org/10.1101/2025.02.17.638606doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.17.638606
http://creativecommons.org/licenses/by/4.0/


outliers i.e. do not contain the most common domain. Of the 42,501 pan-genes with at least 

two members, 26,044 have at least one assigned Pfam domain (and 28,507 at least one 

InterPro domain). Of these, 21,779 are “domain consistent” clusters (83%), having zero 

genomes lacking the most common Pfam domain.  Similarly, 88% of pan-gene clusters have a 

consistent common InterPro domain. In Supplementary table S6 we show the counts of 

proteins that do not contain the most common InterPro domain per cluster per input genome 

for the 3485 pan-genes that are not “domain consistent”. There are around 400-600 proteins 

per input annotation set that do not match the most common domain. RAP-DB and MSU gene 

models have higher counts but have not been annotated using the same pipeline as other 

genomes, and thus are less consistent than OsNip models compared to other genomes, and 

we cannot straightforwardly conclude that the gene models from these sources are less 

reliable. 

We identified the most enriched domains found in the set of core versus cloud pan-genes and 

observed some distinct patterns of domain types (Figure 4A). Core pan-genes are enriched in 

domains such as AP2/ERF, WD-40, Helix-loop-helix, Myb domain, C2H2 zinc finger and 

homeobox domain. These domains are commonly present in DNA-binding transcription factor 

proteins, suggesting their conserved nature among core pan-genes.  

Next, we explored the occupancy of protein domains across the pan-gene set. Variance in the 

distribution of domains can potentially inform on functional units that have either a tendency 

to become duplicated or have been more frequently introduced via introgression, compared 

to those that are invariable. Figure 4B contains a histogram of the mean occupancy of protein 

domains (InterPro and Pfam) showing a multimodal distribution. As noted in the methods, we 

then split the distribution into three groups: “invariable (occupancy) domains”, “partially 

variable” domains and “highly variable domains”. We hypothesize that gaining (or losing) 

copies of invariable domains are highly detrimental to rice. GO enrichment analysis of pan-

genes containing these groupings of domains provide support to this hypothesis (Extended 

data figure 3). For example, pan-genes containing Ubiquitin-protein transferase and 

transcription factor DNA binding activity show conserved and invariable domains, whereas, 

domains involved in cell surface receptor signaling appear highly variable indicating the fast-

evolving nature of these domains driven by selective breeding pressure, like disease 

resistance.  

As a case study to test the pan-gene clusters, we analyzed two gene families (Figure 4C), i.e. 

the NAC transcription factor family (an invariable domain) and the NB-ARC disease resistance 

family (a highly variable domain)18. NAC transcription factor family genes have been 

characterized in the past for their roles in abiotic stress responses in rice19. We identified 175 

NAC pan-genes with 142-154 genes in each genome, and the domain has a mean occupancy 

= 13.2. 77% of NAC pan-genes (n = 135) have core occupancy and 9% cloud (n=16) indicating 

a highly invariable domain (Figure 4C, Extended data figure 4). In comparison, the NB-ARC is 

a highly variable domain (mean occupancy = 7.2), identifiable within 1005 pan-genes with 
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432-518 genes per genome. NB-ARC family genes are mostly found with occupancy = 16 or 1, 

indicative of rapid introduction of additional copies or recent gene duplications in some 

genomes (Extended data figure 5). There is also a difference between NAC and NB-ARC in 

shell pan-genes: 9% of NAC pan-genes (n = 16) versus 34% of NB-ARC genes (n = 341). One 

could hypothesize that since NB-ARCs have a role in pathogen effector recognition, it is 

desirable for the plant to have a wide diversity of genes, but can tolerate the loss of a small 

number of genes in some genomes (leading to shell pan-genes), whereas loss of a 

transcription factor is highly detrimental, and the existence of cloud genes is explained by 

rare duplication events. 

