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Fast updating feedback frompiriform cortex
to the olfactory bulb relays multimodal
identity and reward contingency signals
during rule-reversal

Diego E. Hernandez1,8, Andrei Ciuparu2,8, Pedro Garcia da Silva1,5,8,
Cristina M. Velasquez1,6, Benjamin Rebouillat 1,7, Michael D. Gross 1,
Martin B. Davis 1, Honggoo Chae1, Raul C. Muresan 2,3 &
Dinu F. Albeanu 1,4

While animals readily adjust their behavior to adapt to relevant changes in the
environment, the neural pathways enabling these changes remain largely
unknown. Here, using multiphoton imaging, we investigate whether feedback
from the piriform cortex to the olfactory bulb supports such behavioral flex-
ibility. To this end, we engage head-fixed male mice in a multimodal rule-
reversal task guided by olfactory and auditory cues. Both odor and, surpris-
ingly, the sound cues trigger responses in the cortical bulbar feedback axons
which precede the behavioral report. Responses to the same sensory cue are
strongly modulated upon changes in stimulus-reward contingency (rule-
reversals). The re-shaping of individual bouton responses occurs within sec-
onds of the rule-reversal events and is correlated with changes in behavior.
Optogenetic perturbation of cortical feedback within the bulb disrupts the
behavioral performance. Our results indicate that the piriform-to-olfactory
bulb feedback axons carry stimulus identity and reward contingency signals
which are rapidly re-formatted according to changes in the behavioral context.

Long-range interactions between different brain regions via feedforward
and feedback signals are thought to enable flexible behaviors in rapidly
evolving environments. Cortical areas are highly interconnected1–6,
suggesting that, across modalities, information about stimuli and their
behavioral significance is widely shared, even in primary sensory cortical
areas7–10. Consequently, cortical stimulus representations can be shaped
by cognitive demand and contribute to the selection and generation of
actions. Within this conceptual framework, cortical feedback has been
proposed to support key computations. These range from extracting

fine stimulus features11,12 to learning associations13,14 and generating
sensorimotor predictions13,15–23, to modifying and executing motor
actions in accordance with behaviorally relevant goals11,12,15,16,20,24–39. While
feedback from deeper brain regions reformats visual, auditory, and
somatosensory neural representations to enable the differential eva-
luation of the same sensory inputs11,24, the degree to which this is the
case for olfactory processing has been less scrutinized13,16,32,39.

Volatile compounds bind odorant receptors in the nasal epithe-
lium and relay odor information to the olfactory bulb (OB) glomeruli,
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which are sorted by odorant receptor type40–42. Glomerular responses
are normalized and de-correlated by local circuits within the olfactory
bulb43–50, and relayed to higher brain regions by two populations of
output neurons, the mitral (MCs) and tufted cells (TCs)16,38,51–61. The
major projection targets of the olfactory bulb include paleo-cortical
areas such as the anterior (aPCx) and posterior piriform cortex (pPCx)
and the anterior olfactory nucleus (AON), in addition to the olfactory
striatum (tubercle), cortical amygdala (CoA), and the lateral entorhinal
cortex (lENT)51. Akin to other sensorymodalities, recent work revealed
the existence of parallel long-range feedback olfactory processing
loops16,17,35,38,45,52,56,58,62–68. These functional streams engage specifically
themitral and the tufted cells and their preferred cortical targets (aPCx
for the mitral cells, and the AON for the tufted cells, respectively) to
potentially sub-serve different computations17,69. In this view, the
TC↔AON loop mainly represents sensory features, such as odorant
identity, intensity, and timing. In contrast, theMC↔PCx loop re-shapes
sensory representations to enable fine discrimination of learned
odorants and sensorimotor integration as a function of behavioral
contingency17. The primary bulbar recipients of the cortical feedback
are inhibitory interneurons, in particular the granule cells (GC)15,51,70–74.
GCs integrate feedforward sensory input and mediate lateral and
recurrent inhibition by forming reciprocal synapses with the lateral
dendrites of mitral and tufted cells15,51,75–78. The olfactory bulb
dynamically represents odor inputs based on state and
context14,45,56,62–65,67,79–81. Cortical feedback has been a prominent can-
didate for shaping the odor representations of the olfactory bulb
outputs. Indeed, previous work showed that cortical bulbar feedback
is sparse and odor-specific in naïve animals, and is strengthened by
learning relevant stimuli13,16,17,32,39. To date, however, how cortical bul-
bar feedback negotiates sudden changes in stimulus-reward associa-
tions, and whether it contributes to flexible updating of behavioral
strategies is poorly understood.

It remains unknown whether cortical bulbar feedback relays spe-
cifically olfactory signals or conveys multimodal inputs extending
beyond olfaction as a function of behavioral demands. Computational
models82–86 based on anatomical and functional data54,87–91 proposed
that distributed connectivity between the olfactory bulb and the piri-
form cortex enables long-term plasticity and sparse coding of odor
identity in a concentration invariant manner, regardless of temporal
variations, background, or stimulus-reward value92–96. Furthermore,
classic work suggested that the piriform cortex function extends
beyond sensory feature extraction, encompassing more associative
spatial orientation and contextual computations69,93,95,97–99. Recent
functional studies reported that the anterior piriform cortex repre-
sentations are largely unchanged upon learning of new stimulus-reward
associations100, but see refs. 99,101. In contrast, the posterior piriform
activity is modulated as a function of context and may bind together
spatial information and actions related to olfactory behaviors102,103.

Here we investigated whether the piriform-to-olfactory bulb
feedback axons represent changes in the reward contingency13,56,63,64, in
addition to odor identity information as previously reported16,17,32,39.
Specifically,we usedmultiphoton imagingof calciumsignals to analyze
the activity of cortical bulbar feedback axons in expert mice perform-
ing a rule-reversal task guided by olfactory and sound cues. Our results
indicate that the piriform cortex-to-bulb feedback axons carry multi-
modal identity and reward contingency signals, which are rapidly
reformatted according to changes in the behavioral contingencies.

Results
A rule-reversal Go/No-Go task to assess the role of cortical
bulbar feedback axons in behavioral flexibility
To determine whether cortical bulbar feedback axons support beha-
vioral flexibility104,105, we engaged mice in a rule-reversal Go/No-Go
task, while simultaneouslymonitoring the dynamicsof feedback axons
and synaptic boutons via multiphoton imaging of GCaMP5/7b signals

(Fig. 1a, b; Supplementary Figs. 1–5, “Methods” section). To investigate
whether feedback axons represent stimulus contingency and/or trial
outcome independent of the sensory modality, we used one olfactory
and one auditory cue instead of two odors. We trained water-deprived
head-fixed mice to discriminate between two brief (350ms) sensory
cues: a pure tone target (‘Go’) stimulus and a monomolecular odorant
(‘No-Go’). We encouraged mice to respond to the ‘Go’ stimulus by
licking to collect small water rewards from a spout placed in front of
their mouth. Conversely, we trained them to refrain from licking in
response to the ‘No-Go’ stimulus by imposing an additional time-out
period and delivering a white-noise sound before initiating the next
trial in the event of spurious licking (“Methods” section). To dis-
ambiguate the neural signatures of reward contingency from motion
artifacts related to licking and other signals, in a subset of experiments
we imposed a 500ms delay between the cue offset and the reporting
periodwhenwater rewardwas available (Fig. 1b, Supplementary Fig. 1a
‘no-delay’ vs. ‘delay’ versions; see “Methods” section). Experiments
from both versions of the task were analyzed in parallel and provided
qualitatively similar results (see “Methods” section, Supplementary
Information). For clarity, we focus on the delay version of the task for
the analyses discussed below. To ensure that mice use both cues to
solve the task, and cannot time their responses solely based on the
delivery of a preferred cue (odor or sound), we used flat hazard rate
inter-trial intervals (ITI) drawn from an exponential distribution (Sup-
plementary Fig. 1f). In conjunction with variable inter-cue intervals for
consecutive trials (Supplementary Fig. 1g) based on each trial’s out-
come (hit vs. correct rejections vs. false alarms vs.misses), and the lack
of overt signals to mark the start of a trial, this strategy ensured that
mice could not predict the onset of the sensory cues (“Methods” sec-
tion). Oncemice learned the stimulus-reward association and reached
higher than 75% accuracy (behavioral performance), we switched the
stimulus-reward contingency in blocks of contiguous trials between
‘Odor Go blocks’ (odorant rewarded) and ‘Sound-Go blocks’ (tone
rewarded, Fig. 1a, c; Supplementary Fig. 1c). No explicit cuemarked the
block transition (rule-reversal) events.

Early in training, mice displayed unstable performance across
blocks and were slow in updating their lick-reporting strategy upon
rule-reversal (Fig. 1c top; Supplementary Fig. 1c). As the training pro-
gressed (~20 sessions), animals learned to switch reliably between
reward contingencies and maintained a high level of behavioral per-
formance across the session (>80%, Fig. 1c bottom, d; Supplementary
Fig. 1c), with drops in performance occurring only immediately after
rule-reversals (see “Methods” section for details on training). On
average, expertmice had high behavioral performance across both the
odor and sound trials, independent of the block type (‘Odor Go’, as
well as ‘Sound-Go’), with slight biases as a function of cue and mouse
identity (Supplementary Figs. 1d, e; 10d, e). This rules out the potential
strategy of solving the task (receiving rewards) by relying only on one
of the sensory cues and engaging in random responses to the other
cue. Expert mice switched reporting strategies across blocks within ≤7
trials (6.74 ±0.82, Fig. 1d, Supplementary Fig. 1i, j) and completed an
average of 5.8 ± 0.87 reversals (blocks of ~45 trials) per session, akin to
other task-switching paradigms106. We chose a block size of 45 trials as
a tradeoff between short enough to afford multiple switches
per session (~5) and long enough to enable performance stabilization
after each switch. Keeping aflat hazard rate for the number of trials per
block was difficult under these constraints. If the block length is pre-
dictable, mice could in principle learn the trial structure of block
switches. However, even when the number of trials per block was
constant, the total duration of a given block varied in time due to the
flat hazard rate ITIs, and to differences in each trial’s duration as a
function of its outcome (Supplementary Fig. 1f, g). Further, if mice
relied on a ‘noisy’ estimate of the block size, one would expect error
trials to be randomly distributed around (before and after) the block
boundary. Across sessions and mice, however, we observed a sudden
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dip in behavioral performance at the boundary between blocks only
following the rule switch, and not preceding it. This was succeeded by
a gradual increase in performance, presumably informed by the mis-
match between their expected and actual trial outcomes (Fig. 1c, d,
bottom; Supplementary Fig. 1c, i, j). In a subset of experiments, we also
varied randomly the number of trials per block (Supplementary
Fig. 1c, h; see “Methods” section). In these experiments, mice also
achieved >80% expert performance for both the odor and sound trials
(Supplementary Fig. 10d, e), independent of the block type, within
similar training time. Altogether, we conclude that expert mice do not
use a simple time-keeping strategy to predict when the rule switches
during the session.

