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Background and Objective: Pancreatic cancer is the twelfth most common cancer worldwide. While 
cytotoxic chemotherapy remains the standard treatment, outcomes remain poor with a 5-year overall 
survival (OS) rate of only about 10%. The study of immunotherapy in pancreatic cancer is an area of active 
investigation. The objective of this work is to review innovations in immunotherapy for management of 
pancreatic ductal adenocarcinoma (PDAC), including checkpoint inhibitors (CIs), CD40 agonists, vaccines, 
bi-specific antibodies and chimeric antigen receptor (CAR) T-cell therapy.
Methods: Searches of the PubMed database and Google Scholar were completed with search terms 
“pancreatic cancer” and “immunotherapy” for articles published between January 1, 2000–December 20, 
2023. A clinicaltrials.gov search was performed using the same search terms. 
Key Content and Findings: Unlike the progress seen in survival of other solid tumors, pancreatic cancer 
remains a highly deadly disease. Poor disease survival is largely due to the tumor’s immunosuppressive 
microenvironment and low tumor mutational burden, resulting in an “immunologically cold tumor” with 
low response rates to currently available therapies. New therapies are urgently needed. This article provides 
a comprehensive update of various novel immunotherapy approaches to treat pancreatic cancer. Checkpoint 
inhibitors, CD40 agonists, vaccines, bi-specific antibodies, and CAR T-cell therapies aim to “warm up” the 
tumor through different biologic mechanisms reviewed herein. This article also provides an introduction 
of ongoing clinical trials that pertain to these categories. The limited number of tumor samples in these 
early clinical trials underscores the need to identify and evaluate expression of tumor markers, and their 
correlation to the effectiveness of the new therapeutic agents. Furthermore, identification of surrogate 
markers for treatment efficacy are needed to guide future research.
Conclusions: The field of immunotherapy is rapidly evolving and emerging as a promising modality for 
treatment of pancreatic cancer, requiring further research.
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Introduction 

Despi te  improvements  in  surv iva l  o f  most  so l id 
malignancies, pancreatic cancer continues to have poor 
outcomes. While the greatest chance for cure is with 
surgical resection, fewer than 20% of patients have 
resectable disease at the time of diagnosis, thus there is an 
urgent need for new and effective therapies. 

The low survival rate is multifactorial and related to the 
characteristics of the tumor and its microenvironment which 
maintain a highly immunosuppressive state. Pancreatic 
ductal adenocarcinoma (PDAC), the most common form 
of pancreatic cancer, has a microenvironment characterized 
by high expression of matrix metalloproteinases and 
tissue serine proteases, features that contribute to tumor 
invasion and metastatic spread (1). Further, stellate cells, 
stimulated by inflammatory cytokines and abnormal 
hedgehog signaling, produce collagen, fibronectin, laminin 
and hyaluronan deposits, causing stromal desmoplasia; this 
results in a physical barrier that impedes local blood supply, 
limiting drug delivery and the accessibility of cytotoxic 
immune cells (2,3). PDAC typically has a low tumor 
mutational burden, resulting in a depletion of tumor-specific 
antigens, hindering immune-surveillance and rendering it 
an “immunologically cold tumor”, with low response rates 
to immunotherapy (4,5). Additionally, in PDAC, NRB1-
mediated ubiquitination of lysosomes and autophagosomes 
storing major histocompatibility complex (MHC)-1 leads 
to reduced MHC-1 expression thereby hindering neo-
antigen presentation (6). Lastly, tumor cells produce tumor-
promoting cytokines, which modulate the immune response 
to favor production of immunosuppressor cells including 
myeloid derived suppressor cells (MDSCs), regulatory 
T-cells (Tregs), cancer associated fibroblasts (CAFs), and 
immunosuppressive tumor associated macrophages, as 
opposed to tumor-inhibiting dendritic cells or cytotoxic 
T-cells (7,8).

This work provides an update of various immunotherapy 
approaches to treat pancreatic cancer, specifically using 
immune checkpoint inhibitors (CIs), CD40 agonists, 
vaccines, bi-specific antibodies, and chimeric antigen 
receptor (CAR) T-cell therapy. Figure 1 illustrates these 
treatment modalities. We present this article in accordance 
with the Narrative Review reporting checklist (available at 
https://dmr.amegroups.com/article/view/10.21037/dmr-24-
2/rc).

Methods

As noted in  Table  1 ,  a  PubMed database  search, 
Clinicaltrials.gov search and Google Scholar search were 
performed for articles with search terms “immunotherapy” 
and “pancreatic cancer” published between January 1, 
2000 and December 20, 2023. Results in the English 
language were reviewed and included based on the authors’ 
discretion. 

CIs

Immune checkpoints are inherent regulators of the immune 
system and crucial for self-tolerance but are exploited 
by cancer cells as a defense mechanism. Checkpoint 
proteins currently under investigation include cytotoxic 
T-lymphocyte associated protein 4 (CTLA-4), programmed 
cell death protein 1 (PD-1), and programmed cell death 
ligand 1 (PD-L1). T-cell activation requires binding of 
T-cell receptor to MHC-bound antigen and co-stimulatory 
binding of CD28 on T-cells to B7 ligands (CD80 or 86) 
on antigen presenting cells (APCs), resulting in T-cell 
growth and differentiation (9). CTLA-4, which is expressed 
primarily on naïve Tregs, binds B7 ligand to regulate and 
limit T-cell activity. Anti-CTLA-4 antibodies block CTLA-
4, thereby removing its inhibitory effect. Activated T-cells, 
B-cells and natural killer (NK) cells express PD-1 (10). Upon 
recognizing MHC-bound antigen on tumor cells, T-cells 
release cytokines that stimulate target cells to express PD-
L1. Binding of PD-L1 to PD-1 suppresses cytotoxic T-cell 
activity. Blockade of either PD-1 or PD-L1 thus removes 
this inhibition on T-cell activity. CIs have been tested as 
monotherapy, in dual-therapy, and in combination with 
chemotherapy, as well as in a variety of other approaches, as 
outlined below.

