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Abstract

Understanding sensory processing involves relating the stimulus space, its neural represen-

tation, and perceptual quality. In olfaction, the difficulty in establishing these links lies partly

in the complexity of the underlying odor input space and perceptual responses. Based on

the recently proposed primacy model for concentration invariant odor identity representation

and a few assumptions, we have developed a theoretical framework for mapping the odor

input space to the response properties of olfactory receptors. We analyze a geometrical

structure containing odor representations in a multidimensional space of receptor affinities

and describe its low-dimensional implementation, the primacy hull. We propose the implica-

tions of the primacy hull for the structure of feedforward connectivity in early olfactory net-

works. We test the predictions of our theory by comparing the existing receptor-ligand

affinity and connectivity data obtained in the fruit fly olfactory system. We find that the Ken-

yon cells of the insect mushroom body integrate inputs from the high-affinity (primacy) sets

of olfactory receptors in agreement with the primacy theory.

Author summary

Sensory systems face the problem of computing stimulus identity that is invariant with

respect to multiple stimulus features. In the olfactory system, odorant percepts often

retain their identity despite substantial variations in the odorant concentration. How can

olfactory networks robustly represent odorant identity despite variable stimulus intensity?

In the nose, odorants are sensed by the odorant receptors (ORs), the specialized proteins

that can be activated by the odorant molecules. In this study, we develop a theory for

encoding concentration-invariant odor objects. We propose that the identities of a small

group of the most sensitive ORs represent odorant identity in a concentration-invariant

manner. We argue that, although absolute values of olfactory receptor responses may

depend on concentration, their ranking remains invariant, leading to invariance in the

membership of the most sensitive (primary) group. We call this form of representation of

concentration invariant odorant identity the primacy coding model. We investigate the

mathematical principles underlying the primacy coding model and test its predictions

using connectivity and neuronal activations data from the fruit fly olfactory system. We
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find that neurons in the fly olfactory system integrate inputs from the high-affinity (pri-

macy) sets of ORs in agreement with the primacy theory.

Introduction

Our ability to predict the perceptual quality of color from a spectrum of incident light relies on

a small number of receptor types at the neural periphery and our understanding of the proper-

ties of these receptors. The dimensionality of the color space is defined by the three types of

receptors, i.e., three degrees of freedom, two of which define the planar coordinates of the

color and one that computes the total intensity of the light. The olfactory system operates with

a much larger number of receptor types at the sensory periphery (~350 in humans, ~1200 in

rodents, and ~60 in flies [1–5]). The mapping of the chemical stimulus space to the receptor

and perceptual spaces remains an unresolved problem. The discovery of such a large family of

olfactory receptors (ORs) [6] has prompted the idea that the dimensionality, D, of this olfac-

tory space is high and comparable to the number of OR types, N.

There is emerging evidence, however, that olfactory perceptual space is not so high dimen-

sional [7,8]. The embedding of human perceptual data into a curved manifold of dimension

D<10 accounts for>80% of the variance in the data, suggesting that the number of odorant

parameters relevant to the human olfactory system is <10 [8–10]. A recent success in predict-

ing olfactory metamers for humans using a mixture model, which describes each odorant with

~20 parameters, also suggests low dimensionality of the odor perceptual space [11]. Insights

into the structure and dimensionality of olfactory perceptual space should guide our under-

standing of information processing in this sensory system.

Several features of early olfactory neural circuits are strongly conserved across diverse spe-

cies, from insects to mammals [12]. Olfactory sensory neurons (OSNs) expressing ORs of the

same genetic type converge on their respective glomeruli in the vertebrate olfactory bulb (OB)

or antennal lobe (AL) in insects. To a first approximation, each glomerulus represents the level

of activation of a single OR type. This information is projected to several higher-level process-

ing centers, such as the Piriform Cortex (PC) in mammals or the Mushroom Body (MB) in

insects, by axons of the second order projection neurons. The logic underlying the connectiv-

ity between the OB/AL and these downstream target areas has been under intense scrutiny as

it seems to convey the nature of the features important for olfactory processing. The conver-

gent evolution of this ‘canonical’ olfactory circuit may suggest a conserved logic of odor infor-

mation processing across phyla [13]. If this is true, it should be possible to construct a general

theory of olfactory information processing relevant to a wide range of species.

As in the case of vision, where a color percept is formed from light with a broad spectrum

of monochromatic waves, a majority of ethologically relevant odors are mixtures of many tens

or hundreds of components [14,15]. Humans often perceive complex mixtures synthetically,

identifying a single ‘odor object’ rather than recognizing the individual components [16]. In

addition, the perceptual identity of an odor is generally stable over a range of both stimulus

and neural parameters, including concentration, background and noise in neural circuits [17–

21]. This feature of the neural code may contribute to the ability of animals to identify sources

of smells in variable environments and at varying distances.

How does an odorant retain its perceptual identity despite changes in concentration? As an

odorant concentration increases from low to high, more OR types generally become activated

[22–24]. The representations of odor identity in high and low concentration regimes can

therefore be linked by a set of ORs that activated at low concentration and are active in both
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regimes. This template comprised of high affinity OR types to a given odorant is called the pri-
macy set and the model for concentration-invariant odor coding relying on primacy sets is

called the primacy model [25]. Despite its apparent simplicity, the primacy model can explain

many psychophysical phenomena of odor perception and is compatible with known olfactory

neural network organization [25–28].

Here, we propose a new theoretical framework for mapping olfactory chemical space to the

neural spaces of OR/glomerular and higher order representations. Our theory is based on the

following main assumptions: (i) The stimulus or, in other words, odor space is of relatively low

intrinsic dimensionality. (ii) Odor identity is encoded by a small number of OR types of high-

est affinity for a given odor (primacy coding hypothesis). We will study the implications of

these assumptions for the evolution of OR ensembles and develop statistical methods to test

these assumptions in recently published connectivity data from the fly olfactory system.

Results

Primacy coding model

We will consider a model in which the activation of a receptor fr, as a function of odorant con-

centration, co, depends only on one parameter Kro, the affinity of receptor r to odorant o, and

can be described by the mass action law:

fr
1 � fr

¼ Kroco ð1Þ

In logarithmic concentration coordinates, fr = fr(co) is a logistic function (Fig 1A) [23].

When the activation of the receptor reaches a certain threshold, θ, the changes in the response

can be detected by the downstream system, at which point, the OR becomes activated and can

participate in the odorant coding. For simplicity, we will define an OR as active if its response

to an odorant is higher than a half of the maximum activity level, i.e., fr>θ = 1/2, which corre-

sponds to the odorant concentration co>1/Kro. Our conclusions are not affected by the choice

of activation threshold, as long as it is similar across all receptors. Importantly, in this model,

receptors that are activated at the lowest concentration remain active at higher concentrations.

