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Abstract:
The effect of replacing the amino acid at a given site in a protein is difficult to predict. Yet, evolutionary comparisons
have revealed highly regular patterns of interchangeability between pairs of amino acids, and such patterns have proved
enormously useful in a range of applications in bioinformatics, evolutionary inference, and protein design. Here we reconcile
these apparently contradictory observations using fitness data from over 350,000 experimental amino acid replacements. Almost
one-quarter of the 20 × 19 = 380 types of replacements have broad distributions of fitness effects (DFEs) that closely resemble
the background DFE for random changes, indicating an overwhelming influence of protein context in determining mutational
effects. However, we also observe that the 380 pair-specific DFEs closely follow a maximum entropy distribution, specifically a
truncated exponential distribution. The shape of this distribution is determined entirely by its mean, which is equivalent to the
chance that a replacement of the given type is fitter than a random replacement. In this type of distribution, modest deviations
in the mean correspond to much larger changes in the probability of falling in the far right tail, so that modest differences in
mean exchangeability may result in much larger differences in the chance of a highly fit mutation. Indeed, we show that under
the assumption that purifying selection filters out the vast majority of mutations, the maximum entropy distributions of fitness
effects inferred from deep mutational scanning experiments predict the characteristic patterns of amino acid change observed
in molecular evolution. These maximum entropy distributions of mutational effects not only provide a tuneable model for
molecular evolution, but also have implications for mutational effect prediction and protein engineering.
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Introduction

Since the earliest studies of homologous amino acid sequences
in the 1960s, it has been clear that amino acid replacements
often follow highly regular patterns (1, 2). For instance, thre-
onine and serine replace each other much more frequently than
most pairs of amino acids. One straightforward interpretation
for these patterns is that some pairs of amino acids are more
similar to each other in terms of physicochemical properties,
and thus are functionally more interchangeable (1). This way
of thinking brought attention to diverse ways of measuring the
physicochemical similarity of amino acids (3), and led to the
development of composite measures such as Grantham and
Miyata distances (4–7). Over time, cost matrices reflecting
the evolutionary replaceability of amino acids became an
indispensable part of how we align proteins and search sequence
space (8–10). What these approaches imply is that a particular
type of replacement has a characteristic effect determined by
the similarity of the amino acids.

Yet many other lines of evidence suggest that the effect of
an amino acid replacement depends sensitively on details of
the structural context (11–13), to the point that the identities
of the wild-type and mutant amino acids, taken in isolation,
are relatively uninformative. Broad evidence supporting this
interpretation includes the difficulty in reliably predicting
the pathogenicity of individual SNPs (11), and the detailed
biophysical analysis typically required to understand the effects
of individual amino acid replacements on protein function (14).
Context-dependence has been widely demonstrated in the
literature on genetic epistasis (15), the phenomenon whereby
the state at one genetic site influences the effects of changing
a second site. Such epistatic interactions are common among
beneficial mutations during natural adaptive evolution (16)
and during protein engineering (17), as well as among
the substitutions accumulated during long-term molecular
evolution (18, 19).

In an attempt to reconcile these two apparently contradic-
tory lines of evidence, here we aggregate data across many
different proteins (20, 21) to construct a distribution of fitness
effects (DFE) for each of the 380 possible types of amino
acid replacement using data from deep mutational scanning
assays (22, 23). Such an approach has become possible due to
advances in high-throughput mutagenesis and quantification
by deep sequencing, allowing thousands of individual amino
acid mutations to be assayed in a single study; we can then
aggregate data across studies by changing the measured values
to percentile ranks.

We find that, for a large fraction of replacement types,
the type-specific distribution of fitness effects (DFE) is not
substantially different from the overall background DFE. Even
the types of replacements that are most likely to be benign, or
most likely to be deleterious, have wide distributions of fitness
effects, consistent with a strong role of molecular context in
determining mutational effects.