A similar trend is seen with other domains like Leucine rich repeats (LRR, median occupancy 

of 7.50 + 0.945), indicating the highly variable nature of these domains (Figure 4D). Given the 

role of LRRs in plant immune responses, the domain occupancy data are suggestive that these 

genes are fast evolving through breeding, for example where past gene duplications giving 

resistance to a given pathogen in cultivated rice have been selected. Notably, it is one of the 

domains associated with pan-genes enriched with highly variable GO term “cell surface 

receptor signaling pathway” (Extended data figure 3). Multiple domain types with the name 

‘F-box’ show a partially variable occupancy (9.87 + 2.66) compared to the least variable 

domains of transcription factor (13.3+ 1.73) or protein kinase (13.4 + 3.70) types. F-box 

domain containing proteins include those involved in the SCF type ubiquitin E3 ligase family, 

and in plants have multiple functional roles, including in stress responses. Our data also 

suggest past selective breeding pressure, giving rise to variability in the domain occupancy 

across the rice pan-genome. 

Interestingly, the class of ‘Domains with Unknown function’ (DUFs) shows a median 

occupancy of 13.6 but with a wider interquartile range (+ 5.49) with 46 domains present in 

more than 10 pan-genes (Figure 4E). Several DUFs (DUF594, DUF4220, DUF295, DUF1618, 

DUF6598 and DUF1668) are present in more than 100 pan-genes and have been classified as 

highly variable domains, which we believe may be indicative of past selection. The genes 

containing these domains are thus candidates for functional validation, and potential carriers 

of desirable traits.  
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Figure 4. Exploration of predicted pan-gene domains. A) Enriched InterPro terms among cloud vs core 

pan-genes. Top 30 terms are shown in the plot. Size of the dot represents the enrichment factor and 

the color of the dot shows the p-value. B) Histogram shows the counts of domains within the pan-

genes vs their mean domain occupancy for both Pfam and InterPro domains. The domains were 

filtered for presence in minimum 5 pan-genes. C) The plot shows the percentage of pan-gene clusters 

according to their occupancy status for two gene families, NAC domain containing TFs and NB-ARC 

domain containing genes. D) The variation in mean domain occupancy of various Pfam domains for 
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the selected major gene groups is shown. The solid back dot shows the median value. E) The scatter 

plot shows the mean domain occupancy of various domains under the group  ‘Domains with Unknown 

function’ (DUFs) vs the number of pan-genes with the respective domain. DUFs present in more than 

50 pan-genes are highlighted in blue text. 

 

Infrastructure for pan-gene exploration 

The pan-gene set has been loaded into popular, widely used databases, including Ensembl 

Plants and Gramene, and our own pan-gene resource (https://panoryza.org/). At Gramene 

(https://oryza.gramene.org/), it is possible to search with pan-gene identifiers, e.g. 

Os4530.POR.1.pan0020022, which is the pan-gene identifier for NAC106 (RAP-DB: 

Os08g0433500) (Figure 5A). NAC106 is a NAC transcription factor, which has been associated 

with salt tolerance, tiller angle and leaf senescence20. The Gramene search then returns the 

gene records within each of the genomes assigned to that pan-gene identifier. There are 

multiple views for exploring the data, including as phylogenetic trees within the set, or 

expanded to include orthologs from other plants. The MAGIC-16 assemblies and annotations 

have been added into Ensembl Plants and the new Ensembl site which is currently in beta 

(beta.ensembl.org). The pan-gene identifiers are visible as gene synonyms on beta, and will 

become available via Ensembl Plants in a future release (Figure 5B).  

At the Pan-Oryza site, we have a JBrowse21 instance where each genome can be explored, 

with various tracks of data (Extended data Figure 6A). For the IRGSP reference, we have 

aligned gene models from other cultivars using LiftOff, enabling any variation in models from 

other genomes to be displayed. For NAC106, it is an occupancy=16 gene, with some suggested 

variation in exon 2 in N22 and Azucena varieties.  

We have also created an R library, with code for interactive exploration of clusters using R 

Shiny through a web-browser. The application allows users to visualize the relative position 

of genes within a cluster across the 16 genomes, and explore the members and meta-data 

about each pan-gene (https://github.com/PGB-LIV/PanOryza-pan-genes-release-

v1.0/tree/main/heatmap_app/) (Extended data Figure 6B). 

