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Neuronal diversity and stereotypy at
multiple scales through whole brain
morphometry
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We conducted a large-scale whole-brain morphometry study by analyzing 3.7
peta-voxels ofmouse brain images at the single-cell resolution, producing one
of the largest multi-morphometry databases of mammalian brains to date. We
registered 204 mouse brains of three major imaging modalities to the Allen
Common Coordinate Framework (CCF) atlas, annotated 182,497 neuronal cell
bodies, modeled 15,441 dendritic microenvironments, characterized the full
morphology of 1876 neurons alongwith their axonalmotifs, and detected 2.63
million axonal varicosities that indicate potential synaptic sites. Our analyzed
six levels of information related to neuronal populations, dendritic micro-
environments, single-cell full morphology, dendritic and axonal arborization,
axonal varicosities, and sub-neuronal structural motifs, along with a quantifi-
cation of the diversity and stereotypy of patterns at each level. This integrative
study provides key anatomical descriptions of neurons and their types across a
multiple scales and features, contributing a substantial resource for under-
standing neuronal diversity in mammalian brains.

Neurons are the fundamental units of the nervous system, and their
morphological analysis is crucial to understand neural circuits1. One
salient feature of mammalian neurons is their extensive, long-range
axonal projections across brain regions2. However, our understanding
of neuronal morphology and function is limited by the incomplete
digital representation of neuron patterns3,4. Recent studies have
focused on full neuronal morphology, including both dendrites and
axons, using genetic and viral techniques that label neurons
sparsely5–8. In combination of these labeling techniques, various
imaging modalities, such as serial two-photon tomography (STPT)9,
light-sheet fluorescence microscopy (LSFM)10,11 and fluorescence

micro-optical sectioning tomography (fMOST)12,13, have been
employed. These techniques have produced an extensive volume of
imaging data, primarily hosted by the Brain Research through
Advancing Innovative Neurotechnologies (BRAIN) Initiative - Cell
Census Network (BICCN) community14.

Recent studies emphasize the importance and advances of gen-
erating complete neuron morphology reconstructions, particularly
long projecting axons15–18. However, analyses of the complex arbor-
ization patterns of axons inmammalianbrains are still limited. Analysis
of the dendritic arborization has also been limited to traditionally
definedmorphological features, but is largely missing the overlay with
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brain anatomy to yield rich spatial information. Additionally, there has
been little work on integrating information from neuronal popula-
tions, individual neurons, and sub-neuronal structures19.

In our effort to analyze morphological patterns of neurons at
different scales, we consider the statistical distributions that quantify
both the diversity and stereotypy of morphological patterns16,20.
Across different “types” or “classes” of morphological patterns, a
diversity metric describes the variety among different types of mor-
phological patterns and their respective degrees, while a stereotypy
metricquantifies the level of conservationof patternswithin each type.
Neurons may differ greatly in their morphological, physiological and
molecular attributes2,21–23. Despite previous efforts to study the diver-
sity and stereotype of various neuron types, such as hippocampal
interneurons24, striatal neurons25, and cortical neurons16, a systematic
analysis at awhole brain level and acrossmultiple scales is still missing.

Our study makes an initial effort in describing the diversity of
conserved morphological patterns of neurons at various anatomical
and spatial scales in the context of whole mouse brains. Using a mas-
sive number of light-microscopic images ofmousebrains generatedby
the community of Brain Research through Advancing Innovative
Neurotechnologies (BRAIN) Initiative - Cell Census Network (BICCN),
we performed an analysis of 3.7 peta-voxels of images with which we
also reconstructed thousands of annotated neurons, and developed
one of the largest available multi-morphometry datasets. By analyzing
patterns of neurons at six structural scales, we discovered conserved
morphological modules (collections of brain anatomical regions) and
motifs (sub-neuronal structures) distributed throughout entire brain.
This effort allowsus to characterize themousebrain anatomybasedon
a detailed, multi-scale description of neuron morphologies. Further-
more, we also attempted to establish a model explaining how features
of different scales have complementary effects on morphological
characterization. By combining the diversity and stereotypy scores at
different scales, we visualized and identified themodularized structure
of brain regions or neuron types, which were defined based on soma
location, projection, or lamination information, at single-neuron
resolution.

Results
Brain mapping of multi-morphometry data generated from
peta-voxels of neuron images
Our collaborative effort with BICCN and partners has led to the
assembly of one of the largest collections of single-neuron morphol-
ogydata inmice. This 3.7peta-voxels dataset included204whole-brain
images captured at micrometer and sub-micrometer resolutions using
fMOST, STPT, and LSFM techniques (Fig. 1A; and themeta information
including transgenic lines, main targeted neuronal types, and many
other information are summarized in Supplementary Data 1). We call
this image dataset IMG204 to simplify the subsequent description. We
analyzed these images captured by different modalities to investigate
the modular organization of brains and associated patterns across
anatomical scales. To facilitate an objective comparison of morpho-
logical patterns across different imaging modalities and experimental
conditions, we registered all IMG204 images to the Allen Common
Coordinate Framework version 3 (CCFv3) atlas26, using the cross-
modality registration tool mBrainAligner27,28 (Fig. 1A, Methods).
Indeed, the sparsely labeled populations of neurons in different brains
could be accurately aligned to study the colocalization relationship of
their patterns (Fig. 1A).

To demonstrate the utility of our data analysis framework, we
produced quantitative descriptors of patterns at various morpholo-
gical scales, from the entire brain to the resolution of individual
synapses. To do so, we developed a cloud-based Collaborative Aug-
mented Reconstruction (CAR) platform29, which is a software package
with multiple computational tools for high-throughput generation of
multi-morphometry. We performed semi-automatic annotation of a

total of 182,497 neuronal somas from 122 fMOST brains (Fig. 1B; Sup-
plementary Data 1; Supplementary Data 2) using an initial automatic
soma detection, followed by collaborative annotation through a
mobile application CAR-mobile, available on the CAR platform.We call
this soma dataset SEU-S182K, including detailed information of brain
ID, soma-location in 3-D, and registered brain region (Supplementary
Data 3). As neurons were often labeled with different degrees of
sparsity in these brains, we captured the large variation of soma dis-
tribution across various brain samples. We achieved this by annotating
both brains with very sparsely labeled neurons and also brains with
densely labeled neurons. Overall, in 72% (88/122) of the brains in
SEU-S182K, there are more than 100 annotated somas. Spatially,
among 314 non-fiber-tract regions in CCFv3 (CCF-R314; Methods),
296 regions contain annotated soma (Fig. 1B). For specific brain
regions, such as the caudoputamen (CP) and the main olfactory
bulb (MOB), We identified over 20,000 somas and high densities
of up to 1710 and 2576 somas/mm3 respectively.

We then traced both the dendritic and axonal morphologies of
individual neurons with annotated somas. For dendrites, we con-
structed a database, called SEU-D15K, which contains 15,441 auto-
matically reconstructed 3D dendritic morphologies. We cross-
validated the brain-wide reconstructions in SEU-D15K with the den-
drites of 1876 manually curated neurons and found similar distribu-
tions of morphological features (Supplementary Fig. S1A; Methods)
and Topological Morphology Descriptor (TMD) scores (Supplemen-
tary Fig. S1B). Overall, SEU-D15K dendrites showed consistent mor-
phological features, with exemplar tracings for various projection
subtypes aligning well with visualized neurite signals (Supplementary
Fig. S14). We observed distinct morphologies for representative tra-
cings for the brain stem, cerebellum, forebrain, and neuromodulatory
centers (Supplementary Fig. S15). However, dendrites with somas in
proximity, particularly those in the same brain regions, usually clus-
tered closely (Supplementary Fig. S1C). To derive a spatially tuned
dendritic feature vector with high discrimination power, here we
extended our recent spatial tensor analysis of dendrites for human
neurons30 to analyze these mouse dendrites in SEU-D15K. Subse-
quently, we developed a dendritic microenvironment representation
to characterize local neighborhood information around a target den-
drite (Fig. 1C; Methods). Due to the higher precision of location
information available in mouse brains compared to human surgical
tissues30, we were able to construct the dendritic microenvironment
could also be constructed to describe the spatially tuned dendrite
structures (Methods). In this way, we produced 15,441 dendritic
microenvironments corresponding to SEU-D15K and used this
approach to quantify the dendritic diversity and stereotypy as
described below.

Usingour frameworkofmultiscalemorphometry (Fig. 1D;Methods)
that spans resolution levels from centimeters to micrometers, we ana-
lyzedmorphological patterns of labeled neurites from 191mouse brains
that containingdetectableneurites on low resolutions (Fig. 1A,D), aswell
as accordingly generated dendritic microenvironments (Fig. 1C) and
fully reconstructed neuron morphologies. We extended our analysis to
the SEU-A1876 dataset, which contains fully traced 3-D morphologies of
1876 neurons, including their complete dendrites, proximal axonal
arbors, and distal axon arbors (Fig. 1D). The dataset primarily consists of
projection neurons, mainly located in the Thalamus (37.2%), Cortex
(24.1%), and CP (16.8%), with 702, 455, and 317 neurons, respectively. We
specifically extracted 3776 densely branching axonal arbors, 1876 den-
dritic arbors, as well as the primary projection tracts connecting such
arbors (Fig. 1D). We also identified axonal bundle motifs as diverging,
converging or parallel projecting patterns. Additionally, we detected
2.63 million axonal varicosities from the axonal arbors, and accordingly
pinpointed the respective synaptic patterns (Fig. 1D).

Our analytics framework covers six major scales of morphological
patterns (Fig. 1D): Neuronal populations, dendritic microenvironments,
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single-cell full morphology, sub-neuronal dendritic and axonal arbor-
ization, structural motifs, detected axonal varicosities, along with
quantitative characterizations of the diversity and stereotypyof patterns
at each level. We quantified a number of morphological features to
characterize properties of brain regions as well as individual neurons
whenever possible (Fig. 1E). Cross-scale feature maps demonstrate high

potential for cell typing and subtyping,with anatomically similar regions
generally exhibiting analogousmorphology throughout the whole brain
(Supplementary Fig. S2A).Moreover, lamination andprojectionpatterns
emerge as prominent factors in grouping subtypes of cortical neurons,
based on cross-scale features (Fig. 1E, Supplementary Fig. S2). Our
analyses also revealed that broadly distributed yet highly discriminating

Fig. 1 | Multiscale morphometry analysis from mouse brain images. A The
mouse brain dataset IMG204 comprises 204 brains (3.7 peta-voxels) of 3 different
modalities (fMOST, STPT, and LSFM) obtained from 4 BICCN projects. Left, a
multiplexing view displays salient voxels on the sagittal middle sections of six
mouse brains from different sources. The salient voxels are colored by image
sources. Middle, the CCFv3 atlas that all brains are registered to. Right, repre-
sentative sagittal maximum intensity projections of whole-brain images from each
modality and source. Imaging modality, research group, the number of brains
collected, and typical voxel size are specified at the top. B Left, sagittal view of the
spatial distribution of 182,497 semi-automatically annotated somas on the CCFv3
template, along with their densities (color bar). Each soma is represented by an
individual dot. Right, horizontal projection of five regions (color-coded) along the
anterior-posterior (AP) axis (left) and respective soma locations as dots (right).

C Left, horizontal projection of auto-traced dendritic morphologies (SEU-D15K).
Middle, dendriticmicroenvironment (M) representation for eachneuron (target). A
microenvironment is a spatially tuned average (see Methods) of the most topolo-
gically similar neurons (up to six neurons, including the target neuron) within a
distanceof 249μmfrom the target neuron. Right,morphology of the target neuron
within the microenvironment on the left. D Multiscale morphometry. Hierarchical
representation including representative visualizations for six scales of morpho-
metries ranging from centimeters to micrometers, i.e., neuron population (mouse
lines and projection types), full morphology, arbor, motif, varicosity, and the
microenvironment displayed in (C). E Heatmap of the cross-scale feature map for
lamination subtypes of cortical neurons (s-type-layer). Soma types (s-types) with
their soma located in the same cortical lamination were grouped together. Source
data are provided as a Source Data file.
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features across multiple scales could be integrated (Supplementary
Fig. S2). We have outlined the key novelties of our approach and related
findings pertaining to the six morphological scales (Supplemen-
tary Data 8).