Single or dual CI

Single and dual CIs, when used in isolation, have limited 
effectiveness for PDAC. Both phase I and phase II trials 
evaluating single agent CI for locally advanced or metastatic 
PDAC (mPDAC) found no objective response to therapy 
(11,12). Similarly, a randomized, phase 2 trial of 65 patients 
with metastatic or recurrent PDAC investigating dual vs. 
single agent immunotherapy failed to achieve an overall 
response rate (ORR) of 10% in either arm, thus was 

https://dmr.amegroups.com/article/view/10.21037/dmr-24-2/rc
https://dmr.amegroups.com/article/view/10.21037/dmr-24-2/rc
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terminated (13).
The effectiveness of immunotherapy is more promising, 

however, for microsatellite instability-high (MSI-H) PDAC, 
which is hypothesized to arise from its higher mutational 
load and thereby higher tumor neoantigen burden (5). In 
a study of 32 patients with PDAC with MSI-H, patients 

treated with CIs achieved a 75% ORR and 20% complete 
remission (CR) rate, compared to cytotoxic chemotherapy, 
which yielded a 30% ORR (14). Single-agent CIs can thus 
be effective therapy for the 1–2% of mPDAC patients who 
have MSI-H disease (15,16). The effectiveness of CIs in 
this population has sparked interest in the development 

Table 1 Summary of literature search strategy used for this review

Items Specification

Date of search December 20, 2023

Databases and other sources searched PubMed, Clinicaltrials.gov, Google Scholar

Search terms used “immunotherapy”, “pancreatic cancer”

Timeframe January 1, 2000–December 20, 2023

Inclusion and exclusion criteria Inclusion: immunotherapy treatments for pancreatic cancer; exclusion: non-English articles

Selection process Articles were reviewed by S.F.
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Figure 1 Current methods in immunotherapy for pancreatic cancer. (A) Checkpoint inhibitors such as PD-1/PD-L1 blockade to reprogram 
CD8 T cells, TGFBR1/2 inhibition and CTLA-4 blockade to impair regulatory T cells, and CD40 agonist to activate dendritic cells. (B) 
CAR T cells targeting tumor-specific antigens using a chimeric antigen receptor. (C) Vaccines against tumor antigens, including mRNA 
and peptide vaccines, dendritic cell vaccines that are generated through pulsing of autologous dendritic cells with tumor lysate or specific 
antigens, and GVAX, where irradiated autologous or allogenic tumor cells are engineered to express GM-CSF to promote dendritic cell 
maturation. (D) Bispecific antibodies targeting two different cell surface receptors on cancer cells, such as HER2 and HER3, PD-L1 and 
CTLA-4, as well as bispecific antibody armed activated T cells where the antibody targets a tumor cell surface receptor such as HER2, as 
well as CD3 on the surface of T cells to induce their activation. CAR, chimeric antigen receptor; PD-1, programmed cell death protein 
1; PD-L1, programmed cell death ligand 1; CTLA-4, cytotoxic T-lymphocyte associated protein 4; GM-CSF, granulocyte-macrophage 
colony-stimulating factor; DC, dendritic cell.
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of combination therapies that would improve antigen 
presentation and T-cell activity and infiltration while 
reducing immunosuppressive cells (4,17). 

CI with chemotherapy

Chemotherapy has cytotoxic and immunomodulatory 
tumor effects. Gemcitabine, an apoptotic pyrimidine 
antimetabolite, reduces MDSCs and Tregs, and increases 
antigen presentation by dendritic cells to promote cell-
mediated immunity (18-20). Nab-paclitaxel, a colloidal 
suspension of paclitaxel and albumin nanoparticles, 
increases inflammatory polarization of macrophages, 
promotes antigen presentation and maturation of dendritic 
cells, and reduces immunosuppressive MDSC, Tregs and 
CAF activity while increasing anti-tumor NK cell and CD8+ 
activity (21). 

Combination therapy of CI with chemotherapy has thus 
far been unsuccessful at improving outcomes. In CCTG PA.7, 
a randomized, multi-center phase II study, 180 patients with 
mPDAC were randomized to receive either chemotherapy 
(gemcitabine with nab-paclitaxel) alone or in combination 
with CIs (durvalumab and tremelimumab), and failed to yield 
a significant difference in median overall survival (OS) (8.8 vs. 
9.8 months, respectively, P=0.72) or progression-free survival 
(PFS) (5.4 vs. 5.5 months, P=0.91) (22). 

There  are  ongoing invest igat ions  to  opt imize 
the combination of chemotherapy with CIs, such as 
camrelizumab, botensilimab and spartalizumab (23,24). 
These studies aim to broaden the applicability and durability 
of CI response.

Dual CI with radiation therapy

Pre-clinical evidence demonstrates that CIs used with 
radiation therapy affect expression of cell surface targets of 
immunotherapy. An in vitro study found that murine PDAC 
cell lines treated with chemotherapy and radiation therapy 
had increased percentage and intensity of PD-L1+ cells (24). 
In vivo murine models similarly found that the combination 
of radiation therapy with anti-PD-L1 caused greater tumor 
infiltration of CD8+ and CD4+ T cells, increased CD8+ 
T cell activity [as noted by interferon-gamma (IFN-γ) 
expression], and reduced infiltration of MDSCs and Tregs 
compared to controls. 

These favorable results led to the development of a 
phase I, open-label study which enrolled 59 patients with 
previously treated mPDAC (25). While combination therapy 

of radiation with dual CIs (durvalumab and tremelimumab) 
was associated with a higher PFS of 2–3 months compared 
to radiation alone (PFS of 1–2 months), it was associated 
with an increased incidence of adverse events, including 
grade 3–4 lymphopenia and autoimmune colitis, suggesting 
the combination elicited greater, albeit undesirable, pro-
inflammatory response.

Alternative combinations of immunotherapy and 
radiation have been explored. In CheckPAC, a randomized, 
phase II, open-label study, 84 patients with mPDAC 
received stereotactic body radiation therapy (SBRT) with 
either dual CIs (nivolumab and ipilimumab) or nivolumab 
alone (26). The clinical benefit rate (complete response, 
partial response, or stable disease) of patients who received 
SBRT with nivolumab alone was 17.1% vs. 37.2% in the 
dual CI arm. Clinical outcomes were not correlated to 
PD-L1 expression or biomarkers of cytotoxic or Treg 
infiltration. Nevertheless, five of six patients who received 
SBRT with dual CIs had an abscopal effect, with reduction 
in tumor mass at non-radiated sites, suggesting that there 
are yet unmeasured immunomodulatory effects which 
warrant further investigation.

Building on the results of CheckPAC, the ongoing 
LAPTOP trial is investigating dual CI (nivolumab and 
ipilimumab) with chemotherapy (gemcitabine and nab-
paclitaxel) and SBRT in patients with borderline resectable, 
locally advanced or mPDAC (27). This combination aims 
to increase antigen exposure and lymphocyte antitumor 
activity. 

CI with CXCR4 inhibitor and chemotherapy

CXCR4, a G-protein coupled transmembrane chemokine 
receptor expressed on B-cells, naïve T-cells, monocytes, 
and bone marrow progenitor cells, interacts with ligand 
CXCL12 chemokine to modulate the tumor immune 
microenvironment and appears associated, if not directly 
implicated, in tumorigenesis (28). In pancreatic cancer, 
CXCR4 promotes progression of precursor pancreatic 
intraepithelial neoplasia to PDAC and metastatic growth (29). 
CXCR4-CXCL12 interaction has activating downstream 
effects on the MAPK, PI3K, Sonic Hedgehog, Wnt, 
paracrine and autocrine signaling cascades. A meta-analysis 
identified that CXCR4 overexpression was more common 
in PDAC than in normal pancreatic tissue [odds ratio (OR) 
=132.07, P=0.03]. CXCR4 is thus an attractive therapeutic 
target.

