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Topology-dependent coalescence controls scaling exponents in finite networks
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Studies of neural avalanches across different data modalities led to the prominent hypothesis that the brain
operates near a critical point. The observed exponents often indicate the mean-field directed-percolation univer-
sality class, leading to the fully connected or random network models to study the avalanche dynamics. However,
cortical networks have distinct nonrandom features and spatial organization that is known to affect critical
exponents. Here we show that distinct empirical exponents arise in networks with different topology and depend
on the network size. In particular, we find apparent scale-free behavior with mean-field exponents appearing as
quasicritical dynamics in structured networks. This quasicritical dynamics cannot be easily discriminated from
an actual critical point in small networks. We find that the local coalescence in activity dynamics can explain
the distinct exponents. Therefore, both topology and system size should be considered when assessing criticality
from empirical observables.
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I. INTRODUCTION

Brain activity displays a plethora of different dynamical
states, including bursts, oscillations, and irregular activity.
In particular, neural activity exhibits spatiotemporal pat-
terns compatible with the dynamics of a system close to a
second-order phase transition, namely the critical point [1–5].
Operating at this regime has been linked to optimal informa-
tion processing [2,6], efficient coding [7], maximal dynamic
range and sensitivity to stimulus [8,9], longer timescales dur-
ing attention [10], and better stimuli discrimination [11,12].
Neural network models demonstrated that short- and long-
term synaptic plasticity can self-organize brain dynamics
towards a critical point [13,14].

To assess whether the brain operates at criticality, the
activity propagation between the neurons is often mapped
to the branching process [1–5,8,15–17]. This mapping was
motivated by the observation of outbursts of neural activity in
vitro known as neuronal avalanches [1]. Each avalanche con-
sists of periods of activity, separated by quiescence moments.
The size and duration of neuronal avalanches in cortical cul-
tured slices were found to follow power-law distributions
with exponents τ = 1.5 (for the size distribution) and α = 2
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(for the duration distribution), which are compatible with the
avalanche exponents of the branching process at the critical
point. The branching process dynamics is fully characterized
by a branching parameter m [18], with m = 1 being the critical
value, where each neuron, on average, activates one other
neuron, creating a fluctuation-driven regime. From the statis-
tical mechanics point of view, the critical transition at m = 1
belongs to the mean-field directed percolation (MF-DP) uni-
versality class, a nonequilibrium phase transition separating
absorbing and active phases [19,20].

However, mapping the neural activity propagation to the
branching process neglects the role of underlying network
topology in shaping the dynamics. The branching process
assumes the nonoverlapping spreading of the activity. In
biological neural networks, in contrast, each neuron can be si-
multaneously excited by multiple sources. This phenomenon,
known as coalescence, renders the independence assump-
tion invalid and reduces the effective branching parameter
of the system, since some active neurons cannot trigger
spikes in already excited neighbors [17]. These effects are
particularly severe in structured networks, such as in the
primate cortex [21–26]. Additionally, the theory of critical
phenomena predicts that structured, finite-dimensional net-
work topology affects variables such as critical exponents
[19,27].

To investigate the relationship between network topology
and critical dynamics, we developed a finite-size branching
network model with various connectivity structures, rang-
ing from spatially arranged networks resembling the local
connectivity structure of the cortex, to random or all-to-all
connectivity. We show that the network topology controls the
critical branching parameter, avalanche-size distributions, and
their exponents.
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FIG. 1. Branching network model with different types of spatial connectivity. Each unit represents a cortical column (left) that can be
excited by the self-excitation (probability ps, blue arrows), neighboring units (probability pr, orange arrows), and the external input (probability
pext, gray arrow). k is the connectivity radius and prw is the rewiring probability. We consider networks with connectivity structures ranging
from local (structured, left) to mean-field (random or all-to-all, right) generated via two pathways: by increasing the connectivity radius k (top)
or rewiring local connections to random with the rewiring probability prw (bottom).