We used a stable 80% session performance as the criterion
for ‘expert’ behavior and the starting point to monitor the cor-
tical bulbar feedback activity (N = 7 mice, “Methods” section,

Fig. 1c–e). We observed comparable report latencies across
modalities (930.8 ± 3.7 ms for the tone and 986.4 ± 7.6ms for the
odorant from cue onset in the ‘delay’ version, N = 3 mice;
445.0 ± 2.4 vs. 443.0 ± 3.2 in the ‘no-delay’ version; N = 4 mice,
Fig. 1e, Supplementary Fig. 1b, “Methods” section). The learned
association was robust across days and the same animal could
learn multiple odor/sound pair associations (N = 2 mice, >80%
accuracy, Supplementary Fig. 1k). Thus, head-fixed mice mastered
a rule-reversal task which enabled further investigating whether
the cortical bulbar feedback supports behavioral flexibility.

Diverse cortical bulbar feedback representations update within
seconds following reward-rule switching in task-engaged mice
To monitor the cortical bulbar feedback activity in task-engaged
expert mice, we expressed a genetically encoded calcium indicator in
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Fig. 1 | A Go/No-Go rule-reversal task using olfactory and auditory cues.
a Schematics of a behavior session and example FOV. (Left) An olfactory (1% ethyl
valerate) or auditory (6.2 KHz tone) cue was delivered randomly in each trial, and
each session was divided into stimulus-reward contingency blocks of ~45 trials.
Stimulus-reward contingency was alternated between ‘Sound Go blocks’ (contain-
ing Sound Go and Odor-No-Go trials; pink) and ‘Odor Go blocks’ (containing Odor
Go and Sound-No-Go trials; purple). (Right) Mice virally expressing GCaMP5 in the
anterior piriform cortex (aPCx) with a chronic cranial window implanted above the
olfactory bulb (“Methods” section, scale bar: 500μm). (Inset) Example FOV of
cortical bulbar feedback boutons (~300μm from the bulb surface, scale bar:
30μm). b In the ‘delay’ task, a variable inter-trial interval (ITI; flat hazard rate,
“Methods” section) was followed by the delivery of a brief odor or sound cue
(0.35 s) and a fixed 0.5 s interval (delay period) before the time when the reward
became available. Micewere trained to report their decision (lick vs. no-lick) within
a 1.5 s window from the end of the delay period. c In-session behavioral

performance comparisons between early (Top) and expert (Bottom) sessions.
Performance was quantified using a moving average window (bin size = 10 trials,
“Methods” section). d Behavioral performance across sessions in the delay version
of the task. (Top) Average behavior session performance. Zero marks the first
session when mice experienced rule-reversal in the stimulus-reward contingency
within a session. The red segmented linemarks the behavioral threshold for expert
performance (80%, “Methods” section); (Bottom) Averagenumber of trials to reach
70% performance after each rule-reversal event (“Methods” section). (N= 9 mice;
Error bars: ±SEM). e (Top) Example licks (dots) from odor and sound trials (Top vs.
Bottom rows) parsed by trial instruction (Go: Left; No-Go trials: Right) from one
delay session. (Bottom) Distributions of report latency to the first lick from cue
onset for all delay sessions (N= 3 mice) sound trials (yellow; 930.8 ± 3.7ms) and
odor trials (blue; 986.4 ± 7.6ms). Inset: detail of the time period marked by
black bar.
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the anterior part of the piriform cortex (aPCx, EF1-FLEX-GCaMP5-
AAV +AAV-Cre, Supplementary Fig. 2; “Methods” section). We imaged
fluorescence changes in synaptic boutons from feedback axons within
the olfactory bulb through chronically implanted cranial windows
(“Methods” section). To determine whether this activity relates to the
animals’ performance in the task, we investigated the dynamics of
cortical feedback specifically during the cue and delay periods (i.e.
before licking, “Methods” section, N = 2475 boutons, 20 FOVs, 3 mice,
delay version; N = 1315 boutons, 23 FOVs, 4 mice, no-delay version).
Across sessions, we probed the cortical feedback activity at different
depths from the surface (200–300 µm), sampling boutons mostly just
below themitral cell layer (Fig. 1a; Supplementary Figs. 2–4; “Methods”
section).

The feedback responses to both olfactory and auditory cues and
their apparent alignment to different trial epochs raise the possibility
that responses change flexibly, depending on the reward rule and/or
trial outcome. To test these hypotheses, we compared bouton
responses to the same sensory cue across different stimulus-reward
contingencies.We observed diverse responses, ranging from stimulus-
tuned (odor vs. sound responsive irrespective of reward contingency;
e.g. bouton #38, Fig. 2a), to instruction-tuned (‘Go’ vs. ‘No-Go’) across
sensory modalities (e.g. boutons #2, #133, Fig. 2a). Responses of indi-
vidual boutons to the same sensory stimulus often varied in shape,
kinetics, and amplitude, depending on the instruction signal across
blocks within the same behavior session (Fig. 2b, c; unstable). In con-
trast, other boutons were not altered by changes in reward con-
tingency (Fig. 2b, c; stable; Supplementary Fig. 8e–g). To further
investigate differences in the cortical bulbar feedback activity across
stimulus-reward contingencies, we used correlation analysis of bouton
ensemble responses, as well as of individual bouton responses. We
compared the dynamics of the feedback responses to the same sen-
sory cue across blocks of different reward contingencies. In example
field of views (Fig. 2d, e; Supplementary Figs. 7e; 9a–d), and generally
across the data (Fig. 2f; Supplementary Fig. 5c), the odor responses
appeared stronger in amplitude, andmore boutonswere responsive in
the blocks of trials when the odor was rewarded than when it was not.
In the same session, a subset of feedback boutons responded to the
tone, specifically in the sound-rewarded blocks (Fig. 2e, sound vs. odor
trials). In comparison, in blocks in which the tone was not rewarded,
sound responseswere less frequent and generally smaller in amplitude
(Fig. 2d, e; Supplementary Figs. 7c; 9a–d; also across the data, espe-
cially suppressed responses, Fig. 2f). Complementary to these flexible
cortical feedback representations, we also observed many boutons
that responded in a stable manner to a given cue across conditions
(Fig. 2b, c, Supplementary Fig. 8e–g). These boutons may enable
decoding of stimulus identity, independent of its contingency. In
addition, we found in control experiments that the instruction signals
(Govs. No-Go trials)modulate the sniff rate irregularly and onlymildly.
Thismodulation varied acrossmice and cue types (odor vs. sound) and
was not correlated with the behavioral performance (Supplementary
Fig. 10), suggesting that the reward-contingency dependence of cor-
tical bulbar feedbackactivity cannot be simply explainedby changes in
stimulus sampling behavior.

Manyboutonsmirrored closely the block structureof the task and
changed their response (shape and/or amplitude) to the same cue
within seconds of each rule-reversal event (for illustration, in Fig. 2ewe
re-sorted the trials from the session shown in Fig. 2d by Odor and
Sound cues respectively).

We parsed and averaged the activity of individual boutons during
the cue (Supplementary Fig. 9a), delay (Fig. 2d, e), or reporting (Sup-
plementary Fig. 9b) periods. In each of these intervals, the correlation
analysis indicated that the ensemble feedback bouton responses are
more similar across trials of the same block type and different across
blocks of opposite reward contingency (in both versions of the task,
Fig. 2e Bottom, g, h, Supplementary Fig. 7e Bottom, f; “Methods”

section). Similar results were obtained using self-organizing map
analysis (Supplementary Fig. 11; “Methods” section). Overall, within a
given field of view, the ensemble cortical bulbar feedback axon
responses appeared more similar in Go trials across modalities (Odor
Go vs. Sound Go) than when compared to No-Go trials of the same
modality (Odor Go vs. No-Go; Sound Go vs. No-Go, Fig. 2h).

We further analyzed whether the time-varying fluorescence sig-
nals of individual boutons before reporting, throughout the cue, and
delay periods (during the cue period for the no-delay version) changed
as a function of trial behavioral contingency. To this end, we compared
the activity of individual boutons across hit (H) vs. correct rejection
(CR) vs. false alarm (FA) trials (Fig. 3a). Miss (M) trials occurred rarely
(<3%) andwere thus excluded from the analysis. Overall, responses of a
given bouton were similar within the same condition and diverged
across different conditions (Fig. 3a). Boutons that differentially
modulated their responses across conditions (beyond 90% percentile
of the distribution of trial-to-trial variations for within-condition
comparisons, “Methods” section) represented a significant fraction
of the responsive population in both versions of the task (44.8 ± 10.6%
H vs. CR, 35.0 ± 7.5% H vs. FA; 46.1 ± 10.6% CR vs. FA Odor trials;
44.5 ± 13.1% H vs. CR, 27.7 ± 8.4% H vs. FA; 50.0 ± 13.5% CR vs. FA Sound
trials, Fig. 3a). Across fields of view, cortical feedback axon response
amplitude during the hit and false alarm trials was generally higher
than for correct rejection trials (Supplementary Fig. 9e, f). However, we
also observed differences in the responses of individual boutons when
performing pairwise comparisons between trials of different con-
tingencies in which mice licked the reward port (Fig. 3b; Odor hits vs.
false alarms, 65.0 ± 7.5%; Odor vs. Sound hits, 60.1 ± 11.9%, Odor vs.
Sound false alarms, 42.7 ± 12.1%). Since in all these cases, mice subse-
quently licked the reward port, changes in the response of individual
boutons to the same stimulus across contingencies cannot be solely
attributed to motion artifacts and/or preparatory motor activity.
Overall, in task-engaged mice, the cortical feedback axon activity
updated fast within the same session, depending on changes in reward
contingency.

To determine how changes in individual bouton responses across
blocks relate to their belonging to the same versus different cortical
feedbackaxons,we systematically compared the responses ofboutons
within a small neighborhood (3–15 µm apart) as a function of stimulus
identity (odor, sound), as well as reward contingency. Specifically, we
identified boutons that visibly belonged to the same axon (yellow
arrows – Supplementary Fig. 12a), as well as equidistant boutons in the
vicinity that appeared to lie on other axonal branches (white arrows –
Supplementary Fig. 12a). Consistently, we found that boutons
belonging to the same axon responded more similarly to a given sti-
mulus (black traces, Supplementary Fig. 12b, c) than boutons on dif-
ferent axons within the same neighborhood (<15 µm, color traces,
Odor response correlation, Avg ± SEM: 0.62 ±0.12 vs. 0.26 ± 0.15;
Sound response correlation, Avg ± SEM: 0.50 ±0.11 vs. 0.22 ± 0.15,
p < 0.0001, Wilcoxon rank-sum test, Supplementary Fig. 12c, d).
Indeed, example feedback boutons, as close as <5 µm apart, but
putatively belonging to different axons, showed widely different
responses to the same stimulus compared to equally spaced boutons
on the same axon (multicolor traces, Supplementary Fig. 12b–d). This is
consistent with many reports16,25,26,111 that boutons on the same axon
are more similar in their responses to stimuli, as well as in their
spontaneous activity than boutons on different axons. This was even
more apparent when considering the pairwise correlation of bouton
responses for trials of the same outcome (Odor Hits correlation,
Avg ± SEM:0.91 ± 0.04 vs. 0.50 ±0.15 – samevs. different axons; Sound
Hits correlation, Avg ± SEM: 0.74 ±0.08 vs. 0.40 ±0.15; p < 0.0001,
Wilcoxon rank-sum test, Supplementary Fig. 12d). The responses of
bouton pairs on the same axon varied in a coordinated manner across
different contingencies for the same stimulus (rewarded vs. non-rewar-
ded, across blocks Supplementary Fig. 12e), and across different stimuli
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for the same reward contingency (odor hits vs. sound hits, Supple-
mentary Fig. 12f). In contrast adjacent boutons on different axons
changed their responses in an uncorrelated manner (Supplementary
Fig. 12e, f). In summary, the changes observed in bouton responses
across stimuli and reward contingencies appear to occur in a coordi-
nated manner for boutons on the same cortical feedback axon, and to
vary widely for nearby boutons across different axons.