According to the primacy coding hypothesis, the identities of a few of the most sensitive

OR types determine the perceptual odor identity associated with a stimulus. We define the pri-

macy set for a given odorant as the set of p OR types activated by the odorant at the lowest con-

centration (Fig 1A). Different odorants evoke activity in different sets of most sensitive

receptors. The primacy number, p, could vary across odorants; however, here we will assume it

to be fixed for simplicity.

A two-dimensional odor space

To explore the implications of primacy coding for the organization of an OR ensemble, we

consider an odor space comprised of two odorants (X, Y) and their mixtures. In this case, each

OR type can be represented as a point in the 2D space of affinities for the two odorants with

coordinates Kr = (KrX, KrY). An example arrangement of a receptor ensemble in a 2D odor

space is shown in Fig 1B. Introducing a pure odorant X at a concentration cX partitions the

space into two half spaces; one in which receptors are active, KrXcX>1, and the other in which

they are inactive, KrXcX<1 (Fig 1C). Increasing cX moves the boundary between the active and

inactive receptors and expands the zone of active receptors from high to low KX. If we consider

a primacy model in which two glomeruli are required to identify an odor (a p = 2 primacy

model), there is a concentration of odor X at which the first two glomeruli are activated. These
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glomeruli represent OR types of highest affinity for odorant X and represent the identity of X
in the primacy coding mechanism (Fig 1C).

Similarly, the primacy set corresponding to an odor Y can be identified by introducing the

pure odor Y at a low concentration and expanding the zone of the active ORs by increasing the

concentration until the first p = 2 OR types are activated (Fig 1D).

Eq (1) can be extended to the case of two or more odorants. Assuming the independence of

individual odorant-receptor interactions, we have (Methods C in S1 Text):

fr
1 � fr

¼ KrXcX þ KrYcY ¼ K r � cð Þ: ð2Þ

Here (Kr�c) is the scalar product between the vector of affinities of a receptor r for the set of

molecules X and Y, Kr = (KrX, KrY), and the vector of concentrations c = (cX, cY). Receptor acti-

vations can be described by an equation that explicitly accounts for the overall concentration

of the odor mixture:

fr
1 � fr

¼ K r � qð Þc ð3Þ

Here c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
X þ c2

Y

p
is the Euclidian length of the concentration vector representing the

overall mixture concentration and q = [cX, cY]/c is a unit vector in the direction defined by the

ratio of the mixture components’ concentrations. For a given mixture concentration c, the acti-

vation level of an OR is determined by the projection of its affinity vector Kr and the unit vec-

tor describing the concentrations of the mixture components q, i.e. Kr�q. The most active ORs

Fig 1. Primacy model in 2D. A. Receptor response curves as a function of odorant concentration. Solid circles

correspond to effective threshold concentrations or inverse affinities: cthro ¼ ðKroÞ
� 1

. For a certain concentration

(dashed line), the ORs with a threshold below this concentration (solid red circles) are in an active state. These ORs

form a primacy set with the primacy number p = 2 for this odorant. B. Representation of receptors in 2D space of

affinities for odorants X and Y: KX and KY. C. An odorant X at concentration cX activates all receptors for which

KrXcX>1 (red). For the given primacy number p = 2, the identity of odor X is defined by the two most sensitive

receptors (red segment). D. The same for odor Y. E. A mixture of two odorants X and Y activates receptors, which are

above the line perpendicular to the unit vector q = [cX, cY]/c, where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
X þ c2

Y

p
. F. Primacy sets for all possible

mixture vectors q define a primacy hull (red), a 1D line in the 2D space. Receptors in the primacy hull (red) are

retained in the genome. All other ORs (empty circles) are expected to be eliminated from the genome (pseudogenized).

https://doi.org/10.1371/journal.pcbi.1012379.g001
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are those with the largest value of Kr�q (Fig 1E). For a p = 2 primacy model, the primary recep-

tors are the two points with the largest projection onto the vector q, i.e. the two ORs activated

at the lowest concentration of the mixture (Fig 1E). By considering the primacy sets of all pos-

sible mixtures, i.e. all possible vectors q in this 2D odor space, we trace out a hull containing all

OR types that belong to at least one primary set (Fig 1F). We call this structure a primacy hull.
The primacy hull contains all OR types that belong to at least one primacy set. According to

the primacy model defined here, odor identity is encoded by the OR types of highest affinity

for a given odorant, i.e., primary ORs. The primacy hull includes all odorant identities that can

be encoded by a particular set of ORs within the primacy coding model (four in Fig 1F). ORs

that have low affinities for every odorant are not included in any primacy set and do not partic-

ipate in odor identity coding. Unless such ORs participate in the encoding of odorant features

other than identity or have some other non-olfactory coding function[13], they are likely to be

pseudogenized and eliminated from the genome (Fig 1F). Thus, one of the predictions of the

primacy model is that the functional ORs should belong to a primacy set of at least one odor-

ant and therefore belong to the primacy hull, unless they are involved in some other processes.

Eqs (1–3) follow from the receptor-ligand binding model which does not include some

important mechanisms involved in odorant-OR interactions, such as antagonism [29, 30] or

potential multiple odorant binding sites per OR [31]. Nevertheless, following Refs. [31–37], we

will adopt this model for mathematical convenience. Importantly, in the linear model Eqs

(1–3), primacy sets do not depend on the choice of activation threshold, as long as it is the

same for all receptor-odorant pairs. Indeed, according to Eq (3), primary receptors can be

determined as p ORs with the highest projection of the affinity vector Kr on the mixture con-

centration vector q, i.e. the receptors activated at the lowest mixture concentration. This state-

ment is not affected by the particular response level fr = θ at which this response becomes

detectable. We therefore adopted θ = 1/2 here for simplicity. We analyze the implications of

nonlinear interactions between odorant molecules for the primacy model in Methods D in

S1 Text.

Higher-dimensional odor spaces

As in the preceding 2D model, in the case of more odorants present, ORs can be represented

by vectors of affinities to individual odorants in a D-dimensional odor space: Kr = [Kr1, Kr2,. . .,

KrD]. The receptor response to a mixture is then described by Eq (3) with the odor mixture

represented by the unit vector: q = [c1, c2,. . .,cD]/c where c ¼ ðc2
1
þ c2

2
þ . . .þ c2

DÞ
1=2

. At a given

concentration, a D−1-dimensional plane orthogonal to the vector q separates the active and

inactive receptors. Increasing the odor concentration moves this plane toward the origin of the

coordinate system and recruits additional receptors. The first p activated ORs form a primacy

set for the mixture defined by the vector q. The primacy number, p, and the dimensionality of

the odor space, D, are independent parameters. In the previous example we explored the case

in which p = 2; each odor identity is represented by two nodes (OR types), which may be

thought of as a segment. In general, a primacy set can be represented by a composition of p
interconnected points forming a (p−1) -simplex: p = 2 corresponds to a line segment, p = 3

forms a triangle, and p = 4 forms a tetrahedron (Fig 2A).

