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Abstract The retina transforms patterns of light into visual feature representations supporting 
behaviour. These representations are distributed across various types of retinal ganglion cells 
(RGCs), whose spatial and temporal tuning properties have been studied extensively in many model 
organisms, including the mouse. However, it has been difficult to link the potentially nonlinear 
retinal transformations of natural visual inputs to specific ethological purposes. Here, we discover 
a nonlinear selectivity to chromatic contrast in an RGC type that allows the detection of changes 
in visual context. We trained a convolutional neural network (CNN) model on large-scale func-
tional recordings of RGC responses to natural mouse movies, and then used this model to search 
in silico for stimuli that maximally excite distinct types of RGCs. This procedure predicted centre 
colour opponency in transient suppressed-by-contrast (tSbC) RGCs, a cell type whose function is 
being debated. We confirmed experimentally that these cells indeed responded very selectively to 
Green-OFF, UV-ON contrasts. This type of chromatic contrast was characteristic of transitions from 
ground to sky in the visual scene, as might be elicited by head or eye movements across the horizon. 
Because tSbC cells performed best among all RGC types at reliably detecting these transitions, we 
suggest a role for this RGC type in providing contextual information (i.e. sky or ground) necessary 
for the selection of appropriate behavioural responses to other stimuli, such as looming objects. Our 
work showcases how a combination of experiments with natural stimuli and computational model-
ling allows discovering novel types of stimulus selectivity and identifying their potential ethological 
relevance.

Editor's evaluation
This study presents a fundamental and very technically strong dataset of mouse ganglion cells 
responding to natural stimuli that include more natural chromatic properties. Fits of convolutional 
neural networks to experimental measurements highlighted a novel form of color opponency in 
suppressed-by-contrast ganglion cells. More generally, the work provides a compelling example of 
how modern experimental and computational tools can be used to generate and test hypotheses 
about sensory function under natural conditions.
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Introduction
Sensory systems evolved to generate representations of an animal’s natural environment useful for 
survival and procreation (Lettvin et al., 1959). These environments are complex and high dimen-
sional, and different features are relevant for different species (reviewed in Baden et al., 2020). As a 
consequence, the representations are adapted to an animal’s needs: features of the world relevant for 
the animal are represented with enhanced precision, whereas less important features are discarded. 
Sensory processing is thus best understood within the context of the environment an animal evolved 
in and that it interacts with (reviewed in Turner et al., 2019; Simoncelli and Olshausen, 2001).

The visual system is well suited for studying sensory processing, as the first features are already 
extracted at its experimentally well-accessible front-end, the retina (reviewed in Kerschensteiner, 
2022; Baden et al., 2020). In the mouse, this tissue gives rise to around 40 parallel channels that 
detect different features (Goetz et  al., 2022; Baden et  al., 2016; Bae et  al., 2018; Rheaume 
et al., 2018), represented by different types of retinal ganglion cells (RGCs), whose axons send 
information to numerous visual centres in the brain (Martersteck et  al., 2017). Some of these 
channels encode basic features, such as luminance changes and motion, that are only combined in 
downstream areas to support a range of behaviours such as cricket hunting in mice (Johnson et al., 
2021). Other channels directly extract specific features from natural scenes necessary for specific 
behaviours. For instance, transient OFF α cells trigger freezing or escape behaviour in response to 
looming stimuli (Münch et al., 2009; Yilmaz and Meister, 2013; Kim et al., 2020; Wang et al., 
2021).

For many RGC types, however, we lack an understanding of the features they encode and how 
these link to behaviour (Schwartz and Swygart, 2020). One reason for this is that the synthetic stimuli 
commonly used to study retinal processing fail to drive retinal circuits ‘properly’ and, hence, cannot 
uncover critical response properties triggered in natural environments. This was recently illustrated 
at the example of spatial nonlinear processing, which was found to be more complex for natural 
scenes than for simpler synthetic stimuli (Karamanlis and Gollisch, 2021). Such nonlinearities, which 
are crucial for the encoding of natural stimuli, cannot be captured by linear-nonlinear (LN) models of 
retinal processing, and several alternative methods have been proposed for the analysis of natural 
stimulus responses (reviewed in Sharpee, 2013).

One approach to modelling nonlinear visual processing is to train a convolutional neural network 
(CNN) to predict neuronal responses. This approach has gained popularity in recent years, both in 
the retina (McIntosh et al., 2016; Maheswaranathan et al., 2023; Tanaka et al., 2019; Batty et al., 
2017) and in higher visual areas (Yamins et al., 2014; Cadena et al., 2019; Ustyuzhaninov et al., 
2024). The resulting models, also referred to as ‘digital twins’, offer a number of analysis techniques 
that have been used to investigate, for example, the contributions of different interneurons to a cell’s 
response (Maheswaranathan et al., 2023), or the effects of stimulus context (Fu et al., 2024; Goldin 
et al., 2022) and behavioural state (Franke et al., 2022) on neural coding. In particular, feature visu-
alisations (Olah et al., 2017) can be used to quickly generate stimuli that would maximally excite 
the modelled neurons (Walker et al., 2019; Bashivan et al., 2019), which in turn can serve as inter-
pretable short-hand descriptions of nonlinear neuronal selectivities. In visual cortex, the resulting 
maximally exciting inputs (MEIs) revealed more complex and diverse neuronal selectivities than were 
expected based on previous results obtained with synthetic stimuli and linear methods (Walker et al., 
2019; Bashivan et al., 2019).

Here, we combined the power of CNN-based modelling with large-scale recordings from RGCs to 
investigate colour processing in the mouse retina under natural stimulus conditions. Colour is a salient 
feature in nature, and the mouse visual system dedicates intricate circuitry to the processing of chro-
matic information (Szél et al., 1992; Joesch and Meister, 2016; Baden et al., 2013; Szatko et al., 
2020; Khani and Gollisch, 2021; Mouland et al., 2021). Studies using simple synthetic stimuli have 
revealed nonlinear and centre-surround (i.e. spatial) interactions between colour channels, but it is not 
clear how these are engaged in retinal processing of natural, temporally varying environments. Since 
mouse photoreceptors are sensitive to green and UV light (Jacobs et al., 2004), we recorded RGC 
responses to stimuli capturing the chromatic composition of natural mouse environments in these two 
chromatic channels. A model-guided search for MEIs in chromatic stimulus space predicted a novel 
type of chromatic tuning in tSbC RGCs, a type whose function is being debated (Mani and Schwartz, 
2017; Tien et al., 2015; Tien et al., 2022).

https://doi.org/10.7554/eLife.86860
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A detailed in silico characterisation followed up by experimental validation ex-vivo confirmed this 
cell type’s pronounced and unique selectivity for dynamic full-field changes from green-dominated to 
UV-dominated scenes, a type of visual input that matches the scene statistics of transitions across the 
horizon (Qiu et al., 2021; Abballe and Asari, 2022; Gupta et al., 2022). We therefore suggest a role 
for tSbC RGCs in detecting behaviourally relevant changes in visual context, such as a transitions from 
ground (i.e. below the horizon) to sky (i.e. above the horizon).

Results
Here, we investigated colour processing in the mouse retina under natural stimulus conditions. To this 
end, we trained a CNN model on RGC responses to a movie covering both achromatic and chromatic 
contrasts occurring naturally in the mouse environment, and then performed a model-guided search 
for stimuli that maximise the responses of RGCs.

Mouse RGCs display diverse responses to a natural movie stimulus
Using two-photon population Ca2+ imaging, we recorded responses from 8388 cells (in 72 recording 
fields across 32 retinae) in the ganglion cell layer (GCL) of the isolated mouse retina (Figure  1a) 
to a range of visual stimuli. Since complex interactions between colour channels have been mostly 
reported in the ventral retina and opsin-transitional zone, we focused our recordings on these regions 
(Szatko et al., 2020; Khani and Gollisch, 2021).

The stimuli included two achromatic synthetic stimuli – a contrast and frequency modulation (‘chirp’ 
stimulus) and a bright-on-dark bar moving in eight directions (‘moving bar’, MB) – to identify the 
functional cell type (see below), as well as a dichromatic natural movie (Figure 1b–d). The latter was 

Figure 1. Mouse retinal ganglion cells (RGCs) display diverse responses to a natural movie stimulus. (a) Illustration of a flat-mounted retina, with 
recording fields (white circles) and stimulus area centred on the red recording field indicated (cross marks optic disc; d, dorsal; v, ventral; t, temporal; 
n, nasal). (b) Natural movie stimulus structure (top) and example frames (bottom). The stimulus consisted of 5 s clips taken from UV-green footage 
recorded outside (Qiu et al., 2021), with 3 repeats of a 5-clip test sequence (highlighted in grey) and a 108-clip training sequence (see Methods). 
(c) Representative recording field (bottom; marked by red square in (a)) showing somata of ganglion cell layer (GCL) cells loaded with Ca2+ indicator 
OGB-1. (d) Ca2+ responses of exemplary RGCs (indicated by circles in (c)) to chirp (left), moving bar (centre), and natural movie (right) stimulus. (e) Same 
recording field as in (c) but with cells colour-coded by functional RGC group (left; see Methods and Baden et al., 2016) and group responses (coloured, 
mean ± SD across cells; trace of example cells in (d) overlaid in black).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Additional information about the dataset, model performance, and response quality filtering pipeline.

https://doi.org/10.7554/eLife.86860
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composed of footage recorded outside in the field using a camera that captured the spectral bands 
(UV and green; Qiu et al., 2021) to which mouse photoreceptors are sensitive (‍λ

S
peak = 360,λM

peak = 510‍ 
nm for S- and M-cones, respectively; Jacobs et al., 2004). We used 113 different movie clips, each 
lasting 5 s, that were displayed in pseudo-random order. Five of these constituted the test set and 
were repeated three times: at the beginning, in the middle, and at the end of the movie presentation, 
thereby allowing to assess the reliability of neuronal responses across the recording (Figure 1b, top).

The responses elicited by the synthetic stimuli and the natural movie were diverse, displaying 
ON (Figure 1d, rows 4–9), ON-OFF (row 3), and OFF (rows 1 and 2), as well as sustained and tran-
sient characteristics (e.g. rows 8 and 4, respectively). Some responses were suppressed by temporal 
contrast (generally, rows 10, 11; at high contrast and frequency, row 9). A total of 6984 GCL cells 
passed our response quality criteria (see Methods); 3527 cells could be assigned to 1 of 32 previously 
characterised functional RGC groups (Baden et al., 2016) based on their responses to the chirp and 
MB stimuli using our recently developed classifier (Figure 1e; Figure 1—figure supplement 1; Qiu 
et al., 2021). Cells assigned to any of groups 33–46 were considered displaced amacrine cells and 
were not analysed in this study (for detailed filtering pipeline, see Figure 1—figure supplement 1c).
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Figure 2. Convolutional neural network (CNN) model captures diverse tuning of retinal ganglion cell (RGC) groups and predicts maximally exciting 
inputs (MEIs). (a) Illustration of the CNN model and its output. The model takes natural movie clips as input (1), performs 3D convolutions with space-
time separable filters (2) followed by a nonlinear activation function (ELU; 3) in two consecutive layers (2–4) within its core, and feeds the output of its 
core into a per-neuron readout. For each RGC, the readout convolves the feature maps with a learned RF modelled as a 2D Gaussian (5), and finally 
feeds a weighted sum of the resulting vector through a softplus nonlinearity (6) to yield the firing rate prediction for that RGC (7). Numbers indicate 
averaged single-trial test set correlation between predicted (red) and recorded (black) responses. (b) Test set correlation between model prediction and 
neural response (averaged across three repetitions) as a function of response reliability (see Methods) for N=3527 RGCs. Coloured dots correspond to 
example cells shown in Figure 1c–e. Dots in darker grey correspond to the N=1947 RGCs that passed the model test correlation and movie response 
quality criterion (see Methods and Figure 1—figure supplement 1). (c) Test set correlation (as in (b)) of CNN model vs. test set correlation of an LN 
model (for details, see Methods). Coloured dots correspond to means of RGC groups 1–32 (Baden et al., 2016). Dark and light grey dots as in (b). (d) 
Illustration of model-guided search for MEIs. The trained model captures neural tuning to stimulus features (far left; heat map illustrates landscape of 
neural tuning to stimulus features). Starting from a randomly initialised input (second from left; a 3D tensor in space and time; only one colour channel 
illustrated here), the model follows the gradient along the tuning surface (far left) to iteratively update the input until it arrives at the stimulus (bottom 
right) that maximises the model neuron’s activation within an optimisation time window (0.66 s, grey box, top right).

https://doi.org/10.7554/eLife.86860
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CNN model captures diverse tuning of RGC groups and predicts MEIs
We trained a CNN model on the RGCs’ movie responses (Figure 2a) and evaluated model perfor-
mance as the correlation between predicted and trial-averaged measured test responses, ‍C(̂r(n), ⟨r(n)⟩i)‍ 
(Figure 2b). This metric can be interpreted as an estimate of the achieved fraction of the maximally 
achievable correlation (see Methods). The mean correlation per RGC group ranged from 0.32 (G14) 
to 0.79 (G24) (Figure 1—figure supplement 1) and reached an average of 0.48 (for all N=3527 cells 
passing filtering steps 1–3, Figure 1—figure supplement 1). We also tested the performance of our 
nonlinear model against a linearised version (see Methods; equivalent to an LN model, and from here 
on ‘LN model’) and found that the nonlinear CNN model achieved a higher test set correlation for all 
RGC groups (average correlation LN model: 0.38; G14: 0.2, G24: 0.65, Figure 2c).

