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ABSTRACT 

Variant annotation is a crucial objective in mammalian functional genomics. Deep Mutational Scanning 
(DMS) is a well-established method for annotating human gene variants, but CRISPR base editing (BE) is 
emerging as an alternative. However, questions remain about how well high-throughput base editing 
measurements can annotate variant function and the extent of downstream experimental validation 
required. This study presents the first direct comparison of DMS and BE in the same lab and cell line. 
Results indicate that focusing on the most likely edits and highest efficiency sgRNAs enhances the 
agreement between a "gold standard" DMS dataset and a BE screen. A simple filter for sgRNAs making 
single edits in their window could sufficiently annotate a large proportion of variants directly from 
sgRNA sequencing of large pools. When multi-edit guides are unavoidable, directly measuring the 
variants created in the pool, rather than sgRNA abundance, can recover high-quality variant annotation 
measurements in multiplexed pools. Taken together, our data show a surprising degree of correlation 
between base editor data and gold standard deep mutational scanning.  
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INTRODUCTION 

A major goal of mammalian functional genomics is to understand the genotype-phenotype 

relationship (1). However, achieving this lofty goal requires large-scale experiments that can, in parallel, 

examine both genotypes and phenotypes in pooled assays. While gene level loss-of-function screens in 

mammalian cells rose to prominence with the invention of RNAi based screening tools (2–4) in the early 

2000’s and eventually CRISPR/CRISPRi (5–8) in 2012-2013, the high throughput annotation of individual 

coding variants in mammalian cell lines is a more recent innovation (9, 10). 

A leading technology in the field of high throughput variant annotation is a technique known as 

deep mutational scanning (DMS) (10). Deep mutational scanning libraries tend to involve large cDNA 

libraries of single amino acid mutations that encompass all 20 possible amino acids at every position. 

When performed in mammalian cell lines, these libraries are introduced via a transduction (11–13), or 

into a safe harbor “landing pad”(14–16). While DMS is capable of providing comprehensive 

measurements of variant effects (10, 17, 18), DMS has nonetheless been difficult to scale to large genes 

or to multi-gene families, and the measurements may not reflect the effects of the same mutations at 

the endogenous genomic locus. Moreover, the technical challenges involved in DMS can lead to variable 

dataset quality (19).  

As a functional genomic technology, base editing is in its early stages. Base editing (BE) screens 

use nCas9 to target a deaminase to a specific site in the genome and generate transition mutations (C>T 

or A>G) (20, 21). BE screens use a surrogate measure of genotype by sequencing the guide RNA (gRNA) 

sequence, which allows BE screens to measure phenotypes across the genome (22–24). Moreover, base 

editor screens have other major advantages that can include the ability to edit at the endogenous 

genomic locus and the ability to identify splicing defects (22, 25–28). However, base editor screens also 



present certain challenges. The primary challenges are: 1. BE efficiency (only a portion of individual cells 

harboring an sgRNA are likely to be edited and some cell lines do not edit well (29)), 2. off-target editing 

(while editing is largely constrained to a small window within the sgRNA non-target sequence, some off-

target editing is likely occurring (30, 31)), 3. bystander editing (when more than one possible edit occurs 

in an on-target editing window, the amino acid variant(s) made are more challenging to infer (32, 33)), 

and 4. protospacer adjacent motif (PAM) requirements (PAMs limit where sgRNAs targets (34) and PAM-

less variants appear to have decreased efficiency (35–37)). These issues have led the field to view BE 

screens as a method for initial identification of interesting variants and regions but with limited 

capability to directly annotate loss-of-function phenotypes. 

When competing high throughput measurement methodologies can generate similar data, it 

can be extremely useful to benchmark these methods against each other. For instance, the direct 

comparison of CRISPR Cas9 LOF screens and RNAi screens suggested that CRISPR is a more sensitive and 

specific technique for identifying essential LOF phenotypes, but that RNAi screens can help understand 

the dosage sensitivities of essential genes and can sometimes rescue false negatives in CRISPR screens 

for a subset of biological functions (38–40). Additionally, the direct comparisons of high throughput drug 

sensitivity measurements found that the precise metrics and methods that are used in comparing 

datasets can create different conclusions on dataset reliability and usability. Together, these high-profile 

efforts highlight the importance of a careful comparison of high throughput datasets using multiple 

metrics and the public dissemination of the resultant data (41, 42). 