II. BRANCHING NETWORK MODEL
WITH STRUCTURED CONNECTIVITY

The model consists of binary units arranged in a two-
dimensional (L×L) square grid with periodic boundary
conditions. The connectivity is defined by two parameters:
connectivity radius k and the probability of rewiring prw. First,
each unit is connected to all units in its k-Moore neighborhood
[(2k + 1)2 − 1 neighbors]. Then, with probability prw, each
connection can be selected for rewiring and rewired to a uni-
formly chosen random location. We consider a network with
k = 1 and prw = 0 and then systematically increase either the
radius (Fig. 1, top) or the rewiring probability (Fig. 1, bottom).
Increasing prw is equivalent to creating a two-dimensional
(2D) small-world network as in the Watts-Strogatz procedure
[28]. For k = L/2, a network with size N = L2 will be all-to-
all connected without any structure. For prw = 1, we obtain
a completely randomly connected network. Both limit cases
correspond to the mean-field configuration.

Each unit i in the network transitions stochastically be-
tween an active state si = 1 and an inactive state si = 0,
depending on the connectivity and external input:

p(si = 0 → 1) = 1 − (1 − pext )(1 − pr )
∑

j∈�i
s j , (1)

p(si = 1 → 0) = (1 − pext )(1 − ps )(1 − pr )
∑

j∈�i
s j , (2)

where pr is the probability of being excited by the active
neighbor, pext is the probability of receiving external input,
�i represents the set of neighbors of the ith unit, and ps is
the probability of maintaining the active state. This model
is inspired by the activity and interactions in the cortex: the
units represent cortical columns, and the active and inactive
states correspond to transient high and low levels of activity
found in the primate visual cortex [29,30]. The probability
ps accounts for vertical recurrent excitation between neurons
within one column, and pr represents horizontal recurrence
between columns (for more details, see [10,31]). For sim-
ulations, we assume a timescale-separated regime with no
external input (pext = 0), and we take ps = 0.5 (unless stated
otherwise). In the absence of external input, the transition

matrix defining the dynamical equations can be simplified as

P =
(

1 − F (x) F (x)

(1 − ps)[1 − F (x)] ps + (1 − ps)F (x)

)
, (3)

where

F (x) ≡ p(si = 0 → 1) = 1 − (1 − pr )
∑

j∈�i
s j . (4)

The model is a spatially structured version of a branching
network (BN) [8,32]. The BN with random connectivity is
completely described by local branching parameter m = ps +
|�i|pr, summing all the outgoing connection probabilities of
one node. On average, the number of active units At at time t
when there was a single active unit at the previous time step
is E[At |At−1 = 1] = m. By taking pr = (m − ps)/〈|�i|〉 and
ps = 0.5 we reparametrize the model in terms of m. With a
constant m, increasing connectivity k reduces the strength of
individual connections pr, while increasing rewiring probabil-
ity prw does not affect pr.

III. CRITICAL AND QUASICRITICAL DYNAMICS
IN STRUCTURED NETWORKS

We first analyze the location of the critical transition
depending on network topology using m as the control pa-
rameter. The exact location of the critical transition can be
found by several methods (Appendix A). Here, we look for the
critical branching parameter mc that maximizes the variance
of the activity χ (ρ(m)). The simulations start with randomly
activating a small percentage of units (15%; more details are
in Appendix A).

In the mean-field system, the absorbing-active transition
happens at mc = mMF = 1 [20]. However, we find that the
location of the critical transition depends on the network
topology, in agreement with the theory of critical phenom-
ena [27,33] (Fig. 2) and previous findings for small-world
networks [34,35]. For the structured connectivity (k = 1),
the phase transition happens at a larger critical branching
parameter (mc = 1.109). As we move towards the mean-
field connectivity (either all-to-all or random), the critical
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FIG. 2. Location of the critical transition depends on the network
topology. Criticality occurs at the transition to the nonzero mean
activity 〈ρ〉 (a), (b) and maximal variance χ (ρ ) (c), (d), represented
by vertical dotted lines. With increasing connectivity radius k (a), (c)
or rewiring probability prw (b), (d), the critical branching parameter
moves to the mean-field value (vertical gray dashed line). For simu-
lations, L = 128. prw = 0 for (a), (c), k = 1 for (b), (d).

branching parameter gradually converges to mMF = 1 (Fig. 2).
In the structured networks, we refer to the dynamics at the
mean-field branching parameter (mMF = 1) as quasicritical. In
the absence of self-excitation (ps = 0), the location of the criti-
cal point moves slightly, but our conclusions regarding critical
and quasicritical dynamics stay the same (Appendix B).