Next, we wanted to leverage our nonlinear CNN model to search for potentially nonlinear stimulus 
selectivities of mouse RGC groups. Towards this goal, we aimed to identify stimuli that optimally drive 
RGCs of different groups. For linear systems, the optimal stimulus is equivalent to the linear filter and 
can be identified with classical approaches such as reverse correlation (Chichilnisky, 2001). However, 
since both the RGCs and the CNN model were nonlinear, a different approach was necessary. Other 
recent modelling studies in the visual system have leveraged CNN models to predict static MEIs for 
neurons in monkey visual area V4 (Bashivan et al., 2019; Willeke et al., 2023) and mouse visual area 
V1 (Walker et al., 2019; Franke et al., 2022). We adopted this approach to predict dynamic (i.e. 
time-varying) MEIs for mouse RGCs. We used gradient ascent on a randomly initialised, contrast- and 
range-constrained input to find the stimulus that maximised the mean activation of a given model 
neuron within a short time window (0.66 s; see Methods; Figure 2d).

It is important to note that MEIs should not be confused with, or interpreted as, the linear filters 
derived from classical approaches such as reverse correlation (Chichilnisky, 2001; Schwartz et al., 
2006). While both MEIs and linear filters offer simplified views of a neuron’s nonlinear response prop-
erties, they emphasise different aspects. The linear filter is optimised to provide the best possible 
linear approximation of the response function, identifying the stimulus direction to which the cell is 
most sensitive on average across the stimulus ensemble. In contrast, the MEI maximises the neuron’s 
response by finding the single stimulus that activates the cell most strongly. Consequently, MEIs can 
differ significantly from linear filters, often exhibiting greater complexity and higher frequency compo-
nents (Walker et al., 2019).

MEIs reflect known functional RGC group properties
The resulting MEIs were short, dichromatic movie clips; their spatial, temporal, and chromatic prop-
erties and interactions thereof are best appreciated in lower-dimensional visualisations (Figure 3a–c; 
more example MEIs in Figure 3—figure supplement 1).

To analyse the MEIs in terms of these properties, we decomposed them into their spatial and 
temporal components, separately for green and UV, and parameterised the spatial component as 
a difference-of-Gaussians (DoG) (Gupta et al., 2022) (N=1613 out of 1947, see Methods). We then 
located MEIs along the axes in stimulus space corresponding to three properties: centre size, mean 
temporal frequency, and centre contrast, separately for green and UV (Figure  3d–f). These MEI 
properties reflect RGC response properties classically probed with synthetic stimuli, such as spots 
of different sizes (Goetz et al., 2022), temporal frequency modulations (Baden et al., 2016), and 
stimuli of varying chromatic contrast (Szatko et al., 2020; Khani and Gollisch, 2021). Using the MEI 
approach, we were able to reproduce known properties of RGC groups (Figure 3g–i). For example, 
sustained ON ‍α‍ RGCs (G24), which are known to prefer large stimuli (Baden et al., 2016; Mani and 
Schwartz, 2017), had MEIs with large centres (G24, N=20 cells: green centre size, mean ± SD: 195 
±82 μm; UV centre size 178 ±45 μm; average across all RGC groups: green 148 ±42 μm, UV 141 ±42 
μm; see Figure 3g).

The MEI’s temporal frequency relates to the temporal frequency preference of an RGC: MEIs of G20 
and G21, termed ON high frequency and ON low frequency (Baden et al., 2016), had high and low 
average temporal frequency, respectively (G20, N=40 cells, green, mean ± SD: 2.71 ±0.16 Hz, UV 2.86 
±0.22 Hz; G21, N=50 cells, green, mean ± SD: 2.32 ±0.63 Hz, UV 1.98 ± 0.5 Hz; see Figure 3h). Some 
MEIs exhibit fast oscillations (Figure 3e and Figure 3—figure supplement 1). This is not an artefact 
but rather a consequence of optimising a stimulus to maximise activity over a 0.66 s time window 
(Figure 2d). To maximise the response of a transient RGC over several hundred milliseconds, it has to 

https://doi.org/10.7554/eLife.86860
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Figure 3. Spatial, temporal, and chromatic properties of maximally exciting inputs (MEIs) differ between retinal ganglion cell (RGC) groups. (a) Spatial 
component of three example MEIs for green (top), UV (middle), and overlay (bottom). Solid and dashed circles indicate MEI centre and surround fit, 
respectively. For display, spatial components ‍s‍ in the two channels were re-scaled to a similar range and displayed on a common grey-scale map 
ranging from black for ‍−max(|s|)‍ to white for ‍max(|s|)‍, i.e., symmetric about 0 (grey). (b) Spatiotemporal (y–t) plot for the three example MEIs (from (a)) at 
a central vertical slice for green (top), UV (middle), and overlay (bottom). Grey-scale map analogous to (a). (c) Trajectories through colour space over 
time for the centre of the three MEIs. Trajectories start at the origin (grey level); direction of progress indicated by arrow heads. Bottom right: Bounding 
boxes of the respective trajectory plots. (d) Calculation of MEI centre size, defined as ‍σx‍+‍σy‍, with ‍σx‍ and ‍σy‍ the s.d. in horizontal and vertical direction, 
respectively, of the difference-of-Gaussians (DoG) fit to the MEI. (e) Calculation of MEI temporal frequency: Temporal components are transformed using 
fast Fourier transform, and MEI frequency is defined as the amplitude-weighted average frequency of the Fourier-transformed temporal component. 
(f) Calculation of centre contrast, which is defined as the difference in intensity at the last two peaks (indicated by ‍t1‍ and ‍t2‍, respectively, in (c)). For the 
example cell (orange markers and lines), green intensity decreases, resulting in OFF contrast, and UV intensity increases, resulting in ON contrast. (g) 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.86860
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be stimulated repetitively, hence the oscillations in the MEI. Maximising the response over a shorter 
time period results in MEIs without oscillations (Figure 3—figure supplement 2).

Finally, the contrast of an MEI reflects what is traditionally called a cell’s ON vs. OFF preference: 
MEIs of ON and OFF RGCs had positive and negative contrasts, respectively (Figure 3i). An ON-OFF 
preference can be interpreted as a tuning map with two optima – one in the OFF- and one in the 
ON-contrast regime. For an ON-OFF cell, there are hence two stimuli that are approximately equally 
effective at eliciting responses from that cell. Consequently, for the ON-OFF RGC groups, optimisa-
tion resulted in MEIs with ON or OFF contrast, depending on the relative strengths of the two optima 
and on the initial conditions (Figure 3—figure supplement 1, G10, and see Discussion).

MEIs were also largely consistent within functional RGC groups (Figure 3—figure supplement 1). 
Where this was not the case, the heterogeneity of MEIs could be attributed to a known heterogeneity 
of cells within that group. For example, MEIs of G31 RGCs were diverse (Figure 3—figure supplement 
1), and the cells that were originally grouped to form G31 probably spanned several distinct types, as 
suggested by the group’s unusually high coverage factor (Baden et al., 2016). Together, these results 
provided strong evidence that RGCs grouped based on responses to synthetic stimuli (chirp and MB) 
also form functional groups in natural movie response space.

CNN model predicts centre colour opponency in RGC group G28

Our goal was to explore chromatic tuning of RGCs and to identify novel stimulus selectivities related 
to chromatic contrast. Therefore, we specifically focused on regions in stimulus space where a given 
stimulus property differs for green and UV. For centre size and temporal frequency, we asked which 
RGC groups contributed to the MEIs outside of the 95th percentile around the diagonal (Figure 3g, 
h, j, and k). These 5% MEIs furthest away from the diagonal were almost exclusively contributed by 
ON cells; and among these, more so by slow than by fast ON cells.

MEI contrast needed to be analysed differently than size and temporal frequency for two reasons. 
First, due to the dominance of UV-sensitive S-opsin in the ventral retina (Szél et al., 1992), stimuli in 
the UV channel were much more effective at eliciting RGC responses. As a result, the contrast of most 
MEIs is strongly shifted towards UV (Figure 3i). Second, contrast in green and UV can not only vary 
along positive valued axes (as is the case for size and temporal frequency), but can also take on oppo-
site signs, resulting in colour-opponent stimuli. Whereas most MEIs had the same contrast polarity in 
both colour channels (i.e. both ON or OFF, Figure 3c, blue and turquoise trajectories), some MEIs had 
opposing contrast polarities in UV and green (Figure 3c, orange trajectory, and Figure 3i, upper left 
quadrant). Thus, for contrast, we asked which RGC groups contributed to colour-opponent MEIs (i.e. 
MEIs in the colour-opponent, upper left or lower right quadrant in Figure 3i). Again, slow ON RGCs 
made up most of the cells with colour-opponent MEIs. Here, G28 stood out: 66% (24/36) of all cells 
of this group had colour-opponent MEIs (UVON-greenOFF), followed by G27 with 42% colour-opponent 
MEIs.

The colour opponency we found in G28 was not centre-surround, as described before in mice 
(Szatko et al., 2020), but rather a centre opponency (‘co-extensive’ colour-opponent RF; reviewed 
in Schwartz, 2021), as can be seen in the lower-dimensional visualisations (Figure 3a and b, right 
column; Figure 3c, orange trajectory).

In conclusion, our model-guided in silico exploration of chromatic stimulus space revealed a variety 
of preferred stimuli that captured known properties of RGC groups, and revealed a preference of G28 

Distribution of green and UV MEI centre sizes across N=1613 cells (example MEIs from (a–c) indicated by arrows; symbols as shown on top of (a)). 95% 
of MEIs were within an angle of ±8° of the diagonal (solid and dashed lines); MEIs outside of this range are coloured by cell type. (h) As (g) but for 
distribution of green and UV MEI temporal frequency. 95% of MEIs were within an angle of ±11.4° of the diagonal (solid and dashed lines). (i) As (g) but 
for distribution of green and UV MEI centre contrast. MEI contrast is shifted away from the diagonal (dashed line) towards UV by an angle of 33.2° due 
to the dominance of UV-sensitive S-opsin in the ventral retina. MEIs at an angle >45° occupy the upper left, colour-opponent (UVON-greenOFF) quadrant. 
(j, k) Fraction of MEIs per cell type that lie outside the angle about the diagonal containing 95% of MEIs for centre size and temporal frequency. Broad 
RGC response types indicated as in Baden et al., 2016. (l) Fraction of MEIs per cell type in the upper-left, colour-opponent quadrant for contrast.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Example maximally exciting inputs (MEIs) for example cell types.

Figure supplement 2. Illustration of how different time windows for optimisation affect maximally exciting input (MEI) temporal properties.

Figure 3 continued

https://doi.org/10.7554/eLife.86860
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RGCs for centre colour-opponent, UVON-greenOFF stimuli, a feature previously unknown for this RGC 
group.