 Here we perform the first direct comparison between base editing and deep mutational 

scanning in the same cell line in the same lab. To accomplish this, we use the Ba/F3 cell system. This 

allows for a direct comparison and eliminates differences in genetic context as a confounding variable 

driving the differences in measurements between the approaches. Using this system, we identify 

specific data filters that generate largely matching conclusions about the phenotypes of loss-of-function 



variants. We also identify a two-step high throughput workflow for base editor screens that can 

streamline the validation of variant interpretation in pools by directly sequencing the edited variant 

fraction with error corrected sequencing (43). 

 

MATERIALS AND METHODS 

DMS Library Preparation and Screen 

BCR-ABL cDNA was cloned downstream of EGFP in the pUltra (Addgene #24129) lentiviral vector 

by GenScript to make pUltra BCR-ABL WT (Addgene #210432). Twist Bioscience generated a saturating 

mutagenesis (SM) library of single amino acid changes in the N-lobe of the ABL kinase domain. NEB 

Stable chemically competent (NEB #C3040I) cells were transformed with the SM library, with a coverage 

of >1000X, on to 15-cm LB agar plates with ampicillin. After 48 hours at 30°C, colonies were scrapped off 

the agar and plasmid DNA was extracted using Omega Bio-Tek's E.Z.N.A. Plasmid DNA Midi kit. 

HEK293Ts were transfected with 35 ug of SM ABL library and 10 ug of helper plasmids (1:1:1) in 10-cm 

dishes using Thermo Fisher Lipofectamine 3000 (5 Lipo : 1 DNA). The next day the media was changed to 

fresh RPMI (Cytivia SH30027.02). After 36 hours viral RPMI media was used to infect BaF3s, in the 

presence of 1 ug/mL mouse IL-3 (peprotech 213-13) and 6 ug/mL polybrene, at a low multiplicity of 

infection. After another 36 hours, BaF3s were maintained in RMPI with 1 ug/mL IL-3.  Infected cells were 

enriched by fluorescence-activated cell sorting on EGFP at the Penn State Flow Cytometry Core facility. 

At the start of the DMS Screen, IL-3 was removed, and 30 million cells were saved to establish a 

baseline mutation frequency. Approximately 5 million cells were treated with DMSO for 6 days. Media 

was refreshed on day 3. Cell count was tracked by a BD Accuri C6 Plus flow cytometer.  Cells were 

maintained in exponential phase. If cell viability was less than 90%, then viable cells were enriched by 

Ficol-Paque (Cytiva).  



DMS Library preparation and Single Strand Consensus Sequencing 

High quality genomic DNA was extracted by Monarch Genomic DNA Purification Kit. Then a 

modified and scaled-up CRISPR-DS workflow was used to determine accurate variant distributions (43). 

For each time point 20 ug of genomic DNA specifically was digested just outside of the mutagenized 

region of ABL kinase cDNA using Cas9. After end-repair and A-tailing, UMI ligation was used to label 

single molecules of DNA. Then NGS indices were added by PCR to help deconvolute samples after 

pooling. Oligo enrichment and PCR were used to further increase the abundance of the mutagenized 

region in the pooled samples. 

One-hundred-fifty-nucleotide paired-end sequencing of the UMIs and mutagenized region was 

done on an Illumina NovaSeq 6000. For each sample, dunovo was used to generate error-corrected 

single strand consensus from the UMI barcodes. Then bwa-mem2 was used to align the census to 

human ABL cDNA. After filtering out for mouse ABL reads, aligned reads with less than 5 mismatches 

would undergo variant calling and annotation using a custom R script. Briefly, for each alignment, 

variants were converted from the MDZ read tag and normalized to read depth at that position. Mutant 

growth rates were calculated using exponential growth equation and the mutant allele frequency 

(MAF): 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ 𝑔𝑔𝑟𝑟𝑔𝑔𝑟𝑟 = ln �
𝑀𝑀𝑀𝑀𝑀𝑀1 × 𝐶𝐶𝑔𝑔𝐶𝐶𝐶𝐶𝑔𝑔1
𝑀𝑀𝑀𝑀𝑀𝑀0 × 𝐶𝐶𝑔𝑔𝐶𝐶𝐶𝐶𝑔𝑔0

� ÷ (𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟1 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟0), 

where the subscripts 0 and 1 denote the initial and final time point, respectively. Cell counts and the 

splitting ratio were used to account for dilution due to cell splitting during the DMS screen. Time is 

measured in units of hours. Skewed Gaussian mixture models were fit over the bimodal distribution of 

mutant growth rates using the Curve_fit function from the Scipy python package (44). Z-score cutoff for 



DMS data was determined by fit mean and standard deviation of the wild type like component of the 

mixture distribution.  

