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Abstract—Song acquisition behavior observed in the songbird
system provides a notable example of learning through trial-
and-error which parallels human speech acquisition. Studying
songbird vocal learning can offer insights into mechanisms
underlying human language. We present a computational model
of song learning that integrates reinforcement learning (RL) and
Hebbian learning and agrees with known songbird circuitry.
The song circuit outputs activity from nucleus RA, which
receives two primary inputs: timing information from area HVC
and stochastic activity from nucleus LMAN. Additionally, song
learning relies on Area X, a basal ganglia area that receives
dopaminergic inputs from VTA. In our model, song is first
acquired in the HVC-to-Area X connectivity, employing an RL
mechanism that involves node perturbation. This information is
then consolidated into HVC-to-RA synapses through a Hebbian
mechanism. The transfer of weights from Area X to RA takes
place via the thalamus, utilizing a specific form of spike-timing-
dependent plasticity (STDP). Thus, we present a computational
model grounded in songbird circuitry in which the optimal policy
is initially guided by RL and subsequently transferred to another
circuit through Hebbian plasticity.

Index Terms—computational neuroscience, reinforcement
learning, hebbian learning, vocal learning

I. INTRODUCTION

Juvenile songbirds faithfully learn to reproduce a tutor song
via repeated vocal babbling, a process that illustrates robust
learning by experimentation [1] and mirrors human speech
acquisition [2]. Comparative studies have analyzed similarities
in gene expression involved in vocal learning of songbirds
and humans [2]. These observations argue for the convergent
evolution of song learning and speech acquisition circuits.
The high degree of homology shared between the songbird
and human systems motivates models of song learning, which
provide further insights into human language models. We want
to study the network underlying song acquisition behavior as a
model system for sensorimotor learning in the brain, which can
also inform the development of machine learning algorithms
for human language.

As summarized in Figure 1, experimental studies have
determined two prominent pathways for songbird vocal acqui-
sition: song production and song learning. The song production
pathway includes the projection from HVC, a region with
stereotyped activity patterns that provide timing information,
to RA, a premotor area that ultimately drives downstream
motor outputs [3]. The song learning pathway follows the
HVC connectivity to Area X, a basal ganglia region that
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Fig. 1. Schematic of songbird anatomy with diverging pathways for song
production and learning (black arrows). The song production pathway follows
the projection from HVC to RA, then from RA to motor neurons which
generate behavior. The song learning pathway follows the connectivity from
HVC to Area X, which forms a feedback loop with LMAN and connects to
the production pathway. Area X also receives direct inputs from VTA (red
arrow).

crucially receives dopaminergic inputs from VTA [3][4]. The
two pathways interact via nucleus LMAN, which synapses to
RA and receives inputs from Area X through the thalamus
[3]. LMAN neurons provide stochastic noise to the network,
which is necessary for juvenile birds to generate variability
for practice songs [3][5].

Previously, Doya and Sejnowski demonstrated that a model
following songbird circuitry can be trained to learn a tutor song
using weight perturbation. The model was a three-layer feed-
forward network that resembles the song production pathway.
Reinforcement learning (RL) at HVC-to-RA synapses was
enabled with exploratory noise from LMAN and reinforcement
signals from VTA, both projecting to RA [6][7]. In 2007, Fiete
et al. revised the model and showed that node perturbation
could also be used to train a similar network [8].

There remains a gap between existing models and the
observed circuitry where the primary locus of RL is suggested
to be at Area X in the song learning pathway [3][4][9]. It is
unknown how the learned information is consolidated into the
song production pathway. We present a computational model
for learning that includes the acquisition of song sequence in
the song learning pathway with RL and then transferred to the
song production pathway via spike-timing-dependent plasticity
(STDP).
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II. MODEL DESCRIPTION

Our model follows the hypothesis that there is a critical
period of learning where HVC-to-Area X weights are updated
trough an RL-based mechanism. Subsequently, weights are
transferred to HVC-to-RA synapses where this information is
crystallized into adulthood.
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Fig. 2. The architecture of our model includes the song production and
song learning pathways. Learning at HVC-to-Area X synapses (red), described
by the matrix M , is enabled with timing context from HVC, reward from
VTA, and exploratory noise form LMAN. Weight transfer (blue) from M to
HVC-to-RA synapses, W , is facilitated by an form of unsupervised Hebbian
learning, utilizing an STDP kernel that combines the presynaptic input from
HVC and postsynaptic response of RA.