To visualize potential differences in the feedback response tra-
jectories as a functionofbehavioral contingency (H vs.CR vs. FA trials),
we used principal component analysis (PCA) in individual fields of
view. For systematic quantification, we further used cross-validated
decoding approaches. In many arbitrarily chosen fields of view, the
population trajectories for the odor, as well as the sound trials (shown
in a space defined by the first three principal components, Fig. 3c)
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Fig. 2 | Fast update of cortical bulbar feedback representations following
reward-rule switching in task-engaged mice. a Example average responses (z-
scored) of cortical bulbar feedback axon boutons to odor and sound cues during
Go (blue) and No-Go (red) trials. Shaded areas mark different trial periods: cue
(gray); delay (green); report (pink). b, c Example boutons that displayed stable
(Left) or unstable (Right) average responses to odor (b) and sound (c) across
conditions (Go vs. No-Go; “Methods” section). d Bouton responses (z-scored)
averaged throughout thedelayperiodand shown across trials in anexamplefieldof
view from an expert mouse. Each row shows the response of one bouton across
trials and blocks throughout the behavior session. Boutons are sorted from top to
bottom by the strength of their response during the odor trials of the Odor Go
blocks. Color-coded bars on top mark the block structure, cue identity, and trial
outcome. e (Top) Same session as (d), re-sorted by cue identity: odor trials (Left)
and sound trials (Right). Boutons were classified as enhanced, unresponsive, sup-
pressed, or complex (enhanced + suppressed) as per their response strength and

polarity to the odor cue; (Right) the same ordering of boutons was kept for the
sound trials. (Bottom) Inter-block correlation analysis (Odor Go vs. Sound Go;
“Methods” section). f Average z-scored response values during the delay period
parsed by the cue (Odor or Sound) and instruction (Go or No-Go). Each pair of
connected colored dots represents average z-scored responses across conditions
(Go vs. No-Go) from individual sessions. Black dots represent the average ensemble
bouton response across sessions (N = 20 sessions, 3 mice). Two-sided Student’s t-
test: *** = p < 0.0001; n.s.: non-significant. g Average inter-block correlation coeffi-
cients obtained as described in e, bottom for all fields of view (delay; “Methods”
section). Each pair of gray connected dots represents the inter-block correlation
values computed for one session. Black dots represent the average correlation
across sessions (N = 20 sessions, 3 mice). Two-sided Student’s t-test:
*** = p < 0.0001. h Same analysis as in (g) including comparisons across modalities.
All panels error bars: ±SEM. See Source Data and Supplementary Table 1 for exact
data points and p-values.
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Fig. 3 | Cortical bulbar feedback represents stimulus identity, contingency, and
behavioral outcome. a Histogram of individual bouton response correlation
values across trials as a function of behavioral contingency (Hits, H vs. false alarms,
FA vs. correct rejections, CR) in Odor (Left) and Sound (Right) trials. Bouton
responses were sampled between cue onset and end of the delay period (before
licking, “Methods” section). Inset: Bouton response stability across conditions (H/
H, H/CR, H/FA, CR/FA) reported using as reference the 90th percentile of the Hit/
Hit bouton response correlation distribution (bootstrap analysis, “Methods” sec-
tion). b Individual bouton response stability analysis for trials where mice subse-
quently licked the reward spout (hits and false alarms). Note the differences in trial-
to-trial response correlation distributions when comparing Odor H/H vs. Odor H/
FAvs.Odor FA/Sound FA trials. a andb: N = 20 sessions, 3mice. Two-sidedOne-way
ANOVA and multiple comparisons of means: * = p < 0.05 compared to ‘odor H/H’
bouton stability. c Principal component analysis (PCA) for one example session:
feedback bouton ensemble response trajectories plotted in a space defined by the

first threeprincipal components (74.5 and 73.7% variance explained respectively for
odor and sound trials); population response trajectories rapidly diverge as a
function of trial contingency for both Odor (Left) and Sound (Right) trials. Miss (M)
trials were excluded from the analysis due to their low frequency (<3%). Different
task periods in each trajectory are represented by distinct traces (baseline: thin
continuous; cue: thick continuous; delay: thick interrupted; report: thick dotted
line). d Multi-layer perceptron classifiers were trained to decode stimulus identity
(odor or sound), behavioral contingency (H, FA, CR), trial instruction (Go or No-
Go), and behavior (lick or no-lick) in the delay version of the task. Top: Average
classifier performance across all sessions normalized relative to baseline perfor-
mance. When shuffling trial labels on the training data, the average classifier per-
formance was 0. Bottom: Distribution of the number of licks per second across all
sessions. See Source Data and Supplementary Table 1 for exact data points and
p-values.
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diverged early in the trial, typically during the cue period. We further
trained and cross-validated classifiers (multi-layer perceptrons, MLP,
“Methods” section, Fig. 3d, Supplementary Figs. 13a–f, 14a–f) to
decode different task features, including stimulus identity (odor vs.
sound) and instruction (Go/No-Go), behavioral outcome (lick/no-lick),
and trial behavioral contingency (hits, H, correct rejections, CR, false
alarms, FA). Of note, given our task design, many of these features are
interrelated and, thus, cannot be fully assessed separately. Both in
arbitrary example fields of view (Supplementary Fig. 13a) and when
averaging classificationperformance across FOVs (“Methods” section),
the classifiers’ performance for decoding each of these variables
rapidly increased during the cue and peaked during the delay period.
The performance remained high throughout lick-reporting, as well as
for several seconds after water collection (Fig. 3d). In the no-delay
version of the task, decoding performance returned to baseline more
rapidly than in the delay version, reflecting faster offset kinetics in the
cortical bulbar feedback consistent with differences in our experi-
mental design (Fig. 3d, Supplementary Fig. 14a, b). Performance of
decoders trained to discriminate between cues (odor vs. sound)
decayed faster relative to the ability to report other features (Go/No-
Go instructions, stimulus contingency, etc.), consistent with the tran-
sient nature of the sensory input in comparison to other trial variables
analyzed (Fig. 3d, Supplementary Fig. 13a). The representation of sti-
mulus identity appears to occur at the level of specific ensembles of
cortical bulbar neurons. Indeed, shuffling bouton labels resulted in a
substantial decrease in the performance of the classifiers (Supple-
mentary Figs. 13c, 14e). As expected, the classifier performance did not
rise above baseline in shuffled trial label controls and was substantially
higher in GCaMP-expressing mice compared to EGFP control experi-
ments (Fig. 3d; SupplementaryFig. 13e, “Methods” section). Our results
indicate that cortical bulbar feedback carries stimulus identity, con-
tingency, and behavioral outcome signals, which are readily refor-
matted in different behavioral contexts.

Does the emergence of sound-driven cortical bulbar feedback
activity require that the odor and sound cues occur in close temporal
proximity? Or does it rather reflect changes in the contingency of
behaviorally relevant stimuli across sensory modalities? To start
answering thesequestions, wemonitored the activity of cortical bulbar
feedback boutons expressing GCaMP7b112 in mice trained in an
auditory-only Go/No-Go task (Sound A vs. Sound B, no odors, “Meth-
ods” section). During training, care was taken so that no odor cues
were present. Mice were exposed to both sound cues equally across
days during training but were rewarded for licking in response to only
one of the cues. With training, mice quickly learned the cue-reward
association and refrained from licking the unrewarded sound
(“Methods” section). Similar to the previous analysis, we analyzed the
changes in the cortical feedback bouton fluorescence from the cue
onset to the end of the delay period (prior to licking). We observed
sound-triggered responses to both sound cues in naïve mice (first
session on the training and imaging rig, “Methods” section), as well as
during learning, and in expert animals (Fig. 4a, Supplementary
Fig. 15a, b). Across fields of view, over the course of six days analyzed
(N = 3 mice per day), the amplitude and dynamics of the sound-
triggered responses changed substantially, revealing unexpected
complexity (Naïve: 4.6 ± 4.6%; Day 4: 16.4 ± 2.4%; Day 6: 8.3 ± 7.7%
responsive boutons). As learning of the sound-reward associations
progressed, the responses of cortical feedback boutons became spe-
cifically more tuned to the rewarded (Go) sound cue, and displayed
both enhancement and suppression with respect to baseline (Fig. 4b,
day 6; Supplementary Fig. 15b). In the expert mice, rewarded
(Go) sound responses were, on average, higher in amplitude than
responses to the non-rewarded (No-Go) sound cue (Wilcoxon rank-
sum, enhanced and suppressed: p < 0.001; Supplementary Fig. 15a, b,
h). In contrast, in naïve sessions, responses to the Go andNo-Go sound
cues were more similar (Wilcoxon rank-sum, enhanced: p =0.77;

suppressed: p = 0.13, Fig. 4b, Supplementary Fig. 15a, b, h). Across the
population, the magnitude of the sound responses in the cortical
feedback boutons was similar in expert mice engaged in the odor/
sound rule-reversal versus the auditory-only Go/No-Go task (6 days vs.
several weeks, Wilcoxon rank-sum test, enhanced and suppressed:
p = 0.99; Supplementary Fig. 15b, g, i; Supplementary Table 2). Across
sessions, the performance of classifiers for decoding the instruction
signals (Go vs. No-Go) improved with training and did not plateau
within the six-day training window (Fig. 4c, d). As training progressed,
signal instructions could be decoded progressively earlier within the
span of a trial (during the cue and delay periods, Fig. 4c). Similar to the
rule-reversal task (Fig. 3a, b), in expert mice engaged in the auditory-
only Go/No-Go task, the cortical feedback bouton ensemble responses
during both the cue and delay periods were different for hit vs. false
alarm trials, despite the animal licking in both cases (Supplementary
Fig. 15c). As such, the observed responses cannot be explained as
simply the results of motor preparatory activity. In additional habi-
tuation experiments, we analyzed the activity of cortical feedback
boutons across 6 consecutive days as head-fixedmice (N = 3) passively
experienced the two sound cues (A vs. B; no water rewards were pro-
vided, “Methods” section, Supplementary Fig. 15d, e). Compared to the
task-engaged mice, in these habituation experiments, the feedback
bouton responses were on average sparser and lower in amplitude
(Wilcoxon rank-sum test, enhanced and suppressed: p < 0.0001; Sup-
plementary Fig. 15j). We did not observe a systematic differential
modulation of the responses to the two cues acrossdays (interestingly,
responses to one of the cues were stronger, Supplementary Fig. 15d, e,
j). As such the decoding performancewas above chance. However, the
decoding performance of the classifiers was stable across imaging
sessions (days 1–6), in contrast to the steady increase in decoding
performance during learning inmice engaged in the auditory-only Go/
No-Go task (Supplementary Fig. 15f). We conclude that sound cues
trigger sparse responses in the cortical bulbar feedback axons in naïve
mice, whose strength and specificity are further augmented by learn-
ingof the stimulus-reward associations.Overall, theseobservations are
consistent with the hypothesis that the cortical bulbar feedback
represents, in addition to odor-specific information, reward con-
tingency signals across different modalities.