Experiments confirm selectivity for chromatic contrast
Next, we verified experimentally that the MEIs predicted for a given RGC group actually drive cells of 
that group optimally. To this end, we performed new experiments in which we added to our battery 
of stimuli a number of MEIs chosen according to the following criteria: We wanted the MEIs to (i) 
span the response space (ON, ON-OFF, OFF, transient, sustained, and contrast-suppressed) and (ii) to 
represent both well-described RGC types, such as ‍α‍ cells (i.e. G5,24), as well as poorly understood RGC 
types, such as suppressed-by-contrast cells (G28,31,32) (Figure 4a). We therefore chose MEIs of RGCs 
from groups G1 (OFF local), G5 (OFF ‍α‍ sustained), G10 (ON-OFF local-edge), G18 (ON transient), G20 
(ON high frequency), G21 (ON low frequency), G23 (ON mini ‍α‍), G24 (sustained ON ‍α‍), G28 (ON contrast 
suppressed), G31 (OFF suppressed 1), and G32 (OFF suppressed 2). For simplicity, in the following we 
refer to the MEI of an RGC belonging to group ‍g‍ as group ‍g‍’s MEI, or MEI ‍g‍.

We presented these MEIs on a regularly spaced 5 × 5 grid to achieve approximate centring of 
stimuli on RGC RFs in the recording field (Figure 4b and c). For these recordings, we fit models whose 
readout parameters allowed us to estimate the RGCs’ RF locations. We used these RF location esti-
mates to calculate a spatially weighted average of the responses to the MEIs displayed at different 
locations, weighting the response at each location proportional to the RF strengths at those locations 
(Figure 4b, red highlight, and Figure 4d, top). We then performed the same experiment in silico, 
confirming that the model accurately predicts responses to the MEIs (Figure 4d, bottom; Figure 4—
figure supplement 1). These experiments allowed us to evaluate MEI responses at the RGC group 
level (Figure 4e and f; Figure 3—figure supplement 1).

We expected RGCs to show a strong response to their own group’s MEI, a weaker response to 
the MEIs of functionally related groups, and no response to MEIs of groups with different response 
profiles. Indeed, most RGC groups exhibited their strongest (G5,20,21,28,32) or second-strongest (G1,10,23) 
response to their own group’s MEI (Figure 4g, top). Conversely, RGC groups from opposing regions 
in response space showed no response to each others’ MEIs (e.g. G1,5 [OFF cells] vs. G21-28 [slow ON 
cells]). The model’s predictions showed a similar pattern (Figure 4g, bottom), thereby validating the 
model’s ability to generalise to the MEI stimulus regime.

Notably, G28 RGCs responded very selectively to their own MEI 28, displaying only weak responses 
to most other MEIs (Figure 4f and g, selectivity index G28 to MEI 28, ‍SIG28 (28)‍, defined as the average 
difference in response between MEI 28 and all other MEIs in units of standard deviation of the 
response, mean  ± SD: ‍2.58 ± 0.76‍; see Methods). This was in contrast to other RGC groups, such as 
G23 and G24, that responded strongly to MEI 28, but also to other MEIs from the slow ON response 
regime (Figure 4g, top; Figure 4—figure supplement 1, ‍SIG23 (28)‍, mean ± SD: ‍1.04 ± 0.69‍, ‍SIGt24(28)‍, 
mean ± SD: ‍1.01 ± 0.46‍). Hence, our validation experiments confirm the model’s prediction that RGC 
group G28 is selective for centre colour-opponent, UVON-greenOFF stimuli.

G28 corresponds to the tSbC RGC type
Next, we sought to identify which RGC type G28 corresponds to. In addition to its unique centre colour 
opponency, the responses of G28 displayed a pronounced transient suppression to temporal contrast 
modulations (chirp response in Figure 1e). Therefore, we hypothesised that G28 corresponds to the 
tSbC RGC type (Tien et al., 2015; Tien et al., 2016; Tien et al., 2022), which is one of the three SbC 
RGC types identified so far in the mouse and is also referred to as ON delayed (OND) because of its 
delayed response onset (Jacoby and Schwartz, 2018).

To test this hypothesis, we performed cell-attached electrophysiology recordings (Figure  5) 
targeting tSbC/OND cells (N=4), identified by their responses to spots of multiple sizes (Goetz et al., 
2022), and later confirmed by their distinctive morphology (Jacoby and Schwartz, 2018; type 73 in 
Bae et al., 2018; Figure 5c and d). We recorded spikes while presenting the MEI stimuli (Figure 5a, 
top). Just like G28 RGCs in the Ca2+ imaging, tSbC/OND cells exhibited a pronounced selectivity 
for MEI 28, and were suppressed by most other MEIs (Figure  5a, middle and bottom). Notably, 
the characteristic delayed response onset was visible in both the Ca2+ (Figure 4f, top) and electrical 
(Figure 5a) responses but was not predicted by the model (Figure 4f, bottom).

https://doi.org/10.7554/eLife.86860
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Figure 4. Experiments confirm maximally exciting inputs (MEIs) predicted by model. (a) MEIs shown during the experiment, with green and UV spatial 
components (top two rows), as well as green and UV temporal components (third row) and a spatiotemporal visualisation (fourth row). For display, spatial 
components ‍s‍ in the two channels were re-scaled to a similar range and displayed on a common grey-scale map ranging from black for ‍−max(|s|)‍ to 
white for ‍max(|s|)‍, i.e., symmetric about 0 (grey). Relative amplitudes of UV and green are shown in the temporal components. (b) Illustration of spatial 
layout of MEI experiment. White circles represent 5 × 5  grid of positions where MEIs were shown; red shading shows an example RF estimate of a 
recorded G32 retinal ganglion cell (RGC), with black dot indicating the RF centre position (Methods). (c) Responses of example RGC from (b) to the 11 
different MEI stimuli at 25 different positions. (d) Recorded [top, ‍r(n)‍] and predicted [bottom, ‍̂r(n)‍] responses to the 11 different MEIs for example RGC ‍n‍ 
from (b, c). Left: Responses are averaged across the indicated dimensions x, y (different MEI locations); black bar indicates MEI stimulus duration (from 
0 to 1.66 s), grey rectangle marks optimisation time window (from 1 to 1.66 s). Right: Response to different MEIs, additionally averaged across time 
(t; within optimisation time window). (e, f) Same as in (d), but additionally averaged across all RGCs (‍n‍) of G5 (N=6) (e) and of G28 (N=12) (f). Error bars 
show SD across cells. (g) Confusion matrix, each row showing the z-scored response magnitude of one RGC group (averaged across all RGCs of that 
group) to the MEIs in (a). Confusion matrix for recorded cells (top; ‘Data') and for model neurons (bottom; ‘Model'). Black squares highlight broad RGC 
response types according to Baden et al., 2016: OFF cells, (G1,5) ON-OFF cells (G10), fast ON cells (G18,20), slow ON (G21,23,24) and ON contrast suppressed 
(G28) cells, and OFF suppressed cells (G31,32).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure 4 continued on next page

https://doi.org/10.7554/eLife.86860
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As a control, we also recorded MEI responses of a different, well-characterised RGC type, sustained 
(s) ON ‍α‍ (G24; Krieger et al., 2017; Figure 5b, top; N=4). Again, the electrical recordings of the cells’ 
MEI responses yielded virtually the same results as the Ca2+ imaging (Figure 5b, middle and bottom; 
Figure 4—figure supplement 1). Crucially, sON ‍α‍ cells were not selective for MEI 28. The fact that 
these experiments with precise positioning of stimuli on the cells’ RFs yielded the same results as the 
2P imaging experiments confirms the validity of the grid approach for stimulus presentation used in 
the latter.

Chromatic contrast selectivity derives from a nonlinear transformation 
of stimulus space
Next, we asked whether G28 (tSbC) RGC’s selectivity is a linear feature, as could be achieved by two 
linear filters with opposite signs for the two colour channels, or whether it is a nonlinear feature. To 
address this question, we tested whether an LN model (implemented using convolutions; see Methods) 
could recover the chromatic selectivity of G28 by predicting MEIs using the LN model. We found that 
the LN model predicted colour-opponent MEIs for only 9 out of 36 (25%) G28 RGCs (nonlinear CNN: 
24 out of 36 [66%] colour-opponent MEIs; Figure 6a–c). This finding argues against the possibility that 
G28’s colour opponency can be explained on the computational level by two opposite-sign linear filters 
operating on the two colour channels, which could be recovered by an LN model. Instead, it suggests 
the presence of a nonlinear dependency between chromatic contrast (of the stimulus) and chromatic 
selectivity (of the cell). In other words, G28 RGCs process stimuli differently depending on their chro-
matic contrast. This is a nonlinear property that cannot be accurately captured by an LN model that 
makes a single estimate of the linear filter for the whole stimulus space.

Figure supplement 1. Recorded and predicted responses of example RGC groups to the MEI stimuli.

Figure 4 continued

Figure 5. Electrical single-cell recordings of responses to maximally exciting input (MEI) stimuli confirm chromatic selectivity of transient suppressed-
by-contrast (tSbC) retinal ganglion cells (RGCs). (a) Spiking activity (top, raster plot; middle, estimated firing rate) of an OND RGC in response to 
different MEI stimuli (black bar indicates MEI stimulus duration; grey rectangle marks optimisation time window, from 1 to 1.66 s). Bottom: z-scored 
activity as a function of MEI stimulus, averaged across cells (solid circles w/ left y-axis, from Ca2+ imaging, N=11 cells; open circles w/ right y-axis, from 
electrical spike recordings, N=4). Error bars show SD across cells. Colours as in Figure 4. (b) Like (a) but for a sustained ON ‍α‍ cell (G24; N=4 cells, 
both for electrical and Ca2+ recordings). (c) Different ON delayed (OND/tSbC, G28) RGC (green) dye-loaded by patch pipette after cell-attached 
electrophysiology recording (z-projection; x–y plane). (d) Cell from (c, green) as side projection (x–z), showing dendritic stratification pattern relative to 
choline-acetyltransferase (ChAT) amacrine cells (tdTomato, red) within the inner plexiform layer (IPL).

https://doi.org/10.7554/eLife.86860
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To understand the nature of this dependency, we expanded the estimate of the model RGCs’ 
tuning to colour contrast around the maximum (the MEI). We did this by mapping the model neurons’ 
response and its gradient in 2D chromatic contrast space (Figure 6b and c). This analysis revealed 
that, indeed, G28 RGCs have a nonlinear tuning for colour contrast: they are strongly UV-selective 
at lower contrasts, but become colour-opponent, i.e., additionally inhibited by green, for higher 
contrasts. For individual neurons with very strong colour opponency that extends over a large region 
of chromatic contrast space, also the LN model’s approximation reflects this colour opponency, which 
demonstrates that the LN model can in principle model colour opponency, too (Figure 6—figure 
supplement 1).

We confirmed the model’s predictions about G28’s nonlinear tuning for colour contrast using 
electrical recordings as described above. The example G28 (tSbC) cells shown in the figure exhibit 
similar nonlinear tuning in chromatic contrast space (Figure 6e–g). The first example cell’s firing rate 
(Figure 6f) and, consequently, the tuning curve (Figure 6e) peak for UVON-greenOFF stimuli (top left in 
panel e; upper row, second from left in f), and are lower for UVON-greenON stimuli (top right in panel e; 
upper row, far right in f), reflecting the suppressive effect of green contrast on the cell’s response. The 
same is true for the second example cell (Figure 6g).