Inferring brain modules using multiplexed brains
For morphological patterns visible in the range of millimeters to cen-
timeters, we analyzed the diversity and stereotypy of neuron popula-
tions labeled in IMG204 (Fig. 1D). Quantifying the conservation or
reproducibility of morphological patterns (stereotypy), in functionally
established anatomical regions helps define whether these patterns

are sufficiently consistent to make biological inferences. On the other
hand, capturing the diversity of these patterns not only confirms
expected variations across brain regions, but also validates the accu-
racy in aligning images during brain multiplexing.

We developed an algorithm to segment the neurites in IMG204
(Methods), and used the co-occurrence of these neurites over the
entire set of image samples to infer the diversity and stereotypy of the
respective neuron populations. We grouped all 314 brain regions
defined in CCFv3 into 13 larger regions (compound areas, CAs). Each
CA corresponds to sets of functionally related brain regions within the
CCFv3 taxonomy (Fig. 2A). We found that several CAs, such as

Fig. 2 |Modules inferred frommultiplexedbrains.A Intra-CompoundArea (intra-
CA) consistency. Left, box plot of the intra-CA consistencies for 13 compound areas
in the brain (color-coded). Right, the 13 compound areas in CCFv3 atlas. A com-
pound area is a super-region composed of functionally correlated CCFv3 regions.
Sample size: CBN, 4; CBX, 14; CTXsp, 7; HPF, 15; HY, 44; Isocortex, 43; MB, 39; MY,
44; OLF, 11; P, 26; PAL, 9; STR, 14; TH, 44. B Horizontal projections on the CCFv3
template of regions with a Spearman correlation coefficient of at least 0.5 with the
target region (specified at the top of each image). Each image is accompanied by a
box plot that shows the distribution of the pairwise correlations between these
regions and the target region, with the box colored by CA as in (A). Region sets are
categorized as intra-CA if all regions arewithin the same compound area, and cross-

CA if they span across at least two compound areas. The first 66 region sets (out of
313) are displayed. C Whole-brain co-occurrence modules. Left, circular heatmap
representing the neurite density distribution for each CCFv3 brain region (N = 314)
as radial 191-element vectors (number of brain images). The dendrogram shows
how brain regions cluster to formmodules. Labels for each region are specified on
two outer layers of the graph, with corresponding compound areas are labeled in
the colored circle. Right, tightly inter-correlated modules, with modular con-
sistencies (pairwise Spearmancorrelations) shown in theboxplotson the topof the
brains. Source data are provided as a Source Data file. Box plot: edges, 25th and
75th percentiles; central line, the median; whiskers, 1.5× the interquartile range of
the edges; dots, outliers.
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isocortex, cerebellar cortex (CBX) and cerebellar nuclei (CBN), have
more tightly correlated intra-areal neurite patterns compared to other
CAs (Fig. 2A). Within each CA, the positively correlated neuron popu-
lations (Fig. 2A) imply covarying brain patterns in IMG204.

We sought to identify highly correlated brain regions for each of
the 314 CCFv3 regions (“target”), resulting in the discovery of 313 sets
of individual regions that exhibit a Spearman correlation no less than
0.5 with their respective target regions (Supplementary Fig. S13; Sup-
plementary Data 4). For each of these sets, we identified one or more
matching brain regionswhoseneurite patterns correlatemost strongly
with the patterns in the target (Fig. 2B, Supplementary Data 4). 11 sets
involve regions in the same CAs (intra-CA), while the remaining 302
involve regions fromdifferentCAs (cross-CA).Regions inmostof these
313 sets, however, turn out to be immediate neighbors that share
region borders (Fig. 2B; Supplementary Fig. S13). Examples include the
pair of caudoputamen (CP) and globus pallidus – external segment
(GPe) for which we previously reported single neuron level
projection16. These results suggest that stereotyped “connections” of
neurites exhibit a noteworthy degree of consistency with the brain
anatomy delineated in existing brain atlases like CCFv3.

The observation above motivated us to further search for mod-
ules of brain regions that share similar co-occurring neurite-patterns as
tight clusters (Fig. 2C). We identified 18 non-overlapping, inter-
correlated, tight modules from the hierarchical dendrogram (Meth-
ods). 16 of which are cross-CA, composed of neighboring regions from
multiple compound areas (Fig. 2C, Supplementary Fig. 13, Supple-
mentary Data 5, Methods), which highlight hubs of co-occurring
neurites. For example, the M3* module includes the medial preoptic
nucleus (MPN) that closely associated with various regions, including
the anterior, intermediate, and preoptic parts of the periventricular
hypothalamic nucleus (PVa, PVi, PVpo)31. M5* encompasses four audi-
tory cortical regions and five somatosensory regions, suggesting
possible associations between auditory and somatosensory functions
in mice32. The M7* module contains regions linked to the primary
motor area (MOp) circuit, either as input (gustatory area, GU; dorsal
part of the agranular insular area, AId) or output (GU; AId; ventral and
posterior parts of the agranular insular area, AIv, AIp; orbital areas,
ORBm, ORBl, ORBvl)33. In the M8* module, regions such as the dorsal
tegmental nucleus (DTN), laterodorsal tegmental nucleus (LDT), and
raphe regions like dorsal nucleus raphe (DR) are known to play roles in
the regulation of sleep and circadian rhythms34,35. In the M10* module,
we found the intergeniculate leaflet of the lateral geniculate complex
(IGL), dorsal and ventral parts of the lateral geniculate complex (LGd,
LGv), olivary pretectal nucleus (OP), superior colliculus (SCm, SCs),
nucleus of the optic tract (NOT), and anterior pretectal nucleus (APN).
These regions are part of the projection circuit from thalamic
GABAergic neurons involved in circadian responses to light36. In the
M14* module, regions are either involved in the basal ganglia circuits,
including CP, GPe, and GPi, or they are part of the projection from the
amygdaloid to CP37. The majority of regions in the M15* module are
associated with glutamatergic and GABAergic regulation38.

Discovering brain parcellation using dendritic
microenvironments
We used the diversity and stereotypy of single neuron morphological
patterns to further delineate brain modules. We first examined the
dendritic patterns of individual neurons within SEU-D15K (Fig. 1C). In
this dataset, each local dendrite was reconstructed within a soma-
centered cuboid approximately 28.52 million μm3 in volume (Meth-
ods), ~57 times of the larger volume compared to a recent study deli-
neating local dendrites in cortical L4 neurons39. Our dendritic
reconstructions are distributed in the majority of CCFv3 regions (222/
314). To characterize the neuronal architecture in local neighbor-
hoods,we extracted a 24-dimensional feature vector for eachdendritic
microenvironment. This vector aggregated both the dendritic

morphology of individual neurons and the spatial relationship of
neurons in a small neighborhood (Methods). Next, we used a
minimum-Redundancy-Maximum-Relevance (mRMR) algorithm40 to
select the top three discriminating features. We mapped those to the
CCFv3 atlas to produce a 3-D brain-wide RGB-coded microenviron-
ment map, where each channel corresponds to one feature (Fig. 3A).
This RGB-coded representation facilitates the visualization of spatial
variability in microenvironment features across the entire brain.

Whether dendritic features can be leveraged to distinguish cell
types is debated41,42. However,without complete and accurate dendrite
reconstructions we are limited in these efforts. Unfortunately, existing
labeling techniques pose challenges to reconstruct error-free entire
dendrite arborization. For pyramidal neurons, reconstructing pre-
cisely both basal and apical parts of dendrites is difficult, as apical
dendrites can extend substantially. Neuron partition methods such as
G-Cut43 cannot avoid loss of information, either. In our dendritic
microenvironment approach, we mitigated these problems by prior-
itizing accuracy over completeness, focusing on precisely recon-
structed local dendrites surrounding somas to improve classification.

One remarkable observation is that despite the limitations of the
approach, the microenvironment map shows clear boundaries that
alignwith the primary CCFv3 region borders (Fig. 3A). For example, CP
neurons are clearly distinct from cortical neurons. Cortical layers can
also be discriminated based on these features, adding on observations
from conventional soma-density method26,44, axon projections16, or a
full description of the apical-basal dendrites of cortical neurons.
Indeed, while each of the three color-coding features has a different
distribution (Supplementary Fig. S4D–F), they jointly define a number
of anatomical details that are consistent with the CCF parcellation.

Based on the diversity of brain regions indicated by the dendritic
microenvironments, we identified six major clusters of regions
(Fig. 3B). In the shown example,most laminated cortical neurons share
similar feature patterns, placing them in one of the major clusters,
although they could be further clustered hierarchically. Hippocampal
neurons in CA1 and CA3 are clustered away from cortical, striatal, and
thalamic neurons (Fig. 3B). Indeed, the hippocampal neurons have
similar average straightness andHausdorff dimensions likemost other
cortical neurons but differ in variance percentages (Supplementary
Fig. S4D–F). CP neurons, instead, have a distinct pattern compared to
other striatal neurons (Fig. 3A, B).

Within each microenvironment cluster, however, neurons show
clear stereotypy. To measure the conservation and transition of these
featureswithin or across brain regions, we took an approachguided by
the definition of four axial projection paths (Fig. 3C). The first path
follows the tangential direction along the lamination of cortical layers.
Cortical neurons share relatively stable features until entering the
entorhinal area, lateral part, layer 5 (ENTl5) (Fig. 3D – Path1). The
second path, orthogonal to the first one, clearly reveals reduced
“variance-percentage” and “straightness” when entering and leaving
CP (Fig. 3D – Path2). The third path following inner side of the border
of CP and nearby regions shows the different distributions for the
three features, which means that local dendrites along this path have
strong heterogeneity. Thus, along the third path, there is a high like-
lihood that a variety of cell types can be encountered (Fig. 3D – Path 3).
The fourth path, from the inner side to the outer side of CP, indicates a
linear gradient of the “variance-percentage” and “straightness” fea-
tures for CP, albeit with opposite trends (left and middle of Fig. 3E).

As the CCF anatomy was essentially developed using expert-
annotation of an averaged brain of registered individual brain-images
to determine the boundary of anatomical regions26, we also generated
the CCF-space average of all 191 brains to measure the visible contrast
of previously defined brain regions or subregions compared to what
we could observe using the microenvironment approach (Supple-
mentary Fig. S16). The microenvironment features are able to identify
more variation across and within brain regions compared to the
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average brain.We quantified this in the profiled features along the four
exemplar paths (Fig. 3C–E). Indeed, the intensity profile in the average
map along the first three paths does not correlate with the straightness
and Hausdorff-dimension features. However, it resembles the “var-
iance-percentage” feature of the microenvironment (Fig. 3D), with

Pearson correlation coefficients of 0.86, 0.67, and 0.71 for Paths 1, 2,
and 3, respectively. The top-3microenvironment features complement
each other in characterizing brain anatomy, with small average Pear-
son correlation coefficients of 0.013, 0.207, and −0.015 for the
three paths. Our microenvironment representation appears to be

Fig. 3 | Feature distributions of dendritic microenvironments across the
whole brain. A Left, the three most discriminating features of microenvironments
—average straightness, Hausdorff-dimension, and variance percentage of PC_3 are
visually represented as colored points on the middle axial section of the CCFv3
atlas. Right hemispheric microenvironments were flipped to the left hemisphere.
The outer boundary of the CCFv3 template is indicated by the orange outline.
Right, the CCFv3 atlas. B The middle axial section colorized by clusters.
C Schematic representation of four exemplar paths: including intra-area cross-

region (Path1), cross-brain area (Path2 and Path3), and intra-region (Path4).
D Regional mean features along Path1, Path2, and Path3. We colored the region
names with the median feature value of the region. E The gradual spatial change in
the “variance-percentage” and straightness along the radial direction of Path4
within CP region (left and middle), and voxel values along Path4 on the average
brain (right). Confidence interval, 95%. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-024-54745-6

Nature Communications |        (2024) 15:10269 6

www.nature.com/naturecommunications


discriminative for brain parcellation. Similarly, the intensity profile
along the radial path of the CP region in the average brain (Path 4)
exhibited a linearly increasing trend, aligning with the “variance-per-
centage” feature of the microenvironment. However, it differs from
the decreasing trend observed in the feature straightness of micro-
environment (Fig. 3E).

The whole-brain dendritic microenvironments could facilitate the
exploration of both inter-regional and intra-regional organization
across various brain areas, in addition to the four exemplar paths.
Interesting examples include but are not limited to the stereotypy
discovered in analyzing the middle sagittal and coronal sections
(Supplementary Fig. S4), and the left-right symmetry of feature pat-
terns in two hemispheres of the brain (Supplementary Fig. S4, Fig-
ure S5). Overall, the microenvironment analysis is consistent with
established brain parcellation in CCFv3, offering finer detail with
respect to the dendritic characteristic within each brain region.