A permanent DOI has also been created for the pan-gene matrix and identifiers 

(https://zenodo.org/records/14772953) so that they can be used now in other research 

projects. It is anticipated that they be updated in the future (e.g. yearly), under some of the 

following circumstances: i) gene models change; ii) additional genomes are added; and iii) 

there are refinements to the algorithm for creating pan-genes. Mappings will be made 

available, so that any users can track how and why pan-genes have changed. These resources 

can all be used by the rice research and breeding community now, to assist in mining the wide 

pool of genetic resources available for Asian rice. 
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Figure 5. Representative example of infrastructure for pan-gene exploration using pan-gene 

Os4530.POR.1.pan0020022. A) The screen shot shows the record of pan-gene 

Os4530.POR.1.pan0020022 on the Gramene database (https://oryza.gramene.org/). B) The page 

shows gene record for a member gene OsARC_08g0017270 of Os4530.POR.1.pan0020022 on the 

Ensembl Beta Release.  

Discussion 

New genomes are frequently being sequenced and assembled for many species, including 

rice. It is also reasonably straightforward to produce an annotation set (i.e. genes and protein 

sequences), although structural genome annotation remains very challenging to perform 

accurately11. The upshot is that archival repositories like INSDC contain an ever-increasing 

number of genome assemblies, and annotations of variable quality, and it is highly challenging 

for most research groups to interpret. For example, asking how a given gene varies in 

presence, absence, or expression across different rice varieties could not previously be 

performed without running complex, custom-built bioinformatics analyses. 
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Other groups have also explored or generated pan-genomes for rice. For example, Shang et 

al.22 sequenced, assembled and annotated a 251 accession panel, demonstrating as in our 

work, that LRR genes have variable copy number across genomes. Wu et al. generated a pan-

genome from 74 weedy and cultivated rice accessions, building ortholog relationships using 

BLASTP, shedding light on genes involved in domestication. The Rice Gene Index 

(https://riceome.hzau.edu.cn) resource23 has also created ortholog groups across the RPRP, 

based on reciprocal best match method, creating >110,000 groups via this method. After 

filtering gene models from different input sets, our 78,000 pan-genes have reasonable 

agreement, with ~22K pan-genes having identical membership to RGI clusters (Extended data 

figure 7). 

Our work has a different focus from previous related efforts though, in that we have created 

a robust and stable pan-gene set for Asian rice, based on 16 very high-quality assemblies and 

gene annotation sets, supported by multiple types of experimental data. Persistent identifiers 

have been assigned to pan-genes, along with a system allowing for pan-genes to be updated 

over time, as source data or evidence changes, with the ultimate aim to make these resource 

straightforwardly available in end-user focused databases. 

The availability of pan-genes in popular public databases allows for the rice research 

community to move now to working in the pan-genome context. For example, groups 

planning new genome wide association, gene expression, or proteomics studies can select to 

use the reference assembly (and gene/protein set) most closely matching their variety of 

interest, but using the pan-gene set created here to compare easily where 

SNPs/genes/proteins are present or absent across rice families, including in the reference 

genome IRGSP. 

Interpretation of pan-genes by their occupancy across genomes 

Our QC metrics demonstrated that clusters are robustly formed, for example containing 

gene/protein sequences that are highly related across genomes, but with some outliers where 

sequences have low similarity. The clustering algorithm ensures that overlapping genes on 

different strands are not placed in the same cluster, but there are multiple other reasons why 

clusters (formed primarily based on gene span overlaps) contain only moderately similar or 

unrelated protein sequences. These include cases where one coding sequence has been 

predicted within introns, UTRs, or on a different frame from another gene model. In a few 

cases, the differences could be the result of true biological differences, but perhaps a default 

assumption should be that for incongruous pan-genes, some gene models are incorrect in one 

or more cultivars. The metrics we have generated allow such clusters to be identified, and 

work can begin to identify the correct coding sequence.  