The primacy hull is a simplicial complex (a collection of simplexes) obtained by sweeping

planes through a collection of points; for each plane, the first p encountered points (those of

the highest affinity) are associated into a simplex and added to the complex (Fig 1). The pri-

macy hull therefore includes the convex hull as a subset; it may also include points internal to

the convex hull (Fig 2B). Examples of primacy hulls for D = 3, p = 3 and for D = 6, p = 7 are

shown in Fig 2C and 2D. The latter hull is projected onto 3D space for display purposes.
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The primacy hull includes all odorant identities that can be encoded by a particular set of

ORs within the primacy coding model. Its vertices include the ORs that belong to at least one

primacy set. Its edges connect ORs that belong to the same primacy set. Odorant mixtures of

similar composition are expected to yield the same primacy set if the corresponding q-vectors

are close to each other in the odor space. The number of odorant identities in the primacy hull

is finite but grows both with the number of ORs and the primacy number. We assume that the

number of odorant identities encoded using this mechanism is sufficient to represents and dis-

tinguish the set of relevant mixtures.

The full set of volatile molecules likely includes millions of compounds, yet the description

of a primacy hull in D~106 is not very useful. As discussed in the introduction, some experi-

mental evidence suggests that the dimensionality of the odor space is low. We will next formu-

late the low-dimensionality assumption within our model. Eq (2) relates receptor activity to

both receptor affinities and concentrations of mixture components. The affinities can be deter-

mined as the inverse concentration thresholds Kro ¼ ðcthroÞ
� 1

estimated from the concentration

dependencies of neural responses (Fig 1A). Here cthro is the concentration of a monomolecular

odorant o, at which a receptor r is activated at half of its maximum magnitude.

The affinities Kro used in Eq (2) describe the affinity of N ORs for M monomolecular odor-

ants. These quantities can be combined into an affinity matrix K which has dimensions N×M
(N~103, M~107). If K can be accurately represented by a product of two matrices of much

smaller size, RN×D and QD×M, where D�N, M, we can say that the dimensionality of the odor

E

A

K R Q

D

D

M odorants
M odorants

N
re

ce
pt

or
s

N
re

ce
pt

or
s

2p 3p 4p

DB C

Fig 2. Primacy hull in higher dimensions. A. Geometrical representation of primacy sets for different primacy

numbers: p = 2: 1-simplex, a segment; p = 3: 2-simplex, a triangle; p = 4: 3-simplex, tetrahedron. B. An example of

primacy hull for a random set of points in 2D (p = 2). A primacy hull is a set of simplexes that reside on the extremes of

the given set of points. C. A primacy hull for D = 3, p = 3. A ~2D surface is tessellated by triangles, each of them

representing an independent odor identity. D. The same for D = 6, p = 7. 6D manifold is projected onto 3D space for

visualization. E. Decomposition of affinity matrix K into two low-dimensional matrices: Q is a low-dimensional matrix

of basic odor features and R is a matrix of receptor affinities for these basic features.

https://doi.org/10.1371/journal.pcbi.1012379.g002
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space is low (Fig 2E):

K ¼ R � Q ð4Þ

Here Q is a D×M matrix placing every molecule into a D-dimensional space of “properties

of interest” to the olfactory system. It describes to what degree these properties are present in

each of the M molecules. These properties may include molecular weight, measures of polarity,

size, and other potentially more complex molecular features [8, 10, 38]. R is a N×D matrix rep-

resenting every receptor as a point in the D-dimensional space of molecular properties. The

affinity of the receptor r for a (monomolecular) odorant o is determined by the scalar product

of the corresponding row in the matrix R and a column in the matrix Q, both of which are D-

dimensional. If the number of odorant parameters sampled by the olfactory system is on the

order of the dimensionality of human perceptual space, i.e. D~10, then the simplification

resulting from Eq (4) can be substantial [8, 10].

Eq (4) describes the affinities of receptors to pure odorants. The responses to mixtures can

be obtained by combining Eqs (2) and (4), which results in

fr
1 � fr

¼ Rr � ~qð Þ ð5Þ

Here, we introduced a D-dimensional vector ~q ¼ Qc describing the concentration of odor-

ant properties in the mixture described by the vector c. For example, if the ORs were sensitive

to the molecular weights of monomolecular compounds, as suggested in Ref. [10], one compo-

nent of the vector ~q would represent the concentration of molecular weight, i.e. the molecular

weight per liter of gas. The role of the D×M property matrix Q is therefore to project the con-

centration vectors of mixture components which may have millions of dimensions to a much

smaller D -dimensional space of properties relevant to the olfactory system. The vector Rr is a

D -dimensional row of the matrix R which describes the OR sensitivity to these properties. In

the case of mixtures, the activation level of a receptor is determined by the dot product

between the low-dimensional vectors of affinities and property concentrations, similarly to Eq

(2). In this case, instead of a description in the space of affinity vectors Kr, the primacy sets and

the primacy hull are built in the space of relevant odorant properties Rr. This implies that dia-

grams like the one presented in Figs 1 and 2B–2D are constructed from the components of

vectors Rr rather than vectors Kr. Thus, the approach described above, including the geometric

constructs, such as primacy sets and the primacy hull, is valid in the case of low-dimensional

olfactory space [Eq (4)] despite the odorant mixtures including, potentially, millions of mono-

molecular components. Overall, we suggest that, in the case of low-dimensional odor space,

the mechanism of coding of odor identity in the primacy sets described above applies in the

space of odorant properties.