AMD3100 (plerixafor) is a small molecule CXCR4 
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inhibitor. In murine models, AMD3100 infusion resulted 
in reduction of CAFs expressing fibroblast activation 
protein (FAP), increased T-cell infiltration of the tumor, 
and improved anti-PD-L1 therapy responsiveness with 
an associated 15% decline in PDAC volume (30). In a 
study of 26 patients at two centers with colorectal cancer 
and PDAC, seven-day continuous infusion of AMD3100 
resulted in significantly increased intratumoral CD8+ T 
cell density (P<0.05) (31). Patients also saw a significant 
decrease in circulating tumor DNA level (n=15, P=0.03), 
and a significant rise in FAP+ cells expressing CCL19 (from 
5.8% to 25.7%), which indicates an immune responsive 
rather than immune suppressive fibroblast cell development. 
While CR or PR were not achieved, 13 patients (57%) had 
stable disease by day 24, indicating clinical potential for 
CXCR4 inhibitors.

Motixafortide (BL-8040) is a high-affinity small peptide 
inhibitor of CXCR4. In a phase II, open-label, two-cohort 
study, patients with mPDAC after progression on at least 
one line of chemotherapy were treated with motixafortide, 
pembrolizumab and chemotherapy had a disease control 
rate (DCR) of 34.5% and median OS of 3.3 months (32). 
Paired screening and on-treatment biopsies found that the 
combination of motixafortide and pembrolizumab resulted 
in increased tumor infiltration of T-cells (CD3+, CD4+ and 
CD8+) and activated CD8+ granzyme B+ cytotoxic T-cells, 
and decreased granulocyte-like MDSCs and decreased 
tumor cell density. These results raise optimism that the 
combination of CXCL4 inhibitor and chemotherapy can 
expand the applicability of CIs for treatment of PDAC after 
failure of first line therapy. 

CI with poly ADP-ribose polymerases (PARP) inhibitors

PARP are a family of proteins that participate in DNA 
break repair and apoptosis (33). PARP inhibitors compete 
with NAD+ at the active site on PARP thus trapping 
inactivated PARP1 on the stalled replication fork at the site 
of DNA damage preventing repair, and resulting in the death 
of vulnerable tumor cells with homologous recombination 
repair deficiency, such as BRCA-deficient cancer cells 
(33,34). In murine models of BRCA-deficient ovarian cancer, 
combination therapy of PARP inhibitors with CI induced 
a synergistic T-cell mediated anti-tumor effect (34). The 
effectiveness of combination CI and PARP inhibitor has 
thus also been explored in platinum-sensitive advanced 
PDAC. In an open label, phase 1b/2 study, 91 patients 
with locally advanced or mPDAC with known platinum 

sensitivity were randomized to receive maintenance therapy 
with niraparib (PARP inhibitor) and either nivolumab 
or ipilimumab (35). The niraparib and ipilimumab 
combination had superior 6-month PFS of 59.6% (95% CI: 
44.3–74.9%, P=0.045) compared to that of niraparib with 
nivolumab (PFS of 20.6%, 95% CI: 8.3–32.9%, P=0.0002). 
Combination of CI and PARP inhibitor is a promising 
tolerable and effective maintenance therapy for individuals 
with platinum-sensitive advanced PDAC.

Because radiat ion can introduce DNA breaks , 
investigators assessed if radiation therapy could make 
tumors more vulnerable to the combination of PARP 
inhibitor and CI. In a single-arm, open-label, phase II trial, 
fifteen patients with microsatellite stable (MSS) PDAC 
were treated with a combination of niraparib, dostarlimab 
(anti-PD-1 antibody), and radiation therapy, yielding a 
disappointing 0% DCR (36). 

Ongoing investigations are exploring other CI and PARP 
inhibitor combinations. An open-label, single-arm phase 
II trial is currently recruiting patients with mPDAC with 
mutations in DNA damage repair genes who benefited from 
first line platinum-based therapy to determine if they may 
have improved outcomes with olaparib and durvalumab 
combination therapy (37).

CI with TKI 

Transforming growth factor beta (TGFβ) is a cytokine 
which participates in cell cycle regulation by crosslinking 
TGFβ receptor to phosphorylated SMAD proteins, causing 
downstream transcription of cyclin-dependent kinase 
inhibitors, thereby halting cell-cycle progression from 
G1 to S phase (38). TGFβ can inhibit activity of cytotoxic 
T-cells, leading to decreased production of cytokines 
including IFN-γ and cytolytic molecules such as perforin1 
and granzyme B. 

Galunisertib, an oral small molecule inhibitor of TGFβ 
receptor 1 (TGFβR1), was found in in vitro models to 
rescue TGFβ1-exposed CD8+ T cells (39). In murine 
models of triple negative breast cancer, galunisertib resulted 
in dose-dependent tumor volume regression. Furthermore, 
combination therapy of galunisertib and anti-PD-L1 
checkpoint blockade lowered NIH3T3 fibroblast activity and 
reversed the suppression of IFN-γ and granzyme B secretion 
in murine and human NK and CD8+ T-cells (40). In light 
of these promising pre-clinical studies, an international, 
multicenter study assessed the combination of durvalumab 
and galunisertib for 79 patients with recurrent or refractory 
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mPDAC (41). This combination achieved a DCR of 25% 
and median OS of 5.72 months (95% CI: 4.01 to 8.83). 
Tumor PD-L1 immunohistochemistry scores did not 
correlate with clinical outcome. This study was limited by 
lack of a comparison arm and small sample size.

CI with electroporation

M e c h a n i c a l  d i s r u p t i o n  o f  t u m o r  c e l l s  t h r o u g h 
electroporation is also under investigation as a method to 
improve response to CIs. Irreversible electroporation induces 
tumor cell apoptosis and release of tumor antigens, eliciting 
heightened cytotoxic CD8+ T-cell response. A pilot, single-
arm phase II trial is recruiting patients with mPDAC to 
undergo irreversible electroporation of a liver metastasis 
followed by nivolumab administration (42). PANFIRE-3, 
a randomized phase I trial, is similarly evaluating the 
combination of irreversible electroporation with nivolumab 
for mPDAC, with the addition of a toll-like receptor 9 
(CpG) ligand (43). An overview of clinical trials evaluating 
immune CI treatments for PDAC can be found in Table 2.

CD40 agonist monoclonal antibodies

CD40 is  a  member of  the tumor necros is  factor 
(TNF) receptor superfamily expressed on APCs and 
nonhematopoietic tissue. CD40 ligation on naïve B-cells 
activates B-cells and induces immunoglobulin isotype 
switching (44). CD40 ligand binding to dendritic cells 
induces maturation and upregulates signaling cascades 
leading to antigen presentation and release of cytokines 
interleukin-12 (IL-12) and p70, resulting in an increased 
CD8+ T-cell immune response (45). CD40 activated 
monocytes and macrophages switch to M1 phenotype with 
resulting cytotoxic effects on tumor cells and degradation of 
extracellular stroma. Due to its potential anti-tumor activity, 
efforts are underway to enhance CD40 activity in patients 
with PDAC. 