Exploring occupancy data points to several key conclusions. First, core pan-genes are well 

supported by experimental evidence (transcriptomics, proteomics) and have easily 

recognizable protein domains and structures. As a general trend, the extent and quality of 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2025. ; https://doi.org/10.1101/2025.02.17.638606doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.17.638606
http://creativecommons.org/licenses/by/4.0/


experimental evidence rapidly decreases with occupancy – in some cases there are likely 

pseudogenes or only partial gene models that have been incorrectly predicted. In other cases, 

as demonstrated in the exploration of mean domain occupancy, genes under selective 

pressure have more variable occupancy.  

 

Implications for rice research and breeding 

The concept of a reference genome remains a useful one, despite the wealth of genomes now 

available for rice (as with other species). It is a very costly and challenging exercise to annotate 

a genome sufficiently well i.e. performing manual or semi-automatic fixes to gene models, 

and performing functional annotation and validation of genes. However, it is evident that the 

IRGSP RefSeq does not fully represent the coding potential of the diverse set of varieties being 

grown around the world. In this pan-gene set, we find >5000 genes that are observed in at 

least two other Oryza subpopulations but absent in IRGSP. Another key finding is that by 

exploring the pan-gene set, we can see clear signatures of selection within protein domains. 

For example, some highly variable domains are associated with immune-related functions, 

and presumably resistant to pathogens and pests. Through identification of genes carrying 

currently under-studied domains (DUFs), and genes with recognizable domains that are 

present in only some subpopulations, these resources are ready for mining to find new alleles 

with desirable traits. Lastly, our approach for creating pan-genes and assigning globally 

unique (but easily updatable) stable identifiers, can be adopted by other communities 

attempting to deal with the complexity of multiple genomes and annotation sets within a 

species of interest.  
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Methods 

Consistent gene annotation for the RPRP 

To create the assembly of pan-gene sets across Oryza sativa, we first collected whole genome 

sequences, gene and protein sequences (all fasta format), and gene model coordinates (GFF 

format) for the RPRP rice population. We used as input to pan-gene set building gene models 

that have been generated by a single consistent pipeline, as described in24 for all 16 genomes. 

In brief, models were generated with MAKER-P, with ab initio gene prediction (SNAP25, 

Augustus26 and FGENESH27), deep RNA-Seq data (long and short read), and assignment of 

canonical gene models using TRaCE12. For the IRGSP (Nipponbare) reference, we created a 

merged annotation set from the three sources of gene models (RAP-DB; new models 

following the pipeline above, called OsNip; and MSU), using the following algorithm.  

Protein coding genes from the three sets were merged based on gene overlap calculated using 

chromosomal coordinates and strand information. Genes were merged (protein-coding genes 

with CDS transcripts only) if the gene ranges overlapped by >=50% of the length of the shorter 

gene. The merged gene’s coordinates were adjusted to match the most extreme 5’ and 3’ 

coordinates of any protein-coding transcript within the merged gene. The name given to the 

merged gene was assigned from one of its members, giving priority to the RAP-DB identifier, 

followed by the OsNip identifier, and finally the MSU identifier. The MSU annotation set 

uniquely contain some genes tagged as transposable elements (TEs), which were not filtered 

at source (in case they had been incorrectly annotated as TEs), but for some analyses were 

later removed, as detailed below. 

Building pan-gene clusters and quality control 

We ran the GET_PANGENES pipeline10 (version 11012024), which performs whole genome 

alignment using minimap228 (version 2.17), followed by the use of bedtools intersect29 to 

determine overlaps in each pairwise alignment. All haploid gene models progressed to cluster 

building, except for the Liu Xu annotation set, where alternative heterozygous alleles of 

genes, which had been placed onto contigs as part of a diploid genome resolution process, 

were excluded from the pan-gene clustering step. Genome sequences and GFF3 files for the 

RPRP were sourced from Ensembl Plants (release 57, and unchanged in current release 60) 

and OsNip from Gramene.  

