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The formation, dissolution, and dynamics of multi-particle complexes is of fundamental interest
in the study of stochastic chemical systems. In 1976, Masao Doi introduced a Fock space formal-
ism for modeling classical particles. Doi’s formalism, however, does not support the assembly of
multiple particles into complexes. Starting in the 2000’s, multiple groups developed rule-based meth-
ods for computationally simulating biochemical systems involving large macromolecular complexes.
However, these methods are based on graph-rewriting rules and/or process algebras that are math-
ematically disconnected from the statistical physics methods generally used to analyze equilibrium
and nonequilibrium systems. Here we bridge these two approaches by introducing an operator alge-
bra for the rule-based modeling of multi-particle complexes. Our formalism is based on a Fock space
that supports not only the creation and annihilation of classical particles, but also the assembly of
multiple particles into complexes, as well as the disassembly of complexes into their components.
Rules are specified by algebraic operators that act on particles through a manifestation of Wick’s
theorem. We further describe diagrammatic methods that facilitate rule specification and analytic
calculations. We demonstrate our formalism on systems in and out of thermal equilibrium, and
for nonequilibrium systems we present a stochastic simulation algorithm based on our formalism.
The results provide a unified approach to the mathematical and computational study of stochastic
chemical systems in which multi-particle complexes play an important role.

I. INTRODUCTION

Large complexes of classically behaving particles play
a central role in a variety of scientific disciplines. For
example, many essential biological processes depend on
large complexes formed by proteins, nucleic acids, and/or
other macromolecules. A common theme in such sys-
tems is “combinatorial complexity” [1], i.e., that an im-
mense (and often infinite) variety of molecular complexes
can form from a relatively small number of interaction
rules governing the assembly of a relatively small num-
ber of molecular components. Nevertheless, mathemat-
ical methods for analyzing stochastic chemical systems
that exhibit such combinatorial complexity have yet to
be developed.

In 1976, Masao Doi [2, 3] introduced a Fock space for-
malism for modeling many-body systems of classical par-
ticles. This approach was further developed by others
[4–6], and has proven useful in the study of diffusion-
limited aggregation [7–9] and other problems in statis-
tical physics [10–12]. As in quantum field theory, Doi’s
formalism supports the creation and annihilation of par-
ticles, but does not support the assembly of preexist-
ing particles into complexes. Consequently, analyzing
systems that involve multi-particle complexes using this
formalism requires specifying one distinct field for every
distinct species of complex. This makes Doi’s formalism
unwieldy for analyzing systems that exhibit substantial
combinatorial complexity.
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Consider, for example, the homopolymer system illus-
trated in Fig. 1. This system comprises one type of com-
ponent particle having two sites capable of forming an
interaction. In thermal equilibrium the system’s behav-
ior is governed by two quantities: the chemical potential
of the particles and the energy of interaction [Fig. 1(a)].
Out of equilibrium the system is governed by four rate
parameters describing the appearance and disappearance
of particles, as well as their mutual binding and unbind-
ing [Fig. 1(b)]. But despite how simple this system is to
describe in words and pictures, modeling this system in
Doi’s formalism is complicated because the above rules
lead to an infinite number of possible polymeric com-
plexes. To apply Doi’s formalism, one must define an
infinite number of fields, one for every species of com-
plex. For equilibrium systems, one must then manually
specify the chemical potential of each species [Fig. 1(c)].
For systems out of equilibrium, one must manually spec-
ify the rate of reaction between all reacting sets of species
[Fig. 1(d)]. And in doing so, one must take care that the
chemical potentials and/or reaction rates written down
are expressed correctly as functions of the underlying
model parameters, as Doi’s formalism provides no means
of computing these quantities.

Clearly something is missing. Ideally, the formalism
one uses to describe systems of multi-particle complexes
should allow one to mathematically derive the set of pos-
sible complexes, the chemical potentials of each complex,
and the rates of reaction between complexes from the
underlying rules and their associated parameters. This
paper develops a formalism that does this.

The problem of combinatorial complexity has long
been recognized in the field of computational systems
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FIG. 1. Homopolymer in zero dimensions. The system comprises a single species of component particle, with each particle
having two domains capable of forming heterotypic interactions. (a) In thermal equilibrium, system behavior is governed by
the chemical potential (µ) and interaction energy (ϵ). (b) Out of equilibrium, the system is governed by the kinetic rates for
monomer creation (r1), monomer annihilation (r2), interaction formation (r3), and interaction dissolution (r4). (c) The rules
in panel (a) generate an infinite number of possible complexes: x-chains and x-rings for all x = 1, 2, . . ., each complex with
a distinct chemical potential. The log terms in the chemical potentials of the x-rings result from their rotational symmetry.
(d) The rules in panel (b) result in an infinite web of reactions between different polymeric complexes, with reaction rates
proportional to r3 and r4 in ways that depend nontrivially on the identities of the specific reactants and products.

biology. Starting in the 2000s, researchers studying bio-
logical signaling pathways began developing “rule-based”
approaches for simulating chemical systems of multi-
particle complexes [1, 13–19]. Some of these efforts
have produced sophisticated software ecosystems, such
as BioNetGen [14, 16, 18, 20] and Kappa [17, 21]. These
simulation approaches, however, are based on formal rep-
resentations that do not lend themselves to analytical cal-
culations using the mathematical methods of statistical
physics. For example, BioNetGen is based on a process
algebra describing the formation and dynamics of port
graphs (i.e., graphs with edges attached through ports)
[22] while Kappa is based on the κ-calculus process al-
gebra [17, 21]. As a result, work in this area has been
confined to computational analyses rather than analytic
calculations.

Here we bridge the divide between Doi’s mathematical
formalism and rule-based methods for computationally
modeling biochemical systems. Using a Fock space for
classical particles reminiscent of but distinct from that of
Doi, we develop an operator algebra that allows not only
for the creation and annihilation of particles, but also
for the assembly of particles into complexes. We show
that this operator algebra allows one to mathematically
analyze equilibrium and nonequilibrium systems that are
defined in a rule-based manner, and can also be used
as a basis for computational analyses using stochastic
simulations.

After introducing how microstates and macrostates are
represented, we apply the formalism to three systems in
thermal equilibrium: a monomer system, a homodimer
system, and a homopolymer system. Next we show how

our formalism can be used to define and analyze nonequi-
librium systems, both through the analytic derivation
of master equations and through computational analy-
sis carried out using a stochastic simulation algorithm.
We end by illustrating the versatility of our formalism,
showcasing the variety and complexity of system behav-
ior that can arise from positing different sets of rules.

II. FOUNDATIONS

A. Microstates

Following Doi we define a set S of microstates where
each microstate s ∈ S corresponds to a unit vector |s⟩.
The resulting set of pure states forms an orthonormal
basis for the Fock space. The vector |ψ⟩ describing the
system is then given by a probabilistic mixture of pure
states,

|ψ⟩ =
∑
s∈S

ps|s⟩, (1)

where ps represents the probability of the system being
in state s. It is useful to define the sum of all possible
states as the “sum vector”

|sum⟩ =
∑
s∈S

|s⟩ . (2)

The expectation value of any operator O is then given by
⟨sum|O|ψ⟩, and probability normalization requires that
⟨sum|ψ⟩ = 1.
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The Fock space supports systems both in and out of
thermal equilibrium. In equilibrium, the state vector |ψ⟩
for the system (which is taken to be in the grand canoni-
cal ensemble) can be expressed in terms of a Hamiltonian
operator H that assigns a free energy to each microstate:

|ψ⟩ = e−βH

Z
|sum⟩, where Z = ⟨sum|e−βH|sum⟩ (3)

is the partition function, β = 1/kBT where kB is Boltz-
mann’s constant and T is temperature, and H |s⟩ =
Hs |s⟩ where Hs denotes the free energy of state s. The
dynamics of the system state |ψ⟩ out of equilibrium is
described by

d

dt
|ψ⟩ = W |ψ⟩ , (4)

where W is a transition operator. We call this the
“macrostate master equation.” In terms of the scalar
transition rates Ws→t from microstate s to microstate t,
the transition operator is

W =
∑
s,t∈S

Ws→t (|t⟩⟨s| − |s⟩⟨s|) . (5)

Note that the first term in the summand reflects the flow
of probability into pt, while the second term reflects the
flow of probability out of ps. We call these the “reaction”
and “depletion” terms, respectively.

B. Macrostates

Unlike in Doi’s formalism, the microstates in our for-
malism represent not only the externally observable prop-
erties of particles, but also their unobservable internal
states. These internal states are, in fact, what make par-
ticles in our formalism identifiable and thus allow com-
plexes to be constructed from preexisting particles. We
therefore distinguish between the microstates of a system
(represented by the |s⟩ vectors) and the macrostates of
the system.

In this work we focus on zero-dimensional (i.e., well-
mixed) populations of particles and complexes. Assum-
ing there are K possible observably distinct species of
complex, each macrostate is characterized by a vector
n⃗ = (n1, . . . , nK) where each nk quantifies the number
of complexes of species k. The corresponding macrostate
vector is defined to be the sum of all microstate vectors
consistent with the macrostate, i.e.,

|n⃗⟩ =
∑
s|n⃗

|s⟩ . (6)

Note that |sum⟩ =
∑

n⃗ |n⃗⟩, and that the probability of a
the system being in a macrostate n⃗ given |ψ⟩ is

P (n⃗) = ⟨n⃗|ψ⟩. (7)

In equilibrium systems, each macrostate is an eigenstate
of the Hamiltonian:

H |n⃗⟩ = −
∑
k

nkµk |n⃗⟩ , (8)

where µk is the (bare) chemical potential of species
k. Consequently, the probability of the system having
macrostate n⃗ is a product of species-specific Poisson dis-
tributions, i.e.,

P (nk) =
1

Zk

eβµknk

nk!
, where Zk = exp

[
eβµk

]
. (9)

In nonequilibrium systems, this probability becomes
a function of time t and evolves according to the
“macrostate master equation”

d

dt
Pt(n⃗) =

∑
n⃗′

Wn⃗n⃗′Pt(n⃗
′), (10)

where Wn⃗n⃗′ = ⟨n⃗|W |n⃗′⟩ / ⟨n⃗′|n⃗′⟩ are the macrostate-
specific transition rates. In later sections we compute
these Wn⃗n⃗′ from the transition operator W, but instead
of calculating each rate directly we find it simpler to cal-
culate the vector

|J(n⃗)⟩ = W† |n⃗⟩ . (11)

We call |J(n⃗)⟩ the “flux projector” since taking the inner
product of it with |ψ⟩ yields a vector of probability fluxes,

i.e., Ṗt(n⃗) = ⟨J(n⃗)|ψ(t)⟩.

III. MONOMER IN EQUILIBRIUM

A. Microstates and macrostates

We now construct the Fock space on which our for-
malism is based, using a system of monomeric particles
for concreteness. The particles are represented using a
hard-core boson field, A, which is assumed to have N
excitation modes. Each mode Ai is indexed by a number
i ∈ N = {1, . . . , N} that represents the internal state of
a particle. This index allows the formalism to track indi-
vidual particles that are outwardly identical. In what fol-
lows we keep N finite for concreteness, but all physically
meaningful calculations are performed in the N → ∞
limit.
Each mode Ai can be in one of two orthonormal states:

|1⟩i represents the presence of a particle with internal
state i, while |0⟩i represents its absence. Microstates are
given by tensor products over all modes. Specifically, a
microstate representingK particles having indices I ⊆ N
is represented by

|I⟩ =
⊗
i∈N

{
|1⟩i if i ∈ I,
|0⟩i otherwise.