An open-label, multicenter phase I trial evaluated 
the benefit of neoadjuvant and adjuvant selicrelumab, 
a CD40 agonist monoclonal antibody, with or without 
chemotherapy in patients with resectable PDAC (46). 
Sixteen patients were randomized to receive selicrelumab 
single agent or in combination with gemcitabine and nab-
paclitaxel preoperatively. The 1-year disease-free survival 
rate was 49.9% for patients treated with selicrelumab 
monotherapy compared to 75.0% for patients treated with 
selicrelumab with chemotherapy. Histologic examination 

suggested that selicrelumab induced changes in the tumor 
microenvironment. Resected tumor specimens from 
patients treated with selicrelumab had half the extent of 
fibrosis compared to control patients who did not receive 
selicrelumab. Patients treated with selicrelumab also had 
statistically higher densities of mature dendritic cells, 
CD8+ T-cells and CD4+ T-cells compared to controls not 
treated with selicrelumab. Based on CD163 expression 
on macrophages and monocytes, there was less M2 
macrophage activation state noted in those treated with 
selicrelumab. Higher levels of inflammatory cytokines 
CXCL10 and CCL22 were also identified in patients 
treated with selicrelumab. Expanded T-cell clones were seen 
in the tumor specimens from selicrelumab treated patients. 
Higher expression of PD-1 on CD4+ and CD8+ T-cells 
was noted in selicrelumab-treated tumors, suggesting 
that selicrelumab may increase potency of PD-1 blocking 
agents. Selicrelumab, by increasing T-cell-enrichment 
and infiltration, may be able to convert a “cold” to “hot” 
tumor, thus increasing its vulnerability to cytotoxic T-cell 
therapies. 

Similarly, the PRINCE trial compared outcomes of 
multimodal therapy. The PRINCE trial was a randomized, 
open-label phase II study of 99 mPDAC patients treated 
with chemotherapy combined with either nivolumab, 
sotigalimab (CD40 agonist antibody) or both as first line 
therapy (47). The primary endpoint of one year OS rate 
was highest for patients treated with nivolumab with 
chemotherapy (75.7%, P=0.006), compared to sotigalimab 
with chemotherapy (48.1%, P=0.062), or both with 
chemotherapy (41.4%, one sided P=0.23). These results 
were compared to historical control of 35%. CD4+ T-cell, 
B-cell and dendritic cell subsets in circulation and tumor 
were predictive of longer OS in patients who were treated 
with both sotigalimab and chemotherapy while antigen-
experienced type-1 CD4 T-cells and T follicular helper cells 
(CD4+PD-1+CXCR5+) were predictive of longer survival 
than those treated with nivolumab and chemotherapy, 
illustrating that surrogate biomarkers correlating to 
treatment response may vary with the therapeutic agent. 

The REVOLUTION trial,  an open-label,  non-
randomized 2-stage study, is the successor of the PRINCE 
trial, and is recruiting treatment-naive patients with 
mPDAC to evaluate chemotherapy (gemcitabine and nab-
paclitaxel) with combinations of nivolumab, ipilimumab, 
hydroxychloroquine or NG350A (an oncolytic adenoviral 
vector-expressing anti-CD40 antibody) (48). 

Mitazalimab, a human immunoglobulin G (IgG) 
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Table 2 Clinical trials evaluating immune checkpoint inhibitor treatments for PDAC

Study NCT 
number

Date of NCT 
entry

Phase Experimental arm Control arm Primary endpoint Primary endpoint result

NCT00729664 August 7, 2008 I Nivolumab None Safety and tolerability 91% of patients experienced 
AE, mostly low grade. Grade 
3 or treatment-related AE 
occurred in 9% of patients. 
None of the patients with 
pancreatic cancer had 
objective response (complete 
response or partial response) 
to therapy

NCT00112580 June 3, 2005 II Ipilimumab None Percentage of 
participants reaching 
CR or PR

0% of patients in the locally 
advanced and 0% of patients 
in metastatic disease cohort 
achieved complete response 
or partial response

NCT02558894 September 24, 
2015

II Durvalumab + 
tremelimumab ×4 cycles, 
followed by durvalumab 
monotherapy

Durvalumab 
monotherapy

ORR 3.1% RR for patients in 
experimental arm, and 0% 
RR for patient in control arm

NCT02879318 August 25, 
2016

II Gemcitabine + nab-
paclitaxel + durvalumab 
+ tremelimumab

Gemcitabine + nab-
paclitaxel

OS No significant difference in 
OS (median OS =9.8 months 
in chemo + CI vs. 8.8 months 
chemo alone HR =0.94, with 
90% CI: 0.71–1.25, P=0.72)

NCT04674956 December 19, 
2020

III Camrelizumab + nab-
paclitaxel + gemcitabine

albumin-bound 
paclitaxel + 
gemcitabine

PFS at 3 years Recruiting

NCT05630183 November 29, 
2022

II Botensilimab + 
gemcitabine + nab-
paclitaxel

gemcitabine + nab-
paclitaxel

PFS at 2 years Recruiting

NCT04229004 January 14, 
2020

II/III Pamrevlumab + 
gemcitabine + nab-
paclitaxel, canakinumab 
+ spartalizumab + 
gemcitabine + nab-
paclitaxel, SM-88

Gemcitabine + 
nab-paclitaxel, 
mFOLFIRINOX

OS Active, not recruiting

NCT02311361 December 8, 
2014

I/II Durvalumab + 
tremelimumab + RT

Durvalumab + RT Safety and tolerability The most common treated 
related was lymphopenia. No 
dose limiting toxicity noted

NCT02866383 August 15, 
2016

II SBRT + nivolumab + 
ipilimumab

SBRT + nivolumab Clinical benefit rate 
(stable disease or 
complete response or 
partial response)

CBR was 37.2% (24.0–52.1%) 
vs. 17.1% (8.0–30.6%) 
for SBRT + nivolumab + 
ipilimumab vs. SBRT + 
nivolumab

NCT04247165 January 29, 
2020

I/II Gemcitabine + nab-
paclitaxel + nivolumab + 
ipilimumab + SBRT

None Safety and tolerability Recruiting

Table 2 (continued)
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monoclonal anti-CD40 antibody is currently under 
investigation in different trials, with chemotherapy in 
OPTIMIZE-1, and in combination with MesoPher, a 
dendritic cell vaccine in REACtiVe-2 (49,50). An overview 
of clinical trials evaluating CD40 agonist monoclonal 
antibody treatments for PDAC can be found in Table 3.

Vaccines

Dendritic cell vaccines

Dendritic cells are antigen-presenting cells that help 
direct innate and adaptive immune response by promoting 
T-cell, NK cell and memory B-cell activity. The PDAC 

tumor microenvironment is deficient in dendritic cells, 
due in part to tumor-derived cytokines and exosomes 
which attenuate dendritic cell activity and increase levels 
of MDSCs, creating a tumor-tolerant environment (51). 
Certain CD11b+ dendritic cells promote Tregs and suppress 
CD8+ T-cells. Dendritic cells seize, process, and present 
antigens on MHC class I and II molecules, which are then 
recognized by CD8+ and CD4+ T-cells, promoting their 
activity and proliferation (52). 