Connectivity to higher brain regions. The coactivation of primary ORs could be detected

by feedforward connectivity from ORs/glomeruli to higher processing centers, if the connec-

tivity contains information about the primacy hull. In this mechanism, the projections from

individual primacy sets of ORs/glomeruli would converge on distinct cells in the piriform cor-

tex (PC) or the mushroom body (MB) in insects (Fig 3). PC/MB neurons are expected to

respond when the corresponding primacy ORs are co-activated (Fig 3A and 3B). This predic-

tion suggests that, the feedforward connectivity contains high-order correlations induced by

the presence of the primacy hull in OR affinities. It also suggests that the connectivity is related

to the OR responses: PC/MB cells may integrate inputs from the OB/AL neurons with the

strongest affinity for an odorant. Below, we will test this prediction using recent AL-to-MB

connectivity and OR-odorant affinity data from D. Melanogaster.
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In the connectivity model proposed above (Fig 3A and 3B), only a single PC neuron, corre-

sponding to a primacy simplex, responds to the presentation of an odorant. Experimental data

in mice shows that the PC contains about NPC�2�105 pyramidal neurons out of which about

5%, i.e. na~104, respond to an odorant [39, 40]. One way in which a primacy model can gener-

ate 104 responses is if individual neurons in the PC represent faces of the primacy simplex

rather than the full p−1-simplex itself (Fig 3C). These faces are also simplexes themselves. For

example, a triangle or a 2-simplex contains three sides as faces, which can be viewed as 1-sim-

plexes. A tetrahedron, a 3-simplex, contains four triangles (2-simplexes) as faces (Fig 2A), etc.

Overall, the number of n -point faces of a primacy (p−1) -simplex is given by the binomial

equation

Fn;p ¼
p!

n!ðp � nÞ!
ð6Þ

KY

5

4

3

21

KX

1 2 3 4 5

1 2
3

4
5

KX

KY

KZ

12 3 45
glomeruli/receptors

A

B

glomeruli/receptors

cortical cells

a b

a b

cortical cells

d

c

a b dc

ˆ :S

ˆ :S

1 2
3

4
5

KX

KY

K

12 3 45
glomeruli/receptorsC

a b
cortical cells

Z

ˆ :S

Fig 3. Suggested feedforward circuit which can process the primacy information. A. Left: Primacy hull for D = 2

and p = 2; a, b, c, d are discriminable odor identities. Right: connectivity between ORs 1, 2, . . .5 and cortical cells

(insect mushroom body cells) corresponding to different odor identities. The glomeruli from the same primacy sets

converge to the same cortical cells. B. The same for D = 3 and p = 3. Only two example simplexes are shown. C.

Subprime connectivity model. Individual cortical cells represent the faces of primacy simplexes (sides of the triangles).

Individual odor identities are encoded by populations of neurons marked ‘a’ and ‘b’.

https://doi.org/10.1371/journal.pcbi.1012379.g003
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For example, a 4-vertex simplex (tetrahedron) contains 4!/3!/(4–3)! = 4 3-vertex faces (tri-

angles) and 4!/1!/(4–1)! = 6 2-vertex faces (segments, Fig 2A).

We propose that the responses of cells in higher brain regions such as PC or MB reflect the

activations of simplexes that are subsets or faces of the primary simplex corresponding to the

presented odorant identity. This proposal may explain the large population of cells activated in

the PC and MB in response to an odor. For example, in the mouse PC, an odor activates

na~104 cells [39, 40], which roughly corresponds to the primacy number of p = 16 and the

number of converging connections onto a PC cell n = 8: F8,16�1.3�104. Below, we will refer to

the faces of the primary simplex as the subprime simplexes. The complete set of subprime sim-

plexes of a given degree uniquely represents the primacy simplex. For example, in Fig 2A, the

set of four triangles uniquely represents the primacy tetrahedron. Such a coding scheme may

provide robustness to noise. A distributed representation of an odor is much less sensitive to

the failures of individual neurons to be activated. If a single neuron in the PC or MB represents

an odorant identity (Fig 3A and 3B), silencing this neuron will eliminate the perception of this

smell. In the case where individual neurons represent the subprime simplexes corresponding

to the same odor (Fig 3C), a failure of activation of individual neurons due to the presence of

noise can be compensated by a pattern completion mechanism implemented by associative

circuits in the PC [41]. This can be accomplished if the subprime simplexes corresponding to

the same primacy simplex are connected by synapses with positive strength, similarly to a

Hopfield network. Overall, we suggest that cells activated in the PC represent the faces of the

primacy simplex corresponding to the stimulus identity. These representations can be gener-

ated by the feedforward OB-PC (or AL-MB in insects) connectivity that contains the primacy

hull structure in the weight matrix and may be facilitated by the recurrent connectivity in the

PC.

Experimental predictions

According to our model, the AL-MB or OB-PC connectivity is expected to contain a distrib-

uted representation of the primacy hull. Specifically, we expect i) connectivity data to have a

low-dimensional component that is consistent across members of the same species and ii)

individual MB/PC neurons to integrate inputs from high affinity ORs to an odorant (primacy

sets).

Below we test these two predictions in the fruit fly (D. Melanogaster) using two independent

connectivity datasets from two individual flies and an OR-odorant affinity dataset. We will use

the terms OR and glomerulus interchangeably to refer to a genetically defined olfactory infor-

mation channel consisting of a single glomerulus and its homotypic OR.

Using existing data on connectivity and OR affinities to test the primacy

model

In the fly, OR activity is relayed to the MB via projection neurons (PNs); a majority of PNs

receive their inputs from only a single glomerular channel. Each OR/glomerular channel is

associated with several PNs. The principal cells of the MB, the Kenyon cells (KCs), are the

major targets of PN axons, with a single KC integrating ~5–6 glomerular/OR type inputs. Two

recent studies describe PN-KC connectivity in two adult flies. The FlyEM dataset contains the

PNs originating from all 51 olfactory glomeruli and terminating at a large number of KCs

(NKC = 1784 out of a total estimated ~2000–2500 KCs per MB hemisphere) [42]. The FAFB

dataset includes connectivity for 51 glomeruli and 1344 KCs [43]. Using this binarized
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connectivity data (Fig 4A and 4B), we can interrogate the logic governing KC integration of

OR channels.

To test the prediction that the PN-KC data contains a low-dimensional component that is

consistent across individual flies (experimental prediction i), we first compare the FlyEM and

FAFB connectivity matrices. We aligned the two data matrices along the PN dimension by

grouping the PNs based on the identity of the glomeruli/ORs that they receive the primary

input from. As there is no simple way to align KC identities across different animals, we started

with analyzing the similarity of connectivity between individual glomeruli. These similarities

were defined as the Pearson correlation coefficients between pairs of glomeruli in terms of

their projections to KCs computed for both FlyEM and FAFB datasets (Fig 4C and 4D). We

observed a substantial correlation between the similarity matrices for the two datasets

(R = 0.47, Fig 4E). The correlation was eliminated by shuffling either of the connectivity matri-

ces (Fig 4F). Following Ref. [44], we used a shuffling procedure that preserves the number of

connections from each glomerulus to all KCs and from each KC to all glomeruli (KC in- and

glomerulus out-degrees). The presence of a significant correlation in connectivity between the

two animals suggests that the glomerulus-KC connectivity matrices share a common structure

between the two individual animals.