GET_PANGENES was used to generate various quality control metrics, including running 

BUSCO (v 5.7.1), Clustal Omega30 (version 1.2.4) to generate protein-level multiple sequence 

alignments for each pan-gene cluster, followed by AliStat31 (version 1.14) to generate distance 

metrics.  Core gene sets counts were generated using Tettelin13 and Willenbrock14 functions, 

fitted after 20 permutation experiments. 

Pan-genes were classified as core if they contained a member from 100% of input genomes 

(all 16 in this case), softcore 95% of genomes (15 in this case), cloud (1 or 2 genomes) and 
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shell (all other cases)32. Annotation Edit Distance (AED) scores were generated by TRaCE, using 

RNA-Seq data sourced from Zhou et al. 24. Each transcript was assigned an AED score, 

reflecting the proportion of the transcript overlapped by a StringTie model from each of the 

three RNA-Seq libraries.  

Paralog and ortholog counts were generated from Ensembl Compara (build 111, 

https://ftp.ebi.ac.uk/ensemblgenomes/pub/plants/release-58/tsv/ensembl-

compara/homologies). To generate this dataset, representative protein sequences of coding 

genes, from 116 plant genomes, were classified into clusters against a profile HMM library 

incorporating resources such as PANTHER33 and TreeFam34; with any remaining unclassified 

genes being included in a process of clustering by hcluster_sg 

(https://sourceforge.net/p/treesoft/code/HEAD/tree/trunk/hcluster/) using the results of a 

BLAST search35. Each cluster's protein sequences were aligned by MCoffee36 or MAFFT37, and 

for the resulting alignments, TreeBeST (TreeFam) was used to generate a gene tree in which 

nodes were annotated as representing events such as a gene duplication or a speciation. 

Homology relationships were inferred from the annotated gene tree, with the type of 

homology between a given gene pair being determined by features of their evolutionary 

history, such as whether their last common ancestor represented a speciation or duplication 

event38,39. Source data is also available at 

https://plants.ensembl.org/info/genome/compara/index.html.  

 

Assignment of pseudo-position 

For visualisation and sorting purposes, we assigned a pseudo-position for each pan-gene. We 

first assigned the mode (most common) chromosome from across the members within a 

given pan-gene. If the pan-gene has a member from Nipponbare matching the mode 

chromosome, we used the chromosome number and position from the Nipponbare gene as 

the pseudo-position. If the pan-genei does not has a member from the Nipponbare genomei, 

we scan through the members finding another genomex that contains a genexi, with a 

“proximal” genexj (following ordering of the pan-gene matrix by the mean chromosome 

position of all genes, within each mode chromosome), that is present in both genomex and 

Nipponbare genomei. We then calculate the pseudo_position = chr_pos_gene1j + 

chr_pos_genexi - chr_pos_genexj, using values of j from the list of relative ranked positions on 

the chromosome of genomex: (1,-1,2,-2,3,-3,4,-4,5,-5,6,-6,7,-7,8,-8). The final pseudo-

position is taken for the lowest absolute value of chr_pos_genexi - chr_pos_genexj  across all 

values tested. 

The effect of this mapping is to estimate, approximately, if such a gene did exist on the 

Nipponbare chromosome, where would it be located. There are several reasons why this 

location is not necessarily an accurate reflection of the “true” position of the pan-gene, with 
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regards to the Nipponbare reference, however it has a useful property that it maintains a 

sensible ordering of pan-genes for visualisation. 

AlphaFold models for Oryza sativa (Reference id: UP000059680) were retrieved from 

AlphaFold protein structure database (https://alphafold.ebi.ac.uk/) and the mean prediction 

score calculated for each model.  Gene expression data for 11,726 rice RNA-Seq samples was 

sourced from https://plantrnadb.com. Average FPKM values were calculated for each RAP-

DB/MSU gene and assigned to the pre-computed pan-gene cluster.  

 

Assigning stable identifiers 

We have designed an approach for assigning stable identifiers to pan-genes (following similar 

proposals made by https://www.agbiodata.org/), which may be repurposed for other plant 

genomes, as follows: [clade].[group].[version].panddddddd 

clade = a two letter code for a species level pan-gene, or one letter code for genus level, 

followed by the NCBI Taxon ID i.e. Os4530 for Oryza sativa. 

group = a unique three letter code for the consortium/group releasing the pan-gene set e.g. 