The location of mc is model-dependent. For example, in
the two-dimensional contact process (CP) the critical point
is located at mCP ≈ 1.6 [20], while in our structured model
(k = 1) criticality appears around mc ≈ 1.1 (Appendix C).

Next, we compare the avalanche-size distributions—often
seen as the primary indicator for critical behavior in neural
data—between the quasicritical (with mMF) and critical (with
mc) networks for various network structures and sizes. An
avalanche is a cascade of activity propagation in the network.
It starts with an external input activating a single neuron in
a quiescent network and ends when the activity dies out. At
criticality, avalanche sizes and durations follow a power-law
distribution with an exponential cutoff whose location scales
with the network size. We compute the avalanche statistics in
the timescale-separated regime (pext = 0): the simulation of
each avalanche starts with activating a single randomly chosen
unit and ends when the network activity dies out.

Quasicritical networks exhibit apparent scale-free
avalanche-size distributions with the expected MF-DP
power-law exponent (τ ≈ 1.5, Fig. 3, top). In particular,
small quasicritical networks with a finite interaction radius
(e.g., k = 3 and L = 8, 32) can seemingly display finite-size
scaling. The apparent scaling is more visible in networks
with a larger connectivity radius k (Fig. 10). However, for
sufficiently large system sizes, a characteristic scale becomes
evident (cutoff stays independent of the system size when
L > Lscale). The characteristic scale in quasicritical networks
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FIG. 3. Avalanche-size distributions differ in quasicritical and
critical networks. System-size dependence at quasicriticality (a), (b)
and criticality (c), (d), for k = 1 (a), (c) and k = 3 (b), (d). For
critical systems, the cutoff location of the avalanche-size distribution
shifts with system size (L2) (c), (d). Quasicritical avalanches follow
a power law up to a cutoff that is scaling with the system size for
small systems (see also Fig. 10) but exhibit a characteristic scale
for large systems (a), (b). Gray lines indicate the fitted power-law
distribution with exponent τ for L = 128 (see Appendix D for fitting
details; estimated exponents have an error margin of ±0.01). mc is
defined as in Fig. 2.

becomes more apparent when compared to the avalanche-size
distributions of critical networks (with the branching
parameter found in Fig. 2) with the same size and topology
(Fig. 3, bottom). In critical networks, power laws extend
up to much larger sizes. For nearest-neighbor connectivity,
the exponent shifts from mean-field values of τ ≈ 1.5
towards τ ≈ 1.27 as expected for the two-dimensional
directed-percolation (2D-DP) universality class [27] (they
approach τ = 1.27 as N → ∞, Fig. 11, Appendix D).
Changing the network topology towards random or all-to-all
connectivity brings the critical point closer to mMF = 1
(Fig. 2). Hence, in quasicritical networks with larger k, the
characteristic scale of avalanche sizes increases and the
exponent shifts towards 1.5 (Figs. 3 and 9).

In finite-size critical networks, increasing the connectivity
radius or rewiring probability changes the critical exponents
continuously from τ ≈ 1.27 (2D-DP) to τ ≈ 1.5 (MF-DP).
While the theory of critical phenomena predicts that critical
exponents differ between random and structured networks
[19,27], here we find that these two mechanisms alter the
exponents in different ways. For any finite connectivity radius
k and no rewiring, in the limit of large network sizes, connec-
tions are short-ranged, and the dynamics belong to the 2D-DP
universality class with the critical exponent of τ = 1.27. At
the same time, finite networks with large enough k are almost
fully connected, showing exponents similar to MF-DP. Thus,
for fixed k, the network size affects how close the system is to
a fully connected system. The combination of these two fac-
tors leads to the true scaling exponent (known for the 2D-DP
and MF-DP [27]) being visible only for very large avalanches
(S 	 1), which require very large system sizes (L → ∞). In
large networks, the power-law exponent will change slowly
and continuously from MF-DP for relatively small avalanches
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FIG. 4. The cracking noise relation for quasicritical (a), (b) and
critical (c), (d) networks. For all networks, the exponent of the re-
lation between avalanche durations and their mean avalanche size
follows closely the value computed from α−1