Figure 6. Chromatic contrast selectivity of G28 retinal ganglion cells (RGCs) derives from a nonlinear transformation of stimulus space. (a) Distribution 
of green and UV maximally exciting input (MEI) centre contrast for a linear-nonlinear (LN) model (red) and a nonlinear convolutional neural network 
(CNN) model (black). Colour-opponent cells highlighted by filled marker. (b, c) Left: MEIs for an example cell of RGC group G28, generated with the LN 
model (b) or the CNN model (c). The cell’s MEI centre contrast for both models is marked in (a) by asterisks. Right: Respective tuning maps of example 
model neuron in chromatic contrast space. Contour colours and background greys represent responses in % of maximum response; arrows indicate the 
direction of the response gradient across chromatic contrast space. The tuning maps were generated by evaluating the model neurons on stimuli that 
were generated by modulating the contrast of the green (x-axis) and UV (y-axis) component of the MEI. In these plots, the original MEI is located at (–1, 
1). More details in the Methods section. (d) Difference in response predicted between LN and CNN model (in % of maximum response). (e) Contour plot 
as in (b, c) but of activity vs. green and UV contrast for an example transient suppressed-by-contrast (tSbC) G28 RGC measured in whole-cell current-
clamp mode. Labels on the contour plot indicate spike count along isoresponse curves. (f) Traces are examples of responses at the 8 extremes of –100%, 
0, or 100% contrast in each colour channel. Scale bars: (b), vertical 200 µm, horizontal 0.5 s; MEI scaling in (c) as in (b). (g) Same as (e) for a second 
example tSbC RGC.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Both LN and CNN model predict colour-opponency for a strongly colour-opponent G_{28} RGC.

https://doi.org/10.7554/eLife.86860
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The nonlinearity in tuning to colour contrast of G28 RGCs leads to a transformation of stimulus 
space (Figure 6) that amplifies the distance of colour-opponent stimuli from non-colour-opponent 
stimuli and is thereby expected to increase their discriminability. We therefore hypothesised that the 
representation of visual input formed by G28 might serve to detect an ethologically relevant, colour-
opponent feature from the visual scene.

Visual context changes are characterised by changes in chromatic 
contrast
Chromatic contrast changes at the horizon (Khani and Gollisch, 2021; Qiu et al., 2021; Gupta et al., 
2022; Abballe and Asari, 2022), and so does visual context: from sky to ground or vice versa. We 
therefore hypothesised that G28 might leverage chromatic contrast as a proxy for detecting changes in 
visual context, such as might be caused by head or eye movements that cross the horizon. Detecting 
these changes in visual context could provide information that is crucial for interpreting signals in 
other RGC channels.

In our natural movie stimulus, the transitions between movie clips (inter-clip transitions; Figure 1b) 
can be categorised into those with and without change in visual context: ground-to-sky and sky-to-
ground transitions for vertical movements with a change in visual context, and as controls, ground-
to-ground and sky-to-sky transitions for horizontal movements without change in visual context. We 
calculated the contrast of these transitions in the green and UV channel to map them to chromatic 
contrast stimulus space (Figure 7a). We found that ground-to-ground and sky-to-sky transitions were 
distributed along the diagonal, indicating that they reflect largely achromatic contrast changes. The 
two transitions resembling visual input elicited by vertical movements crossing the horizon fell into 
the two colour-opponent quadrants of the stimulus space: sky-to-ground transitions in the lower right 
quadrant, and ground-to-sky transitions in the upper left quadrant (Figure  7a and b). The UVON-
greenOFF MEIs 28, the preferred stimuli of G28, shared a location in stimulus space with ground-to-sky 
transitions, indicating that these two stimuli are similar in terms of chromatic contrast (Figure 3i).

Chromatic contrast selectivity allows detecting visual context changes
Next, we tested if G28 RGCs indeed respond strongly to visual context changes as occur in ground-
to-sky transitions. To this end, we extracted the RGC responses to the inter-clip transitions, mapping 
their tuning to chromatic contrasts (Figure 7—figure supplement 1, Figure 7—figure supplement 
2), and then averaged the resulting single-cell tuning maps for each RGC group (e.g. see Figure 7c–e). 
G28 is most strongly tuned to full-field transitions in the upper left quadrant containing mostly ground-
to-sky inter-clip transitions (Figure 7c) – unlike, for example, non-colour-opponent reference RGC 
groups from the slow ON and OFF response regime (Figure 7d and e).

Could a downstream visual area detect ground-to-sky visual context changes based on input from 
G28 RGCs? To answer this question, we performed a linear signal detection analysis for each RGC 
by sliding a threshold across its responses to the inter-clip transitions, classifying all transitions that 
elicited an above-threshold response as ground-to-sky, and evaluating false-positive and true-positive 
rates (FPR and TPR, respectively) for each threshold (Figure 7f). Plotting the resulting TPRs for all 
thresholds as a function of FPRs yields a receiver operating characteristic (ROC) curve (Fawcett, 2006; 
Figure 7f, middle). The area under this curve (AUC) can be used as a measure of detection perfor-
mance: it is equivalent to the probability that a given RGC will respond more strongly to a ground-
to-sky transition than to any other type of transition. Indeed, G28 RGCs achieved the highest AUC 
on average (Figure 7f, bottom, and Figure 7g; G28, mean ± SD AUC (N=78 cells): 0.68 ± 0.08; two-
sample permutation test G28 vs. all other groups with at least N=4 cells (see Methods), significant for 
each group, with ‍α = 0.0017‍ Bonferroni-corrected for 30 multiple comparisons).

Ground-to-sky transitions, and therefore visual context changes, can also appear in the lower visual 
field, which is processed by the dorsal retina, where RGCs receive weaker UV input (Szatko et al., 
2020). We recorded additional fields in the dorsal retina (Figure 7—figure supplement 2) and also 
found here that G28 (tSbC) RGCs displayed the strongest tuning to ground-to-sky transitions among 
all dorsal RGCs (Figure 7—figure supplement 3c-h, for statistics, see legends).

Visual context changes triggered by different behaviours, such as locomotion and head or eye 
movements, will differ strongly with respect to their statistics – in particular with respect to their 
speed. Therefore, for G28 (tSbC) RGCs to play a role in detecting context changes, their detection 

https://doi.org/10.7554/eLife.86860
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Figure 7. Chromatic contrast tuning allows detection of ground-to-sky transitions. (a) Distribution of green and UV contrasts of all movie inter-clip 
transitions (centre), separately for the four transition types, for each of which an example is shown: ground-to-sky (N=525, top left, red triangle), ground-
to-ground (N=494, top right, green disk), sky-to-ground (N=480, bottom left, black downward triangle), and sky-to-sky (N=499, bottom right, purple 
square). Images show last and first frame of pre- and post-transition clip, respectively. Traces show mean full-field luminance of green and UV channels 
in last and first 1 s of pre- and post-transition clip. Black trace shows luminance averaged across colour channels. (b) Distributions as in (a), but shown as 
contours indicating isodensity lines of inter-clip transitions in chromatic contrast space. Density of inter-clip transitions was estimated separately for each 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.86860
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performance should be robust across velocities. To test whether this is the case, we conducted addi-
tional in silico experiments where we ran model inference on stimuli that simulate transitions across 
the visual field with and without context change (Figure  7h) at different velocities: 50, 150, 250, 
and 350 visual degrees per second (° s–1; see Methods; Figure 7—figure supplement 3a and b) 
The slowest speed simulated visual input as could be elicited by locomotion, and the fastest speed 
approached that of saccades (Meyer et al., 2020). We then performed an ROC analysis on the model 
cell responses. It should be noted that, because model predictions are noise-free, results from the 
ROC analysis based on simulated responses will overestimate detection performance. However, under 
the assumption of approximately equal noise levels across RGC groups, we can still draw conclusions 
about the relative performance of different RGC groups. This analysis confirmed that G28 RGCs could 
distinguish ground-to-sky context changes from all other types of transitions robustly across different 
speeds (Figure 7i and j). Interestingly, the advantage of G28 over other RGC groups in performing this 
detection task diminished with increasing speed (Figure 7—figure supplement 3c and d; see also 
Discussion).

Together, these analyses demonstrate that a downstream area, reading out from a single RGC 
group, would achieve the best performance in detecting ground-to-sky context changes if it based its 
decisions on inputs from G28 RGCs, robustly across different lighting conditions (transitions between 
movie snippets), retinal location (ventral and dorsal), and speeds.

Discussion
We combined large-scale recordings of RGC responses to natural movie stimulation with CNN-based 
modelling to investigate colour processing in the mouse retina. By searching the stimulus space 
in silico to identify maximally exciting inputs (MEIs), we found a novel type of chromatic tuning in 
tSbC RGCs. We revealed this RGC type’s pronounced and unique selectivity for full-field changes 
from green-dominated to UV-dominated scenes, a stimulus that matches the chromatic statistics of 
ground-to-sky transitions in natural scenes. Therefore, we suggest that tSbC cells may signal context 
changes within their RF. Beyond our focus on tSbC cells, our study demonstrates the utility of an in 
silico approach for generating and testing hypotheses about the ethological relevance of sensory 
representations.

type of transition from histograms within 10 × 10 bins that were equally spaced within the coloured boxes. Four levels of isodensity for each transition 
type shown, with density levels at 20% (outermost contour, strongest saturation), 40%, 60%, and 80% (innermost contour, weakest saturation) of the 
maximum density observed per transition: 28 sky-to-ground (black), 75 ground-to-ground (green), 42 sky-to-sky (purple), and 45 ground-to-sky (red) 
transitions per bin. Orange markers indicate locations of N=36 G28 maximally exciting inputs (MEIs) in chromatic contrast space (Figure 3i). (c) Tuning 
map of G28 retinal ganglion cells (RGCs) (N=78), created by averaging the tuning maps of the individual RGCs, overlaid with outermost contour lines 
from (b) (Figure 7—figure supplement 2). (d, e) Same as (c) for G21 ((g), N=97) and G5 ((h), N=33). (f) Top: Illustration of receiver operating characteristic 
(ROC) analysis for two RGCs, a G21 (left) and a G28 (right). For each RGC, responses to all inter-clip transitions were binned, separately for ground-to-sky 
(red) and all other transitions (grey). Middle: Sliding a threshold ‍d ‍ across the response range, classifying all transitions with response ‍> d ‍ as ground-
to-sky, and registering the false-positive rate (FPR) and true-positive rate (TPR) for each threshold yields an ROC curve. Numbers in brackets indicate 
(FPR, TPR) at the threshold indicated by vertical line in histograms. Bottom: Performance for each cell, quantified as area under the ROC curve (AUC), 
plotted as distribution across AUC values for all cells (black), G21 (grey), G5 (blue), and G28 (orange); AUC mean ± SD indicated as dots and horizontal 
lines above histograms. (g) Boxplot of AUC distributions per cell type. Boxes extend from first quartile (‍Q1‍) to third quartile (‍Q3‍) of the data; line within a 
box indicates median, whiskers extend to the most extreme points still within [‍Q1 − 1.5 × IQR‍, ‍Q3 + 1.5 × IQR‍], IQR = inter-quartile range. Diamonds 
indicate points outside this range. All plot elements (upper and lower boundaries of the box, median line, whiskers, diamonds) correspond to actual 
observations in the data. Numbers of RGCs for each type are indicated in the plot. (h) Illustration of stimulus with transitions with (Sky-Ground, Ground-
Sky) and without (Sky-Sky, Ground-Ground) context change at different velocities (50, 150, 250, and 350 °/s) used in in silico experiments in (i, j). (i) Like 
(g) but for model cells and stimuli illustrated in (h) at 50/s (see (h)). (j) AUC as function of transition velocity for G28 (orange) vs. example RGC groups 
(‘Uncertain', G31,32; Slow-ON, G21,23,24; Fast-ON, G18,20; ON-OFF, G10; OFF, G1,5).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Example response traces to inter-clip transitions with and without context changes.

Figure supplement 2. Chromatic contrast tuning in the dorsal retina allows detection of ground-to-sky transitions.

Figure supplement 3. Simulations predict tSbC cells robustly detect context changes across different speeds.

Figure 7 continued
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Nonlinear approaches for characterising neuronal selectivities
We leveraged image-computable models in combination with an optimisation approach to search 
in dynamic, chromatic stimulus space for globally optimal inputs for RGCs, the MEIs. The resulting 
MEI represents the peak in the nonlinear loss landscape that describes the neuron’s tuning in high-
dimensional stimulus space. This approach has also been used to reveal the complexities and nonlin-
earities of neuronal tuning in monkey visual cortex area V4 (Bashivan et al., 2019; Willeke et al., 
2023) and mouse area V1 (Walker et al., 2019; Franke et al., 2022).