(12)
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These states are orthonormal, i.e., ⟨I|J ⟩ = δIJ . The
resulting macrostates of the system are

|n⟩ =
∑

I:|I|=n

|I⟩ , for n = 0, . . . , N. (13)

The vacuum state, |0⟩ = |∅⟩, is both a microstate and a
macrostate.

These definitions readily extend to systems defined by
multiple fields. Consider a mixture of monomer species A
and B. The microstate comprising A monomers having
indices I and B monomers having indices J is given by

|I,J ⟩A,B = |I⟩A ⊗ |J ⟩B , (14)

where the subscripts indicate the Fock space in which
each state vector lives. The corresponding macrostates
and sum states are given by analogous tensor products.
Systems with three or more fields are defined similarly.

B. Mode and field operators

We now define four types of mode-specific operators:
creation, annihilation, presence, and absence. The cre-
ation operator for mode i is defined to be Âi = |1⟩i ⟨0|i.
When applied to a microstate |I⟩, this operator has the
effect

Âi |I⟩ =
{

0 if i ∈ I,
|I ∪ {i}⟩ otherwise.

(15)

The corresponding annihilation operator is defined to be

Ǎi = Â†
i , and has the effect

Ǎi |I⟩ =
{

|I \ {i}⟩ if i ∈ I,
0 otherwise.

(16)

The presence operator is defined as Āi = ÂiǍi. Āi |I⟩ is
one if i ∈ I and zero otherwise. The absence operator is
defined to be Ãi = ÂiǍi = 1− Āi. Note that Āi and Ãi

are self-adjoint.
We highlight several key algebraic properties of these

operators. First, creation and annihilation operators are
nilpotent, i.e., Â2

i = Ǎ2
i = 0. Second, the commutator

[Ǎi, Âj ] = δij(1− 2Āi) (17)

is very different than one finds in the harmonic oscilla-
tor algebra, and thus in other algebras used to model
classical particles [2, 6]. Third, the commutator

[Āi, Âj ] = δijÂj , (18)

plays an important role later when constructing multi-
particle complexes from component particles. Appendix
A lists some additional useful properties.

We further define field-specific creation, annihilation,
presence, and absence operators as sums over all of the
corresponding mode operators, i.e.,

Â =
∑
i

Âi, (19)

and similarly for Ǎ, Ā, and Ã. These field operators
satisfy the useful commutation relations

[Ǎ, Â] = N − 2Ā, [Ā, Â] = Â. (20)

Macrostates are given by

|n⟩ = Ân

n!
|0⟩ . (21)

Here the combinatorial factor corrects for each set of
modes being summed over n! times in the operator prod-
uct Ân. Note that |n⟩ = 0 if n > N , since this would

cause every term in Ân to contain at least one factor of
Â2

i . Applied to a macrostate, one finds that

Â |n⟩ = (n+1) |n+1⟩ , Ā |n⟩ = n |n⟩ , (22)

Ǎ |n⟩ = (N−n+1) |n−1⟩ , Ã |n⟩ = (N−n) |n⟩ . (23)

See Appendix A for a derivation of these results.
In the large N limit, the number of modes that are

excited in any macrostate |n⟩ with substantial physical
probability becomes negligible compared to N . In what
follows we therefore approximate Eq. (23) as

Ǎ |n⟩ ≈ N |n− 1⟩ , Ã |n⟩ ≈ N |n⟩ . (24)

By similar logic we can also approximate [Ǎ, Â] ≈ N , etc.
Finally, it is useful to consider the coherent state,

|z⟩ =
∞∑

n=0

zn |n⟩ = ezA |0⟩ . (25)

This allows one to express the generating function for the
distribution over macrostates as ⟨z|ψ⟩. Note that setting
z = 1 recovers the sum state, i.e., |1⟩ = |sum⟩.

C. Hamiltonian operator

In what follows we assume that each system of interest
is contained within a volume V . For a gas of monomers,
the relevant Hamiltonian is H = −µĀ, where µ denotes
a bare chemical potential. We use the term “bare” to
emphasize that µ determines the excitation probability
for each independent mode Ai, whereas the concentration
of monomers depends on µ, N , and V . The generating
function for the equilibrium probability distribution over
macrostates is found by:

⟨z|ψ⟩ = 1

Z
⟨0| ezǍeβµĀeÂ |0⟩ (26)

=
1

Z
⟨0| ezǍeλÂ |0⟩ (defining λ = eβµ) (27)

=
1

Z

∏
i

⟨0|i e
zǍieλÂi |0⟩i (28)

=
1

Z

∏
i

⟨0|i (1 + zǍi)(1 + λÂi) |0⟩i (29)
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=
1

Z
(1 + zλ)

N
(30)

=

(
1 + zλ

1 + λ

)N

. (31)

In the first step we used the fact that f(Ā)g(Â) |0⟩ =

g(f(1)Â) |0⟩ for any functions f and g. The resulting
quantity λ is the per-mode fugacity corresponding to
chemical potential µ. In the second step we used the
fact that operators for different modes commute. In the
third step we used the nilpotency of Âi to truncate the
expansions of each exponential. Finally, we used the nor-
malization requirement ⟨1|ψ⟩ = 1 to determine the par-
tition function Z = (1 + λ)N . The result is the generat-
ing function for the binomial distribution corresponding
to N modes with a per-mode excitation probability of
λ/(1 + λ). From this generating function we find that
the expected concentration of monomers is〈

Ā
〉

V
=

1

V

d

dz
⟨z|ψ⟩

∣∣∣∣
z=1

=
1

V

Nλ

1 + λ
=

λ′

1 + V λ′/N
, (32)

where λ′ = N
V λ. Keeping

〈
Ā
〉
/V constant while taking

N → ∞ requires holding λ′ approximately constant and
thus rescaling λ ∼ V

N . In this limit we get

⟨z|ψ⟩ = e(z−1)V λ′
⇒ |ψ⟩ = e−V λ′

|V λ′⟩ . (33)

The corresponding partition function is Z = eV λ′
. Note

that ⟨z|ψ⟩ is the generating function for a Poisson distri-
bution with mean V λ′. We thus see that

µ′ = kBT log λ′ = µ+ kBT log
N

V
(34)

is the effective chemical potential, i.e., the chemical po-
tential appropriately renormalized to account for the N
modes available for excitation in volume V . It is there-
fore µ′, not µ, that reflects the physically measurable
chemical potential.

IV. HOMODIMER IN EQUILIBRIUM

A. Composite operators

Multi-particle complexes are represented as products
of mode operators for three kinds of fields: particle fields,
interaction fields, and site fields. For example, we define
the creation operator for a dimer of two A particles by
the composite operator

D̂ij = Îij âiâjÂiÂj , (35)

which is the product of mode operators for a particle
field A, an interaction field I, and a site field a. More
specifically, Âi and Âj create the two component parti-

cles, Îij registers that these two particles interact with
one another, and âi and âj respectively indicate that the

Ai and Aj particles are each participating in an interac-
tion and are therefore not free to interact with additional
particles. Note that the index of the dimer creation op-
erator is the pair of monomer indices, (i, j). Since the

monomer is symmetric, we assume that Îij = Îji, and

so D̂ij = D̂ji. Note also that D̂ii = 0 because of the

nilpotency of Âi and âi. The number of internal states
for the dimer is therefore ND =

(
N
2

)
≈ N2/2. The dimer

annihilation, presence, and absence operators are defined
in terms of the creation operator in the same manner as
for a single particle:

Ďij = D̂†
ij = Ǐij ǎiǎjǍiǍj , (36)

D̄ij = D̂ijĎij = Īij āiājĀiĀj , (37)

D̃ij = ĎijD̂ij = Ĩij ãiãjÃiÃj . (38)

The field operator D̂ is given by D̂ = 1
2

∑
i,j D̂ij , where

the factor 1/2 compensates for double counting in the

sum. The field operators Ď, D̄, and D̃ are defined simi-
larly.
The homodimer system also comprises free monomers.

We represent these by a separate composite field M de-
fined by the mode operator M̂i = Âiãi. The correspond-
ing number of internal states is NM = N , and the three
related mode operators are M̌i = Ǎiãi, M̄i = Āiãi, and
M̃i = Ãiãi. The corresponding field operators are defined
as sums over i. Note the inclusion of ãi in M̂i ensures
that M̄ does not count A particles that are components
of dimers, M̌ does not annihilate such particles (which
would leave dangling I and a modes), etc.
The macrostate comprising m monomers and d dimers

is given by

|m, d⟩ = M̂m

m!

D̂d

d!
|0⟩ . (39)

Using [ãi, âj ] = −δij âi and Â2
i = 0, one can readily verify

that M̂ and D̂ commute. The corresponding coherent
state is therefore

|zM , zD⟩ =
∞∑

m=0

∞∑
d=0

zmMz
d
D |m, d⟩ = ezMM̂+zDD̂ |0⟩ . (40)

B. Sectoring by species

Now consider a Hamiltonian in which each A particle
has chemical potential µ and each interaction has Gibbs
free energy ϵ:

H = −µ
∑
i

Āi + ϵ
1

2

∑
i,j

Īij . (41)

To compute the equilibrium state of the system, we re-
express the Hamiltonian as a sum of terms that operate
separately on monomers and dimers. Using the identity
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1 = ãi + āi, we split the Hamiltonian into two parts,
H = HM +HD, where

HM =−µ
∑
i

Āiãi, HD=−µ
∑
i

Āiāi+
ϵ

2

∑
i,j

Īij . (42)

These operators satisfy the commutation relations

[HM , M̂ ] = −µMM̂, [HD, D̂] = −µDD̂,

[HM , D̂] = 0, [HD, M̂ ] = 0, (43)

where µM = µ and µD = 2µ − ϵ are the bare monomer
and dimer chemical potentials. Next we compute the
generating function:

⟨zM , zD|ψ⟩ = Z−1 ⟨0| ezMM̌+zDĎe−β(HM+HD)eM̂+D̂ |0⟩

= Z−1 ⟨0| ezMM̌+zDĎeλMM̂+λDD̂ |0⟩

≈ Z−1 ⟨0| ezMM̌eλMM̂ezDĎeλDD̂ |0⟩ . (44)

In the first step we used Eq. (43) and defined the fugaci-
ties λM = eβµM and λD = eβµD . The second step follows
from the approximation (see Appendix B)

[M̂, Ď] =
1

2

∑
i,j

(M̂i + M̂j)Ďij ≈ 0. (45)

This commutator is not exactly zero because annihilating
a dimer frees up A modes that can be used to create two
monomers. But by way of comparison,

[M̂, M̌ ] = NM − 2M̄ and [D̂, Ď] = ND − 2D̄ (46)

have terms that scale as N and N2, respectively. The
effect of the commutator [M̂, Ď] on a physical state is
consequently negligible in the large N limit. This reflects
the number of modes available to create a monomer not
being limiting in the physically meaningful regime.

Next we insert a copy of the identity operator,

1 =
∑
m,d

|m, d⟩ ⟨m, d|
m!d!

, (47)

into the right-hand side of Eq. (44) and observe that only
the |0⟩ ⟨0| term survives. Consequently,

⟨zM , zD|ψ⟩ ≈ Z−1 ⟨0| ezMM̌eλMM̂ |0⟩ ⟨0| ezDĎeλDD̂ |0⟩
= Z−1 ⟨zM |λM ⟩ ⟨zD|λD⟩ . (48)

Setting ⟨1, 1|ψ⟩ = 1 we find that Z ≈ ZMZD, where
ZM and ZD are the respective partition functions for the
monomer and dimer species. We thus obtain

|ψ⟩ ≈ |ψ⟩M ⊗ |ψ⟩D , (49)

where |ψ⟩M describes a monomer-only system, |ψ⟩D de-
scribes a dimer-only system, and both have the same
Poisson form as in Eq. (33).