As in our task rule-reversals occur in the absence of an overt cue,
at the boundary between blocks, expert mice usually take a few trials
(≤7, Supplementary Fig. 1i, j) to compute that reward contingencies
have flipped and to update their reward collection strategy accord-
ingly. This raises the question of whether cortical bulbar feedback
activity mirrors the perceived current reward rule, and thus lags in
updating in a manner similar to the animal’s behavior performance.
Indeed, we found signatures of such representational leakage in the
cortical feedback bouton ensemble activity: post rule-reversal events,
ensemble feedback activity characteristic to the previous block per-
sisted for several trials (Fig. 5a).

This was also reflected at the level of individual bouton responses
across trials (Fig. 5b). We calculated a neuronal distance (1-Pearson
correlation) between the bouton ensemble response (delay period)
trajectory of the preceding block and the ensemble trajectory of each
trial of the current block to the same stimulus for both odor and sound
trials (“Methods” section). This metric increased systematically across
trials and matched the increase in behavioral performance in the new
block post rule-reversal (Fig. 5c, d). Plotting themean neural distance in
the ensemble trajectory versus the average behavioral performance
(across blocks and sessions) revealed a robust correlation (R2 =0.85,
p < 0.0001) between the cortical feedback activity and the update in
behavioral reporting strategy (Fig. 5e).

To determine whether cortical bulbar feedback is necessary for
expert mice to perform our task, we applied local optogenetic per-
turbations on the cortical bulbar feedback axons within the olfactory
bulb. Using a viral strategy, we expressed Jaws, an inhibitory opsin113 in
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piriform cortex neurons (via AAV-Jaws-EGFP injections in the anterior
part of the piriform cortex, aPCx, “Methods” section; Fig. 5f). We
monitored changes in the behavioral performance in both odor and
sound blocks in catch trials during light stimulation (25% of trials,
“Methods” section). Perturbing cortical feedback activity by local
optogenetic stimulation within the olfactory bulb impaired the beha-
vioral performance compared to control trials (Odor trials – Jaws-
2.4mW: 66 ± 3% vs. 81 ± 1% Jaws-no light; Sound trials – Jaws-2.4mW:
60 ± 4% vs. 81 ± 1%; p < 0.001, N = 3 mice; Fig. 5g; “Methods” section)
and to sessions using mice that expressed only EGFP in the cortical
bulbar feedback axons (under same light stimulation conditions,
Fig. 5g, “Methods” section). These differences in behavioral perfor-
mancewere reflected as increases in the rate of false alarms andmisses
for both the odor, as well as the sound trials. Our results are consistent
with a scenario in which the cortical bulbar feedback contributes to
assessing the behavioral (reward) contingency of stimuli across mul-
tiple sensory modalities (e.g. odor and sound cues), and relays signals
to the olfactory bulb that extend beyond processing olfactory input.

Discussion
Taking advantage of a novel Go/No-Go rule-reversal task engaging
olfactory and auditory cues (Fig. 1), we found that the feedback axons
from piriform cortex to the olfactory bulb relay identity and reward
contingency information across multiple sensory modalities. The
cortical bulbar feedback axon responses are reformatted upon chan-
ges in stimulus-reward contingency rules and mirror the behavior of
expert mice across rule reversals (Figs. 2, 3, 5). Furthermore, optoge-
netic suppression experiments (Fig. 5g) suggest that the cortical

bulbar feedback is part of a larger processing network that enables
mice to adapt to sudden changes in stimulus-reward contingencies.

To investigate whether the cortical bulbar feedback represents
reward contingency and supports behavioral flexibility104,105,114, we
focused our analysis on the cue-evoked responses of feedback bou-
tons preceding the behavioral readout (lick/no-lick assay). As in pre-
vious work16,107–110, we observed both enhanced and suppressed
feedback responses thatwere roughly balanced in their frequency. The
presence of enhanced and suppressed responses may increase the
dynamic range of cortical action in controlling the activity of bulbar
outputs. Decoding analysis suggested that both the enhanced and
suppressed feedback responses participate to representing various
stimulus features (e.g., identity, contingency, etc., Supplementary
Figs. 13b, 14c). Further analysis is, however, necessary to determine
whether these signals, arising presumably fromdistinct populations of
piriform outputs107–110, carry signals involved in different
computations16,23.

To increase the separability of potentialmotion artifacts and rule-
related signals, we imposed a short delay between the offset of the
sensory cue and the behavioral reporting. Many feedback boutons
modulated their responses in tight correlation with changes in the
reward contingency rules (Figs. 2, 3). The re-organization of cortical
feedback activity included re-shaping the kinetics, amplitude, and
response polarity of individual boutons (Figs. 2, 3; Supplementary
Fig. 8). It generally lagged the rule-switching events by a few trials (~7;
Fig. 5a–c; Supplementary Fig. 1i, j) and was correlated with changes in
behavioral performance (Figs. 2, 5a–e). Responses in the piriform-to-
bulb feedback were triggered by both the odor and the sound cues
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(Figs. 2–4, Supplementary Figs. 5–7). Feedback bouton activity mod-
ulation across conditions (Go vs. No-Go blocks) could not be simply
explained by motion artifacts as indicated by EGFP control experi-
ments (Supplementary Fig. 1m–o; 5d, e; 13e), nor by changes in sniffing
(Supplementary Fig. 10), consistent with recent reports in related
tasks115,116. In parallel, many bouton responses were robust to the rule
reversals, and may enable stable representations of the sensory input
identity despite changes in reward contingency (Fig. 2; Supplementary
Fig. 8). Interestingly, consistent with previous reports during odor-
triggered behaviors13, cortical feedback responses in expert mice
engaged in the rule-reversal task were substantially denser than in

naïve mice16,33, revealing an increased contribution of top-down input
to shaping the bulb activity as a function of rule learning. Overall, the
population-based decoding analysis indicated that the cortical bulbar
feedback carries signals related to stimulus identity, reward con-
tingency, and trial outcome (Fig. 3). On average, feedback responses
triggered by the same cue, had higher amplitude during hits and false
alarms than during correct rejection trials (Supplementary Fig 9e, f).
However, we also observed differences in the responses of individual
boutons across trials of different contingency in which mice subse-
quently licked the reward port in expertmice engaged in both the rule-
reversal as well as the auditory-only Go/No-Go task (Odor Hit vs. Odor
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FA vs. Sound Hit, Sound A Hit vs. Sound B FA, etc., Fig. 3b; Supple-
mentary Fig. 15c). Thus, the cortical feedback responses cannot solely
be explained as motor preparatory activity. The decoding analyses
were successful even when zooming into arbitrarily chosen individual
(~50× 50 µm) fields of view, revealing robust representations of the
task features in the cortical feedback activity. Across multiple rule-
reversals within the same session, the neural ensembles transitioned
fast back and forth between rule-associated representations, akin to
reports in other brain regions106,117–120. A given stimulus triggered
similar cortical feedback activity in blocks of trials of the same con-
tingency rule, and dissimilar representations in blocks of the opposite
reward contingency, revealing attractor-like behavior in the piriform-
to-bulb neural dynamics. Furthermore, Go feedback ensemble
responses across modalities (Odor Go vs. Sound-Go) appeared more
similar than responses to the same cue across instruction signals (e.g.
Odor Go vs. Odor-No-Go; Sound Go vs. Sound-No-Go, Fig. 2h).

The fast-updating of the piriform cortex-to-bulb feedback
responses upon rule-reversal contrasts previous reports that anterior
piriform cortex representations are stable, largely sensory, and only
mildly modulated by learning, context, and rule-reversal99,100, but see
refs. 98,102. Differences in the behavioral tasks employed across stu-
dies, and potential specificity in the activity of distinct piriformoutput
cell types defined by their long-range projections, may account for
these differences. In particular, our task differs from previous work in
that it specifically requires that expert animals repeatedly switch fast
back and forth between different rules of engagement within the same
behavioral session. Furthermore, different groups of piriform output
neurons target functionally distinct brain regions (olfactory bulb vs.
orbitofrontal cortex vs. cortical amygdala vs. lateral entorhinal cortex,
etc.), and areenriched atdistinct locations along the anterior-posterior
axis121–123. To date, however, most studies monitored activity in the
anterior piriform cortex agnostic of the projection targets of the
recorded neurons89,100,110,124–127. As such, bulb-projecting piriform cells
appear to flexibly update their representations in conjunction with
changes in stimulus-reward contingency. In contrast, other piriform
output neurons that target, for example, the orbitofrontal cortex or
other brain regions may be less affected by stimulus-reward associa-
tions and primarily represent sensory features of stimuli100.

While feedback axonal activity is required for accurate task per-
formance (Fig. 5f), the reward information that we observe within the
feedback axons may not necessarily reflect changes in the activity of
the piriform cortex. Rather, it may reflect diverse neuromodulatory
input acting on these cortical bulbar feedback axons locally, within the
olfactory bulb. However, the spatial statistics of the data appear to be
at odds with reports on the diffuse nature of neuromodulatory
action38,128–132. The response changes across stimuli, reward con-
tingency conditions, and blocks occurred in a coordinatedmanner for
boutons on the sameaxon and variedwidely for equally spaced nearby
boutons belonging to different axons (3 to 15 um apart). Specifically,
the responses of bouton pairs on the same axon varied in a coordi-
nated manner across different contingencies for the same odor

stimulus (rewarded vs. non-rewarded, across blocks Supplementary
Fig. 12e), and across different stimuli for the same reward contingency
(odor hits vs. sound hits, Supplementary Fig. 12f). In contrast adjacent
boutons on different axons changed their responses in an uncorre-
lated manner. A parsimonious explanation for this exquisite coordi-
nation only among the boutons belonging to a given axon is that they
reflect the activity of the parent piriform neuron. However, one
potential alternative explanation that our analyses cannot discard is
that neuromodulation acts within the bulb in a cortical feedback axon-
specific manner (i.e. boutons on the same axon are modulated in the
same manner) due to unique combinations of receptors and down-
stream signaling cascades in individual feedback axons. In this sce-
nario, the feedback responses may indeed not reflect the spiking
activity of the cortical neuron per se.