POR for our “PanOryza” consortium. 

version = integers starting from 1, incremented for each new release. 

panddddddd = pan-gene identifier, with digits 0000001 for pan-gene clusters with 2 or more 
members, and 1000001 for singleton clusters (containing only one gene). 

The identifiers thus have the property that they can be globally unique, but can be produced 

by different consortia, using different sets of input genomes. We assigned pan-gene 

identifiers to all genes clustered as part of this pan-gene set. New releases could be created 

in the following circumstances: changes to genome assemblies or gene models, addition of 

new genomes or gene models, changes to the clustering algorithm.  

 

Generating a rice pan-proteome map 

We next determined the experimental support for proteins in the rice pan-proteome, by 

performing large-scale re-analysis of public proteomics data. Datasets were sourced from the 

ProteomeXchange central repository40, using the inclusion criteria that a global (non-

enriched) analysis had been performed on any rice tissue, sourced from any Oryza sativa 

variety, using a Thermo Fisher Scientific instrument (for simplicity of pipeline compatibility). 

Raw MS data were converted to mzML format41, using ThermoRawFileParser42. Datasets were 

searched with the parameters listed in Supplementary table S7, using the MSFragger search 

engine43 (version 3.5), against a protein database formed by merging the 16 protein sets from 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2025. ; https://doi.org/10.1101/2025.02.17.638606doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.17.638606
http://creativecommons.org/licenses/by/4.0/


the RPRP gene models, as well as the RAP-DB (canonical and predicted proteins, version 2022-

03-11) and MSU (version 7) protein sets. Common contaminants were added from the cRAP 

database (https://www.thegpm.org/crap/), and reversed decoy sequences added using the 

FragPipe utility. Peptide-spectrum matches from MSFragger in PepXML format44 were post-

processed with the Trans-Proteomic Pipeline version 645 (PeptideProphet46, iProphet47, 

ProteinProphet48). The 19 datasets that passed quality control (>500 proteins identified) were 

loaded into PeptideAtlas after thresholding the identifications such that the resulting protein-

level FDR was 1%. The results of this process are available at 

https://peptideatlas.org/builds/rice/. 

 

Assignment of protein domains to pan-genes 

Domains in the protein annotations of all 18 annotation sets (for 16 genomes) were identified 

using InterproScan-v5.62-94.0, and then mapped onto pan-genes and source gene models. 

We next assigned a representative domain for the cluster, as the most common protein 

domain found across genomes (in the case of more than one domain being tied “most 

common”, one is randomly selected). Using this most common protein domain (for both 

InterPro and Pfam) consistency of pan-gene clusters was checked to identify the genomes in 

which the representative domain is present.  

Next, for every InterPro and Pfam domain, the “domain occupancy” was first calculated for 

each pan-gene across 16 genomes i.e. counting the number of genomes with a protein 

carrying the domain within the pan-gene (for IRGSP only OsNip assignments were included 

for this analysis to avoid biasing the Nipponbare domain counts). Next, “mean domain 

occupancy” was calculated as the mean of the domain occupancy across all pan-genes in 

which the domain can be found. Domains were filtered to include only those found in >= 5 

pan-genes and were categorized based on their mean occupancy across pan-genes, as “highly 

variable” where mean occupancy < 10; “partially variable” for mean occupancy greater than 

10 and less than 15; and “invariable” > 15. Interpro2Go annotations were used for 

identification of GO terms for pan-genes containing these three categories of domains. Top  

terms enriched within these pan-genes were identified using clusterProfiler (v4.6.2)49 with p-

value cutoff <0.05, adjusted by the Benjamini-Hochberg method.  