 

Base Editor Library Preparation, Screen, and Sequencing 

BCR-ABL tiling guide RNA (gRNA) sequences were generated by CHOP-CHOP (45) with ‘NGN’ 

PAM setting. Guides were cloned into lenti-sgRNA hygro vector (Addgene #104991) by GenScript to 

make the BCR-ABL sgRNA library. ABE8e SpG plasmid was made by deleting the U6 sgRNA cassette from 

pRDA_479 (Addgene #179099) (46) using NEB KLD (NEB #M0554S).  

 Ba/F3s infected with pUltra BCR-ABL WT (Addgene #210432) were allowed to grow in the 

absence of IL-3. After 5 days >95% of the BaF3s were EGFP+.  Then they were infected with either ABE8e 

SpG or CBEd SpG and selected with 1 ug/mL puromycin for 5 days. In a 15-cm dish HEK293Ts were 

transfected with 60 ug of the BCR-ABL and control sgRNA libraries and 40 ug helper plasmids (1:1:1:1) 

using calcium phosphate. The next day DMEM media was changed to RPMI. Independent infections of 

pUltra BCR-ABL WT ABE8e BaF3s were done at low multiplicity of infection and >500X coverage. 

Transfected HEK23Ts were saved to establish a baseline sgRNA frequency. Three days after sgRNA 

library infection, the cells were selected with 1 mg/mL hygromycin for 6 days and pelleted. Genomic 

DNA was extracted using phenol-chloroform (47) and quantified by Qubit. Staggered PCR was used to 

extract sgRNA sequences from 10 ug of genomic DNA, as described previously (48) with two 

modifications: custom forward staggered primers were used (Supplemental Table 1) and PCR amplicons 

were gel extracted using Omega Bio-Tek Gel Extraction kit.   

sgRNA Analysis 



Guide RNA amplicons were trimmed with CutAdapt (49) to remove the U6 promoter and gRNA 

scaffold. The remaining sequences were aligned to a reference list of guides using Bowtie (50). Guide 

counts were established by Counter from the Collections python package. pyDESeq2 (51) was used to 

determine the fold change in guides between time points. The fold change was converted to growth 

rates using the formula above assuming wild-type growth rate. Z-score cutoff for ABE data was based on 

the human targeting (AAVS1, CCR5, and ROSA26) control sgRNA. 

Verification Screen, Sequencing, and Analysis 

A pool of 20 guides were synthesized by IDT and cloned into lenti-sgRNA hygro vector using 

golden gate sites (48, 52). After making BCR-ABL WT ABE8e BaF3 cells as above, IL-3 was returned to the 

RPMI media. The lentivirus library of sgRNAs was made by calcium phosphate transfection of HEK293T. 

Two independent infections of 1.5 million BCR-ABL WT ABE8e BaF3 cells grew for 3 days before the start 

of 1mg/mL hygromycin selection. After 6 days, hygromycin was removed, a pellet was saved for sgRNA 

sequencing, and the cells recovered for 2 days. After the 2-day recovery, IL-3 was removed, and a pellet 

was saved for mutation sequencing. Six  days after IL-3 withdrawal pellets were saved for mutation 

sequencing. Nineteen days after IL-3 removal pellets were saved for sgRNA sequencing. Mutation and 

sgRNA sequencing were performed as described above.   

A custom Python script was used to determine the frequency of in phase or cis mutations made 

by ABE. Briefly, UMI_tools (53) was used to move 24 nucleotide UMI in to read header. At least 5 million 

paired end reads were aligned to the ABL kinase after 12 nucleotides were hard clipped from the 5’ end 

using Bowtie2 (54). To deduplicate barcodes, each sample’s barcodes was grouped based on alignment 

with an allowance of one mismatch using Bowtie (50). Only the most frequent UMI in each group 

continued to the rest of the analysis. Mismatches with a quality score greater than 30 were grouped by 

UMI. A mutation was called and counted if the mismatch is observed in more than 80% of reads in the 



UMI, and the UMI contains more than 2 reads. Fold change was determined by pyDESeq2 (51) and 

converted to growth rate using WT growth rate. Background mutation frequency was set based the 95th 

percentile of non-(A > G) and non-(T > C) mutant frequency outside of the 2 to 12 nucleotide sgRNA 

editing window. All A > G mutations within the targeting strand and editing window of an sgRNA were 

linked to that sgRNA.  