There are two important caveats to the result in Eq.
(49). First, the sectors for distinct species are only in-
dependent in the N → ∞ limit. For example, the right-
hand side of Eq. (49) has nonzero |m⟩ ⊗ |d⟩ terms for
all values of m ≤ N and d ≤ N/2, whereas each |m, d⟩
term on the left-hand side is nonzero only if m+2d ≤ N .
Second, this sectoring result holds only in equilibrium
systems; indeed, the populations of particles in different
sectors will generally be coupled out of equilibrium.
Finally we discuss the scaling behavior of the system

with N and V . As in the previous section, requiring the
concentration of monomers

〈
M̄

〉
/V to be constant as

N → ∞ reveals an effective monomer chemical potential
of µ′

M = µM − +kBT log NM

V . Similarly, requiring the

concentration of homodimers
〈
D̄
〉
/V to be constant as

N → ∞ reveals an effective monomer chemical potential
of µ′

D = µD + kBT log ND

V . These relations are realized
by renormalizing the parameters of the Hamiltonian so
that

µ′ = µ+ kBT log
N

V
and ϵ′ = ϵ− kBT log V (50)

are held constant. In terms of these quantities, the effec-
tive dimer chemical potential is µ′

D = 2µ′−ϵ′−kBT log 2,
where the logarithmic term accounts for the symmetry
of the molecule. This system is therefore exactly renor-
malizable. We thus see that, to maintain a fixed con-
centration of dimers, the bare interaction energy ϵ must
become weaker as system volume increases. This makes
sense: if V increases while monomer concentration stays
fixed, the number of monomers available to bond to a
given monomer will increase in proportion to V . To keep
the probability of the given monomer forming a dimer
constant, the bare interaction energy ϵ must weaken as
V increases so that e−βϵ ∝ V −1. This implies that
e−βϵ′ = V e−βϵ will be fixed.

C. Gallery operators

Consider more generally a system that realizes K dis-
tinct species of complex. Let Ĝk denote the creation
operator for complex k and assume that

[Ḡk, Ĝk′ ] = δkk′Ĝk. (51)

We refer to the vector G⃗ = (Ĝ1, . . . , Ĝk)
⊤ as the

“gallery,” as it exhibits creation operators for all possible
complexes. The gallery allows us to define the coherent
state

|z⃗⟩ = exp
{
z⃗⊤G⃗

}
|0⟩ , (52)

where z⃗ = (z1, . . . , zK)⊤ is a vector of scalars. As in
the monomer and homodimer systems, the generating
function for a system |ψ⟩ is ⟨z⃗|ψ⟩, and the sum state is

|sum⟩ = e
∑

k Ĝk |0⟩ = |⃗1⟩. (53)
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The macrostates of the system are given by

|n1, . . . , nK⟩ =

[
K∏

k=1

Ĝnk

k

nk!

]
|0⟩ , (54)

and the effects of the four field operators on macrostates
are

Ĝk |n1, . . . , nK⟩= (nk+1) |n1, . . . , nk+1, . . . , nK⟩ ,
Ḡk |n1, . . . , nK⟩= nk |n1, . . . , nK⟩ ,
Ǧk |n1, . . . , nK⟩≈ Nk |n1, . . . , nk−1, . . . , nK⟩ ,
G̃k |n1, . . . , nK⟩≈ Nk |n1, . . . , nK⟩ . (55)

where Nk is the number of internal states for species k.
Because different complexes can share internal com-

ponents, the Hamiltonian can be defined in a rule-based
manner as in Eq. (41) instead of on a species-by-species
basis. As we will see in later sections, such rule-based
definitions can require far fewer than K terms. If there
are no energetic interactions between separate complexes,
the Hamiltonian can then be equivalently expressed as

H ≃ −
∑
k

µkḠk. (56)

where µk is the bare chemical potential for species k.
The generating function for the equilibrium state then
factorizes, i.e.

|ψ⟩ =
⊗
k

|ψ⟩k , where |ψ⟩k = e−V λ′
k |V λ′k⟩ , (57)

and where λ′k = eβµ
′
k and µ′

k = µk + kBT log Nk

V are the
effective fugacity and chemical potential of species k. We
note that it may or may not be possible to renormalize
the parameters of the Hamiltonian so that all the effective
chemical potentials are independent of V . For example,
this is possible in the homodimer system, but not in the
homopolymer system discussed in the next section.

D. Factory operators

Hamiltonians of the form in Eq. (56) describe systems
of non-interacting particles and might understandably be
viewed as trivial. They become less trivial, however, in
systems comprising large (or infinite) numbers of dis-
tinct complexes, each complex having a chemical poten-
tial that is a function of the parameters used to define
the Hamiltonian. In such systems, merely enumerating
different species of complex and determining their chem-
ical potentials can be nontrivial. It is therefore natural
to instead define the set of possible complexes implicitly
by specifying the rules for their construction, and to use
these rules to then compute the different species of com-
plex and their associated chemical potentials. We now
show how our formalism enables this.

In the case of the homodimer, the sum state can be
expressed as

|sum⟩ = eF2eF1 |0⟩ , (58)

where

F1 =
∑
i

Âiãi, F2 =
1

2

∑
i,j

Îij âiâjĀiĀj . (59)

Here, F1 = M̂ creates free monomers, while F2 joins two
monomers into a dimer. Specifically, F2 tests for the
presence of two particles, Ai and Aj , and if these already
exist it joins them into a dimer Dij . Note that neither
A particle can be part of an existing dimer due to the
excitation of site fields ai and aj . For example,

F2
F2
1

2
|0⟩ = 1

4

∑
i,j,k,l

Îij âiâjĀiĀjÂkãiÂlãl |0⟩ (60)

=
1

4

∑
i,j,k,l

Îij âiâjÂiÂj(δikδjl + δilδjk) |0⟩ (61)

= |0, 1⟩ , (62)

where the first step uses the identities âiãi = âi and
[Āi, Âj ] = δijÂi. We will soon show more generally that

Fp
2

p!

Fq
1

q!
|0⟩ =

{
|q − 2p, p⟩ if q ≥ 2p,

0 otherwise.
(63)

Summing this over all p and q establishes the |sum⟩ state
in Eq. (58).
The sum of states for complexes generated in any

system can thus be specified by a vector of operators

F⃗ = (F1, . . . ,FL)
⊤ via

|sum⟩ = eFL . . . eF1 |0⟩ . (64)

We call this vector the “factory.” We emphasize that the
order of the operators within the factory is important, as
these operators, unlike gallery operators, do not generally
commute.
Using the factory instead of the gallery to define the

set of possible complexes in a system can have an im-
portant advantage: the factory often comprises far fewer
operators than the gallery. This is not the case for the
homodimer system, but it is so for the homopolymer sys-
tem presented in Section V.
There is a disadvantage, however, to defining a system

using the factory: one loses access to the generating func-
tion. One can, of course define a coherent state analogous
to |z⃗⟩ via

|x⃗⟩ = exLFL · · · ex1F1 |0⟩ , (65)

where x⃗ = (x1, . . . , xL)
⊤. It is questionable, however,

how useful the corresponding generating function ⟨x⃗|ψ⟩
is for analysis. As we will see, each term in the expansion
of Eq. (65) can yield multiple distinct mixtures of com-
plexes. One thus generally cannot read off the macrostate
distribution P (n⃗) from the expansion of ⟨x⃗|ψ⟩.
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E. Wick’s theorem

The algebraic manipulations needed to show Eq. (63)
become unwieldy as p and q become large. Wick’s theo-
rem, a foundational result in quantum field theory, makes
these calculations significantly more straightforward by
providing a systematic procedure for reordering opera-
tors in a multi-operator product.

To see how Wick’s theorem can be applied to our for-
malism, define the compound operators Āa

i = âiĀi and

Âa
i = âiÂi. Ignoring the interaction field I for the mo-

ment, each term in the expansion of the left-hand side of
Eq. (63) has the form

Āa
i1 · · · Ā

a
i2qM̂j1 · · · M̂jp |0⟩ . (66)

Note that all compound presence operators appear to the
left of all creation operators. We refer to this as “produc-
tive ordering.” Given an operator product X1X2 · · ·Xn,
we denote its productive ordering by P(X1X2 · · ·Xn).
Each term in the Taylor expansion of the factory repre-
sentation is productive ordered because the instructions
for assembling each complex are applied after the instruc-
tions for creating its components. In contrast, each term
in the expansion of the gallery representation in Eq. (39)
has the form

M̂i1 · · · ÂimM̂
a
j1 · · · Â

a
j2d

|0⟩ . (67)

The key difference from Eq. (66) is that this term con-
tains only creation operators, all of which commute.

Every term of the form in Eq. (66) is in fact equal to a
sum of terms having the form in Eq. (67) withm = q−2p
and d = p. To transform the former to the latter, we
iteratively apply the exchange rule

Āa
i M̂j = M̂jĀ

a
i + δijÂ

a
i (68)

until no Āa
i operators appear to the left of any M̂j opera-

tors. Each application of the exchange rule adds another

term to the expansion. The result is a sum of operator
products such that all Āa

i in each product appear to the

right of all M̂i and Âa
i . Such products are said to be

“normally ordered.” More generally, an operator prod-
uct is normally ordered if all presence operators appear to
the right of all creation operators. The normally ordered
form of an operator product X1X2 · · ·Xn is denoted by
N (X1X2 · · ·Xn). Normally ordered products are useful
because any such products containing presence operators
vanish when applied to the vacuum state.

Wick’s theorem provides an equality between produc-
tive ordered and normally ordered operator products. To
state Wick’s theorem, we define a “contraction” between
two operators Xi and Xj to be

XiXj = P(XiXj)−N (XiXj). (69)

The contraction of two specific operators within a larger
product X1X2 · · ·Xn removes these operators from the
product and replaces them with their contraction, i.e.,

X1X2 · · ·Xi · · ·Xj · · ·Xn = X1X2 . . . Xn(XiXj). (70)

A key assumption of Wick’s theorem is that the con-
traction of any two operators in a product is “central,”
i.e., it commutes with all other operators in the product.
For the homodimer algebra, the only contractions needed
to transform Eq. (66) to Eq. (67) are of the form

Āa
i M̂j = Āa

i M̂j − M̂jĀ
a
i = [Āa

i , M̂j ] = δijÂ
a
j . (71)

These contractions are indeed central, i.e., [Âa
j , M̂j ] =

[Âa
j , Ā

a
i ] = 0.

Applied to our context, Wick’s theorem states that any
productive ordered operator product is equal to the sum
of all possible normally ordered contractions:

P(X1X2X3X4 · · · ) =N (X1X2X3X4 · · · )+

N (X1X2X3X4 · · · ) +N (X1X2X3X4 · · · ) +N (X1X2X3X4 · · · ) + · · ·

N (X1X2X3X4 · · · ) +N (X1X2X3X4 · · · ) +N (X1X2X3X4 · · · ) + · · ·
... (72)

=
∑

all contractions C

N (C(X1X2 . . . Xn)) (73)

For example, applying Wick’s theorem to the right-hand side of Eq. (60) gives

Āa
i Ā

a
j M̂kM̂k =N (Āa

i Ā
a
j M̂kM̂k)+

N (Āa
i Ā

a
j M̂kM̂k) +N (Āa

i Ā
a
j M̂kM̂k) +N (Āa

i Ā
a
j M̂kM̂k) +N (Āa

i Ā
a
j M̂kM̂k)+
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N (Āa
i Ā

a
j M̂kM̂k) +N (Āa

i Ā
a
j M̂kM̂k) (74)

= M̂kM̂kĀ
a
i Ā

a
j+

δikÂ
a
i M̂kĀ

a
j + δilÂ

a
i M̂kĀ

a
j + δjkÂ

a
j M̂kĀ

a
i + δjlÂ

a
j M̂kĀ

a
i+

δikδjlÂ
a
i Â

a
j + δilδjkÂ

a
i Â

a
j . (75)

When applied to the vacuum state, only the last two
terms in Eq. (75) survive, thus yielding the expression in
Eq. (61),

Āa
i Ā

a
j M̂kM̂k |0⟩ = (δikδjl + δilδjk)Â

a
kÂ

a
l |0⟩ . (76)

More generally, Wick’s Theorem allows us to transform
terms in the expansion of the factory expression for the
sum vector (Eq. (64)) into a sum of terms in the expan-
sion of the gallery expression for the sum vector (Eq.
(53)).