Detecting primary distributions and key morphological vari-
ables of fully reconstructed neurons
We next analyzed the fully reconstructed neurons with meticulously
annotated axons and dendrites in SEU-A1876. While the neuron
reconstructions were manually edited by multiple annotators to
ensure the correctness of branching patterns, the limited precision of
spatial (3-D) pinpointing in manual annotation caused the skeleton of
almost every neuron to deviate slightly from the center of the image
voxels of the neurites. To address this, we developed an automatic
approach45 that precisely centered neuron skeletons, facilitating the
subsequent analyses of axonal varicosities.

The entire set of SEU-A1876 neurons exhibits a brain-wide dis-
tribution, projecting across most major brain regions, with cell bodies
in 92 brain regions, primarily located in cortex, thalamus, and striatum
(Supplementary Data 6). These neurons span dozens of millimeters
(Fig. 4). It has been often observed that different neuron classes are
poorly discriminated by global morphology features such as length
and branching number16,46. To overcome this limitation, we registered
the dataset to the CCFv3 using mBrainAligner. The standardization of
these neurons’ coordinates allowed us to use the spatial adjacency of
neurons to augment morphological features, inspired by previous
studies30 and the microenvironment representation (Figs. 1C and 3).

Specifically, we generated a similarity matrix of 47 morphological
features of the 1876 neurons, and used the spatial adjacency of neu-
rons as a coefficient matrix to finetune the morphology similarity
(Methods, Supplementary Fig. S6). This approach reduced the like-
lihood of clustering together as the result of potentially incorrect
matching of morphological features. Indeed, we were able to produce
4 clusters of full neuronmorphologies (Fig. 4A), even if the locations of
their somas did not appear visibly separated in 3-D space (Fig. 4C).
Visual inspection of examples of neurons in distinct clusters confirmed
their difference in appearance (Fig. 4B). Each cluster exhibited intra-
cluster diversity, prompting a detailed analysis of subcellular struc-
tures as discussed in the subsequent sections. The soma-distribution
of the neurons in each cluster indicates that C1 consists of cortical
neurons;C2 andC4 containmostly thalamic neurons and a few cortical
neurons; and, most C3 neurons are located in the striatum (Fig. 4C).
However, we also noticed that 6%, 25%, 31%, and 11% of neurons
innervate from non-dominant brain areas for clusters C1, C2, C3, and
C4, respectively. Interestingly, when comparing each pair of the four
clusters, the two clusters being compared appeared to be separable
even with only threemorphological features selected using themRMR
algorithm, although these characterizing features were different in
each case (Fig. 4C – lower triangle).

The overall consistency between our de novo clustering out-
comes and established primary cell types in the mammalian brain
prompted adetailed exploration of themostdiscriminating features of
each cluster (Fig. 4D). We found the most discriminating features vary

among clusters (Fig. 4C). At the whole-brain scale, themost prominent
features were the “bifurcation distance to the soma” (“bif_EucDist2-
soma”), and “remote tilt angles” (“tilt_remote_std” and “tilt_remote_
mean”, Methods). Importantly, no single feature could separate these
four clusters (Fig. 4E), emphasizing that a combination of the top
features (Fig. 4D) is necessary to characterize neuron clusters. On
average, C1 neurons have a smaller likelihood to have large distal
arbors, but typically project over long distances (Fig. 4E, F). Bifurca-
tions of C2 neurons tend to be in close proximity to somas, and a
smaller variance of “remote tilt angles” (Fig. 4E). In contrast, C3 neu-
rons rarely have distal arbors, and have a larger variance of “remote tilt
angles” (Fig. 4E, F). While C4 neurons correlate with C2 spatially, with
comparable branching patterns, they have a substantially greater
bifurcation-to-soma distance (Fig. 4C, E and F). Note that C2 and C4
primarily consist of thalamic neurons, the substantial difference
between them indicates the potential existence of two major neuron
subtypes in these thalamic regions.

Conserved neuron arborization encodes cortical anatomy
Based on the evidence that fully reconstructed neuronal morphology
aligns with neuron class (Fig. 4), we further investigated neurons
innervatingmultiple brain regions. This explorationwas twofold: based
on (a) the arborization patterns for both dendrites and axons (Fig. 5),
and (b) the fiber-projecting patterns that connect these arbors (Fig. 6).

We define sub-neuronal arbors as dense branching sub-trees of full
neuron morphologies. Practically the diameter of an arbor can range
from about 100micrometers to millimeters (Fig. 1D). The tight packing
in space may indicate putative structural units. Profiling the level of
arbor stereotypy provide additional insights to those inferred from full
morphologies. We decomposed a single neuron into a series of arbors
to obtain the sub-neuronal representation. Manually annotated den-
drites were treated as independent arbors due to their obvious layout.
We used the AutoArbor algorithm16 (Methods) to divide axons into
multiple internally connected arbors. To facilitate comparison, axons of
neurons within the same brain region were decomposed to have the
samenumberof arbors, determinedusing themajority-votemethod for
all neurons in the region. Two kinds of arbors, proximal and distal, were
defined based on distance from the soma using a threshold of 750 μm
(Fig. 5A). The arbors were sequentially ordered by their Euclidean dis-
tances to soma (e.g., A1, A2, A3). This method detected 3,776 axonal
arbors and 1,876 dendritic arbors. We considered various morphologi-
cal features (Methods) tailored for the arbor structures, including arbor
type (proximal ordistal), the volumeof the rotated 3-Dboundingboxof
the arbor (μm3), the number of branches, and the Euclidean distance to
the soma (dist2soma).

We analyzed arbor features in three brain areas: thalamus, cortex,
and striatum. Quantitative assessments across 20 CCFv3 regions
highlighted morphological diversity and stereotypy, particularly in
axonal arbors (Fig. 5A). Overall, neurons in the cortex and striatum
have around 50% proximal arbors, while thalamic regions have an
apparently smaller number of proximal arbors. The extent of proximal
arbors is also considerably variable in the thalamus, i.e., ventral pos-
terolateral and posteromedial nucleus of the thalamus (VPL and VPM)
neurons have more proximal arbors than other thalamic regions. The
branchingnumber and the respectivemaximumdensity features differ
from arborization patterns revealed mostly by the arbor-volume fea-
ture, which indicates that several neurons originating in multiple cor-
tical regions have very large arbors. Overall, cortical neurons show
larger axonal arbors, and AId and MOs neurons have a clearly larger
axonal arbor A2 than neurons in other regions. MOp have smaller
axonal arbors A2 thanMOs. By contrast, supplemental somatosensory
area (SSs) andprimary visual area (VISp) neurons haveone large axonal
arbor A1, which also has a chance to position beyond or below the 750
μm threshold to be either a distal or a proximal arbor. Remarkably,
brain regions in the primary somatosensory area (SSp) display
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dramatically contrasting and indeed combinatorial arborization pat-
terns. SSp-ul and SSp-ll have comparable arbors A1, A2, and A3; how-
ever, SSp-m, SSp-n and SSp-bfd have large A2 arbors.

These arborization patterns of cortical neurons, particularly SSp
neurons, seem to define a “codebook” that we sought to further
examine. We compared arbors within two major cortical projection

classes-extratelencephalic (ET) and intratelencephalic (IT) neurons
(Fig. 5B; Supplementary Fig. 17). Differences between projection clas-
ses are evident in dendritic features. Indeed, ET neurons have both
larger dendrites than IT neurons in the samebrain regions.However, IT
neurons have higher maximum compartment densities for dendrites.
For axonal arbors, ET neurons have smaller A1-arbors, but a greater

Fig. 4 | Anatomical characterization of fully reconstructed neurons. AHeatmap
of pairwise neuron similarities. Each row and column are individual neuron, with
color showing similarity values calculated as the product of the cosine distance
between standardized morphological features over the exponential of normalized
between-somadistance. Neurons are categorized into four clusters (C1, C2, C3, and
C4) using Spectral clustering (seeMethods).BHorizontal projections on the CCFv3
template of five randomly selected neurons. C A pair-plot displaying the compo-
sition of neuron types within each cluster (pie plots in the main diagonal). Soma
spatial distributions of cluster pairs are shown in the upper triangle, while 3D
scatter plots (lower triangle) show pairwise separability of neurons from each
cluster (color-coded) with respect to the top 3 discriminating features between
cluster pairs. The average Silhouette Coefficients (SC) are specified in red. View-
points of the scatter plots are optimized for cluster separation. D Heatmap of the

number of times (hit rate) a feature was selected by mRMR as a top three dis-
criminating feature of the clusters in six independent rounds. Each round corre-
sponded to a separate cluster pair. E Top, box plot of the top-ranking feature
(“tilt_remote_std”) of neurons between clusters. Bottom, density plot of maximal
Euclidean bifurcation-to-soma distance across neurons in each cluster. The neuron
numbers for C1, C2, C3, and C4 are 502, 515, 499, and 360. FMatrix visualization of
the mean (light green) and standard deviation (std; light blue) of branch numbers
(represented as dot size). Each row corresponds to one cluster, and each column
represents the distance interval (300 µm) at which we measured branch numbers.
Source data are provided as a Source Data file. Box plot: edges, 25th and 75th
percentiles; central line, the median; whiskers, 1.5×the interquartile range of the
edges; dots, outliers.
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chance to have a larger A2 than the respective IT counterparts, con-
sistent with the categorization of these ET-IT neurons.

We also examined the features of neurons in six regions of the
primary somatosensory cortex across cortical layers (Fig. 5C). Neurons
in the unsigned regions (SSp-un) have large proximal axonal arbors
projectingmainly to cortical layer 6 (L6), but not to layer 1 (L1), layer 2/
3 (L2/3), and layer 4 (L4), and distal arborsmainly projecting to L5 and
L6. Subdividing neurons by laminar position reveals distinct attributes
in the projection patterns of proximal and distal arbors, with some
overlaps. Axonal arbors of L2/3 neurons primarily project to L2/3 and

L5, while L4 neurons reach mostly L2/3. Instead, L5 neurons project
mostly to L5 and L6, and L6 neurons extend projections preferentially
to L5 (Fig. 5C). The circular visualization provides a detailed view with
soma regions and cortical layer information displayed (Fig. 5C – cir-
cular view). It is important to note that this codebook may evolve as
more neuron reconstructions become available.

As we observed that thalamic neurons have a variety of arbor-
ization patterns (Fig. 5A), we clustered both the morphological fea-
tures of arbors (8-dimensional) and projection distributions (108-
dimensional) of neurons originating from each brain region

Fig. 5 | Morphological stereotypy and diversity in neuronal arbors. A Matrix
visualization of normalized morphological features of axonal arbors for 20 soma-
types (s-types). The blue and red dots represent the features of proximal and distal
axonal arbors respectively, and the ordering of arbors (A1, A2, A3) was determined
based on their distance-to-soma values. The top left sketch is an exemplar illus-
tration of the categorization of proximal and distal arbors, and their orderings. The
arbor typesweredeterminedby theirdistances from themaxdensity compartment
to somas, where amaxdensity compartment refers to the compartment containing
themaximal numberof compartmentswithin a 20μmradius. The histogramon the
right displays the average percentage of proximal arbors for each s-type. The
parenthetical number after region name indicates the number of neurons in that
region. B Matrix visualizations of normalized morphological features of dendritic
arbors (top left) and axonal arbors (bottom left) for extratelencephalic (ET) and

intratelencephalic (IT) neurons of 4 cortical regions. The top-right component
shows representative dendritic morphologies for each region and projection type.
The bottom-right component shows horizontal and sagittal projections of axonal
arbors for ET (left) and IT (right) neurons embedded in the CCFv3. C Axonal arbor
morphologies and projection distributions of lamination subtypes of cortical SSp
neurons across cortical laminations. Left, the projection distribution across cortical
laminations and their representative structures. The central circular heatmap
shows the projection strengths across cortical laminations (radial vectors). The
dendrogram in the center of the plot shows hierarchical clustering based on the
projection strength heatmap. Two outer layers in the plot show representative
examples of proximal and distal axonal arbors. The number of neurons of each
subtype is specified in parentheses. Right, matrix visualization of the projection
strength for lamination subtypes (top) and s-types (bottom).
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(Methods). Thalamic core and matrix neurons have similar projection
volumes overall (Supplementary Fig. S18). In detail, matrix neurons
from nucleus of reuniens (RE), lateral dorsal nucleus of thalamus
(LD) and ventral medial nucleus of the thalamus (VM) have greater
variability in projection volume than neurons from other regions.
Morphologically, axonal arbors of thalamic matrix neurons are

generally larger andmore complex, exhibiting a greater diversity than
thalamic core neurons (Supplementary Fig. S18). Indeed, arbors of
thalamic core neurons, except LGd, are more conserved in volume.
In terms of projections, thalamic core neurons have a higher
concentration of arbors in mostly cortical and midbrain areas,
which are responsible for sensory and motor control. On the other