BE-HIVE Weighted Model  

In order to determine how well the on-target editing sgRNA phenotype can be recapitulated,  

sgRNA and editing efficiency was predicted by BE-HIVE (55). Only edits with a frequency greater than 

0.05 and sgRNAs with completely matched DMS measurement were allowed. The growth rate of an 

sgRNA is sum of the relative growth rates of edited and un-edited cells:  

𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠𝑀𝑀 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ 𝑔𝑔𝑟𝑟𝑔𝑔𝑟𝑟 = (𝑟𝑟𝑒𝑒𝑇𝑇𝑔𝑔 𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑔𝑔𝐶𝐶 × 𝑟𝑟𝑒𝑒𝑇𝑇𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ 𝑔𝑔𝑟𝑟𝑔𝑔𝑟𝑟) + (𝐶𝐶𝐶𝐶𝑒𝑒𝑟𝑟𝑒𝑒𝑇𝑇𝑔𝑔𝑟𝑟𝑒𝑒 𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑔𝑔𝐶𝐶 × 0.055)   

In the case of edits across multiple amino acids, a null model of mutant interactions predicts the 

growth rate of the multi amino acid mutant as the product of individual mutants divided by the WT 

growth rate multiplied by the WT growth rate (0.055 hour-1) (56). In other words, two deleterious cis 

mutations are expected to be more deleterious than the individual mutants. If there was an epistatic 

interaction, the growth rates of the double mutant would differ from the null model. 

 

RESULTS AND DISCUSSION 

DMS Data is high quality and correlates with Evolutionary Conservation, Secondary Structure, and 

Function 

For our comparison experiments, we chose to use a fit-for purpose cellular system, where the 

growth of the cell line, Ba/F3, depends upon the presence of IL-3 in the media until an activated tyrosine 



kinase is added. This system allows us to introduce the DMS library in the same genomic context as the 

target of the base editor screen. Heterologous expression of a tyrosine kinase cDNA integrated into the 

genome is advantageous with respect to our study design because all variants (DMS or BE) are evaluated 

using the same promoter. We use the BCR-ABL oncogene as the activated tyrosine kinase for several 

reasons: 1. It is an important oncogene that is of interest to applied and basic research groups. 2. Its 

structure has been solved many times in many conformations (57, 58). 3. There are years of experiments 

that can be drawn from to gain confidence in the resultant data (58–60).  

To perform the deep mutational scan (DMS) in BCR-ABL, we designed a saturation mutagenesis 

library spanning amino acid residues 242 to 320 in the N-lobe of the ABL1 kinase domain. This region 

was chosen for its reasonable size and the presence of known structural features that include the p-

loop, the gatekeeper, and the alpha-C helix. This library contained 1441 AA variants and was transduced 

into Ba/F3s in the presence of IL-3. After infection, fluorescence activated cell sorting (FACS) was used to 

enrich for infected cells. Following recovery from sorting, the Ba/F3 cells were screened for six days 

without IL3. In this negative selection screen, variants expressing non-functional copies of the BCR-ABL 

fusion protein deplete from the population. After the screen, we perform a sensitive barcoded 

sequencing protocol where the heterologous copy is specifically excised from the genome using Cas9-

sgRNA complexes that are specific to the cDNA (43). These genomic fragments are then ligated with 

unique molecular identifiers to allow for the deconvolution of library variants and the elimination of PCR 

and sequencing noise (Figure 1A). Initially, the library contained ninety seven percent of all possible 

single residue changes from AA 242-320.  

When the mutant in BCR-ABL impairs kinase function, then that cell will exhibit a reduced 

growth rate. After sequencing, we found that mutant growth rates form a bimodal distribution of 

counts, consistent with measured distributions of fitness effects in other DMS screen (12, 15, 16). One of 

the peaks in this bimodal distribution of growth rates centered at approximately 0.02 hour-1 and 



constituted the set of deleterious mutations, while the other distribution mode was centered at the 

known WT growth rate of 0.055 hour-1 and harbored AAs that are “wild type like fitness” (Figure 1B). To 

call the “hits” of specific amino acid variants that are required for growth, we use a Z-score cutoff of -2 

for the “wild type like” distribution. This specific cutoff is used to be consistent with prior literature in 

the sgRNA community (23, 24, 46, 61) and to draw a line that can be approximated in both studies using 

approximately analogous statistical and experimental criteria (Figure 1B). Using this cutoff, we estimate 

that 56% of measured variants in the N-lobe of the ABL kinase impair kinase function. 