Wilms tumor gene 1 (WT1) antigen is an attractive 
antigenic candidate because it is highly expressed in PDAC, 
but not observed in normal pancreatic ductal cells (53).  
In vitro exposure of five human pancreatic cancer cell lines 
to WT1 antisense oligomers resulted in growth inhibition, 

Table 2 (continued)

Study NCT 
number

Date of NCT 
entry

Phase Experimental arm Control arm Primary endpoint Primary endpoint result

NCT02179970 July 2, 2014 I Plerixafor None Safety and tolerability No drug limiting toxicity at 
the 20, 40 or 80 μg/kg/h dose

NCT02826486 July 11, 2016 II Cohort 1: BL-8040 
+ pembrolizumab. 
Cohort 2: BL-8040 
+ pembrolizumab + 
liposomal irinotecan + 
fluorouracil + leucovorin

None Overall response rate 32% ORR with BL-8040 + 
pembrolizumab + liposomal 
irinotecan + fluorouracil + 
leucovorin

NCT03404960 January 19, 
2018

I/II Arm A: niraparib + 
nivolumab. Arm B: 
niraparib + ipilimumab

Null hypothesis PFS at 6 months,  
safety and tolerability

6-month PFS was 20.6% 
(95% CI: 8.3–32.9%, 
P=0.0002) for niraparib + 
nivolumab, 6-month PFS was 
59.6% (44.3–74.9%, P=0.045) 
for niraparib + ipilimumab

NCT04409002 July 23, 2020 II Niraparib + dostarlimab + 
radiation

None Disease control rate Disease control rate was 0/15 
(95% CI: 0–22%)

NCT05659914 December 21, 
2022

II Olaparib + durvalumab None Overall response rate Recruiting

NCT02734160 April 12, 2016 Ib Galunisertib + 
durvalumab

None Safety and tolerability No DLT recorded. 69.0% of 
patients had grade 3+ AE

NCT04212026 December 26, 
2019

II Irreversible 
electroporation + 
nivolumab

None Overall response rate Terminated

NCT04612530 November 3, 
2020

I Irreversible 
electroporation + 
nivolumab + toll-like 
receptor 9

Nivolumab Safety and tolerability Completed

PDAC, pancreatic ductal adenocarcinoma; NCT, National Clinical Trial; AE, adverse event; CR, complete remission; PR, partial remission; ORR, 
overall response rate; RR, risk ratio; OS, overall survival; chemo + CI, chemotherapy + checkpoint inhibitor; HR, hazard ratio; PFS, progression-free 
survival; RT, radiotherapy; SBRT, stereotactic body radiation therapy; CBR, clinical benefit rate; DLT, dose-limiting toxicity. 
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suggesting that WT1 antigen is a tumorigenic target for 
inhibition. A randomized phase II study in Japan evaluated 
the combination of intradermal WT1 vaccine with 
gemcitabine compared to gemcitabine alone in 85 patients 
with advanced PDAC and found that combination therapy 
resulted in longer PFS [5.2 vs. 3.3 months, hazard ratio (HR) 
=0.66, P=0.08], although there was no significant difference 
in median OS (54). Delayed type hypersensitivity (DTH) to 
WT1 was associated with longer PFS and increased WT1-
cytotoxic T-cells, and longer PFS (P<0.0001), suggesting 
that WT1 specific immune responses were required for 
prolonging PFS. 

Histologic evaluations have found that dendritic cell 
vaccines can alter the tumor microenvironment. In an 
unblinded phase I trial, a WT1 pulsed dendritic cell vaccine 
was studied in combination with adjuvant chemotherapy in 
eight human leukocyte antigen (HLA)-class II -compatible 
patients with WT1 expressing resectable PDAC (55). OK-
432, picibanil, a streptococcal preparation known to induce 
cytokines which promote dendritic cell, macrophage, NK 
cell and type 1 helper T-cells and cytotoxic T-cell activity, 
was also administered (56). The OS rate at 2 years post-

surgery with dendritic cell (DC) vaccination was 62.5%. 
ELISpot assay found a statistically significant rise in WT1-
specific cytotoxic T-cell population from pre- to post-
vaccination (P=0.02), however by tetramer assay of five 
patients, no significant difference was found. The 2-year 
post-surgical OS was significantly better for patients who 
had WT1-specific cytotoxic T-cell response compared 
to those who did not (71.4% vs. 0.0%, P=0.008). This 
study suggests that with careful selection of a tumor-
associated antigen, dendritic cell vaccines can orchestrate an 
immunomodulatory response directed at PDAC that is safe 
and tolerable. 

MUC1 (CD227) is also a target for vaccine therapy. 
Over-expressed in 90% of PDAC, this glycosylated type 
I transmembrane protein increases tumor invasion and 
angiogenesis (57,58). An open label phase I/IIa study 
assessed the safety and efficacy of WT1 peptide and MUC1-
pulsed dendritic cell vaccine with chemotherapy as adjuvant 
treatment for patients with resectable PDAC expressing 
both WT1 and HLA-ABC (58). Although 90% of patients 
experienced an adverse event, none exceeded grade 1, and 
this combination was well tolerated overall. Median OS was 

Table 3 Clinical trials evaluating CD40 agonist monoclonal antibody treatments for PDAC

NCT number Date of NCT entry Phase Experimental arm Control arm Primary endpoint Primary endpoint result

NCT02588443 October 27, 2015 I Arm I: selicrelumab. Arm II: 
selicrelumab + nab-paclitaxel + 
gemcitabine

None Safety and 
tolerability

Most AE attributed 
to selicrelumab 
neoadjuvant therapy 
were mild 

NCT03214250 July 11, 2017 I/II Nivolumab + gemcitabine + 
nab-paclitaxel vs. sotigalimab 
+ gemcitabine + nab-paclitaxel 
vs. nivolumab + sotigalimab + 
gemcitabine + nab-paclitaxel

Historical 1 year 
OS of 35% for 
gemcitabine-nab-
paclitaxel

1-year overall 
survival

1 year OS nivo/chemo 
5.7% vs. sotiga/chemo 
48.1% vs. sotiga/nivo/
chemo 31.3% 

NCT04787991 March 9, 2021 I Arm A: nivolumab + ipilimumab 
+ nab-paclitaxel + gemcitabine. 
Arm B: hydroxychloroquine + 
ipilimumab + nab-paclitaxel + 
gemcitabine. Arm C: ipilimumab 
+ nab-paclitaxel + gemcitabine + 
NG350A

None Safety and 
tolerability

Recruiting

NCT04888312 May 17, 2021 I/II Mitazalimab + mFOLFIRINOX None Part 1: safety and 
tolerability. Part 2: 
ORR

Active, not recruiting

NCT05650918 August 30, 2021 I Mitazalimab + mFOLFIRINOX + 
MesoPher

None Safety and 
tolerability

Completed

PDAC, pancreatic ductal adenocarcinoma; NCT, National Clinical Trial; AE, adverse event; OS, overall survival; nivo, nivolumab; chemo, 
chemotherapy; sotiga, sotigalimab; ORR, overall response rate.
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46.4 months and median relapse-free survival (RFS) was 
17.7 months from time of surgical resection. Neither the 
quantity of cytotoxic T-cells as detected by tetramer assay, 
cytoplasmic WT1 staining intensity, nor tumor-infiltrating 
mononuclear cell immunophenotype correlated to OS 
or RFS; however results were limited by low sample size. 
Increased infiltration of CD3+, CD4+, CD8+ mononuclear 
cells was associated with induction of WT1 specific cytotoxic 
T-cells, but did not meet statistical significance, emphasizing 
the need for larger clinical trials to determine the 
immunomodulatory effect on the tumor microenvironment.