F. Formal diagrams

We now introduce diagrammatic methods that aid in
computations involving Fock space operators. Each dia-
gram indicates an operator product or sums of such prod-
ucts over internal states. Fig. 2 shows several examples.
The indices of mode operators are written as index names
inside open dots [Fig. 2(a)]. Mode operators are indi-
cated by the decorated operator name written next to
their respective dots. Multiple operator names written
next to the same dot indicate that those operators share
the same index. Modes that have two indices are written
next to lines that connect the two dots representing these
indices. A closed dot indicates summation over the cor-
responding index. Field operators are thus distinguished
from mode operators through the use of closed rather
than open dots. Symmetry factors are also kept explicit
[Fig. 2(b)].

FIG. 2. Diagrammatic notation for operator products and
sums thereof over internal indices. (a) Examples of simple
and compound mode operators. (b) Examples of simple and
compound field operators. (c) Wick contractions relevant to
the homodimer system.

FIG. 3. Diagrams facilitate algebraic calculations. (a) Evalu-
ation of the p = 2, q = 5 term of Eq. (63) in terms of normally
ordered operator products. (b) Result of the computation in
panel (a) applied to the vacuum state.

This diagrammatic notation is helpful in computations
involving Wick contractions; we demonstrate this by de-
riving Eq. (63). The effect of each Wick contraction is
illustrated in Fig. 2(c): contracting an Āa operator (part

of F2) with F1 = M̂ eliminates the F1 and replaces the

Āa in F2 with an Âa. To avoid unnecessary notation go-
ing forward, we represent this operation using the same
diagrams but showing only the decorations on the A op-
erators. Now consider the left-hand side of Eq. (63) with
p = 2 and q = 5 [Fig. 3(a), line 1]. Because the two
F2 operators are applied after the five F1 operators, this
product is productive ordered [Fig. 3(a), line 2]. Next we
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FIG. 4. Diagrammatic proof of the factory/gallery equiva-
lence for the homodimer system.

use Wick’s theorem to convert this to a sum of normally
ordered products [Fig. 3(a), lines 3-8]. We also evaluate
the combinatorial coefficients that arise due to distinct
contractions producing topologically identical products.
Consider, for example, the coefficient for term (iii). For

the first contraction, there are five choices of M̂ and four
choices of Āa. For the second contraction, there are four
remaining choices of Â but only one possible choice for
Āa – that which is linked with the first Āa through an
I-field. Since interchanging the order in which the con-
tractions are performed does not change the result, we
divide the result by two. This yields a combinatorial co-
efficient of (5·4)×(4·1)/2!. The combinatorial coefficients
for the other terms follow similarly.

Each normally ordered term in lines 3-8 yields one of
the resulting operator products shown in lines 9-11, as
indicated. We leave it to the reader to check that the
combinatorial coefficients computed in lines 3-8 do in fact
match those shown in lines 9-11, which are as expected
based on symmetry considerations. Note in particular
that all terms except term (vi) contain Āa operators.
Consequently, only term (vi) survives when applying this
result to the vacuum state [Fig. 3(b)].

We are now in a position to evaluate the left-hand side
of Eq. (63) for general values of p and q (Fig. 4). If

q < 2p, then Fq
1 does not supply enough M̂ operators

to contract all the Āa operators supplied by Fp
2. The

expression therefore vanishes. If q ≥ 2p, however, there
are q!/(q − 2p)! ways to contract all the Āa with all the

M̂ , thereby leaving p copies of D̂ and q copies of M̂ .
The resulting combinatorial factor replaces the 1/q! with
1/(q − 2p)!, thus providing the factors needed to cor-

rect the redundancies in D̂p and M̂q. This completes
the derivation of Eq. (63), and thus proof of the fac-
tory/gallery equivalence for the homodimer system.

V. HOMOPOLYMER IN EQUILIBRIUM

We now turn to a system that is far simpler to define
in a rule-based manner than in a species-based manner.
Consider a factory comprising two operators:

F1 =
∑
i

Âiãib̃i, F2 =
∑
i,j

ĀiĀj âib̂j Ĵij . (77)

This is similar to the homodimer factory, but F2 differs
in that it forms an asymmetric (rather than symmetric)
bond between two A particles. Specifically, the summand
in F2 occupies a site ai on the Ai monomer, a site bj on
the Aj monomer, and forms a bond Jij between them. F2

is not multiplied by a symmetry factor because Jij ̸= Jji.
These factory operators are represented graphically in
Fig. 5(a). We define a rule-based Hamiltonian for this

FIG. 5. Diagrammatic specification of the homopolymer sys-
tem. (a) The factory. (b) The Hamiltonian. (c) The resulting

gallery. (d) The Ĉx and R̂x comprising the gallery, and (e) the
four contraction rules for the system. For conciseness, panels
(c-e) hide all operator names except for the decorators on the
A operators. (f) An example algebraic calculation carried out
using the commutation rules in panel (e).
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system in the familiar way:

H = −µ
∑
i

Āi + ϵ
∑
i,j

J̄ij , (78)

as represented in Fig. 5(b). The resulting gallery [Fig.
5(c)] is far more complex than that of the homodimer:
it comprises creation operators for polymer chains and
polymer rings of all lengths. Here, x-chains and x-rings
are created by the operators

Ĉx =
∑

i1,...,ix

Âi1 · · · Âix âi1 · · · âix−1 (79)

× b̂i2 · · · b̂ix Ĵi1i2 · · · Ĵix−1ix ,

R̂x =
1

x

∑
i1,...,ix

Âi1 · · · Âix âi1 · · · âix (80)

× b̂i1 · · · b̂ix Ĵi1i2 · · · Ĵix−1ix Ĵixi1 .

These operators are more clearly expressed in diagram-
matic notation [Fig. 5(d)]. Note the factor of 1/x in Eq.
(80); this is needed to compensate for redundancy in the
sum over internal indices that results from x-rings having
rotational symmetry.

The equivalent species-based Hamiltonian has an infi-
nite number of terms, each with its own bare chemical
potential:

H ≃ −
∞∑
x=1

(
µCx C̄x + µRx R̄x

)
, (81)

where µCx
= xµ−(x−1)ϵ and µRx

= xµ−xϵ are the bare
chemical potentials for x-chains and x-rings. The cor-
responding number of complex-specific microstates are
NCx

= Nx and NRx
= 1

xN
x. Putting these together, we

obtain the effective chemical potentials of each species:

µ′
Cx

= x(µ− ϵ) + ϵ− kT log
Nx

V
,

µ′
Rx

= x(µ− ϵ)− kT log
Nx

xV
. (82)

Unlike in the homopolymer system, it is not possible to
renormalize µ and ϵ so that all µ′

Cx
and µ′

Rx
are inde-

pendent of volume. Keeping µ′
C1

independent of N and

V requires fixing the value of µ′ = µ − kBT log N
V as

in the monomer and homodimer systems. Keeping all
other µ′

Cx
independent of N and V then requires fixing

ϵ′ = ϵ+ kBT log V . The effective chemical potentials for
all species thus become

µ′
Cx

= x(µ′ − ϵ′) + ϵ′,

µ′
Rx

= x(µ′ − ϵ′)− kBT log x− kBT log V. (83)

Constraining the concentrations of all Cx species inde-
pendent of V therefore requires that the concentration of
all Rx species scale as V −1. We note, however, that the
converse is not possible, i.e., one cannot choose a defini-
tion for µ′ and ϵ′ so that the concentrations of all ring
species are independent of V .

We therefore conclude that, for the homopolymer sys-
tem to behave sensibly in the V → ∞ limit, the concen-
trations of all chain polymers must remain fixed whereas
the concentrations of all ring polymers must vanish. This
makes sense: as V increases, the number of free ends with
which the free end of an x-chain can interact increases in
proportion to V . To preserve the concentrations of all
x-chains, e−βϵ must scale as V −1. The probability of
one free end of an x-chain interacting with the other free
end of the same polymer will thus scale as V −1, and the
concentration of all ring polymers will also scale as V −1.
Given Eq. (83), defining η = eβ(µ

′−ϵ′) and computing

logZ =

∞∑
x=0

eβµCx +

∞∑
x=0

eβµRx , (84)

we find that the log partition function density of the sys-
tem is, for 0 < η < 1,

logZ

V
=

eβϵ
′

1− η
− log(1− η)

V
. (85)

The left and right terms of the resulting expression are
the respective contributions from chains and rings. The
V −1 scaling of the second term reflects the vanishing of
ring species as V → ∞. The remaining chain contribu-
tion diverges as η → 1 from below. In this limit, the
concentration of A particles diverges as〈

Ā
〉

V
=

1

β

∂

∂µ′
logZ

V
≈ eβϵ

′

δ2
. (86)

Since the concentration of each chain species Cx is given

by eβµ
′
Cx = eβϵ

′
ηx, the distribution of chain lengths is

distributed exponentially with decay rate log η, and flat-
tens out as η → 1 from below. Defining δ = 1 − η, the
mean and variance of these chain lengths diverge as

⟨x⟩ = η

1−η
≈ 1

δ
, var(x) =

η

(1−η)2
≈ 1

δ2
. (87)

To show the equivalence of the factory and gallery rep-
resentations of the homopolymer system, we again invoke
Wick’s theorem. In this case, however, the allowable con-
tractions are more complex. Paralleling the analysis for
the homodimer, we define the compound operators

M̂i = Âiãib̃i, Âa
i = Âiâib̃i, (88)

Âb
i = Âiãib̂i, Âab

i = Âiâib̂i, (89)

Āa
i = Āiâib̃i, Āb

i = Āiãib̂i. (90)

These six operators obey the contraction rules

Āa
i M̂j = δijÂ

a
i , Āb

iM̂j = δijÂ
b
i (91)

Āa
i Â

b
j = Āb

i Â
a
j = δijÂ

ab
i . (92)

These rules are shown diagrammatically in Fig. 5(e). The
reader may notice that the first two contraction products
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are not central, and thus violate an assumption of Wick’s
theorem. We find, however, that Wick’s theorem still
holds if we allow contraction products to participate in
additional contractions. Fully contracted operator prod-
ucts therefore have all Āa

i and Āb
i operators participating

in one contraction each, whereas each Â operator may
participate in zero, one, or two contractions.

We can use the above contraction rules to derive the
complexes generated from any given term in |sum⟩ =
eF2eF1 |0⟩. Fig. 5(f) shows the result for one such term.
A generalized version of this computation is used in Ap-
pendix C to prove the factory/gallery equivalence for the
homopolymer system.

VI. NONEQUILIBRIUM SYSTEMS

A. Species-based formalism

We now turn to the problem of determining the
macrostate master equation [Eq. (10)] given a rule-based
microstate master equation [Eq. (4)]. We start, however,
by investigating how to specify and analyze a more stan-
dard species-based microstate master equation.