However, we also observe that once converted from the origi-
nal measurement scale into percentile ranks, these type-specific
distributions of mutational effects share a common functional
form. Specifically, the type-specific distributions take the form
of the probability distribution with maximum entropy given
the mean effect of a particular type of substitution, which in
our context results in a truncated exponential distribution.
These truncated exponential distributions have the feature that

differences in the probability density of effects are most extreme
at the tails. Because of this, two distributions that differ only
modestly in the mean value may show a large difference in
the chance of being among the most benign mutations, i.e., at
the top end of the fitness distribution. This sensitivity in the
tails suggests an explanation for why evolutionary divergence
shows strong preferences for specific amino acid replacements
despite the broad distributions of effects observed for most
types of exchanges. We test this idea using a model of protein
sequence change under purifying selection, where only the most
benign mutations are allowed to fix. We show that this type of
model largely accounts for patterns of amino acid replacement
in molecular evolution. This finding suggests a resolution
for the apparent conflict in the predictability of amino-acid
replacements, with implications for understanding molecular
evolution, advancing protein engineering, and addressing
diseases triggered by amino acid changes. The universal form
we observe for type-specific DFEs also suggests a way to
interpret distributions for other types of mutant effects, i.e.,
other than fitness.

Results

Fitness data from deep mutational scanning studies. To
uncover the patterns of DFEs for 380 ordered pairs of amino
acids, we leveraged the ProteinGym dataset (24), which
encompasses about 350,000 single missense variants derived
from 87 distinct deep mutational scanning (DMS) assays.
These assays cover a wide range of functional properties,
including cellular growth rates, ligand binding, and drug
resistance, and encompass 58 distinct protein families from
diverse taxa (45 eukaryotes, 21 prokaryotes, and 21 viruses).
ProteinGym aims to establish measurement benchmarks for
mutation effect prediction in machine learning algorithms that
utilize evolutionary information. Due to its large size and
its emphasis on DMS assays that directly measure growth
phenotypes (48 out of 87 assays) or protein properties closely
related to fitness, ProteinGym is well suited to investigate
DFEs systematically.

To combine the results of different experiments, which
may have different measures and scales of effect, we rank the
mutant effect scores from each experiment and transform them
into quantiles, which vary between 0 and 1. When scores are
transformed in this way, the distribution of effects over all
changes is uniform, and when a specific type of change (e.g.,
Ala to Val) has an average score of x, this means that x is the
chance that a mutation of this type is more fit than a randomly
chosen mutation. Using this approach, we constructed 380
distinct DFEs, each defined within the range of [0,1]. The
number of data points for each DFE varies, with an average of
about 942.3 replacements per type (median 1004), and a range
from 265 for the Trp→Ser replacement to 1818 for Leu→Pro.

DFEs for 380 types of amino acid changes. What shapes do
we expect for the DFEs for replacing one amino acid with
another? If the replacement effect is mostly determined by
the physicochemical similarity between two amino acids, as
suggested by patterns of sequence evolution, we would expect
the DFE for a particular amino acid pair to be very sharp. For
instance, for amino acid pairs that are highly dissimilar, the
probability mass would be concentrated near 0 (Fig. 1, top left);
for moderately dissimilar amino-acid pairs, the probability
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Fig. 1. Illustration of type-specific DFEs as quantile distributions. Each histogram
shows the probability that a replacement of a given type will lie at a given fitness
quantile relative to the effects of other amino acid replacements in the same protein.
A distribution that is concentrated at low values indicates that the corresponding type
of replacement tends to be deleterious, whereas types of substitution that tend to be
benign will have distributions concentrated at high values. Mutational types that have
the same DFE as random mutations will appear as uniform distributions.

mass would have an intermediate value (Fig. 1, top middle);
and for very similar amino-acid pairs, the probability mass
would be concentrated near 1 (Fig. 1, top right). By contrast, if
context effects dominate, we might see a much flatter DFE, e.g.,
the extreme case of a uniform distribution over the interval [0,1]
(Fig. 1, bottom left) indicates that the DFE for replacements
of a given type is identical to the overall DFE from the same
experiment. One also could imagine more complex situations,
such as replacements that are benign in one background but
deleterious in another (e.g., surface vs. buried), resulting in a
bimodal distribution (Fig. 1, bottom right).