HVC activity can be represented by an N ×T matrix H =
[h1, ..., hT ], where N is the number of HVC neurons and T
is the total number of time steps. Each column in this matrix
defines the response of the HVC population at a given time
point. We will assume the following form for the response
matrix, implying that each HVC neuron produces a transient
peak of activity at a specific time within the song:

hij =

{
e−i/20 if i ≤ j

0 otherwise

We will represent Area X activity in the M × T matrix
X = [x1, ..., xT ] with each column, xt, representing the firing
rate of M neurons at time step t. Given the feedforward
projection from HVC to Area X defined by the weight matrix
M ∈ RM×N , one can write the following equation describing
activity of Area X neurons:

τ ẋt = −xt +Mht + wXLlt,

Fig. 3. STDP kernel K for weight transfer

where τ is the synaptic time constant and wXL is the scalar
describing the connectivity strength between LMAN and Area
X. Area X receives inputs from region LMAN, whose activity
is defined by L = [l1, ..., lT ], a M×T matrix. LMAN-to-Area
X and Area X-to-LMAN neurons form a feedback loop which
is organized tonotopically with scalar weights wXL = 0.3 and
wLX = 1, respectively. In addition to the feedback, LMAN
neurons receive inputs that are randomly sampled at every time
step from the normal distribution,

lt = wLXxt + ξt.

Here, ξt ∼ N (0, σLMAN). In our simulations, we used
σLMAN = 0.01.

The responses of RA neurons R = [r1, ..., rT ], an M × T
matrix, are affected by projections from LMAN and direct
inputs from HVC through weight matrix W ∈ RM×N . RA
then projects to the population of output motor neurons m̂ ∈
R2×T , controlling the sound pitch and amplitude, via weight
matrix A ∈ R2×M , which is constant,

τ ṙt = −rt +Wht + lt,

m̂t = Art.

Every time step, an eligibility trace is computed between
coactive LMAN and HVC neurons: et = lth

⊤
t . At the end of

each iteration, motor outputs are evaluated against tutor signals
m ∈ R2×T to compute the reward R = 1−

∑
i(mi−m̂i) and

to update weights.
HVC-to-Area X weights, M, are updated with a RL learning

rule based on node perturbation with reinforcement from the
reward and exploratory noise from LMAN activity [6][8]:

∆M = ηRL · e · (R− R̄)− τ−1
M M,

where ηRL is the RL learning rate and τM the weight decay
time constant.

HVC-to-RA weights, W, are learned with an unsupervised
STDP learning rule that relies on kernel K, the presynaptic
activity of HVC, and the postsynaptic activity of RA:

∆W = ηSTDP ·R ·K ·HT − τ−1
W W,

where ηSTDP is the STDP learning rate and τW the weight
decay time constant.
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The kernel, K ∈ RT×T , is calculated to ensure an exact
copying from M to W ,

∆W ∝ RKH T ∝ XKH T ≈ MHKH T ,

where we solve for K by enforcing HKHT = I , which leads
to W ∝ M thus implementing weight transfer from M to W .

III. RESULTS

We trained the model to learn a template song of fixed
amplitudes and frequencies (Fig. 4). Training results show
that over iterations, the correlations between HVC-to-RA and
HVC-to-Area X weights and reward saturate at 1 (Fig. 5). The
network was simulated with 160 HVC neurons and 200 RA,
LMAN, and Area X neurons. The template song lasted for 80
time steps and weights were updated at the end of each training
iteration. After 20,000 iterations, the final song was evaluated
with LMAN-to-RA inputs removed. Both trainable weight
matrices, M and W , were randomly initialized and matrix
A was fixed according to parameters described previously [8].
Training parameters included ηRL = 10−3, ηSTDP = 10−4,
τ = 10, τM = 106, τW = 105.