τ−1 (gray dashed line).
Distributions correspond to the same simulations as in Fig. 3. See
Appendix F for more details.

to 2D-DP for large events (Fig. 12). For the rewiring case, in
the thermodynamics limit, for any prw > 0, the system was
shown to exhibit MF-DP exponents [34,35]. However, for a
finite network size, the avalanche-size exponent is smaller
than τ = 1.5 and approaches the MF-DP value with increas-
ing prw (Fig. 13). For a close-to-small-world network structure
(prw = 0.01), the MF-DP exponents are only visible for large
avalanches obtained from very large system sizes (106). As
networks become closer to a random structure (prw � 0.1),
the MF-DP exponents can also be retrieved in smaller net-
works. Therefore, rewiring and increasing the connectivity
radius change the exponents in distinct ways, particularly in
the case of finite networks that are relevant for interpreting
empirical observations, for example from neural recordings.
The difference between the two cases can be understood in
how the effective dimension of the network changes with
increasing k or prw (Appendix E).

Our results suggest that observing the power-law-like be-
havior in avalanche-size distributions from small networks
cannot be a reliable signature of criticality even when distribu-
tions scale with the system size. Close to criticality, subcritical
systems can exhibit apparent scale-free behavior, where the
characteristic scale is only uncovered in the limit of large
systems. In addition to the finite-size scaling of avalanche-
size distributions, the cracking noise relation, i.e., the relation
between exponents of avalanche-size and -duration distri-
butions, is commonly used as a measure for disentangling
critical and noncritical dynamics [36–38]. For this purpose,
we computed the avalanche duration distributions for critical
and quasicritical networks (Fig. 14) and estimated their cor-
responding avalanche-size and avalanche-duration exponents
(Fig. 4). We find that the crackling noise relation is fulfilled
even for the quasicritical networks, despite deviations of ex-
ponents from the expected values in MF-DP (more details are
in Appendix F). Hence, it is challenging to disentangle critical
and quasicritical dynamics in small networks solely based on
empirical measurements.

IV. COALESCENCE IN MEAN-FIELD
AND STRUCTURED NETWORKS

We next investigate the mechanisms underlying the dif-
ferences between the avalanche dynamics in mean-field and
structured networks. Due to locally structured connectivity in
our model, each unit i can be activated by multiple sources at
the same time, generating coalescence [Fig. 6(a)]. We define
the local coalescence as the number of sources that activated
unit i minus 1. Let ni,t be a number of active neighbors of unit
i at time t . The local coalescence of unit i at time t is a random
variable

Ci,t = max

(
0,

ni,t∑
k=1

bk + sib0 − 1

)
, (5)

where bk ∼ Bernoulli(pr ) and b0 ∼ Bernoulli(ps). Let At be
the number of active units in the network at time t . Then, the
average normalized network coalescence C(A) is given by

C(A) = 1

A

〈
L×L∑
i=1

Ci,t

∣∣∣∣∣At = A

〉
, (6)

where the average is taken over all t with At = A. The network
coalescence can be computed analytically [17] for a branching
network with random or all-to-all connectivity as

meff(A) = N

A

(
1 −

(
1 − m

A

)A)
. (7)

However, the analytical determination of coalescence for
finite-dimensional topologies (e.g., structured networks) re-
quires renormalization-group approaches relying on the
precise knowledge of the system dimension [19,20]. This ap-
proach becomes especially difficult when dealing with finite
system sizes. Hence, we use a simulation-based approach
to estimate the coalescence from the activity of structured
networks. We can estimate the effective branching parameter
for the given number of active units A from the simulated
activity as

meff(A) = m − C(A). (8)

For these analyses, the simulations are performed in the
timescale-separated regime.