Our results open venues for investigating the mechanisms sup-
porting the flexible gating of some piriform-to-bulb feedback signals
and the stability of others, despite changes in contingency. Since the
changes in response amplitude and kinetics occur within seconds (a
few trials from rule-reversal), they may rely on fast gating signals,
rather than slower synaptic plasticity-based changes. Further investi-
gation is necessary to determine whether these signals originate in the
piriform cortex, or emerge through interactionswith other association
cortical areas (e.g. OFC, mPFC, lENT)115,133,134, and/or reflect neuromo-
dulatory action135–138 onto specific piriform circuits139–141. While calcium
dynamics in axon terminals have been shown to reflect changes in
firing rates at the soma16,26,142, an alternative possibility is that the gating
of calcium signals in the cortical feedback axons occurs via inter-
neuron input within the bulb. However, the presence of sound-evoked
responses in the feedback boutons,modulated by reward contingency
suggests that a local (bulbar) mechanism is not a parsimonious
explanation.

The activity of mitral cells is modulated by context, learning, and
stimulus contingency, and cortical bulbar feedback has been singled
out as a potential signal responsible for shaping these bulb
outputs13,45,56,62–67,79,80,143. A recent study reported reward-related signals
in the mitral cells which are modulated by the piriform cortex-to-bulb
feedback (assessed via pharmacological silencing of the piriform)116.
Our data is consistent with this body of work; it provides a framework
to further analyze the dynamics of mitral (and tufted) cells in mice
engaged in rule-reversal tasks, and under more naturalistic
conditions144, in the presence and absenceof cortical feedback. Parallel
feedback loops engaging the mitral vs. tufted cells and their dominant
cortical targets, the piriform cortex, and AON have been reported to
perform different computations17. For example, odor identity and
concentration are more easily read out from the tufted cell ensemble
representations, whereasmitral cells may represent subtler features of
odorants17,56,64,79,80. We expectmitral cell activity to changewithin a few
trials post-rule reversals, matching the re-organization of cortical
feedback responses and changes in behavioral performance (i.e. lower
mitral cell response amplitude in the Go vs. the No-Go trial blocks).
Further, we expect that the tufted cell and AON-to-bulb feedback

Fig. 5 | Cortical bulbar feedback activity mirrors the perceived reward rule.
a Example bouton responses during block transitions sampled throughout the
‘delay period’ fromone fieldof view in anexpertmouse. (Top)Odor trials. (Bottom)
Sound trials. Gray barsmark the trial outcome (correct– light gray; incorrect–dark
gray). b Example individual bouton response traces from (a) (asterisks) to odor
(Top) and sound (Bottom) before and after the contingency switch (0; vertical line).
Interpolated responses are shown (“Methods” section). c Block transition neuronal
distance analysis: Pearson correlation (ρ) was calculated between the bouton
ensemble response (delay period) of a given trial of the current block and the
average bouton ensemble response over the last five trials of the preceding block.
The average neuronal distance is defined as 1 – ρ, and shown for the first twelve
trials of a given block (N = 20 sessions, 3 mice). d Average behavioral performance
following block transitions across sessions (N= 20 sessions, 3 mice; “Methods”

section). e Correlation between the neuronal distance and the block behavioral
performance. Color bar: Trial index of each correlation value (N= 20 sessions, 3
mice). Pearson’s Correlation: R2 = 0.85 (p < 0.0001). f Optogenetic perturbation of
aPCx-originating feedback locally within the olfactory bulb (“Methods” section). In
expert mice, cortical feedback was suppressed 500ms before the start of the cue
period and continued until the end of the reporting period (2.4mW, 595 nm) in 25%
of the trials of a behavior session. g Behavioral performance quantified for odor
(Left) and sound (Right) trials independently in Jaws-aPCx and EGFP-aPCx expres-
sing mice: (Jaws – no-light) vs. (Jaws – 2.4mW) light-on trials. Two-sided One-way
ANOVA and multiple comparisons of means: *** = p < 0.0001; n.s.: non-significant.
All panels error bars: ±SEM. See Source Data and Supplementary Table 1 for exact
data points and p-values.
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representations are more sensory in nature, robust to changes in the
stimulus-reward associations, and are less affected by perturbations of
the piriform-to-bulb feedback16,17.

We observed sparse, but diverse, enhanced as well as suppressed
sound-evoked responses in thepiriform-to-bulb feedbackaxons.While
sound-triggered activity has been reported in the piriform cortex145, its
origin and computational roles remain unclear. In auditory and visual
processing, inputs from the somatosensory146,147 and auditory cortex7

are thought to shape cortical neural representations as a function of
experience. Specifically, these signals may relay stimulus association
memories for V1 cortical circuits to compare the predicted and actual
sensory inputs7. In contrast, a recent report148 in awake passive mice
identified auditory cortex-independent, stereotyped low-dimensional
sound-triggered signals in the visual cortex. These responses could be
predicted from small body movements and may reflect changes in
internal brain states. In our experiments, the sound-triggered piriform
feedback axon responses were apparent in expertmice engaged in the
rule-reversal task (Fig. 2), in naïve individuals, as well as in mice per-
forming a two-tone Go-No/Go task (Fig. 4). Stimulus-reward associa-
tions modulated the response kinetics and amplitude of the sound-
triggered feedback bouton responses across different time scales. In
expert mice, within a given session, we observed fast updating in the
responses of individual boutons, within seconds from the rule-reversal
events. In addition, in the auditory-only Go/No-Go task, bouton
responses changed across sessions during learning of the stimulus-
reward associations, becoming more specifically tuned to the rewar-
ded sound cue. In contrast, in sound habituation experiments, on
average, feedback bouton responses were sparser and lower in
amplitude, and did not change in a systematic manner across days
(Supplementary Fig. 15d–f). While, sound responses were diverse and
aligned well to different epochs of the rule-reversal task (cue, delay,
report), we did not investigate here whether varying sound stimulus
features (frequency, amplitude, etc.) impact the cortical bulbar feed-
back activity. Many sound and odor-evoked feedback responses in the
expert mice lingered for seconds even after the reporting period,
raising the possibility that they serve as lasting memory traces asso-
ciated with the stimulus-reward contingency16 (Figs. 2–4; Supplemen-
tary Figs. 5–7, 13, 14).

Why might the olfactory bulb need to “know” when a stimulus
(odorant and/or especially a non-olfactory stimulus, such as a tone) is
rewarded?One possibility is that the cortical bulbar feedback serves as
a bindingmotif in caseswhere odors and sounds are required together
to obtain a reward. While it may be more intuitive for the binding to
occur further downstream, other reports have shown that information
regarding one sensory type is distributed across sensory and motor
pathways of another type7–9,149–151. An alternative possibility is that the
feedback axons help perform credit assignments. If subtle aspects of
odorants drive the reward, these features would be more readily
accessible to the cortex post mitral cell activity re-shaping due to
cortical feedback input. Thus, a two-part representation— “what is it?”
(via the TC↔AON pathway) and “what is new/different/important
about it?” (via the MC↔PCx pathway) — may enable better repre-
sentation of what aspects of stimuli in the environment lead to
rewards. This process can be viewed as a representation learning
algorithm that learns a mapping from sensory inputs to a (latent)
feature space; the mitral cells may pass on a residual representation
(i.e. reconstruction errors13,15–17,19), which highlights, in addition to
identity, aspects of stimuli related to their associated reward con-
tingency, context and/or level of engagement. The impaired beha-
vioral performance observed in both odor and sound trials upon
optogenetic suppression of the cortical feedback locally within the
bulb (Fig. 5) is consistent with this scenario.

Previous work indicated that the medial prefrontal, orbitofrontal
cortex, and basolateral amygdala circuits support behavioral flexibility
in olfactory processing99,100,103,152,153. Dense orbitofrontal-to-piriform

cortex bidirectional interactions133,154, top-down inputs from mPFC to
AON, piriform cortex and olfactory striatum (tubercle), and neuro-
modulatory signals may shape the representations of sensory stimuli
as a function of learned odor-reward associations155–157 and attentional
state115,134. Our results suggest that the piriform-to-bulb feedback acts
as part of a larger processing network that relates stimulus-reward
associations to implementing decisions that drive behavior in dynamic
environments.

Methods
Mice
Overall, 20 B6129SF2/J mice were used (JAX Laboratories®). Eleven for
the rule-reversal task experiments, including 4 – no-delay, 3 – delay
versions of the task, 4 for the EGFP controls, 3 for the auditory-onlyGo/
No-go task; 3 for the auditory habituation sessions and 6 for the
optogenetic suppression experiments (3 for Jaws and 3 for EGFP
controls). All animal procedures conformed to NIH guidelines and
were approved by the Animal Care and Use Committee of Cold Spring
Harbor Laboratory. Mice were maintained at room temperature and
40–60% humidity in a 12 light/12 dark light cycle.

Surgical procedures
Mice were injected with NSAID Meloxicam 0.5mg/Kg (Metacam®,
Boehringer Ingelheim. Ingelheim, Germany) 24 h prior the surgical
procedure, at the onset of surgery, and for 2 days post each surgical
procedure. Depending on the recovery progression, the NSAID treat-
ment was maintained until the mice showed alert and responsive
behavior. Before each stereotaxic surgery, mice were anesthetized
with 10% v/v Isofluorane (Cat# 029405. Covetrus. Portland, ME, US).
For the chronic window and head bar implantation procedures, mice
were anesthetized with a ketamine/xylazine (125mg/Kg–12.5mg/Kg)
cocktail. During surgery, the animal’s eyes were protected with an
ophthalmic ointment (Puralube®. Dechra. Nortwich, England, UK).
Temperaturewasmaintained at 37 °Cusing aheatingpad (FSTTR-200,
Fine Science Tools. Foster City, CA, USA). Respiratory rate and lack of
pain reflexes were monitored throughout the procedure. Chronic
window implant surgeries were supplemented with dexamethasone
(4mg/Kg) to prevent swelling, enrofloxacin (5mg/Kg) to prevent
bacterial infection, and carprofen (5mg/Kg) to reduce inflammation.

Viral infections
To target the piriform cortex-to-bulb feedback for the imaging and
optogenetic perturbation experiments, we used the following viruses:
AAV2/9-EF1a-Flex-GCaMP5 and AAC9-Cre (Penn Vector Core, Phila-
delphia, PA, USA), AAV1-syn-jGCaMP7b-WPRE (Cat# 104489-AAV1),
AAV1-hSyn-EGFP (Cat# 504650-AAV1), and AAV5-hSyn-Jaws-KGC-GFP-
ER2 (Cat # 65014-AAV5) from Addgene (Watertown, MA, USA).