How do the actual distributions compare to these expecta-
tions? Fig. 2 shows the DFEs for all 380 types of amino acid
changes. None of the distributions are particularly narrow;
instead, each distribution spreads broadly over the whole set
of 15 quantile bins (note that this is also true for the marginal
distributions aggregated by the “from” or “to” amino acid,
shown in Fig. S1). If we use the Kolmogorov–Smirnov statistic
to compare these distributions with uniform distributions,
where the amino-acid identities are maximally uninformative,
we find that most have only a small difference from the uniform
distribution (Fig. S2a, median KS-statistic=0.13, where the
KS-statistic is given by the maximal absolute difference
between the empirical cumulative distribution function and
the cumulative distribution function under the null). Close to
one-quarter of the distributions (92 out of 380) are statistically
indistinguishable from a uniform distribution (Bonferroni-
corrected p > 0.05, Kolmogorov–Smirnov test).

For the distributions that are statistically distinct from
a uniform distribution, another interesting pattern emerges:
none of these distributions appear to be strongly bimodal,
rather the distributions tend to be highly monotonic, i.e., the
density of mutations in a bin either increases consistently from
low to high, or decreases consistently. This monotonicity can
be quantified by the absolute value of the Spearman correlation
between the rank order of each bin and its size (i.e., counts),
with the result that the correlations tend to be high, with a
median of 0.91 (Fig. S2b). Finally, one subtle prediction from

the physicochemical distance model illustrated in the top row
of Fig. 1 relates to the fact that distances are symmetrical,
so that the biochemical distance between amino-acid i and
amino-acid j is the same as the distance between amino-acid
j and amino-acid i. Thus, in the absence of context effects,
the distributions for i → j and j → i should be the same.
However, this symmetry does not hold for 134 out of 190 pairs
of amino acids (distributions marked with triangles; Bonferroni-
corrected p > 0.05, two-sample Kolmogorov–Smirnov test).
This kind of asymmetry again indicates the importance of
molecular context.

A universal statistical law governing the 380 DFEs. Motivated
by the qualitative similarities between the shapes of the
380 DFEs, we sought to determine whether all of these
DFEs could be explained as belonging to a single family
of probability distributions. Maximum entropy probability
distributions arise in many areas of statistics and the natural
sciences and are defined as distributions that maximize the
entropy (intuitively, the uniformity of the distribution), subject
to certain constraints (25–27). For example, the normal
distribution is the maximum entropy distribution over the
real numbers with a specified mean and variance and the
geometric distribution is the maximum entropy distribution
over the natural numbers with a specified mean. Maximum
entropy distributions have also been applied successfully in
various biological contexts, including modeling the distribution
of mutational effects on Malthusian fitness (28), site-specific
amino acid distributions (29), and cell packing geometries (30).
For our purposes, the constraints on a type-specific DFE for
quantiles are (1) that it is a distribution on the interval [0,1]
and (2) that the distribution has a particular mean, which in
this case is also equal to the probability that a mutation of that
type is fitter than a random mutant. In principle, we could
consider higher-order moments like variance and skewness as
additional constraints, but importantly, when the mean is
plotted against the variance for the 380 DFEs, the points
align along a one-dimensional curve (Fig. S3a, red points),
indicating that the variance itself appears to be a function of
the mean. Consequently, we constrain our distributions up to
only their first moments (mean).

Under these constraints on the domain of the probability
distribution and its mean, the maximum entropy distribution
turns out to be a truncated exponential distribution (27) which
can be expressed as:

p(x) = ce−λx. [1]

Here, c = λ
1−e−λ is a normalizing constant, and λ is a real-

valued parameter. This distribution has a density that is
either monotonically increasing or decreasing or else constant
(when the mean is 0.5), consistent with our observations of
the 380 DFE shapes. Furthermore, this family of distributions
predicts a very specific mean-variance relationship, which is
well-matched by our data (Fig. S3a).

To further evaluate how well these distributions fit the
380 DFEs, we estimated λ using the means of each DFE (see
Materials and Methods). To avoid overfitting, for each DFE
we used half the data to estimate the mean, and the other half
to test the deviation from the estimated truncated exponential
distribution. As can be shown in Fig. 2, in over 95 % of cases,
the observed DFEs were statistically similar to the estimated
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Fig. 2. Distributions of fitness effects for 358,080 amino-acid-altering mutations, categorized by the wild-type (row) and mutant (column) amino acids. Histograms show fitness
quantiles observed for each type of amino-acid replacement, along with the corresponding truncated exponential fit (red lines). For each distribution, µ is the mean (equal to
the probability that a replacement of this type is fitter than a random mutation) and n is the number of observations. Distributions that deviate significantly from a truncated
exponential distribution are marked with a star at the right corner, whereas black triangles in the upper left corner indicate the pairs for which forward-reverse asymmetry is
significant (Bonferroni-corrected p < 0.05, two-sample Kolmogorov–Smirnov test).
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ones (Bonferroni-corrected p > 0.05, Kolmogorov–Smirnov
test), with generally small KS-statistics (Fig. S3b).