Species-based master equations are built from individ-
ual reactions, each of which annihilates a specified set
of complexes and creates a new set in their place. Sup-
pose there are H distinct species-specific reactions. The
transition operator in Eq. (4) will then have the form

W =

H∑
h=1

rh

(
Qh − Q̀h

)
, (93)

where rh is the rate at which reaction h occurs, Qh is
a “reaction operator” that effects this reaction when ap-
plied to a macrostate |n⃗⟩, and Q̀ is a corresponding “de-
pletion operator.” Each reaction operator has the form

Q =

K∏
k=1

Ĝpk

k

pk!

Ǧqk
k

qk!
, (94)

where q⃗ = (q1, . . . , qK) is an abundance vector that de-
scribes the reactants and p⃗ = (p1, . . . , pK) is a vector that
describes the products. For the sake of simplicity we as-
sume that p⃗ and q⃗ do not overlap (i.e., pk = 0 and/or
qk = 0 for every k). Applying the conjugate of this oper-
ator to the macrostate, one finds that

Q† |n⃗⟩ = Np⃗ Ω(n⃗, q⃗, p⃗) |n⃗+ q⃗ − p⃗⟩ , (95)

where

Ω(n⃗, q⃗, p⃗) =
∏
k

(
nk + qk − pk

qk

)
1(nk ≥ pk) (96)

is a coefficient that depends on n⃗, p⃗, and q⃗, but not oth-
erwise on the details of the reaction, and

Np⃗ =
∏
k

(
Nk

pk

)
≈

∏
k

Npk

k

pk!
(97)

is the number of distinct product microstates created
when Q is applied to a single reactant microstate.
In our formalism, the depletion operator Ò correspond-

ing to any reaction operator O is given in terms of the
microstate-specific components via

O =
∑
I,J

oIJ |J ⟩ ⟨I| ⇒ Ò =
∑
I,J

oIJ |I⟩ ⟨I| , (98)

where I and J index all microstates of the system and
oIJ is the rate at which |I⟩ is transformed into |J ⟩.
Note that, by this definition, all depletion operators are
self-conjugate. In Appendix D we show that Eq. (98),
together with the assumption of non-overlapping p⃗ and
q⃗, leads to a depletion operator corresponding to Q of

Q̀ =
∏
k

(
G̃k

pk

)(
Ḡk

qk

)
. (99)

Applying Q̀† = Q̀ to the macrostate then gives

Q̀ |n⃗⟩ = Np⃗ Ω(n⃗, q⃗, q⃗) |n⃗⟩ . (100)

Adding back the subscript h on p⃗ and q⃗ and using Eq.
(11), we obtain an expression for the flux projector:

|J(n⃗)⟩ =
H∑

h=1

rhNp⃗h
{Ω(n⃗, q⃗h, p⃗h) |n⃗+ q⃗h − p⃗h⟩

− Ω(n⃗, q⃗h, q⃗h) |n⃗⟩}. (101)

The difficulty with this species-based formulation is
that, in systems that admit multi-particle complexes, the
form of the transition operator in Eq. (93) does not re-
flect the underlying simplicity of the system. Rather, the
rates rh and reaction operators Qh are derived quantities
that follow from an (often much smaller) set of informally
stated rules. Furthermore, even manually specifying the
right-hand side of Eq. (93) can be tricky: a small number
of rules can lead to a very large (or even infinite) num-
ber of reactions H, and both rh and Qh can depend in
nontrivial ways on the elemental parameters that govern
those rules. We now show how our formalism addresses
this problem by enabling the rule-based definition of W.

B. Rule-based formalism

We specify the transition operator in a rule-based man-
ner as follows. Suppose we have a system defined by L
reaction rules. For each rule l, we specify a rate rl and
a “reaction rule operator” Rl. The transition operator is
then given by

W =

L∑
l=1

rl

(
Rl − R̀l

)
, (102)

where R̀l is the depletion operator corresponding to Rl.
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Suppose a rule operator R is able to drive M different
species-specific reactions. For each reaction m, let q⃗m
denote the number of reactant species and p⃗m the number
of product species. We find that

R† |n⃗⟩ =
M∑

m=1

σmΩ(n⃗, q⃗m, p⃗m) |n⃗+ q⃗m − p⃗m⟩ , (103)

where σm is the number of distinct product microstates
that can result from each reactant microstate in an m-
type reaction. The depletion operator R̀ follows from the
rule operator R using Eq. (98). Applying R̀† = R̀ to |n⃗⟩,

R̀ |n⃗⟩ =
M∑

m=1

Np⃗m
Ω(n⃗, q⃗m, q⃗m) |n⃗⟩ . (104)

Adding back the l indices, we obtain the flux projector

|J(n⃗)⟩ =
L∑

l=1

Ml∑
m=1

rlσlm{Ω(n⃗, q⃗lm, p⃗lm) |n⃗+ q⃗lm − p⃗lm⟩

−Ω(n⃗, q⃗lm, q⃗lm) |n⃗⟩}. (105)

C. Macroscopic master equation for the
homopolymer

We now use our rule-based formalism to derive the
macrostate master equation for the homopolymer sys-
tem. Out of equilibrium, the dynamics of this system
can be defined by L = 4 reaction rule operators:

R1 =
∑
i

Âiãib̃i, R3 =
∑
i,j

Ĵij âib̂jĀiĀj ,

R2 =
∑
i

Ǎiãib̃i, R4 =
∑
i,j

J̌ij ǎib̌jĀiĀj . (106)

Here, R1 creates a monomeric particle, R2 = R†
1 destroys

a monomeric particle, R3 creates an interaction between

two particles, and R4 = R†
3 destroys an interaction. Note

that these four operators are given by the factory opera-
tors of Section V and their conjugates. The correspond-
ing depletion operators are

R̀1 =
∑
i

Ãiãib̃i, R̀3 =
∑
i,j

J̃ij ãib̃jĀiĀj ,

R̀2 =
∑
i

Āiãib̃i, R̀4 =
∑
i,j

J̄ij āib̄jĀiĀj . (107)

Diagrammatic representations of these rule operators and
depletion operators are shown in Fig. 6(a).

In Section V we showed that the macrostates of the
homopolymer system are given by

|⃗c, r⃗⟩ = |c1, r1, c2, r2, . . .⟩ =
∞∏
x=1

Ĉcx
x

cx!

R̂rx
x

rx!
|0⟩ , (108)

where cx and rx respectively indicate the number of
chains and rings of length x. To compute the macro-
scopic master equation, we compute the flux projector

|J(c⃗, r⃗)⟩ =
4∑

l=1

rl(R†
l − R̀l) |⃗c, r⃗⟩ . (109)

We now evaluate Eq. (109) term-by-term. To ease no-
tation, we show in the macrostate only the elements of c⃗
and r⃗ that change upon application of each operator and
denote the unchanged elements by “. . .”. The l = 1 term
corresponds to monomer creation. As illustrated in Fig.
6(b), R1 maps a single microstate (corresponding to no
reactants) to σ1 ≈ N microstates (corresponding to all
possible monomer states). By Eq. (103) and Eq. (104),

(R†
1 − R̀1) |⃗c, r⃗⟩ ≈ N{|c1−1, . . .⟩ − |. . .⟩}. (110)

R2 maps a single monomeric particle microstate to σ2 = 1
microstate (i.e., no products), and so

(R†
2 − R̀2) |⃗c, r⃗⟩ = (c1+1) |c1+1, . . .⟩ − c1 |. . .⟩ . (111)

The effects of R3 and R4 are more complex. R3 can
effect three different types of reactions depending on the
reactants. First, R3 can join together an x-chain and y-
chain (x < y) to get an (x+y)-chain; this can be done in
σ3 = 2 different ways [Fig. 6(c)]. Second, R3 can can join
together two x-chains to get a 2x-chain; this can be done
in σ3 = 2 ways [Fig. 6(d)]. Third, R3 can join together
the ends of an x-chain to get an x-ring; this can be done
in only σ3 = 1 way [Fig. 6(e)]. We therefore find that

(R†
3 − R̀3) |⃗c, r⃗⟩ =

∑
x<y

2{(cx+1)(cy+1) |cx+1, cy+1, cx+y−1, . . .⟩ − cxcy |. . .⟩}

+
∑
x

2

{
(cx+2)(cx+1)

2
|cx+2, c2x−1, . . .⟩ − cx(cx−1)

2
|. . .⟩

}
+
∑
x

{(cx+1) |cx+1, rx−1, . . .⟩ − cx |. . .⟩}. (112)

Similarly, the inverse operator R4 can separate an (x+ y)-chain into an x-chain and y-chain (x < y) in σ4 = 2 ways,
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FIG. 6. The eight types of species-specific reactions that occur in the nonequilibrium homopolymer system. (a) Diagrammatic
representations of the four reaction rule operators and their corresponding depletion operators. (b) R1 maps the vacuum state
to N different monomer microstates, while R2 maps each monomer microstate to a single vacuum state. (c-e) The three types
of species-specific reactions effected by R3 and R4. (c) R3 can link an x-chain and y-chain together in two different ways, while
R4 can split an (x + y)-chain into an x-chain and y-chain in two different ways. (d) R3 can link two x-chains together in two
different ways, while R4 can split a 2x-chain into two x-chains in only one way.(e) R3 can circularize an x-chain in only one
way, while R4 can linearize an x-ring in x different ways. Nodes are shown as open dots in panels (b-e) to indicate specific
internal states; the numbers below each node indicate example values for the internal index i of each component particle.

can separate a 2x-chain into two x-chains in only σ4 = 1 way, and can cut an x-ring to get an x-chain in σ4 = x
different ways. Consequently,

(R†
4 − R̀4) |⃗c, r⃗⟩ =

∑
x<y

2{(cx+y+1) |cx−1, cy−1, cx+y+1, . . .⟩ − cx+y |. . .⟩}

+
∑
x

{(c2x+1) |cx−2, c2x+1, . . .⟩ − c2x |. . .⟩}

+
∑
x

x{(rx+1) |cx−1, rx+1, . . .⟩ .− rx |. . .⟩}. (113)

The depletion terms in these expressions can be simplified as follows∑
x<y

2cxcy+
∑
x

cx(cx−1)+
∑
x

cx = n2chain,
∑
x<y

2cx+y+
∑
x

c2x+
∑
x

xrx = nlink, (114)

where nchain =
∑

x cx is the total number of chains and nlink =
∑

x[(x− 1)cx + xrx] is the number of links among all
chains and rings.
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Evaluating the inner product ⟨J(n⃗)|ψ(t)⟩, we thus obtain the macroscopic master equation for the homopolymer:

d

dt
P (. . .) = Nr1P (c1−1, . . .) + r2(c1+1)P (c1+1, . . .)

+ r3

[∑
x<y

2(cx+1)(cy+1)P (cx+1, cy+1, cx+y−1, . . .)

+
∑
x

(cx+2)(cx+1)P (cx+2, c2x−1, . . .) +
∑
x

(cx+1)P (cx+1, rx−1, . . .)

]

+ r4

[∑
x<y

2(cx+y+1)P (cx−1, cy−1, cx+y+1, . . .) +
∑
x

(c2x+1)P (cx−2, c2x+1, . . .)

+
∑
x

x(rx+1)P (cx−1, rx+1, . . .)

]
−
[
Nr1 + r2c1 + r3n

2
chain + r4nlink

]
P (. . .). (115)

To verify this result we focus on the depletion term, i.e.,
the coefficient of P (c⃗, r⃗). The overall monomer creation
rate is Nr1. This makes sense, as r1 is the per-mode
rate of excitation of the A field. r1 must therefore scale
as V/N . The r2 term reflects our assumption that only
A particles engaging in no interactions are able to be
annihilated; it does not scale with V or N . The r3 term
reflects the fact that new interactions form between the
a-end of one chain and the b-end of either another chain
or the same chain (r3 scales as V −1). The total number
of available reactants in the system is therefore n2chain.
The r4 term reflects the assumption that any link can be
annihilated regardless of the complex in which it occurs
(r4 does not scale with V or N).