Fig. 6 | Projection patterns and anatomical insights from primary axonal
tracts. A Schematic illustration showing the axonal morphology, highlighting the
blue-colored primary axonal tract, which is the long projecting axonal path after
excluding distal short segments. A neuron may contain multiple tracts, such as the
secondary tract highlighted in dark orange. B Schematic visualization of three
distinct projection patterns at the population level: convergent, divergent, and
parallel, determined based on the comparative spread in space of somas and
terminals. Soma positions are indicated by red dots, while arrowheads denote the
terminal points of primary axonal tracts. The blue lines connecting them represent
the primary axonal tracts. C 2D projections of primary axonal tracts of 25
projection-based subtypes in cortex, striatum, and thalamus. The label on the left

specifies the s-type (for CP neurons) or projection classes. Circular red dots
represent the somas, while triangular black dots denote the tract termini. In-
between tracts are colored randomly. A line plot of the spatial spread (radius)
change from the somas to the terminals along the corresponding tracts is appen-
ded on the right side for each project type.DHorizontal view of projection pattern
maps by source (left) and target (right) regions. The regions are colored by the
projection pattern type. E 3D scatter plot of the terminal point locations for three
clusters identified for the L5 ET projecting cortical SSp-m neurons using K-Means
clustering basedon their terminal points, with the respective spatial spread profiles
plotted on the right. The terminal points of the three classes are colored in red (C1),
green (C2), and blue (C3). Source data are provided as a Source Data file.
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hand, thalamicmatrix neurons have awide range of projection targets,
covering 108 regions.

Characterizing motifs of primary axonal tracts
To complement the analysis of neuronal arborization, we further stu-
died the projecting axons connecting major arbors (Fig. 6A). Under-
standing the diversity and stereotypy of axonal tracts may help to
understand the global structure of the brain. We focused on primary
axonal tracts, obtained by iteratively pruning short branches off the
longest axonal path (Fig. 6A;Methods), and identified three projection
patterns, i.e., convergent, divergent, and parallel (Fig. 6B).

In 19 major brain regions with fully reconstructed neurons SEU-
A1876, we found different projection patterns (Fig. 6C). First, striatal and
thalamicneurons showedoppositeprojecting tendencies. SNr-projecting
CP neurons (CP_SNr) and GPe-projecting CP neurons (CP_GPe) have
convergent patterns, with widely distributed somas but tightly packed
primary projection targets. The cross-sectional radii tended to decrease
from 1.5mm to sub-millimeters. In contrast, both the thalamic matrix
neurons (TH_matrix) and thalamic core neurons (TH_core) show an evi-
dent divergent pattern, with somas concentrated in each of the eight
thalamic regions, i.e., lateral posterior nucleus of the thalamus (LP), VM,
LGd, medial geniculate complex (MG), submedial nucleus of the thala-
mus (SMT), VPL, parvicellular part of VPL (VPLpc), and VPM, but pro-
jection targets wide spread. The cross-sectional radii extended from sub-
millimeter to about 1.5 millimeters for TH_core and VM neurons, and
reached to the range of 2 ~3 millimeters for LP neurons.

Different from the striatum and thalamus, cortical neurons showed
more complexpatterns (Fig. 6C). IT-projecting cortical neurons (CTX_IT)
display divergent projections, expanding the cross-sectional radii by
about 3 times or more along the primary axonal tracts. However, ET-
projecting cortical neurons (CTX_ET) have have amuchmore conserved
axonal trajectories to targetbrain regions,withdeviationsonlyoccurring
near target regions. Interestingly, the majority of cortical neurons, irre-
spective of ET or ITprojection types, showed a converging pattern at the
initial part of the projection pathway, as illustrated by decreased radii
immediately after the somas (Fig. 6C).

We also analyzed the topographical organizations for the ET-
projecting and IT-projecting cortical neurons, GPe-projecting CP neu-
rons, and VPM neurons, based on the primary axonal tracts (Supple-
mentary Fig. 19). Notably, the termini of primary axonal tracts of ET
neurons exhibit a high degree of dispersion within each subtype (Sup-
plementary Fig. S19). However, these termini are conserved across all ET
projectingneurons, despite their diverse soma locations (Supplementary
Fig. S19). In contrast, ITprojectingneuronsdisplaydistinct topographical
organizations, with the termini locations being more closely correlated
to their respective soma locations (Supplementary Fig. S19).

We mapped these conserved projection motifs onto CCFv3, with
both soma regions and the project target regions highlighted (Fig. 6D).
Based on our current data, the brain-wide axonal projects are heavily
divergent, regardless of the locations of somas, except for specific
cases likeCP-SNr andCP-GPe. However, it is also remarkable to see that
the divergent CTX_ET projections can be further factorized in terms of
clustered target brain regions (Fig. 6C – CTX_ET row). For instance,
CTX_ET SSp-m neurons have divergent projections, but their targets
can be grouped into three clusters (Fig. 6E, Supplementary Fig. S7).
The projection of neurons from each of the three clusters showed a
nearly parallel pattern. In other words, the cortical neuronsmay have a
strongly stereotyped, target-dependent projection pattern although
overall the diversity is visibly dominant. In this way, these stereotyped
projection motifs provide a high-level description of neuronal arbors
across the entire brain.

Cross-scale topography of axonal varicosities
After estimating axonal and dendritic arborizations, we sought to
identify putative synaptic sites. As we had analyzed and modeled

dendritic spines in a previous study47, we used IMG204 to study
putative axonal varicosities. Axonal varicosities may be classified
as terminaux (TEB) and en passant (EPB)48 (Fig. 7A). Using the com-
plete axons in SEU-A1876 neurons, we identified both types of
varicosities. To maximize accuracy, we refined manually annotated
neuron skeletons with an automated skeleton de-skewing algorithm45,
followed by approximating varicosities using a Gaussian distribution
model (Methods; Supplementary Fig. S8). We identified 2.63 million
axonal varicosities from all axonal reconstructions (SEU-A1876), aver-
aging 1,404 varicosities per neuron. The identification exhibited
high robustness for independently traced but morphologically
similar neurons (Supplementary Fig. S21). The high correlation
between detected varicosities from such independent sources
would not be possible if these varicosities were merely noise without
any biological consistency (Supplementary Fig. S21). Benchmark
on 1450manually annotated varicosities showed a high accuracy (99%
precision and 91.7% recall). Additionally, EPB ratios of four manually
annotated hippocampal CA1 neurons in our dataset are 98.9%, 97.1%,
96.4%, and 97.6%, aligning with electron microscopy-based
detection49. We also categorized axonal branches into varicosity-
branches or null-branches, based on the presence or absence of
detected varicosities (Fig. 7A).

We studied the spatial distributions of varicosities at several
scales. At the whole-neuron level, we calculated varicosity densities
against their distances to somas in 16 brain regions (Fig. 7B). Var-
icosities of thalamic neurons are predominantly located on the distal
axons. Claustrum (CLA) and AId neurons have very broad varicosity
distributions. Olfactory tubercle (OT) and RT neurons have high var-
icosity density along intermediate ranges of axon extensions. Neurons
in the other brain regions, including 5 cortical regions and the striatal
region CP which has large local axons (Supplementary Fig. S22), have
enriched varicosities in local axons (Fig. 7B).

We also generated a varicosity-feature topography for different
neurons (Fig. 7C). In each of three major categories of brain areas
(cerebral nuclei (CNU), thalamus, and cortex), varicosity feature dis-
tributions are typically stereotyped, exception for reticular nucleus of
the thalamus (RT) neurons, which have a different feature map from
other thalamic neurons.CNUneurons, particularly CP andOTneurons,
showedmuch higher TEB ratios. However, the average patterns across
these three brain areas are diverse, offering more detail than the one-
dimensional radial distributions (Fig. 7B) that are summarized as the
third varicosity feature F3 (Fig. 7C).

In our data, neurons from cortical and thalamic regions have on
average 271.1 and 233.8 varicosity-branches, significantly larger
than striatal neurons (151.3; Fig. 7D). Notably, the ratios between
varicosity-branches and null-branches remain consistently around a
value of approximately 3 across neurons from various brain areas
(Fig. 7D). Higher varicosity-branch ratios were found in terminal
branches than in bifurcating branches such as 81% of the former con-
taining varicosities versus only 71% of the latter. Interestingly, the
average lengths of varicosity-branches and null-branches are indis-
tinguishable (Fig. 7D). On average, varicosity-branches of striatum
neurons are slightly more curved than null-branches (Fig. 7D). At the
branch level, we categorized bifurcating varicosity-branches into three
types depending on the type of children branches (Fig. 7E), with a
dominance of consecutive varicosity-containing branches (B0 and B1
types, Fig. 7E). These observations suggest that varicosities may
aggregate in close-packing axonal arbors. We also found clear differ-
ences in the number of varicosities at the individual branch level for
various neuron types (Fig. 7D). Furthermore, varicosities are pre-
ferentially located at the branch terminal ends (Fig. 7F). Overall, our
data suggest that varicosity distribution strongly depends on the scale
of analysis: varying dramatically at the full neuron level (global diver-
sity), but sharing analogous patterns at lower structural levels (local
stereotypy).
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Characterizing whole-brain diversity and stereotypy using
cross-scale features
In observing substantial diversity across different morphometry
scales, we questioned whether such diversified patterns across scales

couldbe combined to characterizeneurons. Todo so, for each neuron,
ni, we first concatenated its features across resolution scales (micro-
environment, full morphology, arbors, motifs, and varicosities) into
a feature vector fi. For two neurons ni and nj, we obtained Pearson

Fig. 7 | Spatial patterns of axonal varicosities distribution at various scales.
A Varicosity types and key features. B Heatmap showing the percentage of var-
icosities as a function of the distance to the soma. The right panel shows the
quartile distribution of varicosities. The distances for each type are normalized
independently by the maximal distance among all varicosities for the corre-
sponding type. Labels specify the corresponding brain areas. C Within the dashed
line frame: the left side shows representative neurons with somas (black) and
varicosities (yellow) connected by a minimum spanning tree (MST). The right-side
radar charts illustrating the average of six varicosity features, calculated as mean
values after min-max normalized to a 0-100 scale. Right, analogous radar charts for
each of the s-types within the analyzed brain areas. D–F Spatial preference of
varicosities at various sub-neuronal scales. D Density plots of three morphological

features between varicosity branches (red, branches containing varicosities) and
null branches (gray, branches without varicosities). The feature “length” refers to
the path length of a branch, while “curviness” represents the curviness of the
branch. The colored numbers are themean values of the corresponding categories.
E Top, schematic drawing of three bifurcation types defined according to the
presence of varicosities in the two child branches. The parent and child branches
are topologically connected, with the parent branches being closer to the soma.
Bottom, bar plot of the proportions of the three types of bifurcations in each
analyzed brain area.F Top, schematic drawing of the length quartiles of a varicosity
branch. Bottom, line plot of the ratio of varicosities distributed at quartiles of a
varicosity branch. The horizontal dashed line represents the expected distribution
if varicositieswereuniformly spaced. Sourcedata are providedasa SourceDatafile.
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correlation of the concatenated features of two neurons, cij, to mea-
sure the similarity. Next, for neurons innervated from two brain
regions U and V, i.e., two soma-types (s-types), we averaged the cor-
relation coefficients of all inter-region neuron pairs to produce an
overall cross-scale feature similarity score sUV in these two regions. A
sUV score close to 0 indicates minimal commonality between neurons
in the two regions, while scores approaching 1 or -1 indicates high
similarity or dissimilarity, respectively. When U and V are the same
region, the score becomes sUU (or sU for simplicity), which measures
the intra-region averaged similarity, or “intra-type” stereotypy. In this
way, we constructed a Diversity-and-Stereotypy (DS) matrix S, where
each entry is sUV, for all pairs of brain regions to quantify the dis-
tribution of morphological patterns (Fig. 8A).