Initial observations of the deleterious residues in the DMS dataset are consistent with prior 

knowledge. For instance, the catalytic lysine K271 is required for kinase activity and mutations at that 

position strongly deplete (measured growth rate averaged 0.019 hour-1) (Figure 1C).  Moreover, the 

systematic insertion of prolines during DMS studies causes a discernible “proline band” in high quality 

studies (12, 62). We clearly observe a proline band in our data (Figure 1C). Beyond these critical 

depletion signals, a known flexible and non-conserved region in ABL1 (i.e. residues 262-267 between the 

β2 and β3 strands) did not deplete. 

More systematically, functionally important residues are typically evolutionarily conserved and 

their mutagenesis tends to be deleterious in DMS studies (10, 16). Consistent with this, there is a -0.74 

correlation (p < 0.001) between the mean mutant growth rate at a residue and the evolutionary 

conservation scores of that residue from ConSurf (57, 63–65)(Figure 1C, bottom row of heatmap, 

Supplemental Figure 1).  Moreover, from a biophysical perspective, solvent accessible residues tend to 

be more tolerant of mutagenesis and are less conserved (66). We observe this trend in Figure 1C, 1D and 

Supplementary Figure 1. 

The ABL N-lobe is composed of conserved structural elements that include the alpha-helix called 

the αC-helix, the five-stranded antiparallel β-sheet, the GxGxxG motif of the P-loop, as well as several 



catalytically important residues. Investigation of these key structural features reveals patterns that are 

consistent with known structure-function relationships. The GxGxxG of the p-loop spans residues 249-

254 and all 3 conserved glycines show strong depletion phenotypes. Additionally, the alternating 

banding pattern in anti-parallel β -strands 1 and 2 (residues 242-262, Figure 1D) is explained by essential 

residues facing towards the substrate pocket (blue residues, Figure 1D).  Moreover, the αC-helix, 

dynamically transitions from its “in” to its “out” state during kinase activation. This highly conserved 

regulatory dynamic requires support from the underlying hydrophobic core. Thus, the residues that 

interact with the core of the protein show the expected pattern of intolerance (blue, Figure 1E), while 

the outward facing residues show tolerance to mutations (red, Figure 1E). It is the connection to known 

structure, function, and conservation data that gives us high confidence in the validity of the DMS data 

as a gold standard for comparison with sgRNA data.   

An Adenosine Base Editing Screen Isolates Functionally Important Domains and Residues 

One of the major benefits of base editor (BE) screens is the ability to rapidly screen across a 

protein’s entire length. To demonstrate this breadth and speed, we rapidly cloned a tiled library of 3115 

sgRNAs across the entire BCR-ABL cDNA, including regions beyond the original DMS library. The BE 

phenotype was determined by the change in sgRNA abundance following exponential growth in cell 

culture (Figure 2A).  Looking across the entire length of the protein (Figure 2B), we performed a sliding 

window estimate of the proportion of strongly negative Z-scores across the protein (see Methods). This 

sliding window estimate highlights the regions of the protein that are unusually enriched for the 

presence of highly essential residues. Colored regions corresponding to the coiled-coil (CC) domain, 

double homology (DH) domain, plekstrin homology (PH) domain, Src-homology 3 (SH3), Src-homology 2 

(SH2), the kinase domain, and F-actin binding domain (FAB) are highlighted. Highly significant domains 

that have been previously implicated in transformation, such as the CC (67, 68) , SH2 (68–70), Kinase 

(71), and FAB domains (72, 73) show significant depletion. While the role of the DH domain is not 



understood, our base editor data suggests that it is important for growth factor independence (Figure 

2B) (74, 75).  Finally to call depletion “hits” we used a –2 Z-score based on the distribution of negative-

control guides to be consistent with Hannah et al. (23) (Figure 2C). Applying this criteria yields 387 hits, 

or approximately 12.4% of all BCR-ABL sgRNAs (consistent with others (23, 46)). Most notably, there is a 

strong over-representation of depletion phenotypes for guides that target the ABL kinase domain, with 

38% of kinase domain guides depleting below a –2 Z-score. In concordance with the DMS screen above, 

the guides that can target the conserved regions of the P-loop, Lys 271, and the buried region of the αC-

helix produce deleterious phenotypes. (Figure 2D). 