AAV stereotaxic injections
Adultmice (males >60days old, 25–40 g)were used for the stereotaxic
surgery. After the induction step (isoflurane), mice were positioned in
the stereotaxic device which was fitted with an isoflurane delivery
mask (Cat# 942. Kopf®. Tujunga, CA, USA), and their eyes were cov-
ered with ophthalmic ointment. The head surface was cleared using
hair removal cream (NairTM) and cleaned with betadine and saline. The
skin was removed and the surface of the skull scraped of connective
tissue to identify the cranial sutures. These were further used to align
the anterior-posterior head angle by leveling the bregma and lambda
with respect to the horizontal. Mice were injected bilaterally with
AAV (~280 nL per site) using a calibrated borosilicate glass micropip-
ette (tip diameter, ~10μm) through small craniotomies (~1mm) span-
ning 1mm along the anterior-posterior axis of the aPCx in
both hemispheres. Coordinate 1: anterior-posterior, AP+ 2.5mm,
medial-lateral, ML ± 2.2mm, dorsal-ventral, DV −3.00mm; Coordinate
2: AP + 2.0mm, ML ± 2.2mm, DV −3.5mm; Coordinate 3: AP+ 1.5mm,

Article https://doi.org/10.1038/s41467-025-56023-5

Nature Communications |          (2025) 16:937 11

www.nature.com/naturecommunications


ML ± 2.8mm, DV −3.75mm. AP and ML coordinates were estimated
from bregma, and all DV coordinates were measured from the pia
surface. AAV Injections were delivered using a Picospritzer III (General
Valve) and pulse generator (Agilent) by pressure application (5–20psi,
5–20ms at 0.5Hz). Mice were injected with a 1:1 mixture of AAV2/9-
EF1a-Flex-GCaMP5 and AAV9-Cre for imaging, with AAV5-hSyn-Jaws-
KGC-GFP-ER2 for optogenetic suppression, and with AAV1-hSyn-EGFP
for the EGFP control experiments. Mice trained in the two sounds Go/
No-Go task were injected with AAV1-syn-jGCaMP7b-WPRE.

Chronic implantations
After recovery from the stereotaxic surgery, micewere implantedwith
a custom titanium head bar attached with C&B Metabond Quick
adhesive luting cement (Cat# S380. Parkell. Edgewood, NY, USA),
followedbyblackOrtho-JetTM dental acrylic application (Cat# 1520BLK.
Lang. Chicago, IL, USA) and with a cranial window on top of the
olfactory bulb as previously described16,17. Special care was taken to
remove the boneunder the inter-frontal suture and remove small bone
pieces at the edges. During surgery, the exposed olfactory bulb was
continuously protected and cleaned of blood excess using artificial
cerebrospinal fluid (aCSF) and aCSF-soaked gelfoam. Once both
hemibulbswere exposed and clean, a fresh drop of aCSFwasplaced on
top, followed by a 3mm round cover glass, which was gently pushed
onto the OB surface to minimize motion artifacts in further experi-
ments. Once in place, the coverslip was sealed along the edges with a
combination of VitrebondTM, Crazy-GlueTM, and dental acrylic to cover
the exposed skull. Mice recovered for ~7 days before imaging experi-
ments. Adult males were used for chronic window implantation due to
their larger skull size which facilitates surgical procedures.

Behavioral training
Mice were water-deprived until reaching 85% of their original weight.
Once the desiredweightwas achieved, head-fixedmicewere trained to
discriminate between two brief (350ms) sensory cues: a pure tone
(6.221 KHz, 70dB) target (Go) stimulus and a monomolecular odorant
(1% ethyl valerate) distractor (No-Go). The pure tone choice was based
on a prime number to minimize harmonics. Care was taken to choose
an odorant cue that had high SNR photoionization device (PID, Aurora
Scientific) readings. Olfactory cues were presented from an odor port
placed in front of the mouse’s snout and auditory cues were delivered
from a speaker on the side. Each training session is composed of ~270
consecutive trials separated by variable inter-trial intervals (ITI, Sup-
plementary Fig. 1f) defined by drawing from an exponential decay
function (flat hazard rate) within a 0.3–1.2 s range on topof a bias value
(9 s; Eq. 1):

f xjμð Þ= 1
μ e

�x
μ

μ=0:2s

0:3s ≤ f xð Þ≤ 1:2s
ð1Þ

Trials were randomly assigned (p =0.5) as odor trials or sound
trials. In the Go trials, mice were trained to report the presence of the
Go stimulus by licking a spout in front of their mouth, fromwhich they
received a small water reward (3.3μL,Hit trials). In addition,micewere
trained to refrain from licking (Correct Rejections) in the No-Go trials,
so they couldmove faster to thenext trial. Incorrect trials (False Alarms
andMisses) were punished by lackof reward and the addition of a time-
out period (10 s) to the regular ITI plus a one-second-long 70 dBwhite-
noise sound. During the days preceding the first in-session rule-
reversal (‘Day 0’), mice were trained so as to reach an average per-
formance per session of no more than 70% correct trials. We imple-
mented this protocol, aiming to ensure thatmicedid not getfixatedon
one of the two rules we employed. In a given session only one rule was
used. Before ‘Day 0’, mice experienced rule-reversals across sessions
and generally were substantially better at performing the task using

one of the rules, and close to the chance level for the other rule, as
shown in an example early training session in Supplementary Fig. 1c.

Oncemice learned the stimulus-reward association to higher than
70% accuracy (typically approximately two weeks after the start of
training), we switched the reward contingency in blocks of contiguous
trials between Odor Go blocks (odor rewarded) and Sound-Go blocks
(tone rewarded) within the same session. Once rule-reversal within the
same session was introduced at ‘Day 0’, mice retained higher perfor-
mance for the rule they were more comfortable with prior to ‘Day 0’.
Across further training sessions, mice steadily improved their beha-
vioral performance for both rules.

The initial stages of the rule-reversal training consisted of classical
conditioning to the sound cue by repeatedly pairing the sound cue to a
free water delivery. In this phase, animals were allowed to lick at will,
without punishment. Automatic (free) water delivery throughout the
training was used as a means to remind mice about the presence of
water rewards. In each training session, such trials were not counted as
correct trials and were excluded from calculating the behavioral per-
formance. If the animals reliably licked to the cue, we introduced the
odor cue as the unconditioned stimulus. We delivered water rewards
when the mouse licked for the correct cue within the designated
response period. Once mice reached >70% correct performance, we
started reinforcing the timing parameters by turning on punishment
(air puff), which was delivered for both incorrect choices and early
licks, but not Miss trials (failing to lick for a rewarded cue). Once the
animals retained >70% correct performance, we reversed the reward
contingencies and started rewarding the odor cue. Care was taken to
not over train the animals before this point. The reversal was not cued,
but during the initial stage of the reversal training, we switched off the
time-out punishment, while instead relying on a white-noise error
signal. The best behavioral performance was obtained in this config-
uration, potentially because mice used the white-noise as a general
error signal. During this period of early training, the error rate was
high, mice predominantly licking for the sound cue, and ignoring the
odor cue.We letmice learn at their own rate, allowing asmany sessions
as necessary to reach the same 70% performance criterion as before
the reversal. Further, we introduced rule-reversals within the same
session on a regular basis, while shortening the number of trials in
between reversals from ~130per block onDay 0 to a steady state of ~45
trials between reversals (blockdesign).Micewere trained in oneor two
sessions per day, with each session lasting from 45min to 1.5 h.

We trained mice in two versions of the task. In the no-delay ver-
sion, a trial started with a variable length baseline, followed by the
delivery of a brief sensory cue (0.35 s) and a reporting period (1.5 s)
which started at the cue onset. Odor delivery was not triggered on
respiration. Once we successfully trained mice in this version of the
task, to disambiguate the neural signatures of reward contingency
from motion artifacts related to licking and other signals, we further
implemented a delay version in which we imposed a 500ms delay
period between the cue offset and the reporting period. To receive a
water reward in the Go trials, mice had to lick the water spout during
the reporting period. Any trial where one or more licks occurred
before the start of the reporting period was classified as an early-lick
trial and excluded from further analysis. Upon achieving a steady 80%
average session performance, mice were considered experts at per-
forming the task and were further used for chronic multiphoton ima-
ging sessions and optogenetic suppression experiments. When they
reached the expert level, mice performed well in both odor and sound
trials across both block types (Odor Go and Sound Go) while still dis-
playing slight biases for oneof the two (Supplementary Figs. 1d, e; 10e).

Thedurationof a trial varied as follows.Cuepresentation (350ms)
was followed by a fixed 500ms delay period (in the delay version) and
by the reporting period (up to 1.5 s, when the mouse can lick the
reward spout). The animal’s behavior added additional variability to
the effective inter-cue duration: (a) in a Hit trial, a fixed water reward
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was delivered, and the behavior control software moved to the next
state (ITI) once the animal ceased to lick for 100ms; (b) in a false alarm
trial, as the animal licked, no water reward was delivered from the
spout, and a 10 s additional time-out is imposed before moving to the
ITI state; (c) in a correct rejection or a miss trial, the control software
awaited until the end of the 1.5 s report period beforemoving to the ITI
state. As the inter-cue period and the ITI varied from trial to trial
(Supplementary Fig. 1f), mice cannot lock their licking (or lack thereof)
to a strict time window following the cue onset (as observed in our
behavioral data, Fig. 1e, Supplementary Fig. 1b), unless they actually
detect and act on both types of sensory cues.

Expert mice performed ~270 trials/session. We chose a block size
of 45 trials as a tradeoff between being short enough to affordmultiple
switches per session (~5) and long enough to allow for performance
stabilization after each switch. Keeping a flat hazard rate for the
number of trials per block was difficult under these constraints. In a
subset of experiments (when performing the sniffing analysis, see
below), the length of the blocks was randomly varied between 42 and
48 trials per block (Supplementary Fig. 1h). In these experiments, mice
also achieved >80% expert performance (both during Odor Go and
Sound Go blocks) within a similar training time as in the other
experiments. The performance for the odor as well as the sound trials
was >80% (Supplementary Fig. 10d).

Monitoring sniffing
We monitored sniffing in control expert mice performing the rule-
reversal task. We used a mass airflow sensor (Honeywell AWM3300V)
mounted into a 3D-printed nose mask coupled to the odor delivery
system126. Signals were further amplified, digitized (1 KHz) and low-
pass filtered (10Hz cutoff). Expert mice used for the sniff monitoring
controls experienced a variable number of trials per block (41–49
trials; Supplementary Fig. 1h).