We found that cross-scale features were able to discriminate
between different neuron types. Indeed, the DS matrix of all soma-
types showed three clear modules, which correspond to the majority
of cortical, thalamic, and striatal neurons (Fig. 8A – top-left), except

for the thalamus reticular nucleus (RT) neurons, which are distin-
guishable from other thalamic neurons in terms of neurotransmitters
and connectivity50. In addition, the DS submatrix of cortical neurons
correlates negatively with that of the thalamic neurons, but exhibits
weak correlation with the striatal neurons. Thalamic neurons also
correlate weakly but also negativelywith striatal neurons.Within each
module, DS values are relatively large with small variations, indicating
that neurons are remarkably conserved in these brain regions. This
modular grouping of brain regions based on cross-scale features is
also consistent with our alternative analyses, e.g., microenvironment
analysis (Fig. 3).

We focused on the diagonal of the DS matrix (Fig. 8A – EX_d) to
examine the distribution of features for the five resolution scales
(Fig. 8A, – intra-region correlations, Supplementary Fig. S9). Although
overall cortical, thalamic, and striatal neurons have similar average DS
scores within each brain region (mean-values = 0.34, 0.47, and 0.52,
respectively, as shown as the diagonal values in Fig. 8A – DS matrix of

Fig. 8 | Quantitative diversity and stereotypy analyses based on cross-scale
features. A The Diversity-and-Stereotypymatrices (DSmatrices) for s-types (upper
left), projection subtypes of cortical neurons (upper right), and lamination-based
subtypes of cortical neurons (bottom left). Each value in thematrix (DS value) is the
average correlation between all neuron pairs of the two corresponding cell types.
The diagonal values are the intra-region average correlations, and the others are
inter-region average values, representing intra-region stereotypy and inter-region
diversity respectively. The correlation is the Pearson correlation coefficient
between cross-scale features, which are the concatenation of standardized features
from5morphological scales:microenvironment (“microenviron”), fullmorphology
(“fullMorpho”), arbor, primary axon tracts (“motif”), and varicosity. Bottom right,
density plots of the distributions of intra-region correlations for various s-types at

different morphometry scales, that is, the distribution of diagonal items in the left
component of (A).B Pairwise distances between theDSmatrices of different scales.
The distance is obtained by computing 1 minus the Pearson correlation coefficient
of the DS matrices. C Heatmaps of the first, second, third, and fourth orders of
statistics of the intra-region correlation distributions for each morphological scale
(bottom right of (A)).D Scatter plots showing the relationship between soma-soma
distances and the correlations of the cross-scale morphometry features. Linear
correlations are observed when the pairwise distances are small. The red lines and
red shadows within the boxes represent the means and correlation ranges within
one standard deviation (σ) around themean values. E Scatter plot of themajor and
minor axis lengths of brain regions. The dashed lines are the average lengths for the
major andminor axes of all regions. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-54745-6

Nature Communications |        (2024) 15:10269 13

www.nature.com/naturecommunications


s-type), they have different degrees of stereotypy with respect to
morphological scales. For instance, for microenvironment features,
the average correlation value of thalamic neurons (0.29) ismuch larger
than that of cortical neurons (0.07) (Fig. 8A – Intra-region correla-
tions), indicating that microenvironment features are more dis-
criminating for thalamic neurons. Similarly, certain cortical neurons,
like CLA neurons, display high conservation in full morphology and
varicosity features, indicated by highmean correlation values (0.8 and
0.7, respectively) (Fig. 8A - Intra-region correlations).

We also used the DS matrix to examine subtypes of neurons. We
focused on two subtypes, i.e., neuron-projection subtypes (Fig. 8A -
EX_p) and soma-lamination subtypes (Fig. 8A - EX_I) for cortical regions
that contain at least 10 fully reconstructed neurons. Specifically, our
analyses included 1513 neurons for s-type, 1350 neurons for projection
subtypes, and 431 neurons for lamination-based subtypes of cortical
neurons. For projection subtypes (Fig. 8A - EX_p), most DS scores
among ET neurons are larger than 0.3, which also holds true for IT
neurons. However, themajority of ET neurons correlate weakly with IT
neurons, even when they are located in the same brain regions (e.g.,
SSp-n-ET vs SSp-n-IT neurons). Interestingly, several projection sub-
types such as MOp-IT, MOs-IT, SSs-IT, and SSs-ET neurons show con-
siderable correlations with all neuron subtypes. The DS matrix also
highlights an interesting submodule composed of six SSp ET project-
ing subtypes, with pairwise correlations higher than 0.4 in most cases.

We observed modularity for cortical laminar subtypes (Fig. 8A -
EX_I). L2/3 and L4 neurons are inter-correlated with each other, but
exhibit weak correlation with other layers, with clear module bound-
aries. In the module of L2/3-L4 neurons, a sub-module consisting of
five L4 subtypes, SSp-bfd-4, SSp-m-4, SSp-n-4, SSs-4, and VISp-4, also
stands out, with a DS score around 0.4. L5 subtypes also appear ste-
reotyped in the DS matrix, but inter-region correlations tend to be
weak, in the 0.15 range. The two L6 subtypes, AId-6 and SSs-6, highly
resemble each other but have slightly different correlation profiles
with other subtypes. Interestingly, VISp-5 neurons show negative cor-
relations withmost of the L5 neurons and all L6 neurons, but correlate
considerably with L4 and L2/3 neurons. In addition, neurons from the
same brain regionbut in different layers are not necessarily correlated.
For instance, the L5 subtypes of SSp neurons and the respective
L4 subtypes are negatively and weakly correlated.

We also attempted to understand the relationship among features
of different scales. Todo so,we calculated the “distance”between each
pair of scales (Fig. 8B, Methods), along with the statistics of these
features for different brain regions (Fig. 8C). We found that micro-
environment and motif features were far away from features of other
scales. Instead, varicosity features had small distances to both full
morphology and arbor features (Fig. 8B). Therefore, microenviron-
ment and motif features have relatively little redundancy when com-
bined with other scales to categorize neurons and brain regions. The
two separate pairs of scales, i.e. {full morphology and varicosity} and
{arbor and varicosity}, could be used to cross-validate whether or not
data analyses are consistent across scales.

Our analysis above, especially the DS matrices of the projection
and lamination subtypes of cortical neurons, indicate that neuronal
types can be well defined by their axonal projections and soma loca-
tion (Fig. 8A). This suggests an underlying relationship between spatial
distribution and morphogenesis, indicating proximal neurons sharing
more similar morphologies. We tested this hypothesis by evaluating
the correlation between morphological correlation of neurons and
soma-to-soma distance. The morphological similarity between neu-
rons was negatively correlated with both the soma-to-soma distance,
within a scale of 4millimeters, comparable to the sizes of brain regions
(Fig. 8D, E). This correlation aligns with the morphological similarity
observed among neurons within the same region (Figs. 3, 5–7, and 8A).
Simultaneously, it reinforces the inclusion of spatial adjacency in

microenvironment construction (Fig. 3) and single neuron cluster-
ing (Fig. 4).

Another approach to integrating cellular morphometry across
scales involves iterative modularization of neuromorphometry. To
illustrate, we examined the relationship between projection patterns
(represented by “Delta Radius” (Supplementary Fig. S23), the differ-
ence in radius between the termini of primary axonal tracts and their
somas) and dendritic arbor features of different cortical neurons. Both
the “volume” and “max_density” features demonstrated a linear cor-
relation with the radius difference for both ET and IT neurons, with the
absolute values of Pearson correlation (R) greater than 0.5 (Supple-
mentary Fig. S23). Specifically, the dendritic arbor volumes in ET
neurons showed a strong positive correlation with “Delta Radius”
(R = 0.94, P = 0.0019), suggesting that ET neurons with larger den-
drites tend to have more divergent projections. In contrast, dendritic
arbor volumes in IT-projecting neurons were negatively correlated
with “Delta Radius”, indicating that larger dendritic arbors are asso-
ciated with more convergent projections. Additionally, both ET and IT
neurons displayed positive correlations (R = 0.66 and 0.51, respec-
tively) between the “max_density” feature and the radius difference
(Supplementary Fig. S23). To underscore cellular diversity across the
detected modules, we also provided visual examples (Supplementary
Fig. S24). Notably, neurons in modules M10 and M12 lack significant
local axonal arbors, unlike in modules M5, M6, and M7, where local
axonal arbors are present. Moreover, neurons in module M5 exhibit
larger volumes compared to those in other modules (Supplementary
Fig. S24).

Discussion
We studied the morphological patterns of neurons in the context of
whole mouse brains at multi-scales, from centimeters to sub-microns,
with specific focus on the quantification of the diversity and stereotypy
of neuronal structures (Supplementary Fig. S25). We leveraged the col-
laborative effort of theBICCNcommunity to collect and standardize one
of the largest mammalian brain imaging databases to the latest Allen
Common Coordinate Framework, followed by systematic extraction of
morphological features fromwhole brain level to axonal varicosity level.
Subsequently, we categorized morphological patterns in the cortex,
striatum, and thalamus, in conjunction with their soma-distribution,
projection trajectories and targets, and more detailed arborization and
detected varicosities when applicable. Using rich representations of
morphological data, we discovered brain modules and morphology
motifs across scales, and identified the suitable spatial scales for quan-
tifying the diversity and stereotypy of morphological patterns.

Our multi-scale analysis attempts to complement a number of
previous efforts in generating macroscale, mesoscale, and microscale
morphometry in the mouse brain and other model systems51–56. At the
neuron-population level, we analyzed the modular organization of
brain regions based on neurite distribution patterns. Previously,
modules of mammalian brains have been studied in macroscale, pri-
marily using functional Magnetic Resonance Imaging57, and in mesos-
cale, such as the brain-wide neuronal population based projecting-
networks using whole-brain optical imaging53,54,58. Our analysis con-
firmed several previous observations such as neighboring regions
being more likely in the same module54,57. We also additionally esti-
matedmodularization from large-scale analysis at themicron and even
sub-micron resolutions. This study represents a notable advancement
beyond our previous work on single-scale, straightforward neuron
morphology screening for mouse brains16 and other model systems4.
These earlier studies did not analyze the vast array of patterns obser-
vable at and across different scales. In contrast, this study expands the
scope and delves deeper into the complex interplay of neuronal pat-
terns at multiple scales, offering a more complete picture of neuronal
morphology.
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We constructed dendritic microenvironments to enhance the
ability to discriminate the structure of local dendrite arborization.
Historically, the morphological features of local dendrites were
thought to offer limited power for discriminating neuronal classes59,60.
These observations have also motivated recent studies that rely on
fully reconstructed long axons to differentiate neuron classes15–17.
Nonetheless, the cost to produce long axons or full neuron morphol-
ogy is still high, and sometimes is exceedingly expensive for large
mammalian brains such as primates61. We have recently proposed
aggregating the spatial neighboring information of local dendrites of
human cortical neurons with their 3-D morphology, and thus have
obtained superior classification performance of neurons30. In this
study, we followed the same principle to formulate dendritic micro-
environments that offer a valid alternative to integrate spatial infor-
mation of neurons and their morphology. The microenvironment
representation of a large set of dendrites allows for the visualization of
the covarying morphological features of neighboring neurons, thus
providing a greater chance to differentiate neurons that have limited
dendritic features to discriminate each region. This aligns with the
finding that neurons in different cortical regions of the human brain
share cell types but in different proportions62. Meanwhile, the
ensemble nature of it helps alleviate the possible imperfections of
reconstructions. It provides a balanced compromise between the
scarcity of available single morphologies and the limited dis-
criminatory capacity of soma density. Our approach has allowed
visualization of more anatomical detail for several brain regions
compared to what had been documented in the CCFv3 atlas26 and the
Mouse Brain in Stereotaxic Coordinates63.

In addition to introducing dendritic microenvironments, we were
able to identify critical, minimally redundant factors that contribute to
the different categorizations of individual neurons, for their full
morphologies. We found that the clustering of cortical, striatal and
thalamic neurons into broadly recognizable clusters, each with a spe-
cific fingerprint, could emerge with little a priori knowledge. The key
features could be identified in the least redundant subspace of spa-
tially tuned morphology features. This finding also complements the
conventional parcellation of brain regions in anatomical atlases pri-
marily based on cell densities. Future studies in this direction, poten-
tially combined with themicroenvironment analysis of neurites, might
suggest alternative approaches to investigate the murine brain anat-
omy using morphological, physiological, molecular and connectional
properties of neurons2,23.