Side by side comparison of ABE predicted edits and DMS Screens 

To assess the correlation between our ABE screen and deep mutational scan, we compared 

growth rates of sgRNAs and their predicted edits to growth rates of variants from the deep mutational 

scan. We focused on 80/118 sgRNAs for which all predicted edits have variant information in the DMS 

screen. (Figures 1C and 2D).  

The predicted edits of the sgRNAs predominantly occur within an editing window (32, 76). While 

the editing window is in the non-targeting strand, we (and others) refer to the window relative to the 

guide sequence position. Most edits occur between positions 2 and 12 (76, 77). Plotting sgRNA data 

against DMS data (Figure 3A), each dot represents an individual variant, with each sgRNA appearing as a 

row of dots for all of its possible edits. Notably, the dynamic range of the Y-axis is reduced for base 

editing compared to DMS. (there is an ~ 0.045-0.06 hour-1 Y-axis measurement range for base editing 

versus ~0.01 to 0.06 hour-1  for DMS on the X-axis). This is likely because counting an sgRNA read can 

count either edited or unedited cells.  



This initial analysis yields a modest but significant Pearson correlation of 0.35 (Figure 3A). This 

indicates a relationship but suggests caution in directly annotating individual variants from a raw sgRNA 

experiment without further validation of the variants with individual sgRNAs.  

Considering the modest correlation with all putative variants, we hypothesized that the 2-12bp 

editing window was too broad. By focusing on a narrower, more efficient 4-8 nucleotide editing window 

(23, 77, 78), the Pearson correlation improved from 0.35 to 0.52 and the odds ratio of hits versus non-

hits increased to 7.1 (Figure 3B). This improved agreement came at the cost of removing 26 potentially 

correctly annotated deleterious variants (Figure 3A, 3B and Supplemental Figure 2). 

After applying the “likely” edits filter to generate Figure 3B we still identify 13 false negative and 

22 false positive variants in our plots. In terms of these remaining false negatives, an sgRNA could fail to 

deplete when sgRNA sequences are of low efficiency (48). Thus, we examined the consequences of 

adding an additional filter requiring an sgRNA efficiency score greater than 50 (Figure 3C, Supplemental 

Figure 2S) (48). This simple additional cutoff further improves the Pearson correlation between sgRNA 

predicted edit growth rates and DMS data to 0.59 and eliminates 9 of the 13 remaining false negative 

variants (Supplemental Figure 2S).  

Next, focusing on the false positive variants in Figure 3B (pink dots), we identified 15 sgRNAs 

that are predicted to make 22 false positive variants. Interestingly, 10 of the 15 sgRNAs are multi-edit 

sgRNAs that are predicted to also make true positives edits (blue variant dots).  One simple way to 

reduce the effect of multi-edit ambiguity is to only examine the sgRNAs that are predicted to make a 

single edit in the 4 to 8 nucleotide editing region. The addition of this “single likely edit” filter enhances 

the correlation to 0.64 (p-value < 0.001) and the OR for hits to 44 (p-value < 0.001) (Figure 3D). For 

single-likely-edit sgRNAs there is a true positive rate of 0.88 and an accuracy of 0.87 with respect to gold 



standard DMS data. However, this filter removed 14 out of 39 original sgRNA hits. For detailed 

information on filters and filtered sgRNAs/variants, see Supplementary Figures 2 and 3. 

Given that filtering sgRNAs by efficiency, edit probability, and the number of edits improves 

annotation confidence at the expense of total hits, we sought to more effectively utilize data from multi-

edit sgRNAs (Figure 3D). At a first pass, it seems like one might create variant-level interpretations for 

multi-edit sgRNA hits just by predicting the ensemble of sgRNA edits and their abundance in the 

population using machine learning algorithms like BE-HIVE (55). However, while BE-HIVE can predict the 

ensemble of mutations (Figure 3E), it can’t predict the proportion of the measured phenotype that is 

attributable to those mutations. Therefore, we investigated whether multi-edit sgRNA dynamics could 

be predicted from the combined dynamics of their polyclonal edits. We used the BE-HIVE predicted 

allele frequencies vector (to approximate the structure of the polyclonal population) and simply 

assumed that all of the predicted variants grow according to the gold standard DMS growth rates. This 

estimated the expected multi-edit sgRNA growth rate, providing insight into the contribution of in-

window editing versus off-target effects to sgRNA dynamics.  