Finding optimal stimuli via predictive models is by no means the only way to reveal nonlinear 
selectivity. Several alternative approaches exist (Schwartz et al., 2006; Sharpee et al., 2004; Liu 
et al., 2017; Globerson et al., 2009; Maheswaranathan et al., 2023) that could in principle also 
recover the type of tuning we report (although it is not a trivial question whether and under what 
conditions they would). More importantly, these approaches are not readily applicable to our data. 
Some approaches, such as spike-triggered covariance (Schwartz et al., 2006) or spike-triggered non-
negative matrix factorisation (Liu et al., 2017), typically make assumptions about the distribution of 
input stimuli that are violated, or at least not guaranteed, for naturalistic stimuli, which consequently 
precludes using these methods to probe cells under their natural stimulus statistics (adaptations of 
these methods for naturalistic stimuli exist, e.g., see Aljadeff et al., 2013; Aljadeff et al., 2016). 
Other approaches, including maximally informative dimensions (Sharpee et al., 2004) or maximum 
noise entropy (Globerson et al., 2009), use information theory as a framework. They require esti-
mating mutual information between stimulus and responses, which is a challenge when dealing with 
high-dimensional stimuli and continuous responses.

Predictive models, on the other hand, can handle high-dimensional input distributions well and can 
easily be adapted to different response modalities. However, one important limitation of our approach 
for identifying neuronal stimulus selectivities is that searching for the maximally exciting input will 
return a single input – even when there are several inputs that would elicit an equal response, such as 
ON and OFF stimuli for ON-OFF cells (see Figure 3—figure supplement 1, G10 MEIs). A remedy for 
this limitation is to search for diverse exciting inputs by generating stimuli that are both highly effec-
tive at eliciting neuronal responses and at the same time distinct from one another. Ding et al., 2023 
used this approach to study bipartite invariance in mouse V1 (see also Cadena et al., 2018).

Another limitation is that identifying the MEI does not immediately provide insight into how the 
different stimulus dimensions contribute to the neuron’s response, i.e., how varying the stimulus along 
these dimensions affects the neuron’s response. However, differentiable models readily lend them-
selves to explore the interactions and contributions of different stimulus dimensions in generating the 
neuronal response, e.g., by inspecting the gradient field along dimensions of interest as done here, or 
by searching for locally optimal stimulus perturbations (Goldin et al., 2022). These models can also 
be used to understand better the properties that distinguish cell types from each other by generating 
most discriminative stimuli, as recently demonstrated for RGCs in mouse and marmoset (Burg et al., 
2023).

Together, these studies showcase the versatility of the toolkit of optimisation-based approaches at 
characterising nonlinear neuronal operations in high-dimensional, natural stimulus spaces. We add to 
this toolkit by first searching for a globally optimal stimulus, and then searching locally in its vicinity to 
map the cells’ loss landscape around the peak.

Circuit mechanisms for colour opponency in tSbC RGCs
Most previous studies of colour opponency in the mouse retina have identified sparse populations 
of colour-opponent RGCs that have not been systematically assigned to a particular functional type 
(Szatko et al., 2020; Khani and Gollisch, 2021; Gouras and Ekesten, 2004). The only studies that 
have examined the mechanisms of colour opponency in identified mouse RGC types showed a centre-
surround organisation, with RF centre and surround having different chromatic preferences (Chang 
et al., 2013; Joesch and Meister, 2016; Stabio et al., 2018, but see Sonoda et al., 2020). While 
we do not specifically analyse centre-surround opponency in this study, we see a similar trend as 
described previously in many RGC types, with stronger surrounds in the green channel relative to 
the UV channel (see Figure 4a, Figure 3—figure supplement 1). tSbC RGCs, in contrast, respond to 
spatially co-extensive colour-opponent stimuli, functionally reminiscent of colour-opponent RGCs in 
guinea pig (Yin et al., 2009) and ground squirrels (Michael, 1968).

https://doi.org/10.7554/eLife.86860
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In mice, centre-surround opponency has been attributed to the opsin gradient (Chang et al., 2013) 
and rod contributions in the outer retina (Joesch and Meister, 2016; Szatko et al., 2020), whereas 
the circuitry for spatially co-extensive opponency remains unknown. It seems unlikely, though, that 
the opsin gradient plays a major role in the tSbC cell’s colour opponency, because both ventral and 
dorsal tSbC cells preferentially responded to full-field green-to-UV transitions. In primates, spatially 
co-extensive colour opponency in small bistratified RGCs is thought to arise from the selective wiring 
of SON and M/LOFF bipolar cells onto the inner and outer dendritic strata, respectively (Dacey and Lee, 
1994, but see Field et al., 2007). A similar wiring pattern seems unlikely for tSbC RGCs, since their 
inner dendrites do not co-stratify with the S-ON (type 9) bipolar cells, nor do their outer dendrites 
co-stratify with the candidate M-OFF bipolar cell (type 1) (Behrens et  al., 2016). The bistratified 
dendritic arbour distinguishes the mouse tSbC also from the colour-opponent ON RGC type in guinea 
pig, which is monostratified (Yin et al., 2009).

The large RF centres of the tSbC cells, extending well beyond their dendritic fields, come from 
a non-canonical circuit, in which tonic inhibition onto the RGC via GABAB receptors is relieved via 
serial inhibition from different amacrine cells using GABAC receptors (Mani and Schwartz, 2017). An 
intriguing possibility is that a colour-selective amacrine cell is part of this circuit, perhaps supporting 
chromatically tuned disinhibition in the absence of selective wiring from the aforementioned cone-
selective bipolar cells onto the RGC.

A new functional role for tSbC RGCs
Suppressed-by-contrast responses have been recorded along the early visual pathway in dorsal lateral 
geniculate nucleus (dLGN), superior colliculus (SC), and primary visual cortex (V1) (Niell and Stryker, 
2010; Piscopo et al., 2013; Ito et al., 2017), with their function still being debated (Masland and 
Martin, 2007). In the retina, three types of SbC RGCs have so far been identified (reviewed in Jacoby 
and Schwartz, 2018), among them the tSbC cell (Mani and Schwartz, 2017; Tien et al., 2015; Tien 
et al., 2022). Despite their relatively recent discovery, tSbC RGCs have been suggested to play a role 
in several different visual computations. The first report of their light responses in mice connected 
them to the SbC RGCs previously discovered in rabbit, cat, and macaque, and suggested a role in 
signalling self-generated stimuli, perhaps for saccade suppression (Tien et al., 2015). Aided by a new 
intersectional transgenic line to selectively label tSbC RGCs (Tien et al., 2022), their projections were 
traced to areas in SC, v- and dLGN, and nucleus of the optic tract (NOT). The latter stabilises hori-
zontal eye movements; however, as the medial terminal nucleus, which serves stabilisation of vertical 
eye movements, lacks tSbC innervation, it is unclear whether and how these RGCs contribute to gaze 
stabilisation.

A retinal study identified the circuit mechanisms responsible for some of the unique spatial and 
temporal response properties of tSbC cells and suggested a possible role in defocus detection to 
drive emmetropization in growing eyes and accommodation in adults (Mani and Schwartz, 2017; 
Baden et al., 2017). Here, we identified another potential role for these RGCs in vision based on the 
chromatic properties of their RFs: signalling visual context changes (see next section). These different 
possible functional roles are not mutually exclusive, and might even be complementary in some cases, 
highlighting the difficulty in assigning single features to distinct RGC types (Schwartz and Swygart, 
2020). In particular, the centre colour opponency that we discovered in tSbC RGCs could serve to 
enhance their role in defocus detection by adding a directional signal (myopic vs. hyperopic) based 
on the chromatic aberration of lens and cornea (Gawne and Norton, 2020). Future studies may test 
these theories by manipulating these cells in vivo using the new transgenic tSbC mouse line (Tien 
et al., 2022).

Behavioural relevance of context change detection
The horizon is a prominent landmark in visual space: it bisects the visual field into two regions, ground 
and sky. This is particularly relevant in animals like mice, where eye motion largely accounts for head 
movements and keeps the visual field stable with respect to the horizon (Meyer et al., 2020). Visual 
stimuli carry different meaning depending on where they occur relative to the horizon, and context-
specific processing of visual inputs is necessary for selecting appropriate behavioural responses 
(reviewed in Evans et al., 2019). For example, it is sensible to assume that a looming stimulus above 
the horizon is a predator, the appropriate response to which would be avoidance (i.e. escape or 

https://doi.org/10.7554/eLife.86860
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freezing). A similar stimulus below the horizon, however, is more likely to be harmless or even prey. 
To allow for time-critical perceptual decisions – predator or prey – and corresponding behavioural 
response selection – avoidance or approach – it might be useful for stimulus information (e.g. dark 
moving spot) and contextual information to converge early in the visual circuitry.

Notably, VGluT3-expressing amacrine cells (a ‘hub’ for distributing information about motion) 
represent a shared element in upstream circuitry, providing opposite-sign input to tSbC and to RGCs 
implicated in triggering avoidance behaviour, such as tOFF ‍α‍ (Krieger et al., 2017; Münch et al., 
2009) and W3 cells (Zhang et al., 2012). In downstream circuitry, SbC inputs have been found to 
converge with ‘conventional’ RGC inputs onto targets in dLGN and NOT; whether tSbC axons specifi-
cally converge with tOFF ‍α‍ or W3 axons remains to be tested. Such convergence may allow ‘flagging’ 
the activity of these RGCs with their local context (sky/threat or ground/no threat).

Depending on the behaviour that elicits a context change – be it a head or eye movement or loco-
motion – the parameters of the incoming stimulus, such as illumination level and velocity, may change. 
To be behaviourally useful, a context-change-flagging signal needs to be reliable and robust across 
these different stimulus parameters. While many slow-ON RGCs achieve high detection performance 
at higher transition velocities, probably reacting to the increasingly flash-like stimuli, tSbC/G28 RGCs 
were the only type with robustly high performance across different levels of illumination and all simu-
lated speeds.

In silico approaches to linking neural tuning and function
Modelling studies have advanced our understanding of the complexity and organisation of retinal 
processing in recent years. It is helpful to consider the contributions of different studies in terms of 
three perspectives on the retinal encoding of natural scenes: the circuit perspective (‘how?’), the 
normative perspective (‘why?’), and the coding perspective (‘what?’) (Marr, 2010; Karamanlis et al., 
2022). For example, an in silico dissection of a CNN model of the retina offered explanations on how 
the surprisingly complex retinal computations, such as motion reversal, omitted stimulus response, 
and polarity reversal, emerge from simpler computations within retinal circuits (Maheswaranathan 
et al., 2023; Tanaka et al., 2019). From the normative perspective, networks trained on an efficient 
coding objective accurately predicted the coordination of retinal mosaics (Roy et al., 2021).

Here, we proposed an approach that allows investigating the complexity of retinal processing 
simultaneously from the coding and the normative perspectives: A global search for most exciting 
mouse RGC inputs in dynamic, chromatic stimulus space provides answers to the question of what it 
is that retinal neurons encode. Interpreting the abstract features extracted by the retina against the 
backdrop of natural stimulus space points to why these features might be behaviourally relevant. And 
finally, classifying individual RGCs into types then allows to bring in the circuit perspective through 
targeted experiments aimed at dissecting how specific retinal computations are implemented.

Methods
Animals and tissue preparation
All imaging experiments were conducted at the University of Tübingen; the corresponding animal 
procedures were approved by the governmental review board (Regierungspräsidium Tübingen, 
Baden-Württemberg, Konrad-Adenauer-Str. 20, 72072 Tübingen, Germany) and performed according 
to the laws governing animal experimentation issued by the German Government. All electrophysio-
logical experiments were conducted at Northwestern University; the corresponding animal procedures 
were performed according to standards provided by Northwestern University Center for Comparative 
Medicine and approved by the Institutional Animal Care and Use Committee (IACUC).