VII. SIMULATIONS

A. Deterministic simulations

Our formalism enables the numerical solution of the
microstate master equation – at least when N is suffi-
ciently small. One first defines a set of modes M, as well
as a set of mode-specific rules R = {(Rli, rl)}, where l in-
dexes the qualitatively different rules as in Eq. (102), and
i indexes the internal states of the particles that each rule
acts upon (so that Rl =

∑
i Rli). The transition operator

is then computed using

W =

L∑
l=1

rl
∑
i

(
Rli − R̀li

)
. (116)

Given an initial state vector |ψ(0)⟩, the state at time t is
computed using

|ψ(t)⟩ = exp {tW} |ψ(0)⟩ . (117)

Figs. 7(a)-7(c) show the results of this computation for
three example systems: a monomer system (N = 20), a

homodimer system (N = 4), and a homopolymer system
(N = 3).
The primary limitation of this approach is that it

requires computations involving very large vectors and
matrices: |ψ⟩ is a 2|M|-dimensional vector, W is a
2|M| × 2|M| matrix, and |M| is polynomial in N , e.g.,

|M| = N for the monomer, |M| = 2N +
(
N
2

)
for the

homodimer, and |M| = 3N +N2 for the homopolymer.
Even using sparse matrix methods, we have found the di-
rect evaluation of Eq. (117) to be impractical for all but
very small values of N . Nevertheless, these deterministic
simulations provide a valuable way to check the accuracy
of the stochastic simulations that we now turn to.

B. Stochastic simulations

Our formalism also enables stochastic simulations us-
ing the Gillespie algorithm [23, 24]. Importantly, these
stochastic simulations can be carried out using much
larger values of N . Algorithm 1 is one algorithm that
does this. After explaining how the algorithm works, we
illustrate its operator stepping through one iteration of
the algorithm for a homodimer system. We then present
computational results obtained using this algorithm and
discuss the algorithm’s current limitations.
The input to Algorithm 1 consists of two strings, strans

and sinit. The string strans specifies the set of rules and
their corresponding rates, while sinit specifies the ini-
tial state of the system, |s0⟩. The output of the algo-
rithm is a trajectory object T , the downstream parsing
of which provides time traces for the abundances of all
single particles and complexes. Post-hoc processing of T
then provides time traces for all species of complex. We
emphasize that this algorithm only tracks the excitation
states of modes. In particular, there is no need during
the execution of the algorithm to enumerate the differ-
ent possible species of complex or even to track which
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FIG. 7. Simulations of nonequilibrium systems. (a-c) Deterministic and stochastic simulations for (a) a monomer system
(N = 20), (b) a homodimer system (N = 4), and (c) a homopolymer system (N = 3). (d-f) Stochastic simulations for the same
systems as in panels (a-c) using N = 100. Black dashed lines indicate mean abundances from deterministic simulations. Solid
lines plot mean abundances from 500 stochastic simulations. Error bands indicate standard deviations in abundance across the
stochastic simulations.

species occur. Rather, time traces for the abundances of
different complexes are determined only during the post-
processing of T .

After processing its inputs, the algorithm sets time t
to zero and the trajectory object T to be the empty set.
Next, the function Initialize takes strans and sinit as
inputs and outputs four sets of objects:

• O is the set of all mode-specific operators (i.e., cre-
ation, annihilation, presence, and absence opera-
tors) for all fields. Every O ∈ O has the attributes
O.mode, O.rules, and O.eligible. O.mode is a ref-
erence to the operator’s mode M ∈ M. O.rules
is a set of references to the rules R ∈ R that in-
clude O in their operator product. O.eligible is a
Boolean flag indicating whether O can be applied

to |st⟩ without killing it.

• M is the set of all modes for all fields. Ev-
ery M ∈ M has the attributes M.operators and
M.excited. M.operators is a set of references to
the four mode-specific operators (i.e., M̂ , M̌ , M̄ ,

and M̃). M.excited is a Boolean value indicating

whether the mode is excited. If TRUE, M̂ and
M̃ are ineligible, while M̌ and M̄ are eligible. If
FALSE, M̂ and M̃ are eligible, whereas M̌ and M̄
are ineligible.

• R is the set of all mode-specific rules, each de-
fined as a product of mode-specific operators. Ev-
ery rule R ∈ R has the attributes R.operators and
R.rate. R.operators is a set of references to the
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mode-specific operators O ∈ O that comprise R.
R.rate is the rate at which the rule is applied when
eligible.

• C is the “state constructor,” i.e., the set of creation
operators that, when applied to |0⟩, yield |st⟩, the
system state at time t. The specific C returned by
Initialize corresponds to |s0⟩, which is specified
by the string sinit. In particular, if the user specifies
that |s0⟩ = |0⟩, then C = {}.

O, M, and R are static, whereas C evolves in time. Also
note that

M = O.mode ⇔ O ∈M.operators, (118)

R ∈ O.rules ⇔ O ∈ R.operators (119)

for all O ∈ O, M ∈ M, and R ∈ R.
After initialization, Algorithm 1 enters a while loop.

Each execution of the loop applies one rule R to the sys-
tem state |st⟩, then steps the system forward in time from
t to t+∆t. The contents of this while loop are as follows:

• Line 5 identifies the set of eligible rules and saves
them in set R∗. This is the most computationally
expensive part of Algorithm 1, since it must loop
through every possible rule and test that rule for
eligibility using the function IsRuleEligible. A
rule R is eligible if and only if every operator in
R.operators is eligible.

• Line 6 uses the rates of the rules in R∗ to randomly
sample a time step ∆t and a corresponding rule R
via the Gillespie algorithm, which is implemented
by GillespieStep. Time t is then incremented by
∆t.

• Lines 8-14 update the state constructor C and the
excitation state of modes affected by the rule R.
To do this, a for loop is carried out over all op-
erators O ∈ R.operators. If O is a creation op-
erator, then O is added to the state constructor
C. Alternatively, if O is an annihilation opera-
tor, then the corresponding creation operator O†

is removed from the state constructor C. In either
case, FlipModeExcitation is applied to the mode
M = O.mode. This flips the excitation attribute of
M , as well as the eligible attribute of all operators
in M.operators.

• Finally, the loop stores a tuple reporting the up-
dated time t, the rule R, and the resulting state
constructor C in the trajectory object T .

We now illustrate how this algorithm works by fol-
lowing it through initialization and one execution of the
while loop. Assume that the string strans specifies the
following kinetic rules for a homodimer system:

R1 =
∑
i

Âiãi, R3 =
∑
i<j

ĀiĀj âiâj Îij ,

Algorithm 1: Gillespie simulation

Data: strans, sinit, nmax

Result: T
/* Initialize time, trajectory, operators,

modes, rules, and state constructor. */

1 t← 0
2 T ← {}
3 O,M,R, C ← Initialize(strans, sinit)

/* Carry out Gillespie algorithm. */

4 for n ∈ {1, . . . , nmax} do
5 R∗ ← {R : R ∈ R, IsRuleEligible(R)}
6 R,∆t← GillespieStep(R∗)
7 t← t+∆t
8 for O ∈ R.operators do
9 if O.type == “creation” then

10 C ← C ∪ {O}
11 FlipModeExcitation(O.mode)

12 if O.type == “annihilation” then
13 C ← C \

{
O†}

14 FlipModeExcitation(O.mode)

15 T ← T ∪ (n, t,R, C)

/* Create operators, modes, rules, and initial

state constructor. */

16 Function Initialize(strans, sinit):
17 . . .
18 return O,M, R, C

/* Compute whether rule is eligible. */

19 Function IsRuleEligible(R):
20 return Prod({O.eligible : O ∈ R.operators})

/* Randomly choose rule and time step using the

Gillespie algorithm. */

21 Function GillespieStep(R∗):
22 r⃗ ← {R.rate : R ∈ R∗}
23 rtot ← Sum(r⃗)
24 ∆t← SampleExponentialDist(rate = rtot)
25 R← Choose(set = R∗, weights = r⃗)
26 return R,∆t

/* Flip excitation state of mode and

eligibility of corresponding operators. */

27 Function FlipModeExcitation(M):
28 M.excited← NOT M.excited
29 for O ∈M.operators do
30 O.eligible← NOT O.eligible

R2 =
∑
i

Ǎiãi, R4 =
∑
i<j

ĀiĀj ǎiǎj Ǐij . (120)

We further suppose that the string sinit specifies an initial
state containing four monomers having indices 2, 3, 5,
and 7, i.e.,

|s0⟩ = Â2Â3Â5Â7 |0⟩ . (121)

Taking strans and sinit as input, the function Initialize
returns the following sets of objects:

M = {Ai}i ∪ {ai}i ∪ {Iij}i<j ,
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O =
{
Âi, Ǎi, Āi, Ãi

}
i
∪ {âi, ǎi, āi, ãi}i ∪{

Îij , Ǐij , Īij , Ĩij

}
i<j

,

R =
{
Âiãi

}
i
∪
{
Ǎiãi

}
i
∪{

ĀiĀj âiâj Îij

}
i<j

∪
{
ĀiĀj ǎiǎj Ǐij

}
i<j

,

C =
{
Â2, Â3, Â5, Â7

}
. (122)

Here the indices i and j are understood to run over
1, . . . , N , and the rates rl corresponding to each Rli

are kept implicit. Initialize also sets the values of
M.excited for allM ∈ M, and ofO.eligible for allO ∈ O.
M.excited is TRUE for modes A2, A3, A5, and A7, and
is FALSE for all other modes (including all modes of the
fields a and I). Consequently, the set O∗ of eligible op-
erators is

O∗ =
{
Âi, Ãi

}
i/∈{2,3,5,7}

∪
{
Ǎi, Āi

}
i∈{2,3,5,7} ∪

{âi, ãi}i ∪
{
Îij , Ĩij

}
i<j

. (123)

Now consider the first execution of the while loop. In line
5 of Algorithm 1, IsRuleEligible is evaluated on every
rule R ∈ R. Based on the eligibility of each operator in
R.operators, the eligible rules are found to be

R∗ =
{
Âiãi

}
i/∈{2,3,5,7}

∪
{
Ǎiāi

}
i∈{2,3,5,7} ∪{

ĀiĀj âiâj Îij

}
i<j∈{2,3,5,7}

. (124)

Next, GillespieStep chooses a random eligible rule R ∈
R∗ and a time increment ∆t that is then added to t.
Suppose

R = Ā3Ā7â3â7Î37 (125)

is chosen. Applying R to the initial state vector then
yields the updated state vector,

|s∆t⟩ = R |s0⟩ = Â2Â3Â5Â7â3â7Î37 |0⟩ . (126)

To register this change, the state constructor is updated
to

C =
{
Â2, Â3, Â5, Â7, â3, â7, Î37

}
. (127)

Calls to FlipModeExcitation then set the excited at-
tributes of modes a3, a7, I37 to TRUE and flip the eligible
attribute of the four operators corresponding to each of
these modes. The resulting set of eligible operators is

O∗ =
{
Âi, Ãi

}
i/∈{2,3,5,7}

∪
{
Ǎi, Āi

}
i∈{2,3,5,7} ∪

{âi, ãi}i/∈{3,7} ∪ {ǎi, āi}i∈{3,7} ∪{
Î25, Ĩ25, Ǐ37, Ī37,

}
. (128)

Finally the updated time t, the chosen rule R, and the
updated state constructor C are added as a tuple to the
trajectory T .
In the next execution of the while loop, the set R∗ of

eligible rules is found by IsRuleEligible to be

R∗ =
{
Âiãi

}
i/∈{2,3,5,7}

∪
{
Ǎiãi

}
i∈{2,5} ∪{

Ā2Ā5â2â5Î25, Ā3Ā7ǎ3ǎ7Ǐ37

}
. (129)

It is worth noting the changes to R∗ vs. Eq. (124). The
monomer annihilation rules Ǎ3ã3 and Ǎ7ã7 have been
removed because the modes a3 and a7 are now excited,
making the operators ã3 and ã7 ineligible. This prevents
monomers joined by interactions from being annihilated,
thereby leaving “dangling” interactions. In addition, all
interaction creation rules except Ā2Ā5â2â5Î25 have be-
come ineligible. This prevents the A3 and A7 monomers,
which are already interacting with each other, from par-
ticipating in multiple interactions. Finally, the interac-
tion annihilation rule Ā3Ā7ǎ3ǎ7Ǐ37 becomes eligible, al-
lowing the newly-formed bond to dissociate.