Individual neurons have traditionally been studied by analyzing
their overall morphology64,65. However, it is intriguing to explore the
variability of arborization and projection patterns within neurons, as
they naturally constitute interconnected sub-trees and projecting
neurite tracts. We note that this aspect has not been extensively
investigated to date. To address this, we undertook a decomposition
of single-neuronmorphologies into densely packed sub-trees, referred
to as arbors. These arbors serve as structural foundations for potential
neuronal functions. Additionally, we categorized the arbors according
to their proximity to the respective somas. Furthermore, we extracted
the primary projecting tracts of neurons originating from different
brain regions and examined their spatial divergence and convergence
patterns. This approach simplifies the comparison of different neuron
types while retaining crucial morphological information. Moreover, it
facilitates the quantification of the diversity of conserved patterns,
denoted as “motifs” of arbors and neurite tracts. Our work comple-
ments previous endeavors aimed at characterizing sub-neuronal
structures, such as branching topologies66,67.

The investigation of synaptic connectivity is a contemporary and
critical topic.While electronmicroscopy remains the gold standard for
synapse identification, its limited range (~1 mm3) currently prevents its
applicability to mammalian brain-wide axonal projections. Previous

studies have thus focused on detecting and analyzing potential
synaptic sites collected by optical microscopy68–70 using various
labeling techniques, including genetic or antibody labeling for pre-
synaptic and/or postsynaptic sites, as well as a combination of
both47,71,72. This study aims to expand on existing synapse-detection
research in three ways. First, the full morphologies of nearly 2,000
neurons were used to provide a high-quality dataset for analysis. Sec-
ond, whole-brains, encompassing a number of cortical, striatal, and
thalamic regions, were used to provide a complete picture of the dis-
tribution of putative synaptic sites. Third, we explored a wide range of
features associated with putative synapses. In this way, we have char-
acterized the patterns of brain-wide varicosity-distributions across
various cell types that complement previous studies.Of note, while the
biological validation of the predicted axonal varicosities is beyond the
scope of this resource study, we have utilized statistics from inde-
pendent yetmorphologically similar neurons in the samebrain regions
(Supplementary Fig. S21). The distributional consistencydemonstrates
that it is highly unlikely for the predicted varicosities and their patterns
to lack biological relevance.

The knowledge gathered from investigating various spatial scales
prompted us to develop an integratedmodel of neuronmorphometry
and brain anatomy. As an initial effort, we introduced a DS matrix to
measure the degree of diversity across neurons with respect to the
stereotypy of neuron types. We observed interesting hierarchical and
modularized organization of neurons in cortical, striatal and thalamic
regions emerging in a quantifiable way, even without explicit cluster-
ing. This finding has two valuable implications. First, it confirms
complex neuron morphology strongly correlates with existing brain
anatomy in the establishedmousebrain atlases suchasCCFv3. Second,
and more importantly, it allows us to hypothesize that for a more
complicated mammalian brain such as those of primates, an effective
way to explore and understand the brain anatomy and even the
associated brain functions could take a similar multi-scale approach,
instead of relying solely on anatomists’ manual drawing of brain
structures. The present study highlights the power of large scale sys-
tematically mapped neuronal data in elucidating detailed cell type
structure and morphology. Our cross-scale integration of information
may also extend to incorporate in the future other data modalities
such as single-cell transcriptomic data59,73,74.

Many of our observations align well with previous studies,
including the similarity between the projection patterns calculated
from primary axonal tracts (Fig. 6) and those estimated from single
neuron morphologies16. The regions in most detected modules (Fig. 2;
Supplementary Data 5) is consistent with experiments33,38, and the
proportion of EPB varicosities is similar to that observed in electron
microscopy studies49. On the other hand, there are many previously
unexplored findings (Supplementary Data 8). One such example is the
discovery of three subtypes for the L5 neurons in the primary soma-
tosensory area - mouth region (Fig. 6E, Supplementary Fig. S7), based
on the clustering of primary axonal tract termini. Anotherfinding is the
identification of four primary clusters for all single neuron morphol-
ogies. We introduced spatial adjacency into feature comparison,
allowing unambiguous identification of four large, primary clusters
with clear separation (Fig. 4). Within each cluster, neurons exhibit
substantial diversity, quantified in thiswork tomeasure stereotypy and
separation between clusters. These in-cluster variance motivates the
identification of sub-neuronal conserved structures for characterizing
neurons at finer scales.

These data-driven findings, resulting from correlation analyses,
warrant dedicated experiments to unravel functional mechanisms. As
a resource paper providing morphometry data and analytical tools,
the verification of these findings is beyond its scope. Nevertheless,
these insights offer valuable directions for future biological experi-
ments, making the resources in this work a valuable mining-and-

Article https://doi.org/10.1038/s41467-024-54745-6

Nature Communications |        (2024) 15:10269 15

www.nature.com/naturecommunications


validation protocol for the neuroscience community. In our ongoing
exploration of these resources, we aim to delve deeper into the
morphological diversity between different scales, as well as adapt to a
broad range of neurons. For example, while our current dataset pri-
marily comprises projection neurons (Supplementary Data 6), we
acknowledge the importance of exploring interneurons, which con-
stitute 20%–30% of the neocortex in the human brain75. We plan to
incorporate public-domain reconstructions of interneurons76 map-
ped to the CCF, enabling a joint analysis with our datasets. Addi-
tionally, we aim to investigate correlations between conserved
patterns at various scales, exploring aspects such as cellular diversity
across different modules and the relationship between axonal arbors
and projection patterns.

Methods
Nomenclature
The nomenclature of brain regions follows the CCFv326, which cate-
gorizes a mouse brain into 671 regions. Each region, except for the
direct tectospinal pathway (tspd), comprises two mirroring subregions
in the left and right hemispheres. Ahigher level of granularity consisting
of 314 regions (CCF-R314) is used by merging highly homogeneous
regions, such as the lamination-differentiated cortical subregions. All
brain regions used in this work are from the CCF-R314 regions.We have
spelled out the full names of the regions in themanuscriptwheneverwe
refer to them for the first time. The CCFv3 atlas can be found at https://
connectivity.brain-map.org/3d-viewer?v=1.

Super-regional anatomical entities, such as brain areas, are sets of
functionally related regions that are continuous in space. While the
definitions of brain areas are similar, they differ in granularity. In this
paper, we discussed a higher granularity consisting of 4 areas: cortex
(CTX), cerebellum (CB), cerebral nuclei (CNU), andbrain stem (BS).We
also discussed 13 compound areas, which are CBN: cerebellar nuclei,
CBX: cerebellar cortex, CTXsp: cortical subplate, HPF: hippocampal
formation, HY: hypothalamus, isocortex, MB: midbrain, MY: medulla,
OLF: olfactory areas, P: pons, PAL: pallidum, STR: striatum, and TH:
thalamus.

To facilitate understanding, specific terms describing multi-scale
morphometry and morphological patterns are detailed in Supple-
mentary Data 7.

Image acquisition and processing
We collected 204 whole mouse brains at submicron or micron
resolutions from 4 BICCN projects within the BICCN community
and another collaboration project. Of these, 180 fMOST brains
came from a U19 project (1U19MH114830-01). The other 10 fMOST
brains and 10 STPT brains were obtained from another U19 project
(1U19MH114821-01) and 1 LSFM brain from a U01 project
(1U01MH114829-01). These brains were downloaded from the
Brain Image Library (BIL, http://www.brainimagelibrary.org). 3 LSFM
mouse brains were provided by P.O. (n = 2) and Z.W. (n = 1), whowere
granted from another U01 project (1U01MH114824-01). The brain
images exhibit anisotropic resolutions, primarily ranging from 0.2 to
0.35μm in the xyplane and 1μm in the zdirection. The fMOST images
were labeled using sparse viral-like transgenic lines. The primary
reporters include TIGRE-MORF (Ai166), GFP-expressing TIGRE2.0
(Ai139 or Ai140), and TIGRE1.0 (Ai82). These reporters were paired
with various drivers, such as Cre expression lines, which target dis-
tinct yet specific neuronal types16. Detailed information regarding
brain IDs, modalities, sources, resolutions, downloadable links,
transgenic labeling and the primary targeted neuronal types is
summarized in Supplementary Data 1.

The brain datasets, totaling 3.7 peta-voxels, are managed via
MorphoHub77. To get fast access to both fine-grained details and a
global overview, we restructure each brain into hierarchical TeraFly78

format.

Registration
Brain images were registered to the 25 μm CCFv3 template using the
cross-modal registration tool mBrainAligner27,28. We employed a simi-
lar pipeline consisting of image standardization and preprocessing,
global registration, anddeep learning enhanced local registration,with
a minor update on the landmark searching strategy which improved
overall registration accuracy for the hippocampal and striatal neurons.
Registration channels were leveraged whenever possible. The brains
were down-sampled to approximately 25 μm resolution through even-
folds linear interpolation prior to registration. Non-brain tissues were
semi-automatically removed with Vaa3D79–81 and mBrainAligner. Ana-
tomical regions of the brains were automatically labeled based on the
CCFv3 atlas and the deformation matrices obtained during registra-
tion. The multi-morphometry including full morphologies, local
morphologies, arbors, and varicosities, were reverse-mapped to the
CCFv3 space using the inverse deformation matrix. We estimated the
robustness of the registration by computing the average registration
offsets and intensity variance across 191 analyzed brains for 2213
landmarks (Supplementary Fig. S10), sampled homogeneously from
the regional boundaries of CCFv3 atlas. For each landmark, the
intensity variance was normalized by the average offset. The CCF-
space average brainwasgeneratedby computing themean voxel value
for each voxel on the CCFv3 atlas across all 191 brains.

Soma identification
The SEU-S182K soma dataset comprises two parts. The first part con-
sists of 45,664 somas manually annotated using the Vaa3D-TeraFly
platform, most of which were reported in a previous study77. An
additional 136,833 somaswere semi-automatically annotated using the
Collaborative Augmented Reconstruction (CAR) platform29, which is
updated from our Vaa3D-TeraFly and immersive annotation system
Vaa3D-TeraVR82.

The semi-automatic soma identification protocol involves two
major steps. Firstly, we filtered out the TeraFly image blocks (~256
voxels in each dimension, ~59 × 59 × 256 μm3) withmaximal intensities
less than 250 (unsigned 16-bit image), standardized the remaining
blocks through a Z-score normalization, and converted them to the
unsigned 8-bit range. Next, the blocks were binarized using their 99th
percentile as thresholds, and the resulting images were transformed
using the gray-scale distance transform (GSDT) algorithm. Candidates
were identified as voxels with intensities in the range of 5 to 30 on the
transformed image, followed by a Non-Maximal-Suppression (NMS)-
like strategy to eliminate redundant candidates.

In the second step, we cropped 128 × 128 × 128-sized image blocks
on the second-highest resolution images (~59 × 59 × 256 μm3) centered
at the position of putative somas. These blocks were then distributed
to remote users on the mobile application CAR-mobile. Using this
protocol, we identified 179,115 somaswithinweeks, involving23 trained
annotators and 7 fresh annotators without any prior knowledge.

The soma locations were then optimized by applying the mean-
shift algorithm bound with Vaa3D after zero-clipping of voxels with
intensity lower than μ + σ, where μ and σ are the mean and standard
deviation of the image block. A window size of 15 voxels was used for
the mean-shift soma location optimization. Possible duplicates were
removed when two somas are within 15 voxels and their center point
intensity was lower than the average intensity of the two somas. Somas
outside of CCF-R314 regions were excluded.