Above we hypothesized that if ORs sample a low-dimensional subspace of the affinity

space, this subspace should be reflected in the connectivity structure consistent across mem-

bers of the same species (experimental prediction i). To further characterize this common

structure in the two connectivity datasets, we applied linear and nonlinear dimensionality

reduction techniques to the glomerulus-glomerulus similarity matrices. Linear dimensionality

reduction methods, such as the principal component analysis (PCA), place the objects (here–

glomeruli/ORs) on a flat surface, while nonlinear methods, such as Isomap, arrange them on a

curved manifold of a given dimension. The quality of these embeddings can be assessed by the

variance in the data explained by the embeddings. We applied both methods to the glomeru-

lus-glomerulus connectivity similarity matrices (Fig 4C and 4D). First, we applied the PCA

(flat) method (Fig 4G and 4H). We found that the first two dimensions of the PCA space of the

data explain more variance than those of the shuffled datasets (again, shuffling was performed

in a way that preserves the in- and out-degrees for each KCs and PNs respectively, as in

Ref. [44]) (Fig 4G). We also found that the same glomeruli/ORs in the two flies resided near

each other when placed in the first two dimensions of the PCA space (Fig 4H, root mean

squared deviation (RMSD) of the 2D positions between the two datasets is 5.9, versus

RMSD = 13.5 for the randomly shuffled data, p<10−6, t-test). Our further analysis indicates

that the first dimension in the embedding space is correlated with the sensitivity of olfactory

receptors for food, while the second dimension has no clear functional significance (S1 Fig).

Both the first and the second dimensions are not obviously related to the degree of connectiv-

ity of the KCs and instead are produced by the glomeruli projecting to specific subsets of KCs

(S2 Fig).

The first two flat dimensions of the data explained only about 9% of the variance in the con-

nectivity data. As suggested by earlier work on the embedding of olfactory spaces [8, 9], the

OR affinities may be better approximated by a curved low-dimensional manifold. To account

for this possibility, we used the Isomap algorithm [45] (see Methods H in S1 Text). The first

two dimensions of the curved Isomap space account for about 39% (FlyEM) or 35% (FAFB) of

the variance in the connectivity data (Fig 4I, as quantified by the variance explained within the

Isomap manifold). The datasets contain more variance along the first two dimensions (Fig 4I)

as compared to the shuffled data with preserved in- and out- degrees [44]. In addition, the

individual glomerular connectivities, when embedded into a curved 2D manifold are situated

in closely matching locations in the two flies (Fig 4J, RMSD = 47.2 versus RMSD = 83.5 for
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shuffled data, p<10−5, t-test), suggesting that the structure of PN-KC connectivity is preserved

between different individual animals within the same species. Overall, our findings demon-

strate that the glomerulus-KC connectivity contains low-dimensional structure, as hypothe-

sized in our primacy theory. Such connectivity structure can be identified in two different

animals, suggesting that it is specified genetically. The structure is eliminated by the random

shuffling of data which argues against the hypothesis of fully random OR-KC connectivity.

Is this conserved structure related to OR affinities for odorants? Above, we suggested that

individual KCs integrate inputs from ORs displaying high affinities for certain odorants (Fig

3). This hypothesis, listed above as prediction ii), can be tested by comparing the connectivity

data (FlyEM, Fig 5A) with the DoOR dataset[46] (Fig 5B). DoOR contains the most substantial

description of Drosophila OR-ligand affinities available. Although not all OR-ligand pairs are

present in the data (Fig 5B), we can compute approximations of the primacy sets for 156 odor-

ants. To compare the odor response data to the connectivity data, we first performed an analy-

sis of the OR-OR similarity matrices in terms of their connections to KCs and in terms of their

participation in the primacy sets. If KCs integrate inputs from high-affinity (primacy) ORs, the

matrix of OR-OR similarities in connectivity (Fig 5C) is expected to be correlated with the

OR-OR primacy similarities (Fig 5D). First, from the OR affinity matrix (Fig 5B, left panel), we

computed the primacy matrix for primacy number p = 5 (Fig 5B right panel). In this matrix,

each element is equal to one if the given OR belongs to the set of p = 5 strongest responders to

the given odorant and zero otherwise. Using this primacy matrix we calculated the OR-OR

correlation matrix and compared it to the OR-OR connectivity correlation matrix for the sub-

set of glomeruli with a single OR input. We found that the two matrices are significantly corre-

lated (R = 0.185, p<10−4), which suggests a relationship between the high-affinity sets of ORs

and the OR-KC connectivity. The low value of the Pearson correlation is expected here since

we do not have access to the entire set of odorants ethologically relevant to the species and not

all OR-ligand pairs are present in the data (Fig 5B). The results of this analysis carried out for

other values of the primacy number p = 1–8 are shown in S5 Fig.

Can we directly compare the OR-KC connectivity matrices to the primacy sets of the odor-

ants present in the DoOR dataset? To perform this analysis, for each KC, we computed the

overlaps (matrix product along the shared dimension) between the connectivity data and the

primacy sets of ORs for each of the 156 odors present in the DoOR data. We can then find, for

every odorant, a ‘grandmother’ KC (gKC, Fig 3A and 3B), i.e. the KC for which the overlap

between its connectivity with the primacy OR set for this odorant is the highest. Using this

procedure, we can find 156 gKCs for each of the odorants present in the DoOR dataset and the

156 corresponding overlaps. According to primacy theory, the KCs should integrate inputs

Fig 4. Non-random low-dimensional structure in PN-KC connectivity that is conserved across animals. A, B.

Glomerulus-KC connectivity matrices from FlyEM and FAFB datasets. C, D: Glomerulus-glomerulus connectivity

similarities (Pearson correlations of connectivities). E. Glomerulus-glomerulus connectivity similarities in two datasets

against each other. The correlation in glomerulus-glomerulus connectivity similarities is r = 0.47 (p<0.01). F.