Due to coalescence, the effective branching parameter is
smaller than the local branching parameter and depends on
the number of active units and network topology. For small
A, meff(A) is closer to m, but with an increasing number of
active units, the coalescence also increases, leading to larger
deviations of meff(A) from m [Figs. 6(b) and 6(c), left]. There-
fore, a larger local branching parameter is required to have an
effective branching parameter close to 1 that creates critical
dynamics. When increasing the connectivity radius or the
rewiring probability, the activity can spread to a broader range
of units. With increasing rewiring probability, neighboring
units are less likely to be connected, reducing the coalescence.
With increasing the connectivity radius while keeping the
local branching parameter constant, the strength of individual
connections reduces, and coalescence for every unit scales as a
power of the connection strength. Thus, by increasing the con-
nectivity radius or the rewiring probability, the coalescence
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FIG. 5. Dependence of effective branching parameter meff on net-
work topology. With increasing rewiring probability prw (left, k = 1)
or connectivity radius k (right, prw = 0), the coalescence decreases
and the effective branching parameter meff becomes closer to the local
branching parameter m (dashed line). L = 128.

decreases, and the meff(A) becomes closer to m (Fig. 5, con-
sistent with Fig. 2). However, similar to the critical exponents,
the two mechanisms affect the network coalescence in distinct
ways (Fig. 5): the coalescence grows (i.e., meff reduces) with
the number of active units we could observe in the case of in-
creasing connectivity radius, whereas for increasing rewiring
probability, it saturates at a certain level depending on prw and
stops changing with the number of active units above a certain
level A > Amin. For both mechanisms, the convergence to m as
k → L/2 or prw → 1 is only realized at the thermodynamic
limit; thus, for a finite-size mean-field network, we would still
observe some level of coalescence depending on the network
size and the number of active units [Eq. (7)].

To capture the impact of coalescence on avalanche-size
distributions, we simulated an equivalent adaptive branching
process for each network model. To generate this process, we
first find meff(A) from a long simulation of the network model
using Eq. (8). Then we define the adaptive branching process
as a Markov process Ã(t ), where each of the ancestors can
generate a binomially distributed number of offsprings zi,

Ãt+1 =
Ãt∑

i=1

zi(Ãt ), zi ∼ Bin

(
n,

meff(Ãt )

n

)
. (9)

n is the maximal number of offsprings for one ancestor. For
simulations, we took n = 8.

Avalanche-size distributions of the adaptive branching
processes well approximate the shape of corresponding dis-
tributions from the network dynamics [Figs. 6(b) and 6(c),
right]. In the quasicritical network, distributions for the
branching process and the network are completely overlap-
ping. The adaptive branching process for the critical network
captures most of the distribution and the power-law exponent.
The mismatch in the tail can be generated by a too scarce
sampling of large avalanches to estimate the correct effec-
tive branching parameter. Overall, despite the large variability
in the network coalescence, the average effective branching
parameter is sufficient to predict the shape and exponent of
avalanche-size distributions in the structured networks.

V. DISCUSSION

Our results indicate that differences between the dynamics
in structured and mean-field networks arise from the coales-
cence created by the local network interactions. Increasing
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FIG. 6. The adaptive branching process captures the shape of
avalanche-size distributions in structured networks (k = 1, L = 128).
(a) Avalanches (gray frames: each row, one unit; filled circles, active
units) are separated by quiescence (white frames). Two types of
coalescence: simultaneous activation by multiple neighbors (brown
square) or by self-excitation and a neighbor (orange square). Each
avalanche starts with the external input (black lightning bolts). The
arrow indicates time. (b), (left) Effective branching parameter meff(A)
(brown and blue lines) in the quasicritical (m = 1) network as a
function of the number of active units [A, Eq. (8)] deviates from the
local branching parameter (dashed line). The deviations are larger
for the local network (k = 1, brown) than the random network (blue,
computed analytically). Small deviations for the random network are
not visible in the figure. Shading: ±1 s.d. of Ci,t |A for the local net-
work. (b), (right) The adaptive branching process (dashed brown) has
the same avalanche-size distribution P(S) as the structured branching
network (BN, yellow line). Gray line: power-law fit with exponent τ .
(c) Same as (b) for the critical network (m = 1.109). Deviations are
more visible for the random network than in (b) since the number of
active units A reaches higher values.