Autologous dendritic vaccines produced from mutant 
KRAS peptide antigens and vaccines produced from tumor 
lysate are under investigation with ongoing clinical trials 
(59,60).

Peptide vaccines

Peptide vaccines aim to introduce HLA restricted tumor-
specific antigens to antigen-presenting cells, which in turn 
induce cytotoxic T-cell activity to eliminate cancer cells that 
express those antigens. A multicenter, non-randomized, 
single-arm phase II trial evaluated the combination of two 
HLA-A*2402 restricted peptide vaccines against VEGFR1, 
VEGFR2 and KIF20A peptide with gemcitabine in 68 
chemotherapy-naïve patients with unresectable PDAC (61). 
VEGF1 and VEGF2 promote tumor vascularization, while 
KIL20A is involved in intracellular trafficking of molecules 
and organelles. The 1-year OS rates for HLA-matched and 
HLA-unmatched groups were similar, 27.0% and 34.5% 
respectively (P=0.66), and median PFS was 4.7 months and 
5.2 months respectively (P=0.275). Patients who developed 
a peptide specific cytotoxic T-lymphocyte response had 
better outcomes compared to those who did not (P=0.02, 
P=0.009 respectively), however this did not hold true for 
VEGFR2 (P=0.31). 

Another randomized, placebo-controlled phase I dose 
escalation study evaluated VXM01, an antigen vaccine 
developed using live attenuated Salmonella typhi harboring 
a VEGFR2-encoding plasmid in the treatment of 26 
patients with locally advanced, inoperable or stage IV 
pancreatic cancer (62). Patients were concurrently treated 
with gemcitabine. The VEGFR2 cytotoxic T-cell response, 
as measured by IFN-γ ELISpot analysis was significantly 
higher in the higher dose VXM01 group compared to the 
placebo and lower dose VXM01 group, however there was 
no statistically significant difference in outcomes between 
the placebo and VXM01 patients.

To eliminate the concern of a target antigen not being 
present on the tumor, efforts are underway to develop 
personalized vaccines. A phase II retrospective study 
evaluated neoantigen-based peptide vaccine, iNeo-Vac-P01 
in 7 patients with advanced PDAC who had progression 
or intolerance after initial therapy (63). Patient tissue and 
blood samples were evaluated via whole exome sequencing 
and bioinformatics studies to synthesize the 15–35 HLA 
classes I and II neoantigen peptide personalized vaccines. 
Patients were also provided with granulocyte-macrophage 
colony-stimulating factor (GM-CSF), concurrently with 
chemotherapy or CI therapy. Mean OS was 24.1 months 
(11 to 31.4 months). Patients with longer OS were found 
to have a higher IFN-γ titer after vaccination, compared to 
those who had shorter OS, suggesting that IFN-γ titer may 
be a surrogate marker for treatment efficacy. All patients 
had higher proportions of CD4+ CTLA-4+ and CD8+ 
CTLA-4+ T-cells in peripheral blood during vaccination 
and patients with longer OS had more effector memory 
T-cells compared to central memory T-cells. None of the 
patients developed a serious adverse event, suggesting that 
personalized vaccines may have safety benefits in addition 
to their anti-tumor effect.

GVAX

GVAX is a vaccine technology using either allogeneic 
pancreatic cancer cells or autologous pancreatic cancer 
cells transgenically modified to express GM-CSF, which 
promotes DC maturation. Combination therapies with 
GVAX aim to reduce Treg activity while promoting 
antigen presentation, cytotoxic T-cell activity and innate 
immunity. In one multicenter, open-label trial, 93 patients 
with mPDAC who had received one previous line of 
therapy were randomized to receive cyclophosphamide 
and GVAX vaccine, followed by either CRS-207 (Listeria 
monocytogenes-expressing mesothelin) and nivolumab (arm 
A) or CRS-207 alone (arm B) (64). Listeria monocytogenes, 
when phagocytosed, introduces mesothelin to APCs which 
then process and present the peptides on the cell surface 
bound to MHC. Median OS was not statistically different 
at 5.9 months for arm A vs. 6.1 months for arm B, with HR 
0.86. Arm A patients with longer OS had notably greater 
densities of lymphoid cells, NK cells and CD8+ T-cells and 
increased myeloid PD-L1 expression compared to those 
with short OS. The combination therapy was able to induce 
modifications in the tumor microenvironment, and further 
exploration is necessary to improve clinical outcomes.
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Other studies have evaluated GVAX in combination with 
different CIs. A phase Ib open-label study randomized 30 
patients with previously treated locally advanced or mPDAC 
to receive either ipilimumab alone or in combination with 
GVAX (65). Median OS between the treatment arms were 
not statistically significant (5.7 months for combination 
therapy vs. 3.6 months for ipilimumab alone, HR =0.51, 
P=0.07), however combination therapy had a higher 1-year 
OS rate (27% vs. 7%). An OS exceeding 4.3 months was 
associated with greater mesothelin-specific T-cell responses 
(P=0.01) and larger mesothelin-specific T-cell repertoire 
size (P=0.009). These outcomes are again suggestive that 
multimodal induction of greater T-cell activity may lead to 
better clinical outcomes.

A phase II multicenter trial of 80 individuals with PDAC 
found that combination therapy of GVAX with ipilimumab 
was inferior to FOLFIRINOX (median OS 9.38 vs.  
14.7 months, respectively, HR =1.74, P=0.02) (66).

mRNA vaccines

mRNA vaccines introduce neoantigens into a patient to 
stimulate both humoral and cell-mediated targeted anti-
tumor responses. Because they are personalized, non-
infectious, manufacturable, and do not insert into the host 
genome, mRNA vaccines are a popular treatment modality 
under investigation for cold tumors like PDAC (67). 

A phase I trial evaluated the ability of autogene 
cevumeran, a personalized mRNA neoantigen vaccine, to 
promote T-cell activity in patients with surgically resected 
PDAC (68). The study enrolled 32 patients of whom 16 
patients underwent surgery and received treatment with 
atezolizumab (anti PD-L1 antibody), autogene cevumeran, 
and the chemotherapy regimen mFOLFIRINOX (including 
5-fluorouracil, folinic acid, oxaliplatin and irinotecan). Eight 
out of 16 (50%) patients who received autogene cevumeran 
had increased T-cell activity directed against at least one 
vaccine neoantigen. Furthermore, patients with measurable 
T-cell response, responders, had substantially expanded 
de novo polyclonal neoantigen-specific CD8 cells in the 
tumors that remained functional and durable for up to  
2 years post-surgery. Responders had a longer median RFS 
compared to nonresponders, with a median RFS that was 
not reached compared to median RFS of 13.4 months (HR 
=0.08, P=0.003). Further studies are needed to optimize 
the process of neoantigen screening and improvise mRNA 
vaccine potency.