To identify the most significant InterPro domains in core versus cloud pan-genes we first 

filtered out clusters containing only transposable elements (TEs). Since regular protein-coding 

genes could be among the clusters which were labeled as TEs in past Nipponbare annotations 

(sourced from MSU), for pan-genes with occupancy = 1, we removed the cluster if it is 

annotated as a TE in the InterProScan results or the original MSU annotations. Further for 

pan-genes with occupancy greater than 1, a cluster was filtered out only if all the genes in a 

cluster are identified as TEs in the InterProScan results. With these pan-genes filtered for TEs, 

we used the enricher function of the clusterProfiler as above to identify the significant 
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InterPro term in each occupancy class (p-value = 0.05, adjusted by Benjamini-Hochberg 

method). The redundant term descriptions within each occupancy class were collapsed using 

the stringdist function (method Jaro-Winkler distance). The top 30 terms for core and cloud 

occupancy class based on the adjusted P-value were used for the dotplot, where size and 

color of the dot shows the GeneRatio (term enrichment factor) and adjusted P-value, 

respectively.   

Analysis of gene families 

For the NAC transcription factor (TF) gene family, query protein sequences from Plant TFDB50 

were used for blastP (ncbi-blast, v2.12.0, e-value < 1E-05) and HMMER (HMMER 3.3, e-value 

< 1E-3) search against protein sequences from all gene models within the pan-genes. Results 

were checked for Pfam (PF02365) and InterPro domain IPR003441, IPR044799 or IPR036093, 

and pan-genes containing at least one protein with the domain were retained and labeled 

positive for ‘NAC’.  

The NB-ARC domain (Nucleotide-Binding domain shared by Apaf-1, certain R-proteins, and 

CED-4) is a conserved nucleotide-binding domain found in a variety of proteins across 

different organisms, including plants, animals, and fungi. It plays a crucial role in processes 

like apoptosis (programmed cell death) and innate immune responses. The identification of 

NB-ARC domain-containing proteins in RPRP lines was carried out using the Gramene Oryza 

API51. A targeted query was employed to retrieve genes annotated with the InterProScan 

domain IPR002182 (NB-ARC) from gene trees. The query output, provided as a CSV file, was 

then filtered by the system_name field to isolate entries corresponding to RPRP genomes. 

These filtered genes were subsequently mapped to their respective pan-gene clusters and 

were designated “NB-ARC” if any pan-gene member from a genome was identified within the 

NB-ARC domain-containing gene set.  

 

Infrastructure development 

The PanOryza site incorporated JBrowse (version 1.16.11). For display purposes, gene models 

from other genomes were mapped to the Nipponbare reference using LiftOff52 (v1.6.3). The 

interactive heatmap visualisation of pan-genes was created using R package 

InteractiveComplexHeatmap (Gu, et al., 2021). As noted in the Results, pan-genes identifiers 

have been loaded into Ensembl Plants and Gramene for querying. The protein sets derived 

from the RPRP set are also available within the UniProt Knowledge base53 

(https://www.uniprot.org/proteomes?query=oryza+sativa). 

 

Comparison of pan-genes with RGI 

We ran a comparison between the pan-genes in this work with the “Ortholog Gene Indices” 
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(OGI clusters) from the Rice Gene Index (https://riceome.hzau.edu.cn). We first matched 

clusters that shared the same RAP-DB (Nipponbare) identifier, and excluded Minghui 63, Zhen 

Shan 97 and Gramene annotations as these were created using different set of identifiers / 

gene model annotations. For the remaining members, we calculated the percentage 

agreement of identifiers within each pan-gene. For this, the percentage similarity was 

calculated as matching counts / total counts where total counts is the number of unique 

identifiers in a combined set of OGI and pan-gene; matching counts is the number of 

identifiers matched between OGI and pan-gene.  

Code availability 

Code for GET_PANGENES available from: https://github.com/Ensembl/plant-

scripts/blob/master/pangenes/, code for recreating analyses in this manuscript available 

from https://github.com/PGB-LIV/PanOryza-pan-genes-release-v1.0.  
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Extended data figures 

 

 

 

Extended data figure 1. Quality control statistics of pan-genes. A) The standard error (SE) in 

the count of exons, B) SE of protein length, C) SE of sequence distance among all pan-gene 

members (transcripts/proteins) is plotted against the counts of pan-genes. D) The 

completeness of multiple sequence alignment (Ca values, calculated as in Wong et. al. 2020) 

and E) maximum sequence distance among pan-gene members is plotted against the counts 

of pan-genes. F) Minimum BLASTN cDNA alignment identity among members of pan-gene is 

shown against the number of pan-genes.  
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Extended data figure 2. Position of genes on chromosomes across the RPRP accessions.  