We observed a strong correlation of 0.57 (p-value < 0.001) between the predicted and actual 

sgRNA growth rates (Figure 3F), suggesting a significant contribution of on-target editing to sgRNA 

signal. This supports the feasibility of variant validation experiments with pooled sgRNAs by directly 

sequencing edited variants from genomic DNA. 

Pools of multi-edit sgRNAs create a pool of edited variants that can be measured by error-corrected 

deep sequencing of genomic DNA. 

Our BE-HIVE analysis suggested that in-window editing drives multi-edit sgRNA growth rates 

(Figure 3F). Therefore, we hypothesized that variant validation could be accelerated by directly 



sequencing variants in genomic DNA during pooled experiments. Instead of validating sgRNA-variant 

relationships in a one-by-one manner. The proposed approach involves medium-throughput validation 

pools of sgRNAs, and measuring the resultant variants directly in gDNA via UMI-corrected sequencing of 

the editing target. To test this, we selected 20 sgRNAs with varying predicted fitness measurements, 

aiming to determine if a variant is deleterious and to explain sgRNA measurements through direct 

sequencing of the polyclonal pool (Figure 4A). 

The measured sgRNA growth rates strongly correlated (r=0.79, p < 0.001) with the sgRNA 

growth rates measured in the high-throughput screen from Figure 2, confirming robust phenotypes and 

validating the new dataset. Further analysis revealed a high correlation (r=0.75) between sgRNA and 

mutant growth rates (Figure 4B), directly confirming that the fitness effects of sgRNAs are due to on-

target editing. 

We also examined the correlation between the edited variants growth rate measurements in 

the medium-throughput pool and the original DMS measurements in Figure 1. Here we found that there 

was a high correlation (Pearson's r=0.77) between the direct variant measurements and the gold 

standard DMS measurements from Figure 1 (Figure 4C). This indicated that the direct sequencing of 

edited variants in resequencing pools can approach the quality of gold standard DMS data. Among the 

19 variants we detected, only F283L showed a spurious depletion phenotype that deviated from 

observed DMS measurements. This single false positive variant could be due to off-target editing 

confounding the variant interpretation or be misannotated in the DMS screen. Interestingly, Figure 4C 

only examined the single mutant edits that we detected by deep sequencing, but we also identified 

double mutants (in cis) in multi edit sgRNA windows. Additionally, we identified double mutants in 

multi-edit sgRNA windows, exhibiting growth rates suggesting no epistasis. The strong correlations and 



single false positive edit suggest that direct variant sequencing from a base editor pool yields highly 

concordant fitness measurements with gold standard data (56) (see methods)) (Supplemental Table 2). 

CONCLUSION 

In conclusion, our study provides a comprehensive comparison of deep mutational scanning 

(DMS) and CRISPR-based base editor (BE) screening for variant annotation. We demonstrate that while 

DMS offers unparalleled depth and structural resolution, BE screening provides a rapid, broad, and 

efficient alternative at the cost of mutation density. By analyzing both methods in the same cellular and 

genomic context, we achieved a surprisingly high degree of correlation between the two, despite their 

inherent methodological differences and the potential for off-target effects in base editing. 

Our findings reveal that variant annotation can be achieved directly from base editor screens 

when focusing on sgRNAs with single predicted edits within a narrow, efficient editing window. This 

streamlines the annotation process, particularly for variants exhibiting strong phenotypes. We also show 

that incorporating filters for sgRNA efficiency and reducing multi-edit ambiguity further enhances the 

correlation between BE and DMS data. 

However, for complex cases involving multi-edit sgRNAs and double mutations, direct 

sequencing of mutant pools offers a robust validation strategy. By directly measuring the variants 

generated by pooled sgRNAs, we confirmed that the fitness effects observed in BE screens are primarily 

due to on-target editing. This approach allows for accurate variant annotation even in challenging 

scenarios, while maintaining a higher throughput. 