There is continued interest in the applicability of 

mRNA vaccines in PDAC and other KRAS mutated solid 
tumors, and results of a phase I trial evaluating the safety 
and tolerability of the combination of mRNA-5671/V941 
monotherapy compared to combination therapy with 
pembrolizumab are pending (69). An overview of clinical 
trials evaluating vaccine treatments for PDAC can be found 
in Table 4.

CAR T-cell therapy

CAR T-cells are generated by procuring patient’s T-cells 
via leukapheresis of peripheral blood, then genetically 
modifying the T-cell receptor (using viral vectors) to 
recognize a specific tumor antigen target, thereby directing 
its anti-tumor immune response. CAR T-cells can modify 
the immunosuppressive tumor microenvironment by 
producing cytokines that improve T-cell infiltration into 
the tumor (70). To improve CAR T-cells’ likelihood of 
engraftment and expansion, patients receive conditioning 
chemotherapy to cause lymphodepletion prior to 
CAR T-cell infusion. Although approved for several 
hematological malignancies, CAR T-cell therapy is not yet 
approved for treatment of solid tumors. There are ongoing 
efforts to identify pancreatic cancer tumor antigenic targets 
for CAR T-cell development. 

Mesothelin is a glycoprotein that is highly expressed in 
PDAC, pleural mesothelioma, and ovarian adenocarcinoma, 
but also present in lower levels on pleural, pericardial, 
peritoneal, tracheal and tonsillar tissues (71). In a phase-I 
study, two of six patients with chemotherapy-refractory 
mPDAC who were treated with CAR-T-targeting 
mesothelin (CART-meso) cells achieved stable disease, 
with PFS of 3.8 to 5.4 months (72). The levels of reactive 
IgG doubled from baseline in five of the six patients 
studied. While CAR transcripts were noted in the blood 
after each infusion, they were not detected in the few 
available post-treatment biopsies, suggesting that CART-
meso cell infusion caused transient changes in the tumor 
microenvironment or that the CART-meso durability 
was limited. This study was limited in that biopsies were 
not obtained to confirm tumor cell surface expression of 
mesothelin prior to initiation of therapy.

CART-meso cells feature a two-pronged approach to 
antitumor effect. Through binding to mesothelin, CART-
meso cells induce tumor cell death and trigger the release of 
tumor antigens and inflammatory cytokines. CART-meso 
furthermore expresses CD40L which binds to CD40 on 
dendritic cell and macrophages, activating them to uptake 
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Table 4 Clinical trials evaluating vaccine treatments for PDAC

NCT number Date of NCT entry Phase Experimental arm Control arm Primary endpoint Primary endpoint result

Dendritic cell vaccines

NCT03592888 November 20, 
2018

I Mature dendritic cell 
(mDC3/8-KRAS) vaccine

None Safety and 
tolerability

Active, not recruiting

NCT04157127 August 3, 2020 I Autologous dendritic cell 
vaccine

None Safety and 
tolerability

Active, recruiting

Peptide vaccines

NCT03645148 August 24, 2018 I iNeo-Vac-P01 None Safety and 
tolerability

No severe vaccine-related 
adverse effects

GVAX vaccines

NCT02243371 September 17, 
2014

II GVAX + CRS-207 + 
nivolumab

GVAX + CRS-
207

Overall survival Median OS was 5.9 months 
for GVAX + CRS-207 + 
nivolumab vs. 6.1 months for 
GVAX + CRS-207

NCT00836407 February 4, 2009 Ib Ipilimumab + xGVAX Ipilimumab Safety and 
tolerability

20% of patients in either arm 
had grade 3–4 immune related 
adverse events

NCT01896869 July 11, 2013 II Ipilimumab + GVAX FOLFIRINOX Overall survival Median OS was 9.38 months 
for GVAX and ipilimumab vs. 
14.7 months for FOLFIRINOX 
(HR 1.75, P=0.02)

mRNA vaccines

NCT04161755 December 13, 
2019

I Atezolizumab + 
mFOLFIRINOX +  
autogene cevumeran

None Safety and 
tolerability

6% of patients had grade 3 
+ adverse events (fever and 
hypertension)

NCT03948763 June 26, 2019 I mRNA-5671/V941 + 
pembrolizumab

Pembrolizumab Safety and 
tolerability

Pending 

PDAC, pancreatic ductal adenocarcinoma; NCT, National Clinical Trial; OS, overall survival; HR, hazard ratio. 

tumor peptide antigens and present them via MHC to naïve 
T cells, promoting their maturation, thus broadening, and 
amplifying the immune response by a process called epitope 
spreading. 

A phase I trial found that CART-meso cells had minimal 

tumor infiltration and limited durability on patients with 
mPDAC, thus further efforts are necessary to improve 
outcomes with this emerging therapy (73). An overview of 
clinical trials evaluating CAR T-cell treatments for PDAC 
can be found in Table 5.

Table 5 Clinical trials evaluating CAR T-cell treatments for PDAC

NCT number Date of NCT entry Phase Experimental arm Control arm Primary endpoint Primary endpoint result

NCT02159716 June 10, 2014 I CART-meso None Safety and 
tolerability

CART-meso is safe at doses up 
to 3×108 CAR T cells/m2 

NCT05650918 December 14,2022 I MesoPher and 
mitazalimab

None Safety and 
tolerability

Recruiting

CAR T, chimeric antigen receptor T; PDAC, pancreatic ductal adenocarcinoma; NCT, National Clinical Trial; CART-meso, CAR-T-targeting 
mesothelin.



Digestive Medicine Research, 2024 Page 13 of 19

© AME Publishing Company. Dig Med Res 2024;7:15 | https://dx.doi.org/10.21037/dmr-24-2

Bispecific antibodies

Bispecif ic  antibodies are an increasingly popular 
immunotherapy drug category because they can potentially 
achieve better tumor specificity, reduce on-target, off-
tumor adverse effects and lower the risk of resistance by 
simultaneous alteration of two tumorigenic pathways (74).  
Zenocutuzumab is an antibody-dependent cellular 
cytotoxicity-enhanced anti-HER2xHER3 bispecific 
antibody designed for patients who harbor neuregulin 
1 gene fusion (NRG1) rearrangements. NRG1 fusion 
rearrangements are driver mutations that occur in 1.5% 
of KRAS wild-type pancreatic cancers. NRG1 results 
in a mutant protein which binds members of the ERBB 
RTK family, triggering heterodimerization, activating 
the phosphoinositide-3 kinase pathway and promoting 
tumorigenesis (75). Zenocutuzumab functions by a “dock 
and block” approach; one Fab arm binds prevalent cell-
surface-expressed HER2 protein (“docks”), while the other 
Fab arm blocks NRG1 interaction with HER3 (“blocks”), 
thereby inhibiting this stimulatory pathway. In vitro studies 
found that zenocutuzumab inhibited proliferation of lung 
adenocarcinoma and breast cancer cell lines expressing 
NRG1 fusion rearrangements. 