Similarity between datasets disappears if one of the datasets is shuffled while preserving the connectivity matrix in- and

out- degrees (right)[44]. We observed that the average correlations for bootstrapped connectivity data in which KCs

were selected with repetitions is somewhat lower than for the intact data in panel E. G. Variance explained per

dimension as a function of the PCA dimension (inset–total cumulative variance explained). PCA analysis shows that

the first two linear dimensions are significantly different from random. H. Connectivity matrices in two datasets

projected onto the first two dimensions. Points represent individual glomeruli. The same glomeruli in two datasets

(different animals) are connected by black segments and reside near each other in the 2D embedding suggesting that

the first two dimensions of the connectivity matrix are conserved across datasets. I, J. The same analysis using a non-

linear low-dimensional embedding technique (Isomap) shows that the first two dimensions in the connectivity data

are both different from random (I), explain more variance in the data than the linear algorithm (PCA), and are

conserved across datasets (J). The number of nearest neighbors for the Isomap algorithm (inset) was chosen as

described in Methods H in S1 Text.

https://doi.org/10.1371/journal.pcbi.1012379.g004
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from primacy sets, so the overlaps between the gKC connections and the primacy sets are

expected to be higher than for random connectivity. We find, however, no enrichment in the

overlaps between connections and primacy sets for 156 gKCs identified in data compared to a

randomly shuffled connectivity [44] (Fig 5F, FDR adjusted p-value (q-value) > 0.05). This

finding suggests that the processing of the primacy information in the AL-MB network may

not be based on the ‘grandmother’ KC mechanism (Fig 3A and 3B).

Individual odorants activate>50 KCs in the MB [47, 48], suggesting that the population of

KCs may represent different subsets of the primacy set for the odorants (Fig 3C). We suggested

that these subsets can be viewed as individual faces of the primacy simplex [Eq (6), Fig 3C].

This mechanism is more robust than the one based on gKCs, in which only one cell is activated

in the MB representing the primacy simplex. To test this population-based mechanism, for

each odorant, we identified not one but 50 KCs with the highest overlaps between connections

and primacy sets of ORs. We thus evaluated 156 x 50 values of overlaps between connectivity

and primacy sets for the odorants in the DoOR dataset. We have found a substantial enrich-

ment in the number of higher overlap scores for the FlyEM connectivity compared to random-

ized connectivity matrices [44] (Fig 5H, FDR q<0.05). The enrichment can be seen in the

presence of the red (positive) band to the right of the blue band in Fig 5H indicating a larger

number of higher overlaps compared to the random case. The enrichment in the overlaps

between OR-KC connectivity and primacy sets is observed for responsive KC population sizes

as low as 10 (Fig 5G) and primacy numbers in the range between 2 and 5. These findings indi-

cate that, for individual odorants, a population of KCs has connectivity that is correlated with

the primacy sets of ORs for this odor (Fig 3C), rather than individual gKC (Fig 3A and 3B).

This correlation is significantly higher than that observed for randomized connectivity with

preserved in- and out-degrees. We analyzed the sensitivity of our analysis to the missing

entries in the DoOR dataset in S6 Fig. Collectively, our analyses support our hypotheses

regarding the processing of primacy information in the fly olfactory system by confirming i)

the presence of a low-dimensional structure in the feedforward connectivity that is shared

across individual members of a species, and ii) that individual KCs integrate inputs from ORs

with high affinity for an odorant (elements of primacy sets).

Discussion

How can the nervous system link the representation of the same odorant at low and high con-

centrations? According to the primacy model, the odor identity is encoded by the OR types

with the highest affinity for a given odorant, i.e., the primacy set of ORs. In air-breathing ani-

mals, odor exposure is defined by a sniff cycle, and the primacy set is activated at the beginning

of a sniff cycle. As such, the primacy set is expected to be invariant to the ambient odor con-

centration and can link odor identity percepts across concentrations.

Hopfield proposed a model that attributes an odor identity to the sequence of receptor neu-

ron activation [49]. In his model, an increase in odorant concentration leads to a temporal shift

in the entire OR activity pattern [30, 50–52]. However, it is not clear how such a model can pro-

cess the additional signals from the receptors that were not activated at low concentrations but

are recruited at higher concentrations. Alternative models of concentration invariant identity

assignment based on the normalization of bulbar responses may only partially solve this prob-

lem [53–56]. Indeed, such a normalization requires integration of the inputs across all channels,

or glomeruli [57] including those that are activated later in the sniff cycle [58]. Such mecha-

nisms seem to preclude odor-guided decisions based on early olfactory inputs [25, 59].

Several lines of experimental evidence support the primacy coding mechanism. To discrim-

inate two odorants, animals use the information accumulated during a short temporal window
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(~100 ms) at the beginning of the sniff cycle [25] and make these decisions before the entire

ensemble of olfactory glomeruli is activated [58]. These odorants were presented at random

concentrations. Similarly, the concentration-invariant cortical representations are found to be

formed early in the sniff cycle [27]. A recent study, in which the timing of receptor activation

was controlled optogenetically, demonstrated higher relevance of early activated glomeruli for

sensory object identification [28]. Earlier studies in insects showed that the neural activity tra-

jectories, in response to odor stimuli, diverge quickly for different odorants, but, initially, go

together for the same odorant at different concentrations [60]. These results are consistent

with the primacy coding mechanism.

The primacy model defines the primacy set as either the set of the most sensitive receptor

types (affinity primacy) or as a set of the earliest activated receptor types/glomeruli (temporal

primacy). In this study, we assumed that affinity and latency are highly correlated. While this

is a reasonable assumption, OR activation latency may be affected by factors other than affin-

ity, such as the solubility of an odorant in the mucosal layer [61] or the receptor distribution in

the epithelium. Although the conclusions of the primacy theory are valid for both affinity and

latency-based coding mechanisms, different forms of primacy may exist in different species.

For example, in animals with a slow sniffing cycle, such as fish, affinity-based primacy may be

a viable mechanism.

In addition to the primacy coding hypothesis, we proposed the hypothesis that the olfactory

system samples a low-dimensional subspace in the space of odorant properties. We concluded

that if olfactory space is low-dimensional and odorant identities are encoded according to a pri-

macy code, evolutionary dynamics will drive ORs to reside along a thin high-affinity boundary

that we call the primacy hull. In this model, the ORs that do not have a high affinity for any of

the features of interest to the olfactory system will ultimately be pseudogenized. Thus, both the

primacy and low-dimensionality assumptions are necessary for the primacy hull to exist. If, for

example, the olfactory space is instead high-dimensional, the primacy mechanism may still be

valid [25]. In this case, every OR can be a member of the primacy set, and, thus, evolution will

favor the retention of all of the ORs in the genome. The hypothesis of the low-dimensional stim-

ulus space may also be compatible with alternatives to the primacy coding mechanisms. Pri-

macy and low dimensionality are therefore two independent assumptions of our model.