Auditory-only Go/No-Go task
Mice expressing GCaMP7b in the anterior piriform cortex-to-olfactory
bulb feedbackwere trained in an auditory-only Go/No-Go task (6.2 and
15.6KHz tone cues, at 70 dB, 350ms), and feedback axons were
imaged during training through a chronic windowplaced on topof the
olfactory bulb. The trial structure of the auditory-only Go/No-Go task
was similar to the Odor/Sound Go/No-Go task, without reward con-
tingency changes within or across sessions. Two mice were trained
with the 6.2 KHz-Go/15.6 KHz-No-Go rule and one with the opposite
rule (15.6KHz-Go/6.2 KHz-No-Go). Naïve response sessions were
acquired before water-depriving the mice for behavioral training. The
trials followed the same structure as described above for the delay
version of the rule-reversal task.

Auditory habituation sessions
Mice expressing GCaMP7b in the anterior piriform cortex-to-olfactory
bulb feedback were habituated to the same sound stimuli used for the
auditory-only Go/No-Go task and feedback axon activity was imaged
across six days of sound habituation experiments.

Multiphoton imaging
A Chameleon Ultra II Ti:Saphire femtosecond pulsed laser (Coherent)
was coupled to a custom-built multiphoton microscope. The shortest
optical path was used to steer the laser to a galvanometric mirror
(6215HB, Cambridge Technologies) based scanning system. The
scanning head projected the incident laser beam (930 nm) through a
scan lens (50mm FL) and tube lens (300mm FL) so as to fill the back
aperture of the objective (Olympus 25X, 1.05 NA). A Hamamatsu
modifiedH7422-40photomultiplier tubewasused as a photo-detector
and a Pockels cell (350-80 BK, 302RM driver, ConOptics) as a laser
power modulator. The current output of the PMT was transformed to
voltage, amplified (SR570, Stanford Instruments), and digitized using a

data acquisition board that also controlled the scanning system (PCI
6115, National Instruments). Image acquisition and scanning were
controlled using custom-written software in LabView (National
Instruments). Using submicroscopic beads (0.5 µm) and a 1.05 NA, 25×
Olympus objective, the point spread function (PSF) was calculated x-y
(1.0 µmFWHM) and z (2.0 µmFWHM).Cortical bulbar feedback activity
was sampled at 16Hz (160 × 128 pixels, FOV size 48 × 48μm,
0.30–0.38 µm pixel size) for ~6 s per trial. The sound produced by the
galvo-mirrors at the scan frequencies employed fell out of the mouse
audible range (<1 KHz), and was therefore unlikely to provide an extra
cue for solving the task. Mice were imaged between 4-to-6 weeks after
the AAV injections. We sampled multiple fields of view distributed
rostro-caudally and medial-laterally throughout the dorsal aspect of
the olfactory bulb. Imaged fields of view were located 200-300 µm
below the bulb surface, just below the mitral cell layer, and spanning
the internal plexiform layer and the dorsal edge of the granule cell
layer (Supplementary Fig. 2e, f).

Optogenetic suppression of the cortical bulbar feedback
Mice were bilaterally injected at the same aPCx coordinates as for
GCaMP expression with AAV to express the inhibitory opsin Jaws. On
the same day, mice were bilaterally implanted with cannulas loaded
with 200 μm diameter optic fibers (Doric: MFC_200/230-
0.48_2.0mm_ZF1.25(G)_FLT) on top of the olfactory bulb (coordinates:
AP: +1.2 from the inferior cerebral vein; ML: ±1.2mm from inter-frontal
suture; DV: 0.0mmOB surface). The spacebetween the optic fiber and
the edges of the skull craniotomy was filled with white petrolatum
(Dynarex) and the optic fiber cannulas and a metallic head-bar were
attached to the skull using a combination of dental cement (Meta-
bond®), black dental acrylic resin (Ortho-Jet™) and cyanoacrylate glue
(Krazy-Glue®). After training and reaching >80% performance, mice
were ready for optogenetic suppression experiments (0.25 probability
of experiencing a trial with light stimulation).Opticfiber cannulaswere
connected to a branched dual patch cable (Doric, Cat # SBP(2)_200/
230/900-0.48_1m_SMA-2xZF1.25) using ceramic sleeves (ThorLabs,Cat
# ADAL1). Light stimulation was performed using a 590nm LED
(ThorLabs Cat #M590F3) calibrated to deliver 2.4mWat the tip of the
patch cable. Stimulation (5ms, 30Hz light pulses) was triggered
500ms before the start of the cue period and continued until the end
of the reporting period (2.85 s). Equivalent experiments were per-
formed in control animals expressing EGFP instead of Jaws.

Data analyses
Movement correction and ROI selection. Rigid registration in
MATLAB was applied to the fluorescence time-lapse stacks acquired.
Images were visually inspected to select a motion-free sequence of
frames and create a median reference image to which we registered
each image stack corresponding to a given trial. ROI selection was
performed manually (ImageJ): we used both the median and standard
deviationprojections of the registered images todrawROIs around the
cortical feedback axonal boutons in the FOV.

Bouton and frame rejection, and interpolation. We iteratively sear-
ched for an optimal interpolationmethod that could be applied to the
data, such that we couldmaximize the number of trials and ROIs to be
included in the further analysis steps, without introducing erroneous
data. Based on our testing (see below), we identified thresholds for
discarding trials and specific ROIs. Multiphoton imaging in awake
head-fixed mice frequently displays signal loss due to brain motion:
field of view (FOV) loss,where the signal in all boutons is compromised
at the same time, and bouton loss, where one ROI moves out of the
plane of imaging/field of view due to a more complex movement (e.g.
rotation). To find an appropriate interpolation method, we used
behavioral sessions that had the fewest number of skipped frames.
Specifically, we used ground truth trials that hadat least 90 contiguous
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frames without NaNs to evaluate the performance of several inter-
polation methods. We introduced NaN values across sequences of
images of varying length (1–45) at all possible time points and analyzed
the performance of three standards (linear, spline158, Akima159), and of
one custom interpolationmethod, we call step interpolation, wherewe
replace the missing data with the value immediately preceding it. By
evaluating the mean squared error between the ground truth signal
and the interpolated version, we identified the best interpolation
method among the ones analyzed as a function of the number of
missing frames: Akima (if the window ofmissing frames is shorter than
7), step interpolation (if the fluorescence value occurring just before
the missing window is smaller than the value following immediately
after, and the difference is greater than a set threshold); and linear
interpolation in all other cases. For our data set, this algorithm could
not reliably interpolate windows of missing data longer than 15 con-
tiguous frames (error exceeded 1 standard deviation of the signal at
windows longer than 20 frames). Using a conservative threshold, if any
trial had a loss window in any of its ROIs longer than 15 frames, it was
not considered for further analysis. In addition, we set a threshold of
70% for the minimum amount of valid data points in a trial: if more
than 30% of frames were NaNs, the trial was discarded. After trial and
ROI rejection, the interpolation strategy describedwas applied to fill in
any missing data.

Bleaching correction. Post individual ROI extraction, we applied a
bleaching correction, assuming that: (1) bleaching follows a similar
trend across trials for each individual ROI; (2) during the baseline
period, the measured activity is random. Given these assumptions,
by averaging across trials the fluorescence of an ROI, the only robust
trend potentially present in the baseline would be the characteristic
bleaching for that ROI. We checked that the baseline fluorescence of
a given bouton is comparable across trials within a session. The
procedure used for each ROI was as follows: (1) we averaged the
fluorescence traces across all trials for that ROI (aligned to stimulus
presentation), (2) fitted an exponential decay function to the base-
line period of the fluorescence trace; (3) extended the fitted function
to the length of each trial, (4) subtracted the fitted function from the
ROI trace.

Normalization. For the decoding analysis, we normalized the data so
as to use the same network across all datasets and ROIs, since multi-
layer perceptrons (MLP) are sensitive to the range of the input values.
For each ROI and trial, we z-scored the traces individually, using the
signal baseline period to compute the necessary statistics (mean and
standard deviation).

Bouton responsiveness and classification. To evaluate the respon-
siveness of each bouton, we obtained the distribution of average
z-score values from the baseline periods and used a 99 percentile
value of the distribution as the criterion to decide if a bouton was
responsive (Supplementary Fig. 4). The baseline reference distribu-
tion was obtained from average z-score values each quantified over
six-frames intervals extracted from the baseline period and accu-
mulated across all trials. For each bouton and trial type, we also
obtained average z-score values of equivalent six-frame periods
extracted between the start of the cue delivery to the end of the
response period (parsed by cue, delay, and response periods). For
each bouton and trial type (Go/No-Go), we compared the average
response across trials (parsed by cue, delay, and response periods)
with the baseline reference distribution. If at least one of these values
crossed the 99th/1st percentile of the baseline distribution criterion,
the bouton was classified as responsive (enhanced or suppressed). If
some of these values were below the bottom 1st percentile and some
above the 99th percentile of the baseline distribution, the response
was classified as complex.

We analyzed how systematically changing the signal threshold
alters the number and diversity of responsive boutons in both GCaMP
and EGFP experiments. Across different signal thresholds, sub-
stantially more responsive boutons were identified in the GCaMP vs.
EGFP imaging data (Supplementary Fig. 4d, e).

Clustering analysis. Waveforms were normalized by the largest
magnitude response of the absolute value of each trace. We used the
k-means clustering function in MATLAB (Euclidean distance). Cluster
quality was assessed by calculating the average distance between the
averagewaveforms assigned to each cluster (d). To determine the total
number of clusters, we calculated the average d, while varying the
number of clusters from2 to 100. The total cluster numberwas chosen
using a cutoff threshold for which the average decrease ind plateaued.

Inter-block correlation analysis. To determine whether bouton
response patterns change accordingly to each rule-reversal, for each
field of view, we used the average z-scored fluorescence values
aggregated across the delay period for both the odor and sound cue
trials (Fig. 2e). We assembled an average response vector of the 1st or
2nd block of trials within a session for each cue by randomly picking
half of the trials of each of those blocks (reference vectors). We further
calculated the Pearson correlation values between these reference
vectors and each column (trial) of the delay period response matrix for
the odor and sound trials respectively. For each session, we repeated
the bootstrapping of random trials to generate reference vectors one
hundred times. One example (mean± SEM) correlation trace is shown
at the bottom of Fig. 2e. We further calculated an inter-block correla-
tion by obtaining the mean ± SEM of the Pearson coefficient values of
each Odor Go, Odor-No-Go, Sound-Go, and Sound-No-Go blocks for
each session and mouse (Fig. 2g, h; Supplementary Fig. 7f).

Bouton stability. To evaluate how stable individual bouton responses
were across trials of different stimulus-reward contingencies, we cal-
culated the distributions of pairwise Pearson correlation values within
(e.g. Hits-Hits) and acrossdifferent (e.g. Hits-False Alarms;Hits-Correct
Rejections, etc.) reward contingency conditions (Fig. 3a, b; Supple-
mentary Fig. 15c). Using bootstrapping, in each iterationwepicked two
random subsets of trials, extracting for each trial the z-scored fluor-
escence traces between the cue onset and end of the delay period. We
averaged traces across trials of each set and calculated the pairwise
Pearson correlation between the resulting two average fluorescence
time-traces. We repeated this procedure 100 times, picking a different
set of random trials each time. We used one-third of the total number
of False Alarm trials (less-frequent evaluated trial outcome) to enable
the comparison with the Hit and Correct Rejection trials that occurred
at a higher frequency, as expected given the high session behavioral
performance of the expert mice (>80% correct trials). Miss trials were
excluded from this analysis due to their infrequency (<3%). Bouton
responses were classified as stable if the correlation in response across
conditions was within 90% of the inter-trial variability (correlation)
across Hits trials used as reference.