Fig. 4. Results from model output. After training the model, LMAN inputs
to RA were removed to generate two output traces. A) Target amplitude used
to train the model shown in green and the black trace is the output of our
model. B) The target pitch trace shown in orange and the result from our
model in black.

To show that our model of song acquisition requires both
node perturbation-based RL in Area X and STDP-facilitated
weight transfer to RA, we performed a series of ablation
experiments with modifications to the model and compared
final reward values after training (Fig. 6). We first confirmed
that the model described by Doya and Sejnowski and Fiete et
al. achieved baseline performance [6], [8]. By disentangling
song production and learning pathway with separate learning
mechanisms, our model performs worse in comparison by a
small amount. However, with Area X containing the locus of
RL, our model performance reflects experimental findings that
suggest learning in Area X is required for song acquisition [9].

Fig. 5. Results from training. A) Reward evaluated from final song increases
across training iterations. Black trace shows the mean reward across 10
different runs, individual reward traces are in grey. B) Correlations between
HVC-to-RA and HVC-to-Area X weights increase over training iterations,
indicating successful weight transfer. Black trace shows the mean correlation
across 10 different runs, individual correlations are in grey.

Fig. 6. Ablation experiments show both RL and Hebbian plasticity necessary
for song acquisition and consolidation. Reward values shown are from the final
produced song without noise inputs, bar plot summarizes the mean reward
across 10 different runs for each model and SEM shown in red, with maximum
reward of 1 indicating perfect learning.

When we disable RL updates to HVC-to-Area X weights early
in the training process, a deficit comparable to inactivating of
Area X for juvenile songbirds, learning is impaired. But if we
limit RL updates to the first 5,000 iterations and then remove
the connection from Area X to RA though the thalamus, we
observe that song production is unaffected since the weight
transfer has already consolidated information into HVC-to-RA
synapses by that time point.

In our model, the STDP mechanism is necessary for weight
transfer, since removing the kernel impairs final performance.
Additionally, if LMAN, the source of exploratory noise, is
silenced, the model also cannot learn, which is consistent with
experimental findings [3][5].

Lastly, we trained the model to produce a more realistic
song from two control signals, analogous to pitch and am-
plitude, based on the established model for syrinx control
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[10]. Training parameters to learn this song included 2200
HVC neurons and 300 RA, LMAN, and Area X neurons,
ηRL = 10−3, ηSTDP = 10−3. The model was trained with
T = 1100 and the outputs were interpolated with time steps of
10−5, corresponding to a song length of 1.1 ms. The synthetic
song was produced by integrating the model as described by
Laje et al. with the two control signals as parameters. We
found that our model can learn the simple realistic song (Fig.
7) with somewhat better accuracy than a synthetic pattern
containing square pulses (Fig. 4). We suggest that learning
temporal sequences via RL with subsequent consolidation in
the song production pathway can be accomplished for realistic
sequences.

IV. DISCUSSION

We have developed a computational model of birdsong
vocal learning that combines RL and Hebbian plasticity in
the context of known circuitry. In the model, the song learning
pathway, specifically the HVC-to-Area X connectivity, initially
guides the policy to generate an accurate song with rein-
forcement from VTA and exploratory noise from LMAN. The
song sequence is further consolidated into the song production
pathway (HVC-to-RA synapses) via the connection through
LMAN. The consolidation of information from Area X to
HVC-to-RA synapses relies on Hebbian plasticity with an
STDP kernel that facilitates weight transfer. We showed that
the model can be used to learn a simple song effectively and
weights from the song learning pathway can be consolidated
into the production pathway.

The ablation studies confirm that both RL and Hebbian
plasticity are essential to the model. The results from our
model showed that while RL in Area X is crucial for initial
learning, it is no longer essential after the song has been crys-
tallized. This result agrees with the experimental observation
of a critical period of learning for juvenile songbirds. With
song learning as an example, the model presents a biologi-
cally inspired motif of learning and memory consolidation of
temporal sequences in the brain.
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