Scatter plots show the positions of genes across the RPRP on each of the 12 rice chromosomes 

(y-axis) versus the position on the reference genome or inferred pseudo-position on the x-

axis. 
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Extended data Figure 3. GO enrichment analysis for domains of variable occupancy.  Most 

significant gene ontology terms for proteins containing domains classified as highly variable, 

partially variable or invariable. 
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Extended data Figure 4. Pan-genes of NAC transcription factor family. The heatmap shows 

the pan-genes with at least one member protein containing the NAC domain. The vertical bars 

coloured grey on the right of heatmap show the occupancy of the pan-gene indicated by a 

number inside the box. The horizontal bars on top of the heatmap represents the varietal 

group colored red for japonica, blue for indica, orange for aus and green for aromatic rice 

accessions. The consensus presence /absence of the domain in a family member protein is 

indicated by dark and light shades of green in the box, respectively, whereas absence of the 

gene member is indicated by white box.  
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Extended data Figure 5. Pan-genes of NB-ARC family in rice. The heatmaps show pan-genes 

with at least one member protein containing the NB-ARC domain. The three heatmaps are 

arranged according to the occupancy classes – cloud, shell and softcore and core. The vertical 

bars coloured grey on the right of heatmap show the occupancy of the pan-gene indicated by 

a number inside the box. The horizontal bars on top of the heatmap represents the varietal 

group colored red for japonica, blue for indica, orange for aus and green for aromatic rice 

accessions. The consensus presence /absence of the domain in a family member protein is 

indicated by dark and light shades of green in the box, respectively, whereas absence of the 

gene member is indicated by white box.  
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Extended data Figure 6. Representative examples of infrastructure for pan-gene 

exploration. A) The screen shot shows the record of pan-gene Os4530.POR.1.pan0020022 on 

the Gramene database (https://oryza.gramene.org/). B) A Rice Genome Browser (Jbrowse) 

visualisation of the Os4530.POR.1.pan0020022 on PanOryza project website 

(https://panoryza.org/). B) The panel shows the an interactive heatmap of chromosome 8 

where all members of Os4530.POR.1.pan0020022 are located (detailed on the sub-heatmap 

and table). The pan-gene interactive heatmap for all chromosomes has been made available 

as a shiny application (https://github.com/PGB-LIV/PanOryza-pan-genes-release-

v1.0/tree/main/heatmap_app).  
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Extended data Figure 7. Comparison of current pan-genes with rice gene index. The plot 

shows percentage agreement between the pan-genes in this work with the OGI clusters from 

the Rice Gene Index (excluding Minghui 63 , Zhen Shan 97 and Gramene annotations). The 

percentage agreement of identifiers within each pan-gene is indicated on x-axis and the 

counts of pan-genes on the y-axis.  
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Source Data 

The input data for running GET_PANGENES pipeline and the output files generated by the 

pipeline have been deposited at zenodo (https://zenodo.org/records/14772953).  

 

 

Supplementary Information 

Supplementary table S1. Matrix of pan-genes containing transcript identifiers. 

Supplementary table S2. Quality control statistics of pan-genes. 

Supplementary table S3. Positions of genes within pan-gene clusters and pseudo-positions of 

pan-genes. 

Supplementary table S4. Proportions of genomes of varietal groups - Japonica, Aromatic, Aus, 

Indica within each pan-gene.  

Supplementary table S5. Summary of protein domains of pan-genes and respective 

representative domain information.  

Supplementary table S6. Inconsistent pan-genes with member proteins lacking the most 

common InterPro or Pfam  domain.  

Supplementary table S7. Parameters used to generate the rice pan-proteome map.  
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