Different DMS experiments may have systematically dif-
ferent distributions of the 380 possible replacements (due to
differing amino acid composition of the target protein and
different library construction methods). To probe whether
such differences might systematically influence shapes of DFEs,
we focused on 28 datasets that cover all types of replacements,
equalizing representation of each mutation type by either up-
sampling to the maximum or down-sampling to the minimum
count. We found that the λ values from these adjusted datasets
closely matched those from all 87 datasets (Fig. S3c and d).

Whereas the exponential distribution law fits well to
fitness quantiles, it does not necessarily apply to the quantile
distributions for other measures of mutational effect from the
same kinds of DMS studies. In particular, in Fig S4 we apply
our same analysis pipeline for measured effects of replacements
on protein stability (∆G of folding as measured in (31)) rather
than fitness or growth. We see that unlike the more integrated
measures of protein function we have been examining so far,
many of the corresponding distributions for protein stability
effects have modes at intermediate values, consistent with
the expectations based on physicochemical distances between
amino acids. Overall, roughly half of the distributions are
monotonic and are well approximated by the exponential law,
though the shapes are more extreme than for DFEs, with
few distributions close to uniform, and roughly 1/5 of the
distributions exhibit intermediate modes, some of them quite
distinctive (e.g., Thr to Asn, Ile to Val, Tyr to Phe). These
results suggest that the truncated exponential law reflects
something very general about mutational effects, applicable
to measures of fitness across many different DMS studies,
proteins, and protein functional assays, yet not applicable to
these more basic biophysical measurements. We return to this
issue in the Discussion.

Finally, it is worth noting that although we focus on
modeling rank distributions here, transforming between a DFE
for quantiles and a DFE on some other scale is straightforward.
In particular, our maximum entropy distribution simply
becomes the distribution that minimizes the Kullback-Leibler
divergence from the overall DFE on the target scale to the
type-specific DFE, subject to the constraint that a draw from
the type-specific DFE is greater than the overall target DFE
a specified fraction of the time. Practically, this translation to
a new target measurement scale requires a parametric inverse
cumulative distribution function marginalized over all types
of mutations in the target scale (see Materials and Methods),
enabling flexible modeling of pair-specific fitness effects in a
wide variety of settings.

A model of purifying selection recovers patterns of molecular
evolution. Distributions of fitness effects from DMS experi-
ments suggests that knowing the mean fitness effect for some
type of amino acid change often provides little information:
many distributions have a mean close to 0.5, and the dynamic
range is only 3-fold, from a maximum of 0.71 to a minimum
of 0.22. By contrast, molecular evolution exhibits much
more distinctive patterns, as illustrated by the more than
10-fold dynamic range of Tang’s U (32), which measures
how much more or less likely a non-synonymous mutation
of a specific type is to go to fixation relative to a random

mutation (33) based on computational analysis of natural
sequence divergence.

Here, we attempt to reconcile these observations based on
the assumption that in natural evolution the mutations that
fix will be much fitter than random mutations, and therefore
will be drawn primarily from the rightmost portion of the
DFEs. Critically, when the DFEs have an exponential shape
like the ones reported here, the exponential shape will tend to
magnify the differences between exchange-specific DFEs with
regard to both the highest and lowest fitness quantiles, e.g.,
a modest 1.5-fold difference in means corresponds to a more
than a 3-fold difference in the chance of being in the top 10 %
(Fig. 3a).