PCA visualization. Extracted ROI time courses were assembled in a
data cube (N by S by T) of trial averaged dF/F0 responses, where N
stands for the total number of cortical feedback boutons included, S is
the total number of stimuli (reward-contingency trials –H, CR, FA) and
T is the total number of time-bins. To reduce the dimensions of the
neuronal population, this data cubewas reshaped into a datamatrix (N
by ST) and normalized (z-scored) such that each stimulus as a function
of time represents a point in an N-dimensional neural state space. To
find a set of orthogonal directions that maximizes the variance cap-
tured from the data, we performed principal component analysis
(PCA) and identified the eigen vectors of the associated covariance
matrix. PCA was performed using built-in ‘princomp’ function in
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MATLAB. Data projected onto the first three principal components
(PCs) is plotted in Fig. 3c. The variance explainedby each PC is given by
the ratio of its eigen value to the sum of all the eigen values. Miss trials
were excluded from this analysis due to their low frequency (<3%). On
average, across fields of view, the first three PCs explained 66.1 ± 3.3%
of the signal variance for odor trials and 67.1 ± 2.8% of the signal var-
iance explained for the sound trials.

Machine learning-based classifying task parameters and animal
behavior. We usedmulti-layer perceptrons (MLP)160 to predict various
stimulus and behavioral features associated with the task across trials.
We normalized the datasets and further sliced them into non-
overlapping windows of 4 time samples. These windows were then
reshaped into a 4 * number of ROI input vectors which were given as
input to the MLP. The data was split into disjoint test (33.3%) and
training (66.6%) subsets respectively. For each classification problem
(stimulus, reward-contingency, instruction, and behavior outcome), we
ran 10 repetitions with shuffling and re-splitting into training and test
sets to control for variability in trial quality.

TheMLP consisted of one input layer that was the same size as the
input vectors, two hidden layers of 10,000 and 1000 units each, and
oneoutput layer,whose size dependedon the feature thatwe aimed to
classify. The weights of the network were initialized using the Xavier
uniform distribution161 (Eq. 2) where the weights of a layer (Wij) are
selected froma uniformdistribution (U) centered on0 andwith a range
dependent on the number of nodes in the previous layer (n).

Wij � U � 1
ffiffiffi

n
p ,

1
ffiffiffi

n
p

� �

ð2Þ

Each layer had a Soft + + (k = 1, c = 2, Eq. 3) activation function,
except for the last layer where Softmax normalization (Eq. 4) was used
to return a probability distribution over the number of classes (N). For
the twohidden layers, we also applied adropout rate of 50% in order to
limit overfitting.

Sof t + + xð Þ= ln 1 + ek�x
� �

+
x
c
� ln 2ð Þ ð3Þ

Softmax (z-vector to be normalized, N-number of classes):

sof tmaxð~zÞi =
ezi

PN
j = 1e

zj
ð4Þ

The MLP was optimized using the Adam optimization
algorithm162, and we used as a loss function the cross entropy (Eq. 5)
between the Softmax output (p) and the one-hot encoding of the label
(y). Cross entropy loss (N-number of classes, y-binary indicator (0 or 1),
if class label c is correct classification forobservation o, thep-predicted
probability that observation o is of class c):

�
X

N

c = 1

yo, clogðpo, cÞ ð5Þ

The MLP was trained for 50 epochs (iterations through the data-
set) with a batch size (number of samples per step) of 25, and a fixed
learning rate (weight modification rate) of 0.001, as opposed to a
variable learning rate which changes across epochs according to a
schedule.

We ran three control analyses: shuffle label, shuffle channel, and
EGFP control. For the shuffle label control, we shuffled the trial indices
(labels)which resulted in destroying correlations between thedata and
the associated reward contingency. For the shuffle channel control, we
shuffled the ROI fluorescence values for each time point before feed-
ing the data into theMLP. This has the effect of destroying ROI identity
information while leaving global activity in time intact. Finally, we also

ran the same analyses on EGFP data, in order tomeasure howmuch of
the information in the data comes from movement-related artifacts.
Because EGFP fluorescence should not vary as a function of neuronal
activity, any measured changes in green fluorescence are likely due to
motion-related artifacts, blood-vessel occlusion, intrinsic signal
changes, etc.

The same algorithmswere used to decode stimulus identity in the
auditory-only Go/No-Go task and the auditory-only habituation
sessions.

Machine learning-based stimulus classification within and
acrossblocks. Using the sameprocedureoutlined above,wealso rana
series of tests to measure how the representations of stimulus change
across blocks in the experiment. For the same-block analysis, we
selected only the trials fromone type of block at a time (e.g., sound go
blocks) and split them in the same proportions mentioned above. For
the across-block analyses, we used all trials, but instead of random
splitting, we ensured that all trials from one type of block were in the
test set and all trials from the other block were in the training set.

Trajectory-based Kohonen mapping. Self-organized maps are a use-
ful tool for visualizing patterns in multidimensional data, as they
reduce the patterns across features to a color representation. Effec-
tively the Kohonen mapping algorithm creates a translation key
(through the model space) between a fixed color space and the data
space163,164. This algorithm works by sequentially passing through the
data samples multiple times, finding the closest match in the model
space, and adjusting thatmodel, as well as models close to it in a color
space, so that they more closely resemble the sample. The color space
is fixed and is three-dimensional (red, green, blue), and each model is
assigned a location in this color space that does not change. The dis-
tances between models are computed in the color space, while dis-
tances between samples andmodels are computed in themodel space.
The algorithm has two parameters: the learning rate (which controls
how large the change to the models is at each step) and the standard
deviation of a three-dimensional Gaussian kernel (which changes how
many models are modified at each step, as well as how large the
modification applied to those models is). We changed these para-
meters at each step such that at the beginning of the algorithm, many
models are altered at each step (large neighborhood radius, R, Eq. 6)
with a large learning rate (L, Eq. 7). This allows the algorithm to quickly
make a rough estimate of the data space. Through further iterations,
the radius shrinks, and the changes made are smaller, allowing the
algorithm to fine-tune the models. We seeded the algorithm by
selecting the 10% of samples with the lowest total activation and set-
ting them to black. This biases the algorithm such that samples with
lower activations have darker colors and higher activations are asso-
ciated with brighter colors.

The change rate and the radius of the neighborhood were given
by twomonotonically decreasing functions, L(k) and R(k), respectively:

LðkÞ= L0 � e�k
ln
L0
LM
M

ð6Þ

where L(k) is the learning rate, modulating the degree to which model
vectors were changed at each training step, k. L0 and LM are the initial
and final learning rates. We used L0 = 1 and LM=0.01. The total
number of training steps is denoted by M.

RðkÞ= roundðR0 � e�k�lnðR0=0:5Þ
ðg=100Þ�M Þ ð7Þ

where rounddenotes the rounding to thenearest integer,R(k) specifies
the neighborhood size. R0 is the initial radius of the neighborhood. g is
the percentage of M after which R becomes 0. We used R0 =N/2 and
g = 66 (66% of steps were used to establish the topology of the map
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and the remaining 34% of the steps to fine-tune the representation of
activity vectors in the map, i.e., only the best matching unit, BMU was
changed). Within the above-defined neighborhood, model vectors
move further away from the BMU changed less than the ones closer to
it bymultiplying the learning rate with a 3DGaussian envelope with an
SD of R(k)/3 (Eq. 8):

MVk ½x, y, z�=MVk�1½x, y, z�

+ ðAVk �MVk�1½x, y, z�Þ � LðkÞ � e
�ðxBMU�xÞ2 + ð yBMU�yÞ2 + ðzBMU�zÞ2

2�½RðkÞ=3�2

ð8Þ

where MVk[x,y,z] is a model vector, at step k of the training, located
within the neighborhood of the BMU [distance from BMU ≤R(k)] at
position (x,y,z) in the 3D lattice. (xBMU, yBMU, zBMU) denotes the
position of the BMU in the 3D lattice. AVk is the activity vector that is
learned at step k, L(k) and R(k) are the learning rate and the size of the
neighborhood at step k.

Neuronal distance across blocks. We calculated a neural distance
(1-Pearson correlation) between the bouton ensemble response tra-
jectory of the preceding block (averaged over responses to the last five
trials in that block) and the ensemble trajectory of each trial of the
current block to the same stimulus for both odor and sound trials. This
metric increased systematically across trials andmatched the increase
in behavioral performance in the new block post rule-reversal
(Fig. 5c–e).

Statistical tests. Depending on the properties of the analyzed data,
different statistical testswereused to evaluate thedifferences between
data groups. The information for each statistical comparison is
detailed in the legends of each figure panel and in Supplementary
Tables 1 and 2.

‘Two-sample unpaired Student’s t-test’ was used to evaluate sig-
nificant differences in themeans of two normally distributed data sets.
‘One-way analysis of variance’ (one-way ANOVA) was used to evaluate
significant differences in the means of 3 or more normally distributed
data sets. The normality of the data distribution was checked using a
‘One-sample Kolmogorov–Smirnov test’ for each data group before
the testing differenceswith the ‘Student’s t-test’or ‘one-wayANOVA.’A
two-sided 95% confidence interval was used for both Student’s t-test
and one-wayANOVA comparisons. For ‘one-way ANOVA’ comparisons,
the identification of differences between different data sets was per-
formed post hoc using a ‘Multiple comparisons of means test.’

Significant differences between two non-normally distributed
data sets were evaluated with a nonparametric ‘Wilcoxon rank-sum
test’ with a one-tail 95% confidence interval.

The linear correlation between two data sets was assessed by
computing the Pearson correlation coefficient. When needed, the
coefficient of determination (R2) was used to evaluate how well the
compared data sets fit a linear regression model.

All the statistical comparisons were tested using MATLAB® using
the following functions for each test: ‘Two-sample unpaired Student’s
t-test’: t-test; ‘one-way ANOVA’: anova1; ‘Multiple comparisons of
means test’: multcompare; ‘Pearson correlation coefficient’: corrcoef.;
‘Wilcoxon rank-sum test’: rank-sum.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data values used for statistical comparisons and their statistics
are shared in the Source Data file. The imaging data of one example
session and all the z-score and behavioral data generated in this study

have been deposited in Figshare database: [https://doi.org/10.6084/
m9.figshare.26999638] Source data are provided with this paper.

Code availability
The code used to process the imaging data in this study has
been deposited in GitHub [https://github.com/TeamAlbeanu/
RuleReversalAPCxFeedback] [https://doi.org/10.5281/zenodo.
14291006].
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