Fig. 7 shows this stochastic algorithm applied to
monomer, homodimer, and homopolymer systems. Pan-
els (a-c) validate this algorithm by showing that the mean
abundance of each species found across 500 simulations
closely traces the mean abundance predicted by the de-
terministic algorithm. As noted above, however, these
comparisons can only be carried out at small N due to
limitations of the deterministic algorithm. This stochas-
tic algorithm can be performed at much larger values of
N , e.g., Figs. 7(d)-7(f) show such simulations performed
using N = 100.

The size of N is still a limitation for Algorithm 1. The
bottleneck is line 5, which requires iterating through all
mode-specific rules in R and testing each one for eligibil-
ity. This step takes o(|R|) time, and |R| is polynomial

in N : |R| = 2N for the monomer, |R| = 2N + 2
(
N
2

)
for the homodimer, and |R| = 2N + 2N2 for the ho-
mopolymer. That said, Algorithm 1 was developed only
as proof-of-principle and has not been optimized for ef-
ficiency. Indeed, we expect the bottleneck can be elimi-
nated by using more sophisticated methods for tracking
which operators and rules are eligible given the state con-
structor, thereby enabling simulations using arbitrarily
large values of N .

VIII. EXPRESSIVENESS

Our formalism provides a rule-based approach for
defining and analyzing a diverse array of stochastic chem-
ical systems in which multi-particle complexes can form.
Here we illustrate the expressiveness of our formalism by
briefly considering a variety of such systems, both in and
out of equilibrium.

In equilibrium, systems are defined by a factory F⃗
and a Hamiltonian H. Putting the Hamiltonian aside
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FIG. 8. Factories defining various polymer systems. Each panel shows the factory operators used to define system in equilibrium.
The homopolymer system analyzed in Section V is shown in panel (a) for comparison.

for the moment, it is interesting to consider the quali-
tatively different sets of complexes that can arise from
simple changes to the factory. This expressiveness is per-
haps most apparent in polymer systems. Fig. 8 shows
nine such polymeric systems derived from variations on
the homodimer and homopolymer systems described in
previous sections. Two such systems, the isotropic ho-
mopolymer [Fig. 8(b)] and branched homopolymer [Fig.
8(c)] are further analyzed below.

Out of equilibrium, systems are defined by a set of
rules, with each rule Rl assigned a corresponding rate rl.
Fig. 9 shows five such nonequilibrium systems. These
rules again derive from variations on the homodimer and
homopolymer systems. Fig. 9 also shows the results of
stochastic simulations carried out using Algorithm 1 for
specific choices of the rate parameters.
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A. Isotropic homopolymer

We now analyze the isotropic homopolymer shown
in Fig. 8(b). This system is defined by one species of
monomeric subunit (A) with two sites (a and b) capable
of participating in two classes of symmetric interaction
(I and J). We aim to compute the partition function for
the system assuming the Hamiltonian

H = −µ
∑
i

Ā+
ϵ

2

∑
i,j

(Īij + J̄ij). (130)

As with the homopolymer of Section V, the two fac-
tory operators for this system generate chains and rings.
However, the use of two distinct types of symmetric in-
teraction complicates these species. First, there are no
self-interacting monomers. Second, the I and J interac-
tions alternate in all multimers. For x-chains this means
that, when x is even, there are two different species re-
lated by the exchange of I and J interactions. When x
is odd, there is instead only one-species of x-chain, as
exchanging I and J is equivalent to flipping the order of
the subunit indices. Moreover, x-rings occur only when
x is even. These rings have x/2-fold rotational symme-
try, and for x ≥ 4 they additionally have 2-fold mirror
symmetry.

The log partition function density of the system is
therefore given by

logZ

V
=

∞∑
x=1

logZ(2x−1)-chain +

∞∑
x=1

logZ2x-chain

+ logZ2-ring +

∞∑
x=2

logZ2x-ring. (131)

In terms of the effective chemical potential µ′ = µ +
kBT log N

V and effective interaction energy ϵ′ = ϵ −
kBT log V , as well as the control parameter η = eβ(µ

′−ϵ′)

(which represents the Boltzmann weight of a single par-
ticle with a dangling bond), the single-complex partition
functions in Eq. (131) are

logZ(2x − 1)-chain = eβϵ
′
η2x−1, logZ2x-chain = 2eβϵ

′
η2x,

logZ2-ring =
η2

2V
, logZ2x-ring =

η2x

4xV
.

(132)

Summing the terms in Eq. (131) we find that, for 0 <
η < 1,

logZ

V
=
eβϵ

′
η

1− η
+
eβϵ

′
η2

1− η2
+
η2

4V
− log(1− η2)

4V
. (133)

As with the homopolymer, the partition function diverges
as η → 1 from below. Defining δ = 1−η, we find that the
concentration of A particles diverges in this limit, scaling
as 〈

Ā
〉

V
≈ 3eβϵ

′

2δ2
. (134)

Again, this divergence is dominated by the x-chains even
at finite V . The factor of 3

2 difference between this result
and the homopolymer result in Eq. (86) reflects the fact
that, while both even and odd chains contribute to Eq.
(134), there are twice as many species of even chains (but
the same number of odd chains) as in the homopolymer
system.

B. Branched directed homopolymer

Consider now the branched directed homopolymer sys-
tem shown in Fig. 8(c). This system is defined by one
species of monomeric subunit (A) with three sites (a, b,
and c) capable of participating in two classes of directed
interaction (I and J). We assume that the system is in
thermal equilibrium and is governed by the Hamiltonian

H = −µ
∑
i

Ā+ ϵ
∑
i,j

(Īij + J̄ij). (135)

The two factory operators for this system generate two
broad classes of complex: “trees,” which branch out from
a single A in which site c is unoccupied, and “groves,”
which consist of multiple trees branching out from a cen-
tral closed ring. The log partition function density of this
system is therefore given by

logZ

V
= Ztree +

∞∑
x=1

Zx-grove, (136)

where Ztree is the partition function for all trees and
Zx-grove is the partition function for all groves with trees
extending off a central x-ring. To proceed, we let ξ rep-
resent the partition function for a tree with a dangling
interaction extending off the root. In terms of this quan-
tity,

Ztree = eβϵ
′
ξ, Zx-grove =

2xηx (1 + ξ)
x

V x
, (137)

where η = eβ(µ
′−ϵ′) is again the Boltzmann weight of a

single particle with a dangling bond. In Ztree, the fac-
tor of eβϵ

′
removes the effect of the dangling bond. In

Zx-grove, the factor of ηx accounts for the particles and
bonds in each x-ring, the factor of 2x accounts for the
fact that each bond in the x-ring can be of type I or J ,
and the (1 + ξ)x factor accounts for the fact that each A
within the ring can either be bare or have a tree attached.
As with the homopolymer, the factor of 1

x compensates

for the rotational symmetry of the ring while 1
V reflects

the entropic cost of self-circularization.
We solve for ξ by noting that the self-similar structure

of each tree complex yields the recursion relation

ξ = η(1 + 2ξ + ξ2). (138)

Solving this quadratic equation and using the limiting
behavior ξ ≈ η as η → 0, we derive

ξ =
1− 2η −

√
1− 4η

2η
. (139)
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FIG. 9. Stochastic simulations of various nonequilibrium models. Shown are results for (a) a heterodimer system, (b) an
occlusive binding system, (c) a cooperative binding system, (d) a heteropolymer system, and (e) a branched homopolymer
system. For each system, r+l denotes the rate at which the forward rule, Rl, is applied, while r−l denotes the rate at which the

reverse rule, R†
l , is applied. Solid lines indicate mean abundances from 500 stochastic simulations using N = 100. Error bands

indicate abundance standard deviations across the simulations.
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Expressing Ztree and Zx-grove in terms of ξ and summing
Zx-grove over all x, we find that for 0 < η < 1

4 ,

logZ

V
= eβϵ

′
(
1− 2η −

√
1− 4η

2η

)
− log(1− 4η)

2V
.

(140)

As with the homopolymer system, the contribution from
the circularized (i.e., x-grove) species vanishes in the
V → ∞ limit. We also find that the partition function is
not defined for η > 1

4 . In particular, the mean concentra-

tion of A particles is found to diverge as δ = 1
4 − η → 0

according to 〈
Ā
〉

V
≈ eβϵ

′

2
√
δ
+

1

8V δ
, (141)

with the first and second terms respectively correspond-
ing to trees and groves. This result is qualitatively dif-
ferent from the corresponding results for the directed
homopolymer in Section V and for the isotropic ho-
mopolymer analyzed above. In particular, the circular-
ized species (the groves) dominate over the linear species
(the trees) in the δ → 0 limit when V is kept finite. The
asymptotic behavior of the system therefore depends on
which limit one takes first, η → 1

4 or V → ∞. Moreover,
the divergence is more mild than in the non-branched
systems, scaling as either δ−1/2 or δ−1 (depending on
how one handles V ) rather than δ−2.

IX. DISCUSSION

We have introduced an algebraic formalism for the
rule-based modeling of multi-particle complexes in
stochastic chemical systems. This algebra is based on
a Fock space that allows not only the creation and anni-
hilation of particles, but also the joining of particles into
complexes based on specified rules. The Fock space com-
prises three types of hard-core boson fields; these repre-
sent particles, particle-particle interactions, and occupied
binding sites. We have also described a formal diagram-
matic approach that facilitates the use of this algebra.

For equilibrium systems, we showed that the set of all
possible complexes can be rigorously specified by a “fac-
tory” and a Hamiltonian. The factory is an ordered set
of operators that define how to construct complexes; the
Hamiltonian is an operator that specifies rules for com-
puting the Gibbs free energy of a complex based on its
components. We showed for multiple systems how these
rule-based definitions can be used to compute generating
functions and partition functions, and to analyze scaling
behavior near critical polymerization concentrations.

For nonequilibrium systems, we showed how to rigor-
ously specify system dynamics in a rule-based manner.
Specifically, we showed how a set of reaction rule op-
erators and corresponding rates can be used to define
the transition matrix of a “microstate” master equation.

From this transition matrix one can then analytically
compute the corresponding “macrostate” master equa-
tion, which governs the time evolution of observables.
We also developed a Gillespie algorithm for simulating
stochastic chemical systems based on these rule opera-
tors and corresponding rates.

The essential feature of our formalism, one that distin-
guishes it from previous approaches for modeling many-
body systems of classical particles, is that it explicitly
represents internal particle states. These internal states
endow each particle with its own identity, thus allowing
preexisting particles to join together into multi-particle
complexes. Notably, our approach to modeling these
internal states is consistent with the behavior of quan-
tum systems in the decoherence limit. In this limit, the
reduced density matrix for each particle becomes diag-
onal with elements along the diagonal quantifying the
probability of each energy eigenstate [25, 26]. The or-
thonormal microstates in our formalism correspond to
these diagonal positions in the reduced density matrix
(i.e., the energy eigenstates), and the probabilities that
multiply these microstates correspond to the values of
the reduced density matrix at these positions. Classi-
cal particles, such as proteins, have many distinct energy
eigenstates corresponding to different internal excitation
modes, and the internal states of particles in our formal-
ism stand in for these modes. Our formalism assumes a
specific number N of such modes, but this choice does
not affect results when N is sufficiently large.