To more precisely formalize this hypothesis, suppose
that we can approximate the effect of selection on protein
evolution using a threshold q ranging from 0 to 1, such
that amino acid replacements with a fitness quantile below
q are rejected, and those above this threshold are accepted.
Each value of q induces a different set of 380 frequencies of
acceptable mutations, and the relative differences between
these frequencies are expected to become more extreme as q
approaches 1. In particular, under this model, if we write the
normalized substitution rate for an amino acid change whose
corresponding maximum entropy distribution has parameter
λ as Kλ/Ks (i.e. as a type-specific analog to Ka/Ks, or
nonsynonymous/synonymous substitution rate ratio (34)),
then as a function of q this normalized rate of evolution is
given by

Kλ

Ks
(q) = 1 − e−2(1−q)(−λ)

1 − e−2(−λ) . [2]

(The astute reader will recognize this expression as being
formally identical to the Kimura probability of fixation (35)
for a mutation with scaled selection coefficient −2λ and initial
frequency 1 − q in a Wright-Fisher population, albeit obtained
by an unrelated argument). As the selective stringency q
increases towards 1, we then find that the ratio between Kλ/Ks

and Ka/Ks = 1 − q converges to

2(−λ)
1 − e−2(−λ) [3]

so that types of substitutions with negative λ are linearly
enriched and types of substitutions with positive λ are
exponentially depleted.

Prior studies of sequence divergence patterns provide some
guidance for choosing reasonable values of q. In particular,
values for Ka/Ks, the normalized rate ratio of amino acid
changes to synonymous changes, are often in the range of 0.1
to 0.3 (36, 37). Under the simplifying assumption that all
synonymous mutations are neutral, and that beneficial changes
can be ignored, a Ka/Ks value of 0.2 would mean that 80 % of
non-synonymous mutational effects are deleterious, implying
q = 0.8; moreover, if some fraction of synonymous mutations
is deleterious, the implied value of q will be correspondingly
higher.

To assess how well this kind of model recovers evolutionary
patterns, we use the U matrix of “universal acceptability”
from Tang, et al. (32) as our target of prediction. The U
matrix, which applies to the 75 pairs of amino acids that
are interchangeable by single-nucleotide mutations under the
standard genetic code, aims to provide a pure measure of
acceptability by selection: it is derived from amino acid
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Fig. 3. Selective filtering provides a quantitative model for patterns of evolution. For the subset of “singlet” replacements accessible via a single-nucleotide mutation, evolutionary
exchangeability is represented by Tang’s U , which is derived from alignments of evolved sequences by a method designed to exclude mutational effects and to focus only on
selection (32). (A) Given the truncated exponential model for DFEs, modest differences in the mean correspond to much larger differences in the top of the distribution, e.g., a
difference of 0.4 vs. 0.6 in the mean corresponds to a 3-fold difference in the chance of exceeding a threshold q = 0.9. (B) Applying threshold selection to the DFEs for the
singlet replacements shows that the dynamic range increases as q → 1, until it roughly matches the dynamic range of U (dashed line). (C) The predicted U matrix as q → 1
shows a good correlation with the observed Tang’s U (Pearson’s r = 0.86, p = 5 × 10−23), well described by the diagonal line y = x.

sequence alignments by a method that controls for the genetic
code, sequence composition, and mutation bias. Specifically,
as shown by (33) the entries of the U matrix are proportional
to Ki/Ks, the normalized rate of substitutions of the i-th
of these 75 pairs of mutationally adjacent amino acids. In
Materials and Methods, we show that these Ki/Ks can be
estimated as the harmonic mean of the Kλ/Ks derived using
the values of λ for the forward and backwards directions of
the exchanges, so that given a value of selective stringency
q we can use the values of λ inferred from deep mutational
scanning experiments to estimate the entries of the U matrix.
In particular, to the extent that our threshold model of
selection on DFEs approximates acceptability in the natural
evolutionary divergence of proteins, it is a predictor of U,
and likewise, its correspondence with U is an independent
measure of its accuracy as an evolutionary model of selective
preferences.

Indeed, we find that, as q increases towards 1, the dynamic
range of the predicted U values approaches the observed
dynamic range of U (Fig. 3b) and the correlation between
predicted and observed U values becomes strong (Pearson’s
r = 0.86, p = 5 × 10−23), as shown in Fig. 3c. Note again
that this predictor is derived entirely independently of Tang’s
U : values of U are computed from large sets of alignments of
naturally evolved protein sequences (32), whereas our predictor
is computed by modeling selection as the left-truncation of
empirical DFEs from DMS experiments, i.e., of the red curves
in Fig. 2.