Neurite detection
Neurite voxels were segmentedusing anautomatic algorithm and then
summarized the number of voxels by brain regions to produce a
region-wide vector consisting of 314 values. Each value represented
the total number of detected neurite voxels in the corresponding brain
region, normalized by the total number of neurite voxels in the brain.
The algorithm segments neurite in 191 out of the 204 brains on low
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resolution images, averaging at approximately 1 μm (x) × 1 μm (y) × 4
μm (z), for a trade-off between accuracy and efficiency. Among these,
183 brains were from 34 genetically labeled driver genes (Supple-
mentary Fig. S3). Consequently, each of the 314 regions was repre-
sented by a brain-wide neurite distribution vector, resulting in a
neurite density matrix (Md) with dimensions of 314×191. The neurite
density for each region was computed as the total number of detected
neurite voxels within that region divided by the total number of
neurite voxels detected in the entire brain. Using the matrix, we esti-
mated a pair-wise regional correlation map (Mc) with dimensions of
314×314, among which each value was the Spearman correlation
coefficient between the normalized 191-dimensional vectors of the
corresponding region. To counteract the imbalance in the number of
brains across different transgenic lines, we employed normalization
during the estimation of correlation coefficients using the “wCor”
package inR, where eachbrainwas assigned aweight that corresponds
to the reciprocal of the number of brains from the respective trans-
genic line. In cases where brains without transgenic labeling informa-
tion, we used the average of all weights.

Based on the correlation map (Mc), we assessed the intra-
compound area consistency as the distribution of correlations
between all pairs of regions within the compound area. In this way, the
distributions for all 13 compound areas were calculated (Fig. 2A).

The neurite detection algorithm is an efficient pipeline without
utilizing deep learning models. The procedure can be summarized in
6 steps:
1. Estimation of an empirical foreground threshold for each brain. This

step involved finding an empirical threshold value (thresh) to dis-
tinguish between the foreground (neurite voxel) and background
(non-neurite voxels) on the lowest-resolution image. The threshold
was estimated based on the mean and standard deviation of all
voxels: 0:9× minðmaxðμ+ 1:5σ, 400Þ, 1000Þ, whereμ andσwere the
mean and standard deviation of all voxels of the brain (16-bit image).

2. Split the brain into non-overlapping image blocks. In this step, the
third lowest resolution brain images were split into small non-
overlapping blocks for subsequent memory-affordable proces-
sing. We utilized the image blocks of Vaa3D-TeraFly files at the
specific resolution of approximately 256 voxels in eachdimension.

3. Pre-filtering. This step involves filtering out blocks that are
unlikely to contain neurite. Image block files (in compressed TIFF
format) that were smaller than a certain size (1.7 MB) or had a
maximum pixel value lower than 300 were considered neurite-
free blocks and were excluded.

4. Calculation of the salient map. An image block was firstly
denoised by an adaptive filter similar to the “ada_threshold” plu-
gin on Vaa3D. At the same time, an anisotropic salience map was
estimated through block-wise PCA analysis on 16 × 16 × 16 voxels-
sized cuboids which were upsampled from 16 × 16 × 4 cuboids of
the original image, as the resolution in z axis of the image is about
3 times smaller than that in x and y axes. The anisotropy score of
each cuboid is defined as S1�S2

S1 + S2
� S1�S3
S1 + S3

, where S1, S2, and S3 are the
eigenvalues of first, second, and third principal components of
the cuboid, similar to the content index Q in previous studies83.
The final salient map was calculated by multiplying the denoised
image and anisotropy map.

5. Thresholding. The salient map was thresholded using 0.1 × thresh
calculated in step 1. threshmaybemanually adjusted based on the
segmentation results if it was inappropriate.

6. Mapping neurite voxels to CCFv3 atlas. Finally, the identified
neurite voxels were mapped to the CCFv3 space and summarized
by regions to obtain a region-wide neurite voxel vector in the
shape of 314. The vector was then normalized by dividing it by the
total number of neurite voxels, resulting in a neurite density
vector for the brain.

Our neurite detection algorithm was qualified by the good line-
arity between the number of annotated somas and the total number of
detected neurite voxels of each brain and in each region (Supple-
mentary Fig. S3C). The considerable variety of sparse labeling and a
large number of transgenes (n = 34) and brains (n = 191) provide a
minimal-redundant neurite matrix, laying the foundation of a reliable
neurite detection. A large set of diverse labeling genes and brains
down-weights the co-expression patterns and highlights possible
morphological relationships. When two regions show a high correla-
tion between their distributions across 191 brains, it may indicate a
possible connection. To estimate the possibility of mislabeling neigh-
boring regions, we calculated correlation coefficients between the
number of annotated somas in neighboring regions for the 10 brains
with the highest annotated somas. The coefficientswere small, ranging
from 0.001 to 0.2797 (Supplementary Fig. S12). Neurite detections on
image blocks were presented in Supplementary Fig. S3A and Supple-
mentary Fig. S11A. An example of the neurite connections and corre-
sponding detections between the regions CP and GPi/GPe was
illustrated in Supplementary Fig. S11B.

Target-correlated regions detection
We considered each region as the target region and extracted
regions having a Spearman correlation coefficient of no less than
0.5 with it, thereby forming its highly correlated region set. Out
of the 314 regions, 313 regions have highly correlated regions
based on this criterion. A detailed list of these region sets is
provided in Supplementary Data 4. We classified the region sets
into two categories: intra-compound area (intra-CA) and cross-
compound area (cross-CA), based on whether the regions were
within the same compound area.

Regional module detection
We classified all regions into 18 non-overlapping subsets or initial
modules, based on the dendrogramproduced by applying hierarchical
clustering to the correlation map (Mc). The module detection process
begins by finding a seed branching point, which is the cluster with the
lowest level (i.e., the first diverging cluster) in the dendrogram, fol-
lowed by checking the number of all its subsidiary region leaves. If a
cluster contains no less than 3 regions and nomore than 30 regions, it
is defined as an initialmodule. Otherwise, wemerge the current cluster
with the most closing cluster or split it into modules. The process
repeats until all regions are categorized into a module, resulting in a
total of 18 non-overlapping initial modules.

For all the initial modules, we removed any region that occurred
less than twice in the target-correlated region sets (Supplementary
Fig. S13; Supplementary Data 4). If a module had at least two regions
remaining, it was considered a tightmodule. Otherwise, it was deleted.
Using these criteria, we identified 18 tight modules (Fig. 2B, Supple-
mentary Data 5), each with a high consistency score of no less than
0.42, where the consistency score was calculated as the average
Spearman correlation coefficient of the cross-brain neurite density
distribution for all pairs in that module.

Tracing local morphology
The local reconstructions were generated using the somas of SEU-
S182K. To avoid highly interweaved neurons, somas with more than
five neighboring somas within a radius of approximately 128 μm were
eliminated. For each soma, a block measuring 512 × 512 × 256 voxels
was cropped from the second highest resolution images, with the
soma located at the center of the block. This block size corresponds to
an approximate diameter of 236μm ineach of the x and y axes, and 512
μm in z axis around the soma, encompassing most of the basal den-
drites (98%of total compartments inmanual annotations), a portionof
the apical dendrite (63%).
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We combined two automatic tracing algorithms, All-Path-Pruning
(APP2)84, and the tubular fitting-based algorithm neuTube85, to trace
each image block. Default parameters were used for both algorithms
except that the background threshold in APP2 was set to an auto-
matically determined thresholdof μ+0.5σ, where μ and σ are themean
and standard deviation of the input image. Reconstructions fromAPP2
and neuTube were combined to get an initial reconstruction. Specifi-
cally, neuTube reconstructions were used to prune the APP2 recon-
structions, and nodes in APP2 reconstructions that did not have
corresponding nodes within 5 voxels (~2.3 μm) in neuTube recon-
structions were pruned. Images were enhanced using a signal-
background contrast enhancement method86 before being subjected
to tracing algorithms.

The generated reconstructions were subjected to a segment-
pruning pipeline, rectifying possible loops, erratic branches, and
intersections with other neurons. Each pruning step operates as an
independent filter that takes in the raw neuron tree, and the resulting
tree is the intersection of all filtered reconstructions. The detailed
pipeline can be summarized as follows:
1. Firstly, a branch pruning was performed to remove any branch

that had an excessive angle to its parent ( < 80 degrees) or had an
excessive increase in radius (1.5 times the parent branch’s radius).

2. Secondly, a crossover pruning step was carried out to expunge
branches from putative crossover structures. To do that, we
detected all putative crossover structures, including multi-
furcating nodes containing more than two child nodes and con-
secutive bifurcating nodes within five voxels. For each of the
crossover structures, we checked all connections between the
current branch and its child branches. In specific, branches with
small angles (< 80 degrees) were marked as removable. Then, we
evaluated branches with mediocre turning angles (80–100
degrees) to confirm if another branch with a large enough angle
existed between them (> 150degrees). If such a branch existed,we
removed the other branches.

3. Then, a soma pruning strategy was applied to remove branches
originating from any other putative somas. A soma candidate was
identified when the total area of a candidate node or a set of
nearby candidate nodes is large (> 500 pixel² on the maximum
intensity projection on the xy plane, corresponding to ~105 μm2).
A candidate node here is a reconstructed nodewith a radius larger
than five pixels (~2.3 μm) on the xy-plane. Nodes within 50 pixels
(~23 μm) to the current soma - were not checked. For each
detected soma, an integration of deviation angle along the neurite
path in between the detected soma and the target soma was
estimated, to locate the best cutting position. The deviating angle
is the angle between a single local branch and the radial line
connecting the soma and the nearer end of the same branch,
similar to the G-Cut43. We then calculate the integral of deviation
angles at both sides, that is, from the current branch to the
current soma and the current branch to the putative soma
respectively, by weighting the deviation angle with the branch
length. Branches with a lower deviation angle integral leading to
the putative soma were subsequently removed.

4. Next, a winding pruning was performed to remove any branch
that followed a circuitous path to the soma, defined as the ratio
between path distance and Euclidean distance being greater
than three.

5. Finally, all subsequent nodes of a pruned branch or nodes iden-
tified in the previous steps were removed, and reconstructions
with fewer than 20 nodes were discarded.

We reconstructed 15,441 local morphologies following this pro-
tocol. The morphologies were then mapped to the CCFv3 atlas and
automatically labeled the regions of the somas.

Dendritic microenvironment construction
A dendritic microenvironment was defined as the spatial-tuned fusion
of a localmorphology and its topfivemost similarmorphologieswithin
a sphere of radius 249 μm. The radius corresponds to the 50th per-
centile distance among the distances between the 5th closest neuron
and the target neuron for all neurons in SEU-D15K. The similarity
between two neurons was calculated as the Euclidean distance of their
standardized (Z-score normalized) morphological feature vectors.

Each neuron was represented using a 24-dimensional feature
vector consisting of 18 L-MeasureVaa3D features87 (except for the
“Nodes”, “SomaSurface”, “AverageDiameter”, and “Surfaces” features
of the 22 features described in the “Morphology features” section in
the Methods), the explained variance ratios of three principal com-
ponents (variance percentages of PC_1, PC_2, and PC_3), and sum-
normalized values of the first principal component (PC_11, PC_12, and
PC_13). The principal components (PC_1, PC_2, PC_3) were calculated
using principal component analysis (PCA) for all nodes in isotropic
space. The variance percentage of a principal component represents
the ratio of its variance among that of all principal components. The
microenvironment feature is a spatial proximity weighted averaging of
features derived from all six neurons constituting the microenviron-
ment. Specifically, the spatial weight for a neuron is the exponential of
negatively normalized distance. Therefore, for each microenviron-
ment, its feature was calculated as:

FM =
X6

i = 1

wi × Fi ð1Þ

where

wi =
expð�di=DÞP6
i= 1 expð�di=DÞ

ð2Þ

where FM and Fi are the feature vectors of the microenvironment and
neuron i. di is the distance between the soma of the target neuron and
its neighboring neuron i. Here, D is the sphere radius (249 μm).