the connectivity radius or rewiring probability reduces the
coalescence, and the network dynamics becomes more similar
to the conventional branching process. The dependence of
coalescence on network topology is in line with the reduction
of the effective branching parameter with increasing network
clustering [39]. Although it has been shown that certain con-
nectivity structures [35,40,41] can facilitate critical dynamics,
there was no systematic study of the impact of varying coales-
cence on avalanche distributions.

One of the common methods for estimating the location of
the critical point in branching networks is using the largest
eigenvalue of the connectivity matrix instead of the local
branching parameter. This method is particularly useful for
networks with inhibition [42] or depressing synapses [43].
However, changing the network structure by either increasing
the connectivity radius or rewiring only affects the interme-
diate eigenvalues, and the largest eigenvalue is always equal
to the local branching parameter. Therefore, the computation
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of coalescence from network activity is required to determine
the location of the critical point.

We demonstrated how a range of scaling exponents can
arise from the network structure and be misinterpreted in
finite-size networks. Specifically, quasicritical avalanche-size
distributions can appear as critical in small networks. We
further showed that similar behavior could be observed in
the activity of subsampled units from a larger network
(Appendix G). This is particularly significant for interpret-
ing observations from finite-size neural recordings, where the
number of recorded neurons or electrodes is often treated as a
proxy for system size, and finite-size scaling is assessed by
downsampling the recorded neurons (electrodes) [44]. The
precise number of neurons involved in the dynamics and
their interaction radius is often unknown, and approaches that
can recover the dynamical regime from subsampled networks
[45] so far mainly rely on the downsampling of available
data.

Despite the common assumption that neural dynamics
operate close to a critical point belonging to the MF-DP
universality class, estimated critical exponents from neural
activity vary. Observed exponents take values smaller [3,46]
or larger [37,38] than MF-DP exponents, depending on the
methodology applied for avalanche detection and the type
of neural data (e.g., spikes, local-field potentials, calcium
imaging, in vivo or in vitro, different behavioral states). We
showed that increasing the connectivity radius and rewiring
can give rise to different critical exponents between 2D-DP
and MF-DP values by affecting the dimensionality of finite-
size (or subsampled) networks in distinct ways. These results
indicate how within the same universality class, brain net-
works’ architecture might affect measured critical exponents
from subsampled neural data. Diverse critical exponents can
also arise due to external input [47] and the absence of
separation of timescales in measured avalanches [48,49]. At
the same time, distinct critical exponents might reflect other
universality classes, such as a phase transition at the onset of
collective oscillations [37,50,51]. Therefore, a combination of
different mechanisms might be involved in shaping statistics
of observed neural avalanches. A more thorough evalua-
tion of experimental findings (considering various methods
and neural data modalities) and theoretical investigations on
interactions between different mechanisms can help better
understand the underlying mechanisms for variable exponents
in neural activity.

Codes for simulating the network models and reproducing
the analyses are publicly available on GitHub [52].
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APPENDIX A: ESTIMATING THE CRITICAL BRANCHING
PARAMETER USING PHASE DIAGRAMS