Besides these two main assumptions, we have made many other simplifications that are fre-

quently made in the olfactory literature. For example, we assumed that receptor activation by odor-

ant mixtures follows a simple linear-nonlinear (LN) relationship [Eq (2)]. Although this

approximation is conventional [36, 62, 63], in light of the significant recent work exploring the

effects of non-linear interactions between mixture components [29, 30, 64–66], we present an anal-

ysis of a more complex mixture model in Methods D in S1 Text. In the low concentration regime,

in which the primacy sets are determined, we recover OR activations similar to Eq (2), which justi-

fies our use of this equation to describe primacy. The formation of the primacy hull is based on the

assumption that most of the ORs that do not carry an olfactory function are eliminated in the

course of evolution (pseudogenized). This assumption seems to be supported by the almost com-

plete loss of ORs by aquatic mammals, such as dolphins and toothed whales [67]. If a substantial

fraction of ORs were involved in non-olfactory functions, such a loss would not be possible.

The early identification of a predator or food source is a factor of evolutionary importance;

by relying only on the highest affinity or shortest latency OR channels, the primacy code opti-

mizes for the speed of percept formation. On the timescales of a single sniff, the primacy

statistically significant difference is observed. G. As in (F), but for the 10 topmost KCs per odor. Statistically significant

differences are enclosed by a dashed red line (FDR<0.05). H. As in (G), but for the 50 topmost KCs per odor.

https://doi.org/10.1371/journal.pcbi.1012379.g005

PLOS COMPUTATIONAL BIOLOGY The primacy model and the structure of olfactory space

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012379 September 10, 2024 15 / 23

https://doi.org/10.1371/journal.pcbi.1012379.g005
https://doi.org/10.1371/journal.pcbi.1012379


coding provides a quick and robust mechanism for identifying an odorant irrespective of the

concentration at which it is encountered. An air-breathing animal may also increase the accu-

racy of its odor identification by sampling over several sniff cycles and integrating the informa-

tion to support a slower but potentially more accurate olfactory decisions. This speed-accuracy

tradeoff in olfaction has been previously explored [68] and does not contradict the primacy

mechanism, which operates on the time scales of a single sniff.

The primacy code involves the selective integration of early (primary) OR responses using

structured feedforward circuit mechanism (Fig 3). After the first primacy set of ORs is acti-

vated, the effects of subsequent primacy sets need to be eliminated, for example, through the

use of recurrent inhibition either in the OB [26] or in the cortex [25, 27]. In the OB, the early

activated glomeruli send signals to the cortex via mitral/tufted (MT) cells. Early MT cells acti-

vate an inhibitory bulbar network and may scramble or suppress the information from later

activated MT cells [26]. Further in the cortex, early responses drive activity in a population of

excitatory cells, which activate inhibitory interneurons via recurrent connections [27]. This

results in ‘global’ inhibition in the PC, which suppresses the contributions from later respond-

ing (non-primary) ORs. This mechanism may implement a p-winner-takes-all (pWTA) circuit

[25]. The primacy number could therefore reflect the average number of OR inputs necessary

to drive global inhibition and produce a stable representation in the PC or MB. The primacy

number may not be fixed across different odorants. The number of OSNs and MT cells per

OR type can vary widely [69, 70] leading to differences in the excitatory drive provided by dif-

ferent OR channels. Assuming a fixed threshold for activating the global inhibitory shutdown

of later responses, this would imply that the p-number for an odorant depends on the OR

channels that it activates early in the sniff cycle. For example, if an odorant primarily activates

ORs that are overrepresented at the OSN, glomerular, and MT levels at the start of the sniff

cycle, one expects the primacy number to be lower than the average. The effective primacy

number may also change if the cortical network structure results in different effective thresh-

olds for different odorants or via adaptation of the number of OSNs per OR channel at the epi-

thelium to sensory scene statistics [69]. In such cases, a stable odorant representation in the

PC/MB may still be achieved by pattern completion networks [32, 71], which can compensate

for degraded or incomplete inputs.

Our model makes two specific predictions regarding the structure of the connectivity in the

early olfactory system (AL to MB in insects or OB to PC cells in vertebrates). We proposed

that primacy information is processed by neurons in the target region (MB or PC) integrating

inputs from ORs belonging to primacy sets. In this model, target neurons respond to activa-

tions of subsets of the primacy set (Fig 3C), which makes the representations of odor identity

in the target region robust to noise. Indeed, if a PC neuron corresponding to a particular sub-

set of the primacy OR set is not activated due to fluctuations in the inputs, this PC neuron may

still be pushed over the activation threshold by the associative excitatory circuit in the PC. This

prediction yields at least two corollaries. First, the low-dimensional structure of the odor space

tessellated by the primacy sets should be present in the connectivity structure. As such, it can

be revealed by a conventional dimensionality reduction method, such as PCA or Isomap. Sec-

ond, the feedforward connectivity should be correlated with OR responses: PC/MB neurons

should tend to receive inputs from subsets of the primacy sets for specific odorants. We have

tested these predictions using two recently obtained datasets on connectivity in the D. Melano-
gaster olfactory system [42, 43] and the data on OR-odor affinities [46]. First, we found that

connectivity data from two individual flies contains a similar low-dimensional structure. Sec-

ond, we found that MB Kenyon cells are more likely to receive connections from high-affinity

(primacy) sets of receptors for individual odorants. These observations are consistent with the

primacy coding hypothesis.
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Several theories have been proposed to describe the connectivity in the D. Melanogaster
olfactory system. Many models assume that the early olfactory system performs a form of com-

pressed sensing (CS) [33, 72–77]. These models assume that odorant mixtures can be viewed

as sparse signals in terms of their molecular composition. These signals are compressed into a

denser vector of OR responses which is accomplished by multiplying them with the ligand-OR

affinity sensing matrix [Eq (2)]. Due to the requirement of the CS algorithm, the affinity matrix

is expected to be random, or, at least, lack low-dimensional structure [78]. This approach

allowed us to estimate the number of OR needed for lossless sparse encoding using the

Donoho-Tanner theorem [33, 78]. In many of these models, the function of the early olfactory

system is to perform the decoding of the compressed signal. To accomplish this step, in these

models, the feedforward OB-PC (or AL-MB) connectivity represents the sensing matrix, i.e.

the odorant-OR affinity matrix. Since the CS approach requires the sensing matrix to be ran-

dom, these theories involve unstructured connectivity between OB/AL and PC/MB. Zavatone-

Veth et al. [72] have used neural recordings to constrain the variance of the elements of the

sensing matrix. The low-dimensional structure of the affinity between ligands and receptors

was not incorporated into that model. Zhang and Sharpee [76] proposed a feedforward-only

model for decoding the sparse vector of molecular concentrations. As in other CS-based theo-

ries, the feedforward connectivity in this model mimics the random affinity matrix. A straight-

forward prediction of the CS-based models would include a correlation between connectivity

and affinity matrices (Fig 5C and 5D), with a lack of low-dimensional structure in connectivity