We envision a variety of potential analytic applications
for our formalism. As in the work of Doi [2, 3], it may be
possible to use the algebra we have introduced to carry
out diagrammatic perturbation theory calculations. As
in the work of Peliti [6] and Goldenfeld [5], it may also
be possible to identify a path integral formulation of this
algebra. While our analysis focused on zero-dimensional
(i.e., well-mixed) systems, we expect that it should be
straightforward to apply our formalism to spatially ex-
tended systems in which diffusion plays an important role
(as in [2, 3, 5, 6]).

We also envision a variety of computational applica-
tions. Serious computational applications will require re-
working our proof-of-principle algorithm (Algorithm 1)
so that its speed does not scale with N , but we expect
this will be straightforward using more advanced book-
keeping methods. The resulting algorithm may provide
advantages over existing rule-based modeling approaches,
since the underlying objects in our formalism (hard core
bosons) are simpler than those of existing algorithms
(e.g., port graphs). Our formalism might also facilitate
the development of qualitatively different computational
strategies for rule-based modeling, e.g., the use of finite
state projections [27] or tensor networks [28] to approxi-
mate the solution of the master equation.

In this paper we have focused on polymer systems,
which best illustrate how large complexes can arise from
simple interaction rules. Our initial motivation in pursu-
ing this project, however, was in biological systems. We
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specifically sought to develop methods for modeling the
biophysical mechanisms of gene regulation. Gene reg-
ulation is controlled by large protein-nucleic acid com-
plexes [29, 30], with individual regulatory sequences able
to nucleate the formation of large numbers of different
macromolecular assemblies. A major goal in this field is
to understand these complexes as well as their effects on
gene expression using biophysical models, and substantial
progress has been made using both equilibrium models
[31–34] and nonequilibrium models [35–37]. In particu-
lar, biophysical modeling provides a principled approach
to deciphering how gene regulatory programs are encoded
in DNA and RNA sequences [38–42]. Our work provides
a formal language in which such biophysical models can
be expressed and then analyzed. This capability may
allow researchers to systematically explore the space of
biophysical models of gene regulation, thereby automat-
ing the construction and inference of biophysical models
for gene regulatory codes.
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Appendix A: Algebra of mode and field operators

Since each mode represents a hard-core boson, mode-
specific creation and annihilation operators are nilpotent,
i.e.,

Â2
i = Ǎ2

i = 0. (A1)

When multiplied by presence and absence operators for
the same mode, the creation and annihilation operators
are readily seen to satisfy

ĀiÂi = ÂiÃi = Âi, ÃiÂi = ÂiĀi = 0, (A2)

ÃiǍi = ǍiĀi = Ǎi, ĀiǍi = ǍiÃi = 0. (A3)

Presence and absence operators are both idempotent, i.e.,

Ā2
i = Āi, Ã2

i = Ãi, (A4)

and mixed products of presence and absence operators
for the same mode vanish:

ĀiÃi = ÃiĀi = 0. (A5)

From these properties and the fact that operators for dis-
tinct modes commute, we get the following commutation
relations for mode operators:

[Ǎi, Âj ] = δij(Ãi − Āi) = δij(1− 2Āi), (A6)

[Āi, Âj ] = [Âi, Ãj ] = δijÂi, (A7)

[Ãi, Ǎj ] = [Ǎi, Āj ] = δijǍi. (A8)

Summing over indices gives the corresponding commuta-
tion relations for field operators:

[Ǎ, Â] = Ã− Ā = N − 2Ā, (A9)

[Ā, Â] = [Â, Ã] = Â, (A10)

[Ã, Ǎ] = [Ǎ, Ā] = Ǎ. (A11)

These commutation relations, together with Ā |0⟩ = 0,
allow us to compute the impact of each field operator on
the macrostate |n⟩,

Â |n⟩ = Â
Ân

n!
|0⟩

= (n+ 1)
Ân+1

(n+ 1)!
|0⟩

= (n+ 1) |n+ 1⟩ , (A12)

Ā |n⟩ = Ā
Ân

n!
|0⟩

=
1

n!
[Ā, Ân] |0⟩

=
1

n!

n−1∑
k=0

Ân−k−1[Ā, Â]Âk |0⟩

= n
Ân

n!
|0⟩ = n |n⟩ , (A13)

Ǎ |n⟩ = Ǎ
Ân

n!
|0⟩ = [Ǎ,

Ân

n!
] |0⟩

=
1

n!

n−1∑
k=0

Ân−k−1[Ǎ, Â]Âk |0⟩

=
1

n!

n−1∑
k=0

Ân−k−1(N − 2Ā)Âk |0⟩

=
1

n!

n−1∑
k=0

(N − 2k)Ân−1 |0⟩

=
1

n!

(
nN − 2

n(n− 1)

2

)
Ân−1 |0⟩

= (N − n+ 1)
Ân−1

(n− 1)!
|0⟩

= (N − n+ 1) |n− 1⟩ , (A14)

Ã |n⟩ = Ã
Ân

n!
|0⟩

= (N − Ā)
Ân

n!
|0⟩
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= (N − n)
Ân

n!
|0⟩

= (N − n) |n⟩ . (A15)

Appendix B: Non-commutation of monomer and
dimer operators

Here we derive the expression for [M̂, Ď] in Eq. (45).
We begin by evaluating the commutator on the individual
composite mode operators:

[M̂k, Ďij ] = Ǐij

[
Âkãk, ǍiǍj ǎiǎj

]
= δkiǏijǍj ǎj

[
Âkãk, Ǎiǎi

]
+ δkj ǏijǍiǎi

[
Âkãk, Ǎj ǎj

]
. (B1)

Considering the commutator in the k = i term and drop-
ping the subscripts for brevity, we find that

[Âã, Ǎǎ] = Â[ã, Ǎ]ǎ+ [Â, Ǎ]ãǎ+ ǍÂ[ã, ǎ] + Ǎ[Â, ã]ǎ

= Āǎ

= ÂãǍǎ. (B2)

The same holds for the k = j term. Substituting these
back into Eq. (B1) and summing over k gives∑

k

[M̂k, Ďij ] =
∑
k

δkiÂiãiǏijǍiǎiǍj ǎj

+
∑
k

δkjÂj ãj ǏijǍiǎiǍj ǎj

= (M̂i + M̂j)Ďij . (B3)

From this we recover Eq. (45).

Appendix C: Factory/gallery equivalence for the
homopolymer

We now prove the equivalence of the factory and
gallery representations for the homopolymer system in
Section V. As with the homodimer, we do this by evaluat-
ing individual terms in the Taylor expansion of eF2eF1 |0⟩,
with factory operators defined as in Fig. 5(a). By inspec-
tion we see that all full contractions of Fp

2F
q
1 must consist

of a product of x-chain (Ĉx) and x-ring (R̂x) operators.
Wick’s theorem therefore gives

Fp
2 F

q
1 |0⟩ =

∑
{cx,rx}|p,q

Ω
(p,q)
{cx,rx}

∞∏
x=1

Ĉcx
x R̂rx

x |0⟩ , (C1)

where cx denotes the number of x-chains, rx denotes the
number of x-rings, {cx, rx} |p, q denotes all sets of these
numbers that are consistent with p bonds and q particles,
i.e., which satisfy

q =

∞∑
x=1

(xcx + xrx), p =

∞∑
x=1

([x− 1]cx + xrx), (C2)

and Ω
(p,q)
{cx,rx} is a combinatorial coefficient that quan-

tifies the number of distinct contractions that yield
{cx, rx} |p, q.
We now compute Ω

(p,q)
{cx,rx}. The number of ways to

partition q monomers among cx distinct x-chains and rx
distinct x-rings is given by

ωq =
q!∏∞

x=1(x!)
cx+rx

. (C3)

Similarly, the number of ways to partition p bonds among
the x-chains and x-rings is

θp =
q!∏∞

x=1([x− 1]!)cx(x!)rx
. (C4)

Since one can rearrange the x-chains among themselves
and the x-rings among themselves without changing the
result, the number of unique partitions is the product
of ωq and θq divided by an exchange factor of πp,q =∏∞

x=1 cx!rx!. Moreover, there are σx = (x−1)!x! distinct
ways of constructing each x-chain from a given set of x
particles and x−1 bonds, and ρx = x!x! ways to construct
each x-ring from a set of x particles and x bonds. Note
that the circular symmetry, which contributes a factor
of 1/x to this second quantity, is already accounted for
in the definition of the x-ring and should not be double-
counted here. We therefore find that

Ω
(p,q)
{cx,rx} =

ωqθp
πp,q

∞∏
x=1

σcx
x ρ

rx
x =

p!q!∏∞
x=1 cx!rx!

. (C5)

Consequently,

eF2eF2 |0⟩ =
∑
p,q

1

p!q!

∑
{cx,rx}|p,q

p!q!∏
x cx!rx!

∏
x

Ĉcx
x R̂rx

x |0⟩

=
∑

c1,c2,...

∑
r1,r2,...

∏
x

Ĉcx
x

cx!

R̂rx
x

rx!
|0⟩

= e
∑

x(Ĉx+R̂x) |0⟩ . (C6)

This establishes the factory/gallery equivalence for the
homopolymer.

Appendix D: Derivation for the species-specific
depletion operator

Here we derive the species-specific depletion operator
in Eq. (99). First we express the species-specific reaction
operator as

Q =

K∏
k=1

PkQk, where Pk =
Ĝpk

k

pk!
, Qk =

Ǧqk
k

qk!
. (D1)

The assumption of non-overlapping p⃗ and q⃗ implies that
Pk = 1 and/or Qk = 1 for all k. Because of this,

Q̀ =

K∏
k=1

P̀kQ̀k. (D2)
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Note that this will generally not be true if any Pk and
Qk are both non-unity, since the depletion version of a
product of operators for a given field is generally not the
product of the depletion version of each operator.

Next we express Pk and Qk in terms of mode-specific
operators. Using the fact that the mode-specific creation
and annihilation operators are nilpotent (and dropping k
to ease notation),

P =
∑

I:|I|=p

∏
i∈I

Ĝi, Q =
∑

I:|I|=q

∏
i∈I

Ǧi. (D3)

Transforming Ĝi → G̃i and Ǧi → Ḡi, we obtain the
corresponding depletion operators

P̀ =
∑

I:|I|=p

∏
i∈I

G̃i, Q̀ =
∑

I:|I|=q

∏
i∈I

Ḡi. (D4)

Applying each of these operators to a macrostate |n⟩, one

finds that

P̀ |n⟩ =
(
N − n

p

)
|n⟩ =

(
G̃

p

)
|n⟩ , (D5)

Q̀ |n⟩ =
(
n

q

)
|n⟩ =

(
Ḡ

q

)
|n⟩ , (D6)

and therefore,

P̀ =

(
G̃

p

)
, Q̀ =

(
Ḡ

q

)
. (D7)

Reintroducing the k subscripts, we obtain Eq. (99):

Q̀ =

K∏
k=1

P̀kQ̀k =

K∏
k=1

(
G̃k

pk

)(
Ḡk

qk

)
. (D8)

Appendix E: Code availability

Python code implementing Algorithm 1 as well as the
Jupyter Notebooks used to perform the simulations in
Fig. 7 and Fig. 9 are available at github.com/Rebecca-J-
Rousseau/RousseauKinney2024 algebra.
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