In preclinical trials, zenocutuzumab prevented cell cycle 
progression and promoted apoptosis (75). Zenocutuzumab 
effectively shrank NRG1 fusion xenograft tumors by 
63%±17% in murine models. Two mPDAC patients 

with NRG1 gene fusion treated with zenocutuzumab had 
symptomatic improvement and reduction in tumor size 
for 11–14 months. These early successes raised interest in 
increased NRG1 fusion testing for patients with mPDAC. A 
phase I/II open-label clinical trial assessing zenocutuzumab 
for patients with solid tumors and NRG1 fusion mutation 
found that among patients with pancreatic cancer, the 
investigator-assessed ORR was 39% (76). 

Other bispecific antibodies are also under investigation. 
KN046, a recombinant humanized bispecific antibody, is 
composed of a PD-L1 inhibitor and a CTLA-4 inhibitor. 
KN046 was assessed as single agent therapy in the second 
line setting for 21 patients with unresectable or mPDAC in 
a phase II trial, achieving an ORR of 11.1%, median PFS of 
2.1 months and median OS of 7.5 months (77). In China, 
there are ongoing clinical trials evaluating KN046 and a 
PD-L1/CTLA-4 bispecific antibody (78,79).

There is persistent optimism that bispecific antibodies 
will help overcome exhaustion of tumor infiltrating 
lymphocytes and spur anti-tumor activity. An overview of 
clinical trials evaluating bispecific antibody treatments for 
PDAC can be found in Table 6.

Bispecific antibody armed activated T-cells 
(BATs)

Efforts to increase T-cell trafficking and T-cell binding to 
specific tumor antigen independent of MHC binding led 

Table 6 Clinical trials evaluating bispecific antibody treatments for PDAC

NCT number
Date of NCT 
entry

Phase Experimental arm Control arm Primary endpoint
Primary endpoint 
result

NCT02912949 September 23, 
2016

II Zenocutuzumab None Overall response rate 
by RECIST 1.1

ORR among 
patients with 
pancreatic cancer 
was 39%

NCT05149326 December 8, 
2021

III KN046 + gemcitabine +  
nab-paclitaxel

Gemcitabine + 
nab-paclitaxel

Overall survival Active, not 
recruiting

NCT04324307 March 27, 
2020

I/II Cohort 1: PD-L1/CTLA-4 
bispecific antibody. Cohort 
2: PD-L1/CTLA-4 bispecific 
antibody with gemcitabine 
with albumin-paclitaxel 
FOLFIRINOX. Cohort 3: PD-L1/
CTLA-4 bispecific antibody with 
FOLFIRINOX

None Objective response 
rate at 2 years

Recruiting 

PDAC, pancreatic ductal adenocarcinoma; NCT, National Clinical Trial; ORR, overall response rate; PD-L1, programmed cell death ligand 1; 
CTLA-4, cytotoxic T-lymphocyte associated protein 4. 
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to the development of the BAT, an activated T-cell with 
one antibody arm that binds a tumor associated antigen 
and another that stimulates T-cell activity (80). An in vitro 
study found that BATs armed with anti-CD3/anti-EGFR or 
anti-CD3/anti-HER2 bispecific antibody had statistically 
greater cytotoxicity against cell lines resistant to cisplatin, 
gemcitabine or both compared to unarmed activated T 
cells (P<0.001) (81). Furthermore, sequential use of HER2-
BATs followed by EGFR-BATs showed statistically higher 
cytotoxicity compared to BAT monotherapy (77% vs. 25%, 
P<0.05). Priming pancreatic tumor cells by exposing them 
to BATs prior to cisplatin resulted in increased cytotoxicity 
at lower concentrations of cisplatin compared to pancreatic 
tumor cells that were not primed. Priming is associated 
with downregulation of ABC transporters, regulators of 
small molecule transport across cell membranes, which may 
reduce the efflux of chemotherapy from pancreatic cancer 
cells, thereby improving cytotoxicity. As such, BATs may 
lower the effective dose of chemotherapy, thus reducing the 
risk of adverse events.

Discussion

Given that current systemic therapies for advanced PDAC 
have poor efficacy, there is an urgent need for improved 
treatment options (82,83). MSI-H PDAC appears to 
benefit from checkpoint inhibition. In the MSS population, 
ongoing investigations aim to modulate the tumor 
microenvironment to generate an enhanced anti-tumor 
response. While checkpoint inhibition alone is insufficient 
to elicit a clinically significant disease regression, synergistic 
combination therapies aim to increase tumor killing by 
augmenting antigen exposure and cytotoxic response. Many 
upcoming phase I and phase II trials are assessing such new 
classes of immuno-therapeutic agents. 

Despite expansion of candidate drug molecules in the 
recent years as reviewed in this article, there remain several 
limitations to the studies. Several of these trials have low 
sample size, limiting the ability of the investigator to make 
determinations regarding the clinical efficacy of these 
novel therapies. Moreover, studies reviewed here did not 
investigate the expression pattern of the targets of drug 
candidates in each patient, making it further difficult to 
interpret the clinical efficacy. Most of the studies with CIs 
failed to indicate tumor mutational burden, MSI-status 
or mismatch repair (MMR) deficiency status routinely. 
Pre-intervention, few studies ascertained PD-L1 status, 
adequate expression of the molecular targets such as, 

mesothelin or VEGR. While a heterogeneous group of 
patients may not have a statistically significant response to 
the targeted intervention, it is possible that patients with 
tumor expressing the investigational target demonstrate 
superior outcomes, and thus should be the focus of the 
phase I trials. 

Nonetheless, these studies serve as a valuable platform 
and indicate the potential for immunotherapy strategies as 
emerging landscape in PDAC treatment in the near future. 
These initial studies suggest most of the candidate drugs are 
safe and well tolerated. While the role of immunotherapies 
in PDAC treatment is evolving, further studies should 
personalize treatments, pairing therapeutic interventions 
with patients based on their molecular profiles, which in 
turn will help predict the response rate more accurately. 
Furthermore, there remain challenges to identify better 
biomarkers that accurately reflect measurable changes over 
time in the local tumor microenvironment for the purpose 
of monitoring durability of response. 

Conclusions

Although pancreatic cancer has historically yielded poor 
responses to chemotherapy due to its immunosuppressive 
microenvironment, recent innovations in immunotherapy 
have introduced new tools to the arsenal against this 
devastating illness. These multimodal therapies aim to 
increase tumor antigen presentation, stimulate cytotoxic 
activity, and disrupt tumor proliferative signaling cascades. 
Ongoing clinical trials investigating targets identified 
through careful inspection of tumors’ molecular profiles hold 
the potential to improve the treatment of pancreatic cancer.
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