Discussion

We used fitness quantiles from a large and diverse set of
DMS studies to characterize DFEs (distributions of fitness
effects) for the 380 types of amino acid changes in proteins.
Many DFEs are nearly uniform, such that the identities of
the starting and ending amino acids, by themselves, are not
informative, reflecting the importance of molecular context
in determining the effects of mutations. In general, the
shapes of these DFEs are surprisingly well approximated by
a truncated exponential distribution, corresponding to the

maximum entropy distribution given the probability that a
mutation of a given type is fitter than a random mutation.
The shape of this maximum entropy distribution, in turn,
suggests a resolution to the apparent contradiction between
the predictable patterns of amino acid change observed in
evolutionary sequence comparisons versus the difficulty of
predicting mutational effects of SNPs or during protein
engineering because the differences between exchanges are
largest for the highest and lowest fitness quantiles. Specifically,
we we show that a model of selective filtering where only the
fittest mutations are allowed to fix applied to these maximum
entropy DFEs closely reproduces the patterns of acceptability
seen in evolutionary divergence.

Our maximum entropy model of DFEs is best understood
as a model of conservatism rather than innovation, covering
deleterious effects ranging from lethality to neutrality. The
reason for this is that the fitness assays in DMS studies
are designed by experimenters with a focus on wild-type
functionality, so that beneficial variants are typically rare
and small in effect. For the same reasons, the resulting
model of evolutionary change is best understood as a model of
conservatism or neutrality, not necessarily useful for modeling
adaptive changes, which might be either conservative or radical–
an open question in evolutionary biology (38, 39).

More generally, because the shape of the entire distribution
follows if one knows the mean, and because the mean
quantile can be estimated precisely from a modest amount of
ordinal data (i.e., rankings), it should be possible to estimate
distributions of exchangeability from much smaller and cruder
sets of data than the one used here. This is relevant to
the prospects for future experiments to explore effects of
diversity and context. For instance, it has been suggested
that evolutionary acceptability of transitions vs. transversions
varies taxonomically (40): if the exponential model holds,
exploring this type of hypothesis would require only a small
amount of data on the fitness rankings of transitions and
transversions in diverse taxa, because (when the exponential
model holds) the shape of the high end follows precisely from
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the mean, which is easily estimated from a small amount of
data.

Importantly, we find that the truncated exponential model
is not universally applicable to mutational effects. It applies
well to data from measurements of cellular fitness and protein
function shown in Fig. 2, but provides a much poorer fit
for the thermostability data shown in Fig. S3, where the
distributions of quantiles often look more like the expectations
from the chemical-similarity model (Fig. 1). In particular,
the distributions are generally sharper, and many have
intermediate modes, e.g., almost all changes from Gly to
other amino acids in Fig. S3 have an intermediate mode.
Presumably we see this difference because the distribution of
thermostability effects is much less sensitive to context, i.e., a
particular type of amino acid change can be understood as (for
instance) the loss of an opportunity for a hydrogen bond or the
addition of a methylene group, and this has a more consistent
(less context-dependent) effect on thermostability than on
protein function more generally, where folding stability will
typically be only one of several different relevant properties.

The results reported here have many implications and
potential applications in regard to modeling sequence evolution,
the interpretation and modeling of variant effects in biomedical
contexts, and in engineering and synthetic biology applications.
Because mean quantile values only range from roughly 0.2
to 0.7, actual measurement data on the effects of amino
acid changes do not support the common practice of offering
token explanations of the form “this Arg to Lys change at
position 127 is tolerated because Arg-to-Lys changes are
conservative”. The problem with this type of claim is that an
Arg-to-Lys change is only better than a random change 62 %
of the time (upper left corner of Fig. 2). A more justifiable
interpretation would be that, although Arg-to-Lys changes are
not intrinsically benign, they are several times more likely than
random changes to be in the top 10 % most benign mutations.