To intuitively visualize the data, we used the max-relevant min-
redundancy (mRMR) algorithm to reduce the 24-dimensional micro-
environment feature vector to the three most discriminating features.
The identified top three features were straightness, Hausdorff
dimension, and variance percentage of the third principal component
(PC_3), which represent the branch bending, the fractal dimension of
themorphology, and the explained variance ratio ofPC_3, respectively.
The automatically selected mRMR features may be replaced by other
user-chosen features in the 24-dimensional feature-space. To generate
thewhole-brainmicroenvironmentmap,we initialized an empty image
of the same size as the 25 μmresolution CCFv3 atlas and assigned each
neuron’s three features to the three color-channels (R, G, B) of its soma
location in the image. The resulting map contained 15,441 data points
that clearly represented the three most discerning microenvironment
feature values. Data points located in the right hemisphere were mir-
rored to the left hemisphere, based on the widely accepted left-right
symmetry assumption, which was also validated in this work (Supple-
mentary Fig. S4, Supplementary Fig. S5). Each feature underwent min-
max normalization and linearly mapped to a range between 0 and 255
for consistent comparison.Microenvironments locatedwithin 1mmof
the middle sections along the axial, sagittal, and coronal views were
mapped to the corresponding middle sections using the maximum
intensity projection (MIP). The resulting maps were superimposed
with the boundary outlines of the CCFv3 atlas to facilitate the semantic
analysis of the featuredistribution.We employedKMeans clustering to
classify regions based on the concatenation of the mean and variance
feature vectors of all microenvironments in that region.
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Refining single neuron reconstructions and skeletons
We manually annotated 140 single neurons in their entirety from 19
fMOSTmousebrains from the 1U19MH114830-01 project at submicron
resolutions. The annotations were carried out with the CAR platform29.
Together with refined versions of previously released 1736 neurons16

we aggregated a total of 1876 single-neuron morphologies (SEU-
A1876). Each neuron-reconstruction should meet the following cri-
teria: (1) A neuron-reconstruction must have a single soma. (2) A
neuron-reconstructionmust be a single connected piece (graph). (3) A
neuron-reconstruction cannot have any loop. (4) A neuron-
reconstruction cannot contain duplicated reconstructed compart-
ments. (5) A neuron-reconstruction can have only bifurcating branches
except at the soma. (6) A neuron-reconstruction should have con-
sistently annotated dendritic and axonal segments.

Themorphologies annotated at low resolutions frequently lead to
image-morphology mismatch in the highest resolution space. To
overcome this issue, we developed a retracing strategy to refine the
skeleton skewness45. This involved a two-step process. First, the ske-
letons were split into fragments of 50 μm, and every two consecutive
middle points of the fragments were connected using the graph-
augmented deformablemodel (GD)88. The GD algorithm automatically
fits the skeleton to the nearest salient neurite with the constraints of
the original skeleton priors. In the second step, an additional step of
GD tracingwas applied to themiddle points of two consecutive refined
fragments.

L-MeasureVaa3D features
We used L-Measure features to characterize microenvironment, full
morphology, and local morphology. We calculated 22 features imple-
mented in the “global_neuron_feature” plugin of Vaa3D: “Nodes”,
“SomaSurface”, “Stems”, “Bifurcations”, “Branches”, “Tips”, “Over-
allWidth”, “OverallHeight”, “OverallDepth”, “AverageDiameter”, “Length”,
“Surface”, “Volume”, “MaxEuclideanDistance”, “MaxPathDistance”,
“MaxBranchOrder”, “AverageContraction”, “AverageFragmentation”,
“AverageParent-daughterRatio”, “AverageBifurcationAngleLocal”, “Aver-
ageBifurcationAngleRemote”, “HausdorffDimension”.

Note that while themeaning of the L-MeasureVaa3D features are the
similar to these defined in L-Measure server87 (http://cng.gmu.edu:
8080/Lm), some of them slightly differ in implementation. For
instance, in Vaa3D, features like “OverallWidth”, “OverallHeight”, and
“OverallDepth” represent the spanof all nodes or compartments along
the x (anterior-posterior), y (dorsal-ventral), and z (left-right) axes,
respectively. However, the 5% extreme values were excluded in
L-Measure server.

Full morphology analysis
We leveraged L-MeasureVaa3D features (22 dimensions) but excluded
five inaccessible features such as soma surface and total surfaces for
the manually annotated neurons, resulting in 7 global features and 10
local features for each fully reconstructed neuron. Each of the local
features was represented by four statistical characteristics: minimum,
maximum, mean, and standard deviation, resulting in a total of a 47-
dimensional feature vector. The seven global features are “Stems”,
“Branches”, “OverallWidth”, “OverallHeight”, “OverallDepth”, “Over-
allVolume”, and “Length”. The ten local features are “br_length” (path
length of a branch), “br_order” (branch order), “br_contraction” (con-
traction of a branch in L-Measure), “bif_EucDist2soma”, “bif_Path-
Dist2soma”, “asymmetry” (“Partition Asymmetry” in L-Measure),
“ampl_local”, “ampl_remote”, “tilt_local”, and “tilt_remote” (Supple-
mentary Fig. S6). We standardized all the features using Z-score nor-
malization, and evaluated neuronal similarity as the cosine distances
between these features. We also considered the spatial relationships
between neurons by calculating the Euclidean distance (d) of each
soma in CCFv3 space. We then computed the exponential of -d for

these two somas after normalization. We defined the similarity of
neurons as the product of feature similarity and spatial distance.
Spectral clustering was utilized to classify neurons into different
clusters. Specifically, we treated the entire dataset as a graph, where
the neurons in the dataset served as individual nodes, and the weights
of the connections between nodes were defined by the similarities
between the neurons.

The silhouette scores between soma locations were estimated
with the “metrics.silhouette_score”method of the scikit-learn package,
using default parameters, which are calculated as (b - a) / max(a, b),
where (a) is the mean intra-cluster distance of a sample, and (b) is the
distancebetween the sample and the cluster not containing the sample

Arbor detection and analysis
An arbor in this work is a dense-packing sub-tree. The dendritic arbors
are the complete dendrites. For axons, we utilized spectral clustering
to subdivide them into arbors. Thiswas donebycreating anundirected
graph composed of vertices that represent nodes in the original tree,
while the weights of edges between vertex pairs were represented by
the exponential of the negative distances between nodes. To facilitate
comparison,weutilized thedominant auto-clustering arbor number of
neurons in the same brain region using the majority-vote principle.
Regional features were calculated by taking the average of the features
of all neurons in that region.

We employed the number of branches (“#branch”), total arbor
volume (“volume”), and maximal spatial density (“max_density”) - the
latter being defined as the number of axonal nodes located within a
20 μm radius for every node - as three features to characterize arbor
morphology. We differentiated between proximal and distal arbors
based on whether or not the Euclidean distance from the maximal
density node to the soma exceeded 750 μm. All values of the same
feature were min-max normalized to the range of 0 to 1. The arbors of
each neuron were sorted by the Euclidean distance-to-soma and
designated as “A1”, “A2”, and “A3” (if present). For the classification of
thalamic axonal arbors, we utilized agglomerative clustering by com-
bining 4 features (the 3 aforementioned features and “distance-to-
soma”) alongside the average projection of the axonal arbors.

Detect primary axonal tract motifs
The primary axonal tract for a neuron is the longest axonal path
without short branches at the terminal side. The process of identifying
theprimary axonal tract beginsbydetermining the longest axonal path
and then iteratively removing all branches shorter than the second-
longest axonal branch from the tip of the path towards its soma. The
resulting path is the primary axonal tract, and its direction is defined as
soma to the terminal.

We thenmapped primary tracts to the standardized CCFv3 space,
grouping them according to projection subtypes, and estimated the
radius profile of each group. To this end, we sub-sampled each tract
with 200 uniformly-spaced nodes and calculated the cross-sectional
radii of points with corresponding percentiles. In specific, for a given
set of points, we computed the distance of every point to their center
in the reduced 2-dimensional space generatedby principal component
analysis (PCA), and extracted the 75th percentile as the radius. Based
on the comparison of somas and terminal radii, projection patterns
were defined as convergent, divergent, and parallel.

Detect axonal varicosities
We updated the approach reported previously77 by combining both
intensity and radius profiles along the axonal shafts. We standardized
the neuronal images by applying an enhancement pipeline86 designed
to enhance the signal-to-background contrast. The detection process
starts with partitioning the axonal skeletons into 20 μm length frag-
ments, along which we calculated the intensity and radius profiles,
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leading to the identification of initial candidates for varicosities, which
exhibit overlapped peaks in the intensity and radius profiles. False
positive results in the initial candidates were filtered out through
heuristic criteria that a varicosity should be 1.5 times larger than its
surrounding axonal nodes similar to the weight threshold in previous
studies69,89 and have an image intensity value above 120 in 8-bit images
(maximum intensity 255). Finally, we remove any possible duplicates
by deleting candidates that were closer than five voxels in highest-
resolution images, a distance roughly equivalent to the size of a typical
varicosity (1–2 μm). All detected varicosities were registered to the
CCFv3 atlas along with their morphologies using mBrainAligner. To
evaluate the varicosity detection, two independent experts manually
annotated 235 image blocks (~59 × 59 × 256 μm³) using CAR-mobile,
yielding 1,450 annotated varicosities. This manual annotation dataset
was utilized to evaluate the accuracy of the automatic varicosity
detection method.

Cross-scale feature generation
We obtained a 75-dimension cross-scale feature vector (Fig. 1E) for
eachneuron inSEU-A1876, by concatenating features derived from five
distinct morphological scales, including microenvironment, full mor-
phology, arbor, varicosity, and primary axonal tract (motif). The
microenvironment features for each neuron were acquired by
extracting the microenvironment features of the neuron in the same
soma region in SEU-D15K that had the most similar L-MeasureVaa3D

features. For microenvironment and full morphology, we utilized 18
L-MeasureVaa3D features, such as “Bifs”, “Branches”, and “Tips”, as those
in “Dendritic microenvironment construction” (Methods). The arbor
features consisted of a concatenation of dendritic and axonal arbor
features. For comparative reasons, the axons of each neuron were
arborized to two arbors. All features were standardized to a normal
distribution and concatenated. Features of a region were estimated by
averaging all neurons within that region.

We introduced a metric, called the DS matrix, to calibrate the
diversity among cell types, encompassing both intra-type and inter-
type similarities. Each value (DS value) in the matrix indicates the
average correlation coefficient between all neuron pairs for the
respective two regions (neuron types). The correlation of two neurons
is determined by calculating the Pearson correlation coefficient
between their cross-scale features. A higher value in the matrix sig-
nifies greater stereotypy, while a lower value signifies greater diversity.
The axon-axon “distance” was the Euclidean distance between the
projection vectors of the neuron pair, which was released in our pre-
vious work (Peng et al.16).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All morphometry data are accessible from both Zenodo (https://doi.
org/10.5281/zenodo.13944322) and Google Drive (https://drive.
google.com/drive/folders/1NwwTe840_0KQhv-zVLhw58LU9nntkb-F?
usp=sharing). Documentation and video demonstrations for the
dataset are available at https://sd-jiang.github.io/full_spectrum/. All
brain images are generated from projects within the BICCN initiative,
withmost of them publicly accessible through the Brain Image Library
(BIL) at https://www.brainimagelibrary.org/. The remaining 28 brain
images will be made available shortly after compilation and upload-
ing. Source data are provided with this paper.

Code availability
The source codes are available via https://doi.org/10.5281/zenodo.
13979929. Dependencies are summarized in the requirement.txt, which
can be easily installed using the Python package manager, PIP. Detailed

documentation and step-by-step instructions are provided in the repo-
sitory. Video instructions showing how to use the package is available at
https://sd-jiang.github.io/full_spectrum/. Vaa3D (version 4.001) and
Vaa3D-x (version 1.1.2) are available on the Vaa3D GitHub repository
(https://github.com/Vaa3D) in both source code and released binary
forms. Every version of Vaa3D encompasses core bindings such as
TeraFly and TeraVR, plugins that include “Simple_Adaptive_Threshold-
ing” filter, “global_neuron_feature”, Grayscale Image Distance Transform
(GSDT), and auto-tracing algorithms like APP2, neuTube, and GD. The
updated version of mBrainAligner can be found at https://github.com/
Vaa3D/vaa3d_tools/tree/master/hackathon/mBrainAligner. MorphoHub
is available at https://github.com/SD-Jiang/MorphoHub.Sourcecodes for
varicosity detection can be found at https://github.com/Vaa3D/vaa3d_
tools/tree/master/hackathon/shengdian/BoutonDetection. The colla-
borative augmented reconstruction system (CAR) is available through
https://github.com/neurogeom/CAR. The codes for full morphological
feature extraction are accessible at https://github.com/Vaa3D/vaa3d_
tools/blob/master/hackathon/shengdian/NeuroMorphoLib. Clustering
and other machine learning algorithms, including K-Means, spectral
clustering, HDBSCAN, and Principal Component Analysis (PCA), come
from the third-party package scikit-learn (version 1.2.2) of Python (ver-
sion 3.10). The Python derivative of mRMR (pymrmr, version 0.1.11,
https://github.com/fbrundu/pymrmr) is used in this paper to select the
mostdiscriminating features.Hierarchical clustering inmoduledetection
and arbor analysis utilizes the hclust library from the stats package
(version 4.2.2) in R (version 4.2.2).
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