For all imaging experiments, we used 4- to 15-week-old C57Bl/6J mice (N=23; JAX 000664) 
of either sex (10 male, 13 female). These animals were housed under a standard 12  hr day/night 
rhythm at 22° and 55% humidity. On the day of the recording experiment, animals were dark-adapted 
for at least 1  hr, then anaesthetised with isoflurane (Baxter) and killed by cervical dislocation. All 
following procedures were carried out under very dim red (>650 nm) light. The eyes were enucleated 
and hemisected in carboxygenated (95% O2, 5% CO2) artificial cerebrospinal fluid (ACSF) solution 
containing (in mM): 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, 20 glucose, 
and 0.5 L-glutamine at pH 7.4. Next, the retinae were bulk-electroporated with the fluorescent Ca2+ 
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indicator Oregon-Green BAPTA-1 (OGB-1), as described earlier (Briggman and Euler, 2011). In brief, 
the dissected retina was flat-mounted onto an Anodisc (#13, 0.2 μm pore size, GE Healthcare) with 
the RGCs facing up, and placed between a pair of 4 mm horizontal plate electrodes (CUY700P4E/L, 
Nepagene/Xceltis). A 10 µl drop of 5 mM OGB-1 (hexapotassium salt; Life Technologies) in ACSF was 
suspended from the upper electrode and lowered onto the retina. Next, nine pulses (≈9.2 V, 100 ms 
pulse width, at 1 Hz) from a pulse generator/wide-band amplifier combination (TGP110 and WA301, 
Thurlby handar/Farnell) were applied. Finally, the tissue was placed into the microscope’s recording 
chamber, where it was perfused with carboxygenated ACSF (at ≈36°C) and left to recover for ≥30 min 
before recordings started. To visualise vessels and damaged cells in the red fluorescence channel, the 
ACSF contained ≈0.1 µM Sulforhodamine-101 (SR101, Invitrogen) (Euler et al., 2009). All procedures 
were carried out under dim red (>650 nm) light.

For electrophysiology experiments, we used ChAT-Cre (JAX 006410) × Ai14 (JAX 007914) mice 
on a C57Bl/6J background (N=2, male, aged 27 and 30 weeks). Mice were housed with siblings in 
groups up to 4, fed normal mouse chow and maintained on a 12:12 hr light/dark cycle. Before the 
experiment, mice were dark-adapted overnight and sacrificed by cervical dislocation. Retinal tissue 
was isolated under infrared illumination (900 nm) with the aid of night-vision goggles and IR dissection 
scope attachments (BE Meyers). Retinal orientation was identified using scleral landmarks (Wei et al., 
2010), and preserved using relieving cuts in cardinal directions, with the largest cut at the dorsal 
retina. Retinas were mounted on 12 mm poly-D-lysine-coated glass affixed to a recording dish with 
grease, with the GCL up. Oxygenation was maintained by superfusing the dish with carboxygenated 
Ames medium (US Biological, A1372-25) warmed to 32°C. For cell-attached single-cell recordings, we 
used Symphony software (Cafaro et al., 2019) with custom extensions (Schwartz and Ala-Laurila, 
2024).

Owing to the exploratory nature of our study, we did not use randomisation and blinding. No 
statistical methods were used to predetermine sample size.

Two-photon calcium imaging
We used a MOM-type two-photon microscope (designed by W Denk, purchased from Sutter Instru-
ments) (Euler et al., 2009; Euler et al., 2019), which was equipped with a mode-locked Ti:sapphire 
laser (MaiTai-HP DeepSee, Newport Spectra-Physics) tuned to 927 nm, two fluorescence detection 
channels for OGB-1 (HQ 510/84, AHF/Chroma) and SR101 (HQ 630/60, AHF), and a water immer-
sion objective (CF175 LWD x 16/0.8W, DIC N2, Nikon, Germany). Image acquisition was performed 
with custom-made software (ScanM by M Müller and TE) running under IGOR Pro 6.3 for Windows 
(Wavemetrics), taking time-lapsed 64 × 64 pixel image scans (≈ (100 μm)2) at 7.8125 Hz (Figure 1c). 
For simplicity, we refer to such a time-lapsed scan of a local population of GCL cells as a ‘recording’. 
Despite the low frame rate, the Ca2+ responses can be related to the spike rate (Trapani et al., 2023; 
Román Rosón et al., 2019; Berens et al., 2018; Theis et al., 2016). For documenting the position 
of the recording fields, the retina under the microscope was oriented such that the most ventral edge 
pointed always towards the experimenter. In addition, higher resolution images (512 ×512 pixel) were 
acquired and recording field positions relative to the optic nerve were routinely logged.

Data preprocessing
Ca2+ traces were extracted for individual ROIs as described previously (Baden et al., 2016; Szatko 
et al., 2020). Extracted traces ‍craw‍ were then detrended to remove slow drifts in the recorded signal 
that were unrelated to changes in the neural response. First, a smoothed version of the traces, ‍csmooth‍, 
was calculated by applying a Savitzky-Golay filter of third polynomial order and a window length of 
60 s using the SciPy implementation ​scipy.​signal.​savgol_​filter. This smoothed version was 
then subtracted from the raw traces to yield the detrended traces.

	﻿‍ cdetrend = craw − csmooth‍�

To make traces non-negative (‍c+‍), we then clipped all values smaller than the 2.5th percentile, ‍η2.5‍, 
to that value, and then subtracted ‍η2.5‍ from the detrended traces:

	﻿‍ c+ = cdetrend − η2.5‍�

https://doi.org/10.7554/eLife.86860
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This procedure (i.e. clipping to, and subtracting ‍η2.5‍) was more robust than simply subtracting the 
minimum.

Finally, traces were then divided by the standard deviation within the time window before stimulus 
start at ‍t0‍:

	﻿‍
c := cfinal = cnn

SD(c+[:t0] )‍�

For training the model on movie response, we then estimated firing rates ‍r‍ from the detrended 
Ca2+ traces ‍c‍ using the package C2S (https://github.com/lucastheis/c2s, copy archived at lucastheis, 
2016; Theis et al., 2016).

Inclusion criteria
We applied a sequence of quality filtering steps to recorded cells before analysis illustrated in Figure 1—
figure supplement 1. As a first step, we applied a general response quality criterion, defined as a 
sufficiently reliable response to the MB stimulus (as quantified by a quality index ‍QIMB > 0.6‍), or a 
sufficiently reliable response to the chirp stimulus (as quantified by a quality index ‍QIchirp > 0.35‍). The 
quality index is defined as in Baden et al., 2016:

	﻿‍
QI = Var[⟨r⟩i]t

⟨Var[r]t⟩i ‍�

where ‍r‍ is the T by I response matrix (time samples by stimulus repetitions) and ‍⟨⟩x‍ and ‍Var[]x‍ denote 
the mean and variance across the indicated dimension ‍x‍, respectively.

The second and third step made sure only cells were included that were assigned to a ganglion cell 
group (i.e. group index between 1 and 32) with sufficient confidence. Confidence is defined as the 
probability assigned to the predicted class by the random forest classifier (see Qiu et al., 2023), and 
the threshold was set at ≥0.25.

The fourth step made sure only cells with a sufficient model prediction performance, defined as an 
average single-trial test set correlation of ‍⟨C(̂r(n), r(n)

i )⟩i > 0.3‍, were included.
All cells passing steps 1–3 were included in the horizon detection analysis (Figure  7); all cells 

passing steps 1–4 were included in the MEI analysis (Figure 3); the ‘red’ cells passing steps 1–4 were 
included in the MEI validation analysis (Figure 4). In the process of analysing MEIs, we fitted DoGs to 
their green and UV spatial component (see Methods section Concentric anisotropic 2D DoG fit). For 
the analysis of MEI properties (temporal frequency, centre size, chromatic contrast), we only included 
cells with a sufficient DoG goodness-of-fit, determined as a value of the cost function of <0.11 for 
both green and UV on the resulting DoG fit. This threshold was determined by visual inspection of the 
DoG fits and led to the inclusion of 1613 out of 1947 RGCs in the MEI property analysis.

Visual stimulation
For light stimulation (imaging experiments), we projected the image generated by a digital light 
processing projector (lightcrafter DPM-FE4500MKIIF, EKB Technologies Ltd) through the objective 
onto the tissue. The lightcrafter featured a light-guide port to couple in external, band-pass-filtered 
UV and green LEDs (light-emitting diodes) (green: 576  BP 10, F37-576; UV: 387  BP 11, F39-387; 
both AHF/Chroma) (Franke et al., 2019). To optimise spectral separation of mouse M- and S-opsins, 
LEDs were band-pass-filtered (390/576 dual-band, F59-003, AHF/Chroma). LEDs were synchronised 
with the microscope’s scan retrace. Stimulator intensity (as photoisomerisation rate, 103 ‍P∗s−1‍ per 
cone) was calibrated to range from ≈ 0.5 (black image) to ≈ 20 for M- and S-opsins, respectively. 
Additionally, we estimated a steady illumination component of ≈ 104 ‍P∗s−1‍ per cone to be present 
during the recordings because of two-photon excitation of photopigments (Euler et al., 2009; Euler 
et al., 2019). Before data acquisition, the retina was adapted to the light stimulation by presenting a 
binary noise stimulus (20 × 15 matrix, (40 μm)2 pixels, balanced random sequence) at 5 Hz for 5 min 
to the tissue. Stimuli were presented using the software RRID:SCR_016985, QDSpy (https://github.​
com/eulerlab/QDSpy).

For electrophysiology experiments, stimuli were presented using a digital projector (DPM-
FE4500MKII, EKB Technologies Ltd) at a frame rate of 60  Hz and a spatial resolution of 1140 × 
912 pixels (1.3 μm per pixel) focused on the photoreceptor layer. Neutral density filters (Thorlabs), 
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a triple-band pass filter (405 BP 20, 485 BP 20, 552 BP 16; 69,000×, Chroma), and a custom LED 
controller circuit were used to attenuate the light intensity of stimuli either to match that of the Ca2+ 
imaging experiments (for MEI presentation) or to range from ≈0 to 200 ‍P∗s−1‍ per rod (for cell iden-
tification). Stimuli were presented using Symphony software (https://symphony-das.github.io/) with 
custom extensions (https://github.com/Schwartz-AlaLaurila-Labs/sa-labs-extension, copy archived at 
Schwartz-AlaLaurila-Labs, 2024).

Identifying RGC types
To functionally identify RGC groups in the Ca2+ imaging experiments, we used our default ‘finger-
printing’ stimuli, as described earlier (Baden et al., 2016). These stimuli included a full-field (700 μm 
in diameter) chirp stimulus, and a 300 ×1,000 μm bright bar moving at 1000 μm/s in eight directions 
across the recording field (with the shorter edge leading; Figure 1b).

The procedure and rationale for identifying cells in the electrophysiological recordings is presented 
in Goetz et al., 2022. Cells with responses that qualitatively matched that of the OND and ON ‍α‍ types 
were included in the study. Following recording, cells were filled with Alexa Fluor-488 by patch pipette 
and imaged under a two-photon microscope. Dendrites were traced in Fiji (NIH) using the SNT plugin 
(Arshadi et al., 2021). Dendritic arbours were computationally flattened using a custom MATLAB tool 
(https://doi.org/10.5281/zenodo.6578530) based on the method in Sümbül et al., 2014, to further 
confirm their identity as morphological type 73 from Bae et al., 2018.

Mouse natural movies
The natural movie stimulus consisted of clips of natural scenes recording outside in the field with 
a specialised, calibrated camera (Qiu et al., 2021). This camera featured a fish-eye lens, and two 
spectral channels, UV (band-pass filter F37-424, AHF, > 90% transmission at 350–419 nm) and green 
(F47-510, >90%, 470–550 nm, AHF), approximating the spectral sensitivities of mouse opsins (Jacobs 
et al., 2004). In mice, eye movements often serve to stabilise the image on the retina during head 
movements (Meyer et  al., 2020). Therefore, the camera was also stabilised by mounting it on a 
gimbal. As a result, the horizon bisected the camera’s visual field.

A mouse cam movie frame contained a circular field of view of 180° corresponding to 437 pixels 
along the diameter. To minimise the influence of potential chromatic and spatial aberrations intro-
duced by the lenses, we focused on image cut-outs (crops; 30 × 26, equivalent to 72 × 64 pixels in 
size) from upper and lower visual field, centred at [28, 56] and [-42, –31], respectively, relative to the 
horizon (for details, see Qiu et al., 2021). Our stimulus movie consisted of 113 movie clips, each 
150 frames (= 5 s) long. 108 clips were randomly reordered for each recording and split into two 54 
clips-long training sequences. The remaining 5 clips formed a fixed test sequence that was presented 
before, in between, and after the training sequences (Figure 1b). To keep intensity changes at clip 
transitions small, we only used clips with mean intensities between 0.04 and 0.22 (for intensities in [0, 
1]). For display during the experiments, intensities were then mapped to the range covered by the 
stimulator, i.e., [0, 255].

CNN model of the retina
We trained a CNN model to predict responses of RGCs to a dichromatic natural movie. The CNN 
model consisted of two modules, a convolutional core that was shared between all neurons, and a 
readout that was specific for each neuron (Klindt et al., 2017).