By contrast to the relative lack of informativeness of
mean values applied to specific outcomes, the tunable model
of selective stringency is potentially highly informative if
one is optimizing or making inferences over a large set of
outcomes. For instance, in a synthetic biology context, if
one is constructing a finite library to explore the sequence
space within n changes of the starting sequence (where n is
a small number like 3 or 8), weighting the options by the
chance of being in the top decile of fitness may provide a
considerable improvement over a naive randomization, and the
DFEs provided here are a better choice to guide optimization
than amino acid scoring matrices (e.g., BLOSUM), which
are not pure measures of functional effect, but reflect both
mutational biases and the genetic code (see 41, 42).

An even more promising approach would be to integrate
a model of selective filtering into a generalized maximum
likelihood approach to phylogenetic inference such as IQ-
TREE (43), such that different values of q could be inferred
for different branches of the tree or for different proteins. A
relatively clear prediction from basic population genetics is
that the inferred q will be higher in larger populations where
selection is stronger relative to drift. Weber and Whelan (44)
report that, in larger populations, biochemical properties are
more strongly predictive for patterns of amino acid change,
suggesting that this kind of effect is strong enough to be
observed in available data. Thus it may be possible to infer

historical changes in the strength of selection (and by inference,
e.g., population size) solely from patterns of relative amino
acid exchangeability.

Materials and Methods

Data Collection and Preprocessing. We acquired the ProteinGym
v0.1 dataset from https://github.com/OATML-Markslab/Tranception. This
dataset includes measurements of effects for various mutations,
including some that change multiple amino acids. We pruned this
data set to include solely on single amino-acid changes, resulting
in mutational effects for 358,080 replacements from 87 assays.
For within-assay mutation ranking, we employed the percentile
ranking function from Python’s pandas package, using the ‘average’
method to break ties. Additionally, to compare mutation effects
from experimental data with substitution patterns in molecular
evolution, we sourced the values of Tang’s U from Table 2 in (32).
Finally, we downloaded a data set of mutational effects on protein
stability(45) from https://zenodo.org/records/7992926. This dataset
includes measurements of the effects of 389,068 single amino-acid
mutations across 412 proteins on protein folding stability. The
preprocessing method follows the same approach as our handling of
the ProteinGym data, where raw measurements are converted into
percentile rankings within each protein.

Fitting Truncated Exponential Distributions from Sample Mean. The
probability density function for a truncated exponential distribution,
as described, takes the form p(x) = ce−λx,where the distribution is
bounded between 0 and 1 and c = λ

1−e−λ serves as the normalizing
constant. Here, λ is a positive real number. The expected value, or
mean, of this distribution is given by:

µ =
−λ + eλ − 1

λ(eλ − 1)
. [4]

This function is known to be monotonic (27). Consequently, the
sample mean, µ, uniquely determines λ. However, there is no
closed-form expression to derive λ from µ, necessitating a numerical
approach. We employ Newton’s method to calculate λ from the
sample mean, µ. For our analysis, we have utilized the complete set
of rank-transformed mutation effect data to estimate the sample
mean µ for each type of amino-acid mutation unless otherwise
indicated.

Theoretical Mean-Variance Relationship in Truncated Exponential
Distributions. The variance of a truncated exponential distribution
with parameter λ is given analytically by:

σ2 =
−λ2 + (eλ − 1)2

λ2(eλ − 1)2 , [5]

and thus the relationship between the variance σ2 and the mean µ
can be depicted as a parametric curve in terms of λ. As shown in
Fig. 3a, this curve displays an inverted U shape and is symmetric
about the line x = 0.5.The curve peaks when µ = 0.5, at which
point the truncated exponential distribution becomes a uniform
distribution.

Converting Rank DFE to DFE in other scales. Given a type-specific
rank DFE specified by equation 1, denote the inverse cumulative
distribution function (CDF) of the marginal distributions over all
types of mutations in another scale as F −1(x). The inverse CDF
G−1(x) for the focal type-specific DFE in the target scale is the
composite function of F −1(x) and the inverse CDF of the truncated
exponential rank distribution function:

G−1 (x) = F −1
(

−
ln(1 − x(1 − e−λ))

λ

)
. [6]

Noting that by definition the distribution of the overall DFE on
our percentile-rank scale is the uniform distribution on [0,1], we
see that the Kullback-Leibler divergence from this distribution to
any other distribution on the percentile-rank scale is the negative
of the entropy. Because the Kullback-Leibler divergence is invariant
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under changes of scale (invertible transformations (27)), and F and
G differ only by a change of scale from the overall DFE and the
maximum-entropy type-specific DFE on our percentile-rank scale,
the fact that our type-specific distribution maximizes the entropy
given the probability that a mutation of that type is fitter than a
random mutation shows that the distribution with CDF G above
minimizes the Kullback-Leibler divergence from the distribution
with CDF F under this same constraint.