(Fig 4I). Grabska-Barwińska et al. [37] proposed a theory in which PC cell activity represents

marginal probabilities of single molecules to be present in the mixture. The OB-PC connectiv-

ity in their model is given by the OR-ligand affinity matrix. Pehlevan et al. [79] developed a

theory in which the AL-MB network implements an unsupervised clustering algorithm which

is derived from the k-means cost function. The vector of PN-KC synaptic weights converging

onto a given KC represents the corresponding cluster centroid. The implications of their learn-

ing rule for the feedforward connectivity are yet to be explored. Several groups have proposed

that the fruit fly olfactory circuit solves the similarity search problem using a variant of the

locality-sensitive hashing algorithm [47, 80]. This algorithm relies on a random and sparse

AL-MB matrix. Thus, a significant class of theories explores the implications of unstructured

(random) connectivity for olfactory processing [25, 81–83]. The interpretation of the fruit fly

connectivity data in the context of the theories based on random sensing deserves further thor-

ough investigation. Kepple et al. [33] have used duality to derive the circuit implementing CS

using primacy conditions. They found that the feedforward connectivity matrix should con-

tain primacy sets. In their case, the affinity matrix was unstructured and of a high rank as in

the other theoretical studies. Here, we generalized this idea to the feedforward connectivity in

the case of low rank affinity matrix (Fig 3). This prediction was supported by the fly connectiv-

ity data (Figs 4 and 5). The optimal algorithm for deducing the relevant features of the olfac-

tory stimuli in the case of low rank affinities is beyond the scope of the present study.

Recently, Zheng et al. [43] characterized the structured component in the PN-to-MB

connectivity matrix. They found a structure derived from a set of food-related glomeruli

converging on KCs more frequently than would be expected under null models. This result

is in agreement with the analysis presented here. First, this over-convergence is reflected in

the principal component analysis of the AL-MB connectivity matrix, in which food-related

glomeruli are colocalized along the first dimension (S1 Fig). The second principal compo-

nent of connectivity, however, is not related to food (S1 Fig). As both the first and the sec-

ond principal components are statistically significantly different from random, the over-

convergence of food-related glomeruli does not fully account for the observed structure in

the connectivity matrix. Second, food-related glomeruli may have a wider role in the
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combinatorial coding of other not necessarily food-related odors. We may interpret these

over-converging glomeruli as the important vertices/simplexes of the primacy hull encoded

in the connectivity.

Overall, we have explored the implications of the primacy model [25] which yields concen-

tration-invariant odor identity representations based on the ORs most sensitive to a given

odorant. We assumed that the receptors sample a low-dimensional space of odorant properties

relevant to the organism’s fitness. We argue that the evolutionary pressure to represent odor-

ants according to a primacy code leads to the arrangement of OR types along a high-affinity

surface called a primacy hull. Our multimodal analysis of fly olfactory datasets supports our

predictions about the implications of primacy coding for olfactory circuit organization.

Methods

Our methods are described in S1 Text.

Supporting information

S1 Text. Supplementary methods.

(DOCX)

S1 Fig. Functional significance of non-random features of connectivity in FlyEM and

FAFB datasets. (A) Glomeruli placed in the connectivity’s 2D PCA space. The same glomeruli

in two datasets are connected by lines. Glomeruli are colored according to their function as

indicated. The first PC of connectivity appears to be related to food-sensitive glomeruli, while

the second PC is unrelated to food. (B-D) Three first PCs for the two datasets plotted against

each other. The first two PCs (B and C) are conserved between FlyEM and FAFB datasets

(R = 0.92 and 0.78), while the third PC appears to be random. This indicates that only the first

two PCs of connectivity are conserved across individual animals. (E-H) For randomly shuffled

connectivity matrices, none of the principal components are conserved across individuals.

(PDF)

S2 Fig. The first two PCs of connectivity cannot be explained by the in-degree of the KCs.

Instead, they are related to the connectivity structure. (A) Binarized connectivity matrix in

FlyEM dataset with both ORs and KCs sorted according to their contribution to the first PC

(PC1). ORs with similar PC1 appear to have stronger connectivity, suggesting that the struc-

ture of OR-KC connections determines the contribution of ORs to a PC. (B) The number of

connections made by KC in the binarized matrix does not have a clear monotonic dependence

on PC1. Thus, the first PC is not produced by differences in the KC in-degree. (C, D) Same for

PC2. A diagonal band along the diagonal in the sorted connectivity matrices in (A) and (C)

indicates that ORs are connected to specific groups of KC, which determines both PC1s. Thus

PC1 and PC2 emerge from a specific connectivity structure. (E-H) The same analysis in the

randomized matrices shows that the first PC is correlated with the KC in-degree (F).

(PDF)

S3 Fig. Results of brute force alignment of connectivity datasets. (A) Two connectivity data-

sets aligned using the simulated annealing algorithm. (B) Same for two randomly shuffled con-

nectivity matrices. (C) Even randomly shuffled connectivity matrices share ~77% of synapses,

when aligned. Unshuffled connectivity matrices share ~78% synapses. (D) Hamming distances

between aligned KCs. Only 16 KCs are an exact match (H = 0) versus 6 KCs in the randomly

shuffled case.

(PDF)
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S4 Fig. Glomeruli and their cognate odorant receptors. Each glomerulus in the Drosophila
antennal lobe receives input from specific OR types. The majority receive input from only a

single odorant-responsive receptor type, however some glomeruli, e.g. DL1, receive converg-

ing input from >1 OR type. Left: OR types present in the DoOR dataset are represented by a

filled green circle, while a blue circle represents those ORs missing from the DoOR. Right: Glo-

meruli that are included in Figs 4 and S1 are labeled in bold and those that are included in our

analysis of DoOR data (Fig 5) are labeled in bold red. Based on data from [13] (S1 Text).

(PDF)

S5 Fig. Sensitivity of correlations (Fi 5C and D) to the choice of the primacy number. Left:
OR-OR Pearson correlation matrices for FlyEM and FAFB connectivity data (37 glomeruli).

Right: OR-OR Pearson correlation matrices for primacy sets in DoOR affinity data shown for a

range of primacy numbers. Correlations between connectivity and primacy sets are reported

for FlyEM (in purple) and FAFB (in green). Statistically significant correlation coefficients are

recorded for a range of primacy numbers.

(PDF)

S6 Fig. Sensitivity of our findings in Fig 5 to missing data. We first generate i) a surrogate

affinity matrix with similar statistical properties to the DoOR dataset and ii) a related surrogate

connectivity dataset. Both datasets are related via the same primacy hull (see Section S10

above). We impose the same missing structure on the surrogate affinity data as observed in the

empirical DoOR data and observe that the proposed overlap test can indeed detect the shared

primacy hull.

(PDF)
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