The core module was modelled as a two-layer CNN with 16 feature channels in each layer. Both 
layers consisted of space-time separable 3D convolutional kernels followed by a batch normalisation 
layer and an ELU (exponential linear unit) nonlinearity. In the first layer, sixteen 2 × 11 × 11 × 21 
(c=#input channels (green and UV) × h=height ×w=width × t=#frames) kernels were applied as valid 
convolution; in the second layer, sixteen 16 × 5 × 5 × 11 kernels were applied with zero padding 
along the spatial dimensions. We parameterised the temporal kernels as Fourier series and added 
one time stretching parameter per recording to account for inter-experimental variability affecting the 
speed of retinal processing. More precisely, every temporal kernel was represented by the first ‍k‍ sine 
and cosine functions, with trainable weights and phases, on an evenly spaced temporal grid, where 
‍k = 7‍ for the first layer, and ‍k = 3‍ for the second layer. Additionally, we introduced a trainable stretch 
parameter for every recording to account for faster and slower response kernels. For example, the 
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first layer temporal kernels are 21 steps long. Then, in order to stay well under the Nyquist limit, we 
parameterise the kernels with ‍k = 21/3 = 7‍ sines and cosines.

For each of those sines and cosines a weight (‍α,β‍) is learned to represent the shape of the temporal 
responses kernel (shared among cells within a recording). Per scan ‍i‍, the time grid ‍t‍ (21 steps from 0 
to 1) is stretched by a factor ‍τi‍ to account for different response speeds. To avoid adding additional 
cycles (e.g. for stretch factors ‍τ > 1‍) this is masked by an exponential envelope

	﻿‍

ϵ(τ ) = 1

1 + exp−(t + 21 · 0.95
τ

)
‍�

(1)

Thus,

	﻿‍
wi =

k∑
j

αj sin(2π · τi · t · ϵ(τi)) + βj cos(2π · τi · t · ϵ(τi)).
‍�

(2)

is the temporal kernel parameterisation, that allows the model to learn a shared temporal filter that is 
made faster or slower for each specific scan (Zhao et al., 2020).

In the readout, we modelled each cell’s spatial receptive field (RF) as a 2D isotropic Gaussian, 
parameterised as ‍N (µx,µy;σ)‍. We then modelled the neural response as an affine function of the core 
feature maps weighted by the spatial RF, followed by a softplus nonlinearity.

For the linearised version of the model, the architecture was exactly the same except for the fact 
that there was no ELU nonlinearity after both convolutional layers. The resulting CNN was therefore 
equivalent to an LN model.

Model training and evaluation
We trained our network by minimising the Poisson loss

	﻿‍

N∑
n=1

(
r̂(n) − r(n) log r̂(n)

)

‍�

where ‍N ‍ is the number of neurons, ‍r(n)‍ is the measured and ‍̂r(n)‍ the predicted firing rate of neuron ‍n‍ 
for an input of duration t=50 frames. We followed the training schedule of Lurz et al., 2021. Specif-
ically, we used early stopping (Prechelt, 1998) on the correlation between predicted and measured 
neuronal responses on the validation set, which consisted of 15 out of the 108 movie clips. If the 
correlation failed to increase during any five consecutive passes through the entire training set (epochs), 
we stopped the training and restored the model to the best performing model over the course of 
training. We went through four cycles of early stopping, restoring the model to the best performing, 
and continuing training, each time reducing the initial learning rate of 0.01 by a learning rate decay 
factor of 0.3. Network parameters were iteratively optimised via stochastic gradient descent (SGD) 
using the Adam optimiser (Kingma and Ba, 2015) with a batch size of 32 and a chunk size (number of 
frames for each element in the batch) of 50. For all analyses and MEI generation, we used an ensemble 
of models as described in Franke et al., 2022. Briefly, we trained five instances of the same model 
initialised with different random seeds. Inputs to the ensemble model were passed to each member 
and the final ensemble model prediction was obtained by averaging the outputs of the five members. 
For ease of notation, we thus redefine ‍̂r(n)‍ to be the ensemble model prediction.

After training, we evaluated model performance for each modelled neuron ‍n‍ as the correlation 
to the mean, i.e., the correlation between predicted response ‍̂r(n)‍ and measured response ‍r(n)‍ to the 

held-out test sequence, the latter averaged across three repetitions ‍i = {1, 2, 3}‍: 
‍
C
(

r̂
(

n
)
,
⟨

r
(

n
)

i

⟩

i

)

‍
. 

Unlike the single-trial correlation ‍C(̂r(n), r(n)
i )‍ which is always limited to values ‍< 1‍ by inherent neuronal 

noise, a perfect model can in theory achieve a value of 1 for the correlation to the mean, in the limit 
of infinitely many repetitions when the sample average ‍⟨r(n)i⟩i‍ is a perfect estimate of the true under-
lying response ‍ρ

(n)
‍. The observed correlation to the mean can thus be interpreted as an estimate of 

the fraction of the maximally achievable correlation achieved by our model. For deciding which cells 
to exclude from analysis, we used average single-trial correlation (‍⟨C(̂r(n), r(n)

i )⟩i‍) since this measure 
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reflects both model performance as well as reliability of the neuronal response to the movie stimulus 
for neuron ‍n‍ (see also Methods section on Inclusion criteria).

Synthesising MEIs
We synthesised MEIs for RGCs as described previously (Walker et al., 2019). Formally, for each model 
neuron ‍n‍ we wanted to find

	﻿‍
x∗(n) = arg max

x
⟨̂r(n)(x)30:50⟩t,

‍� (3)

i.e., the input ‍x∗(n)‍ where the model neuron’s response ‍⟨̂r(x)30:50⟩t‍, averaged across frames 30–50, 
attains a maximum, subject to norm and range constraints (see below). To this end, we randomly 
initialised an input ‍x

(n)
0 ∈ Rc×w×h×t

‍ of duration t=50 frames with Gaussian white noise, and then iter-

atively updated ‍x
(n)
i ‍ according to the gradient of the model neuron’s response:

	﻿‍
x(n)

i+1 = x(n)
i + λ

δ

δx(n)
i

⟨̂r(n)(x(n)
i )30:50⟩t,

‍�
(4)

where ‍λ = 10‍ was the learning rate. The optimisation was performed using SGD, and was subject 
to a norm and a range constraint. The norm constraint was applied jointly across both channels and 
ensured that the L2 norm of each MEI did not exceed a fixed budget ‍b‍ of 30. The norm-constrained 
MEI ‍̃x

(n)
i ‍ was calculated at each iteration as

	﻿‍
x̃(n)

i = b
||x(n)

i ||2
× x(n)

i
‍�

(5)

The range constraint was defined and applied for each colour channel separately and ensured that 
the range of the MEI values stayed within the range covered by the training movie. This was achieved 
by clipping values of the MEI exceeding the range covered by the training movie to the minimum or 
maximum value. Optimisation was run for at least 100 iterations, and then stopped when the number 
of iterations reached 1000, or when it had converged (whichever occurred first). Convergence was 
defined as 10 consecutive iterations with a change in model neuron activation of less than 0.001; 
model neuron activations ranged from ≈1 to ≈10. We denote the resulting MEI for neuron ‍n‍ as ‍x∗(n)‍.

Analysing MEIs
We analysed MEIs to quantify their spatial, temporal, and chromatic properties.

Spatial and temporal components of MEIs
For each colour channel ‍c‍, we decomposed the spatiotemporal MEIs into a spatial component and a 
temporal component by singular value decomposition:

	﻿‍ U, S, V = svd(x∗(n)
c )‍�

with ‍x
∗(n)
c ∈ R50×288

‍ for ‍c ∈‍ [green, UV] is the MEI of neuron ‍n‍ in a given colour channel with its spatial 
dimension (18 ×16=288) flattened out. As a result, any spatiotemporal dependencies are removed and 
we only analyse spatial and temporal properties separately. The following procedures were carried out 
in the same manner for the green and the UV component of the MEI, and we drop the colour channel 
index ‍c‍ for ease of notation. The temporal component is then defined as the first left singular vector, 

‍U:1‍, and the spatial component is defined as the first right singular vector, ‍V
T
:1‍, reshaped to the original 

dimensions 18 × 16 .

Concentric anisotropic 2D DoG fit
We modelled the spatial component as concentric anisotropic DoG using the nonlinear least-squares 
solver scipy.optimize.least_squares with soft-L1 loss function (Gupta et al., 2022). The DoGs 
were parameterised by a location ‍(µx,µy)‍ shared between centre and surround, amplitudes ‍Ac‍, ‍As‍, 
variances ‍(σ

c
x ,σc

y)‍, ‍(σ
s
x,σs

y)‍, and rotation angles ‍θc‍, ‍θs‍ separately for centre and surround:
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	﻿‍ DoG = Gc − Gs‍�

with

	﻿‍

Gc(x, y) = Acexp(−f c(x − µx)2

+2gc(y − µy)(x − µx)

+hc(y − µy)2)‍�

and

	﻿‍

f c = cos2θc

2σc
x

+ sin2θc

2σc
y

,

gc = sin2θc

4σc
y

− sin2θc

4σc
y

,

hc = sin2θc

2σc
x

+ cos2θc

2σc
y

,
‍�

and likewise for ‍Gs‍. We initialised ‍(µx,µy)‍ in the following way: Since we set the model readout’s loca-
tion parameters to (0, 0) for all model neurons when generating their MEIs, we also expected the MEIs 
to be centred at (0, 0), as well. Hence, we determined the location of the minimum and the maximum 
value of the MEI; whichever was closer to the centre (0,0) provided the initial values for the parame-
ters ‍(µx,µy)‍. Starting from there, we then first fit a single Gaussian to the MEI, and took the resulting 
parameters as initial parameters for the DoG fit. This was a constrained optimisation problem, with 
lower and upper bounds on all parameters; in particular, such that the location parameter would not 
exceed the canvas of the MEI, and such that the variance would be strictly positive.

MEI properties
Centre size
We defined the diameter of the centre of the MEI in the horizontal and the vertical orientation, respec-
tively, as ‍dc

x = 2σc
x‍ and ‍d

c
y = 2σc

y‍. The centre size was calculated as ‍
1
2 (dc

x + dc
y)‍. We then estimated a 

contour outlining the MEI centre as the line that is defined by all points at which the 2D centre Gaussian 
‍Gc‍ attains the value ‍Gc(x, y)‍ with ‍(x, y) = (µx + σc

x ,µy + σc
y‍). The centre mask ‍m‍ was then defined as a 

binary matrix with all pixels within the convex hull of this contour being 1 and all other pixels set to 0. 
This mask is used for calculating centre chromatic contrast (see below).

Temporal frequency
To estimate temporal frequency of the MEIs, we estimated the power spectrum of the temporal 
components using a fast Fourier transform after attenuating high frequency noise by filtering with 
a fifth-order low-pass Butterworth filter with cutoff frequency 10 Hz. We then estimated the mean 
frequency of the temporal component by calculating an average of the frequency components, each 
weighted with its relative power.