Overall, our study demonstrates the complementary nature of DMS and BE screening for variant 

annotation. By strategically combining these two powerful tools, researchers can achieve 



comprehensive and efficient variant characterization across the genome, accelerating our understanding 

of gene function and disease mechanisms. 
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Figure 1. Functional landscape of ABL N-Lobe (A) Schematic of deep mutational scanning.  After 
lentiviral integration of EGFP-P2A-BCR-ABL, BaF3s were sorted to enrich EGFP+ infected cells. Cells were 
pelleted before and 6 days after IL-3 withdrawal. After targeted genomic DNA digest by Cas9, single 
molecules of DNA were labeled by UMI ligation. Then biotinylated oligo baits were used to enrich the 
mutagenized region. (B) The distribution of mutant growth rates in the ABL N-lobe is bimodal. Two 
skewed gaussians are fit to determine the variation in deleterious (blue) and “wild-type like” (orange) 
mutations. The dotted line represents a -2 Z-score threshold with respect to the “wild type-like” 
distribution. (C) Heatmap of the growth rate of mutations at each position in ABL1 N-lobe. Black dot 
represents WT positions. Missing data is in white. Second to the last row of the heatmap provides 
surface exposure information because solvent exposed residues (red, “e”) tend to be more tolerant of 
mutations than buried residues (blue, “b”). Tolerance/sensitivity to mutagenesis is projected onto two 
key structural features of the ABL N-lobe (PDB 6XR6): the (D) anti-parallel beta-sheet, and the (E) αC-
Helix. If mean growth rate of alternative alleles at a residue is less than the -2 Z-score cutoff, then the 
residue is colored blue. In contrast, if the mean growth rate of alternative alleles is greater than the –2 
Z-score cutoff, then it is colored in red.  
 
Figure 2. Adenosine Base Editor screen of full length of BCR-ABL. (A) Schematic of adenosine base 
editor screen. Three days after infection with sgRNA library, EGFP-P2A-BCR-ABL1 ABE8e BaF3 were 
selected with 1mg/mL hygromycin for 6 days and pelleted. Guides were PCR amplified and sequenced. 
(B) Sliding window of 40 sgRNAs estimate of the proportion of BCR-ABL sgRNAs that drop out more than 
a Z-score of -4 of the non-targeting control sgRNA growth rate. (C) Kernel density estimate of growth 
rate distributions of non-targeting control, and BCR-ABL sgRNA libraries. Dashed grey line represents a –
2 Z-score of the targeting control. (D) Lollipop plot displays dropout of each sgRNA across the ABL kinase 
domain. Dashed grey line represents a –2 Z-score of the targeting control. 
 

Figure 3.  Comparison of Adenosine Base Editor sgRNA growth rate and their respective mutation 
growth rates from Deep Mutational Scan. Each dot represents a mutation an sgRNA is predicted to 
make. Dashed lines represent –2 Z-score of the non-deleterious distribution and non-targeting control 
sgRNA for the DMS and ABE screens, respectively. These cutoffs are used to define if an sgRNA or 
mutation is deleterious. If an sgRNA and its mutation does not deplete in their respective screen, in 
other words both are non-deleterious, then they are colored orange. If they both are deleterious, or 
true positive, then they are colored blue. If an sgRNA deletes, but the predicted edit does not deplete, a 
false positive, then the dot is colored in the pink. If a sgRNA fails to deplete and the predicted 
mutation(s) are deleterious, a false negative, then that point is colored in green.  (A) shows all possible 
edits between nucleotides 2 and 12. (B) shows only the most likely edits, those between nucleotides 4 
and 8. (C) shows only sgRNA predicted to be efficient and edit between nucleotides 4 and 8.  (D) shows 
sgRNAs that are predicted to make only a single edit between nucleotides 4 and 8. (E) The distribution of 
edits can be estimated by machine learning model called BE-HIVE.  (F) Correlation between predicted 
sgRNA growth rate and observed sgRNA growth rate. The x-axis shows the predicted growth rate of each 
sgRNA based on a weighted sum of the probability edit(s) and the effect of that edit(s) from DMS data. 
The y-axis shows the measured growth rate of the efficiently editing sgRNAs from the ABE screen. 

 



Figure 4. Medium-throughput pooled Adenosine Base Editor Screen. (A) Schematic of small screen of 
20 sgRNAs targeting ABL kinase, where the edits and sgRNA are sequenced after IL-3 withdrawal.  (B) 
Comparison of measured sgRNA and single amino acid edit growth rates. If the mutation is deleterious 
or non-deleterious in the DMS data, then it is marked by a X or closed circle, respectively. If the different 
mutations are made by the same sgRNA, then they are connected by a grey line. (C) Represents a direct 
comparison between the measured growth rate of single amino acid mutants during the DMS and 20 
sgRNA ABE screens. 
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