Linking Tang’s U to parameters of Experimental DFEs. Conceptually,
Tang’s U index (32) for a particular pair of amino acids aims to
measure the fixation probability between that particular pair of
amino-acids, relative to the fixation probability for a random amino
acid exchange (33). Following (33), we can consider a codon model
in which the rate of evolution from codon i to codon j ̸= i is given
by:

Qij ∝ µijUijπj , [7]
where µij is a symmetric mutational bias (µij = µji), Uij is the
entry of the U matrix corresponding to the amino acids encoded by
i and j or is 1 if the mutation is synonymous (U is also symmetric,
Uij = Uji), πj is the stationary frequency of codon j, and the
diagonal entries of Q are chosen so that the row sums all equal 0. It is
easy to show that the continuous time Markov chain with rate matrix
Q has the stationary distribution specified by π, and moreover
that Qij/Qji = πj/pii so that solving for Uij we have Uij ∝
2/ ((1/Qij) + (1/Qji)). Substituting in Qij ∝ Kλ/Ks(q) under
the selective stringency model into this harmonic mean formula
gives the estimate of the corresponding entry in Tang’s U matrix
described in the main text, where we have centered the predicted
values of U so that the mean across the 75 exchanges is 1 to match
the published scaling convention for Tang’s U (32).

Availability of data and scripts. The Python code and raw data
files for generating all figures and performing statistical analyses
as described in the manuscript have been deposited in a GitHub
repository: https://github.com/mengysun/AA exchangeability.
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Fig. S1. Quantile distributions of fitness effects from ProteinGym, categorized by wild-type (“from”) and mutant (“to”) amino acids. The distributions in the top row aggregate all
358,080 mutational effects by the wild-tpe amino acid, and those in the bottom row aggregate the same mutational effects by the mutant amino acid. Distributions that are
significantly different from a uniform distribution are marked with a star in the upper-right corner. The sample size for each distribution is indicated by n, and the mean of each
distribution is indicated by µ.
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Fig. S2. Statistical characteristics of 380 distributions of fitness effects. (A) Most of the distributions are broad, characterized by relatively small deviations from uniform
distributions measured by the KS-statistics ( vertical line indicates the median). (B) Most of the distributions tend to be monotonic, indicated by the highly right-skewed
Spearman correlation coefficients between the bin order and bin counts (vertical line indicates the median).
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Fig. S3. Truncated exponential captures the 380 DFEs well. (A) The theoretical relationship (solid line) between expectation and variance of truncated exponential distributions
qualitatively matches the observed data. (B) The KS-statistics between fitted truncated exponential distributions versus individual DFEs tend to be very small (vertical red line
indicates the median), suggesting that truncated exponential distribution provides a good fit to the data. (C) and (D): the λ values estimated by equalizing the representation of
each type, either by upsampling to the maximum count of all mutation types in the original dataset (C), or by downsampling to the minimum (D), is highly correlated to the
original estimation, indicating that the truncated exponential distribution observed is not an artifact of unequal distribution of amino-acids in natural proteins (solid line indicates
y = x).
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Fig. S4. Distributions of mutational effects on protein-folding for 389,030 amino-acid-altering mutations, categorized by the wild-type (row) and mutant (column) amino acids.
Histograms illustrate the observed fitness effect distributions for mutations relative to each amino acid type, along with the truncated exponential fit for each distribution (red
lines). Distributions that significantly deviate from a truncated exponential distribution are marked with a star at the right corner, whereas black triangles in the upper left corner
indicate the pairs with significant forward-reverse asymmetry (Bonferroni-corrected p < 0.05, two-sample Kolmogorov–Smirnov test). For each distribution, the mean, which is
equal to the probability that a replacement of this type is fitter than a random mutation, is given by µ , while the number of observations is given by n.
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