Contrast
The contrast of the MEIs in the two channels, ‍γ(x∗(n)

c )‍ for ‍c ∈‍ [green, UV], was defined as the difference 
between the mean value within the centre mask ‍m‍ at the two last peaks of the temporal component 
of the MEI in the UV channel at time points ‍t2‍ and ‍t1‍:

	﻿‍ γ(x∗(n)
c ) = (x∗(n)

c ⊙ m)(t2) − (x∗(n)
c ⊙ m)(t1),‍�

where ⊙ denotes the element-wise multiplication of the MEI and the binary mask (see Figure 3f). The 
peaks were found with the function ​scipy.​signal.​find_​peaks, and the peaks found for the UV 
channel were used to calculate contrast both in the green and the UV channel.

https://doi.org/10.7554/eLife.86860
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Validating MEIs experimentally
Generating MEI stimuli
To test experimentally whether the model correctly predicts which stimuli would maximally excite 
RGCs of different RGC groups, we performed a new set of experiments (numbers indicated in red in 
Figure 1—figure supplement 1), where we complemented our stimulus set with MEI stimuli. For the 
MEI stimuli, we selected 11 RGCs, chosen to span the responses space and to represent both well-
described and poorly understood RGC groups, for which we generated MEIs at different positions 
on a 5 × 5 grid (spanning 110 μm in vertical and horizontal direction). We decomposed the MEIs as 
described above, and reconstructed MEIs as rank 1 tensors by taking the outer product of the spatial 
and temporal components:

	﻿‍ x̄∗ = S11U:1 ⊗ VT
:1‍�

The MEI stimuli, lasting 50 frames (1.66 s) were padded with 10 frames (0.34 s) of inter-stimulus 
grey, and were randomly interleaved. With 11 stimuli, presented at 25 positions and lasting 2 s each, 
the total stimulus duration was 11 × 25 × 2 s = 550 s. Since the model operated on a z-scored (0 
mean, 1 SD) version of the movie, MEIs as predicted by the model lived in the same space and had 
to be transformed back to the stimulator range ([0, 255]) before being used as stimuli in an experi-
ment by scaling with the movie’s SD and adding the movie’s mean. The MEIs’ green channel was then 
displayed with the green LED, and the UV channel was displayed with the UV LED. For experiments at 
Northwestern University, an additional transform was necessary to achieve the same levels of photore-
ceptor activation (photoisomerisation rates) for M- and S-cones with different LEDs. To ensure proper 
chromatic scaling between the different experimental apparatuses with different spectral profiles, we 
described the relative activation of M- and S-cones by the green and UV LEDs in the stimulation setup 
used in the two-photon imaging experiments (setup A) by a matrix

	﻿‍

A =


amg asg

amu asu


 =


1 0.19

0 1


 ,

‍�

and the relative activation of M- and S-cones by the stimulation setup used in the patch-clamp exper-
iments (setup B) by a matrix

	﻿‍

B =


bmg bsg

bmu bsu


 =


 1 0.9

0.035 1


 ,

‍�

where diagonal entries describe the activation of M-cones by the green LED, and of S-cones by the UV 
LED, and entries in the off-diagonal describe the cross-activation (i.e. M-cones by UV-LED and S-cones 
by green LED). The activation of M-cones and S-cones ‍e

T =
(
em, es

)
‍ by a stimulus ‍x ∈ R2×1‍ displayed 

on a given stimulation setup was approximated as ‍e = Ax‍ (Christenson et al., 2022). Hence, a stim-
ulus ‍x′‍ displayed on setup B, defined as ‍x′ = B−1Ax‍, will achieve the same photoreceptor activation 
as stimulus ‍x‍ displayed on setup A. Since the solution exceeded the valid range of the stimulator ([0, 
255]), we added an offset and multiplied with a scalar factor to ensure all stimuli were within the valid 
range.

Analysing RGC responses to MEI stimuli
We wanted to evaluate the responses of RGCs to the MEI stimuli in a spatially resolved fashion, i.e., 
weighting responses to MEIs displayed at different locations proportional to the strength of the RGCs 
RF at that location. In order to be able to meaningfully compare MEI responses between RGCs and 
across groups, for each RGC, we first centred and scaled the responses to zero mean and a standard 
deviation of 1. Then, for each RGC ‍n‍, we computed a spatial average of its responses, weighting 
its responses at each spatial location ‍(x, y)‍ proportional to the Gaussian density ‍Nµn,σn (x, y)‍, where 
the parameters of the Gaussian ‍µn = (µx,µy),σn‍ were the model’s estimated readout parameters for 
neuron ‍n‍ (Figure 4b, c, and d, left):

https://doi.org/10.7554/eLife.86860
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	﻿‍
⟨r(n)⟩x,y =

5∑
x′=1

5∑
y′=1

r(n)
x′,y′ · Nµn,σn (x′, y′)

‍�

where ‍r
(n)
x′,y′ ∈ R11×60

‍ is the 60 frames (2 s) long response of neuron ‍n‍ to an MEI at position ‍(x, y) = (x′, y′)‍, 
resampled from the recording frame rate of 7.81 Hz to 30 Hz. We then averaged ‍⟨r

(i)⟩x,y‍ across time 
in the optimisation time window, i.e., frames 30–50, to get a scalar response ‍̃r

(n) = ⟨r(n)⟩x,y,t‍ for each 
MEI stimulus (Figure 4d).

Selectivity index
To quantify the selectivity of the response ‍̃r

(n)(x∗i )‍ of an RGC ‍n‍ to an MEI ‍x
∗
i ‍, we defined a selectivity 

index as follows. First, we standardised the responses ‍̃r(n)‍ across all MEIs by subtracting the mean and 
dividing by the standard deviation. The selectivity index of RGC group Gg to MEI ‍x

∗
i ‍ was then defined 

as

	﻿‍
SIg(x∗i ) = ⟨̃r(n)(x∗i ) − 1

10

11∑
j=1

δijr̃(n)(x∗j )⟩n,
‍�

where ‍δij‍ is the Kronecker delta. In words, the SI is the difference (in units of SD response) between the 
response to the MEI of interest (‍x

∗
i ‍) and the mean response to all other (10) MEIs, ‍

1
10

∑11
j=1 δijr̃(n)(x∗j )‍, 

averaged across all cells ‍n‍ belonging to the group of interest Gg.

Characterising nonlinear processing of chromatic contrast
We wanted to analyse the tuning of G28/tSbC RGCs to chromatic contrast and to this end, we mapped 
the model response and its gradient across a range of chromatic contrasts (Figure 6). Specifically, the 
MEIs have ‍d = 2 × 18 × 16 × 50 = 28, 800‍ pixels and dimensions, 14,400 for each colour channel. Now 
let ‍x∗(n) ∈ R1x28800‍ be the cell’s MEI estimated using the CNN model, with the first d=14,400 dimen-
sions defining the green pixels and the remaining dimensions defining the UV pixels. Then for each 
cell, we first consider a two-dimensional subspace spanned by two basis vectors ‍e1, e2‍ where

	﻿‍

e1 = −s1




x∗(n)
1

x∗(n)
2
...

x∗(n)
d

0
...

0




e2 = s2




0
...

0

x∗(n)
d

x∗(n)
d+1
...

x∗(n)
2 d



‍�

In words, the first basis vector ‍e1‍ consists of the green component of the MEI in the green channel, 
multiplied by ‍−1‍, and of 0 s in the UV channel, and the second basis vector consists of the UV compo-
nent in the UV channel and of 0 s in the green channel for ‍e2‍. ‍s1‍ and ‍s2‍ are two scaling factors chosen 
to equalise contrast (as measured by L2 norm) across colour channels while preserving the contrast of 
the stimulus as a whole. In the subspace spanned by these basis vectors, the point ‍[−1, 1]‍ represents 
a contrast-scaled version of the original MEI. We then sampled 11 points along each dimension, 
equally spaced between ‍[−1, 1]‍, which resulted in stimuli that are identical in terms of their spatial and 
temporal properties and only differ in their contrast. We then evaluated the model neuron response 
at these points in the subspace (Figure 6d). We also evaluated the gradient of the model neuron 
response at these points and plotted the direction of the gradient projected into the subspace 
spanned by ‍e1, e2‍ (Figure 6b and c).

Detection performance analysis
To test the performance of individual RGCs of different groups in detecting the target class of 
inter-clip transitions (ground-to-sky) from all other classes of inter-clip transitions, we performed an 
ROC analysis (Fawcett, 2006). For each RGC, we calculated its response to an inter-clip transition 

https://doi.org/10.7554/eLife.86860
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occurring at time ‍t0‍ as the baseline-subtracted average response within 1 s following the transition, 
i.e., ‍

1
T
∑T

t=0 r(t) − r(t0)‍, with T=30 frames at 30 Hz. For all N=40 equally spaced thresholds within the 
response range of an RGC, we then calculated the TPR and FPR of a hypothetical classifier classifying 
all transitions eliciting an above-threshold response as a positive, and all other transitions as negative. 
Plotting the TPR as a function of FPR yields an ROC curve, the area under which (AUC) is equivalent 
to the probability that the RGC will respond more strongly to a randomly chosen inter-clip transition 
of the target class than to a randomly chosen inter-clip transition of a different class. The AUC thus is 
a measure of performance for RGCs in this detection task.

Detection task in simulation
We simulated the four types of transitions (sky-sky, sky-ground, ground-ground, ground-sky) in natural 
scenes at different velocities, which could be triggered by different behaviours such as locomotion or 
eye movements. With the simulated context-changing stimuli, we predicted model neuron responses 
in silico and then determined if G28 could perform the detection task robustly well across speeds.

For generating the stimuli, 500 frames were randomly extracted from the same mouse natural 
movies used for the 2P imaging experiments. For each frame, we simulated visual transitions by 
moving a 72×64 pixel-large window along a fixed trajectory (Figure 7h, bottom) at four different 
angular velocities: 50, 150, 250, and 350/s, corresponding to 4, 12, 20, and 28 pixels per frame, 
respectively (Figure 7—figure supplement 3a and b). Each edge of the trajectory is 220 pixels long, 
covering 90.6 of visual angle. Each selected scene frame was sampled eight times (i.e. twice per 
velocity). To avoid potential biases due to asymmetries in the mouse natural movie, we sampled each 
frame for each velocity both in clockwise and in counterclockwise direction. The stimuli were then 
down-sampled to 18×16 pixels and shown to the model at a frame rate of 30 Hz. Because the trajec-
tories contained different numbers of moving frames for the four velocities, we ‘padded’ the stimuli 
at the beginning and the end of each transition stimulus by duplicating the start and end frames, 
resulting in a total of 60 frames each (see illustration in Figure 7—figure supplement 3).

Statistical analysis
Permutation test
We wanted to test how likely the difference in AUC observed for different RGC groups are to occur 
under the null hypothesis that the underlying distributions they are sampled from are equal. To this 
end, we performed a permutation test. We generated a null distribution for our test statistic, the abso-
lute difference in AUC values ‍∆AUC‍, by shuffling the RGC group labels of the two groups of interest 
(e.g. G28 and G24) and calculating the test statistic with shuffled labels 100,000 times. We only included 
RGC groups with at least N=4 cells in this analysis. We then obtained a p-value for ‍∆AUC‍ observed 
with true labels as the proportion of entries in the null distribution larger than ‍∆AUC‍.

Bootstrapped confidence intervals
We bootstrapped confidence intervals for ‍∆AUC‍ (Figure 7 and Figure 7—figure supplement 2). For 
‍∆AUC‍, we generated a bootstrapped distribution by sampling 100 times with replacement from the 
AUC values of the two groups that were being compared and calculated ‍∆AUC‍. We then estimated 
the 95% confidence interval for ‍∆AUC‍ as the interval defined by the  2.5th and  97.5th percentile of 
the bootstrapped distribution of ‍∆AUC‍.

For ‍Γ(ϕs,ϕνg )‍, we generated a bootstrapped distribution by sampling 100 times with replacement 
from the MEI responses of RGC group ‍g‍ and then calculating ‍RDMϕνg‍ and ‍Γ(ϕs,ϕνg )‍ for each sample. 
We then estimated the 95% confidence interval for ‍Γ(ϕs,ϕνg )‍ as the interval defined by the 2.5th and 
97.5th percentile of the bootstrapped distribution of ‍Γ(ϕs,ϕνg )‍.

Estimating effect size
The effect size of difference in AUC observed for different RGC groups ‍l‍ and ‍k‍, ‍∆AUC‍ (Figure 7 and 
Figure 7—figure supplement 2), was estimated as Cohen’s ‍d‍ (Cohen, 1988; Goulet-Pelletier and 
Cousineau, 2018):

	﻿‍
|mk − ml|

s
,
‍�
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with

	﻿‍
s =

√
(Nk − 1)s2

k + (Nl − 1)s2
l

Nk + Nl − 2 ‍�

and ‍mk‍ and ‍sk‍ the sample mean and standard deviation, respectively, of the AUC observed for the ‍Nk‍ 
RGCs of group k.

Estimating linear correlation
Wherever the linear correlation between two paired samples ‍x‍ and ‍y‍ of size ‍N ‍ was calculated for eval-
uating model performance, Figure 2, Figure 1—figure supplement 1, Figure 4—figure supplement 
1, we used Pearson’s correlation coefficient:

	﻿‍

Cxy =
∑N

i (xi − x̄)(yi − ȳ)√∑N
i (xi − x̄)2

√∑N
i (yi − ȳ)2

‍�
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