The critical branching parameter has been estimated by
computing the location of the maximum activity suscep-
tibility. Estimation of the critical transition’s location for
absorbing-active phase transitions is complicated since at crit-
icality the stationary state is the absorbing one. Hence, at
criticality one is forced to make statistics over pseudostation-
ary states [19,20]. Phase diagrams are computed by randomly
activating 15% of the system size and letting the simulations
run for a fixed time tsim = 105, which is set to be as large as
possible. The initial percentage is set to a low value so that the
simulation thermalizes fast, but at the same time large enough
to avoid supercritical simulations falling into the absorbing
state due to statistical fluctuations. This is crucial since close
to criticality relaxation times become very long. The first two
moments of the total particle density are measured during this
time, allowing enough time separation between measurements
to avoid any correlation bias. These allow us to obtain the
average density 〈ρ〉 and the susceptibility χ (ρ) = √

N (〈ρ2〉 −
〈ρ〉2). If the simulation falls into the absorbing state before
reaching tsim, measurements are discarded (setting mean and
variance equal to zero) and the procedure starts again, so the
results are averaged only over runs that survived. Near critical-
ity, even when activity eventually falls to zero, a small density
is still able to produce avalanches at any time, so there is
always a nonvanishing probability of observing any amount of
activity at tsim, which grows with system size. This is different
from the active phase, where activity can be arbitrarily small,
but fluctuates around its mean value.

Then, one computes the average density and its susceptibil-
ity, looking for the largest susceptibility to have an estimation
for the location of the critical transition. To get a better esti-
mation for the critical control parameter, the usual technique
is finite-size scaling, computing the average density for sur-
vived runs for long simulation durations and increasing sizes.
Criticality fulfills power-law decay of the density ρ−N , while
the active phase saturates and the subcritical decays expo-
nentially. However, this method requires very long simulation
times, large system sizes, and many runs in order to have good
statistics over the survival ones, which in our model lead to
very long computation times [54].

Finally, in contrast with continuous-time models, here we
use a nonlinear probabilistic model simulated in discrete
times, leading to a more complex behavior for the transition
rates than in the classical contact process. Hence, the exact
location of the critical point needs a very accurate deter-
mination of the recurrent probability pr , as demonstrated in
Appendix C.
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FIG. 7. Dependence of the effective branching parameter on the
self-excitation probability. (a) Location of the critical point moves
slightly with ps. (b) In quasicritical networks with the same local
branching parameter (m = 1, dashed line), different values of ps give
rise to a different amount of coalescence in network activity and meff.
(c) At the critical point (mc = 1.109 for ps = 0.5 to mc = 1.089 for
ps = 0, colored dashed lines), the amount of coalescence is indepen-
dent of ps.

APPENDIX B: DEPENDENCE OF CRITICAL
PARAMETERS ON THE SELF-EXCITATION

PROBABILITY

The dynamics of the networks depends on two parameters,
self-excitation probability ps and recurrent-excitation proba-
bility pr, which relate to each other through local branching
parameter m = ps + npr, where n is the number of neighbors
of each unit. In the main text, we set a fixed value of ps = 0.5
and described the system’s dynamics as a function of local
branching parameter m that is similar to fixing the recovery
rate in the contact process [19].

We show that while the location of the critical point can
move slightly with ps, at the critical point, the macroscopic
properties of dynamics are independent of ps. In the absence
of self-excitation (ps = 0), the location of the critical point
determined by the phase diagrams moves slightly toward
the mean-field value [i.e., from mc = 1.109 for ps = 0.5 to
mc = 1.089 for ps = 0, for the structured network with k = 1
and L = 128, Fig. 7(a)], suggesting that ps = 0.5 generates a
larger amount of coalescence. We can demonstrate this effect
by comparing the amount of coalescence for quasicritical net-
works. With fixed m = 1, the network with ps = 0.5 exhibits
larger coalescence (i.e., smaller meff) than the network with
ps = 0 [Fig. 7(b)]. However, at the critical point for each net-
work (mc = 1.109 for ps = 0.5 to mc = 1.089 for ps = 0), the
amount of coalescence is independent of ps [Fig. 7(c)], since
it is compensated by different values of m. This difference be-
tween critical and quasicritical networks is due to the fact that
quasicritical m = 1 is closer to actual criticality for ps = 0.
Moreover, the avalanche-size distributions and their exponent
for ps = 0 [Fig. 7(c)] follow similar patterns and values to
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FIG. 8. Avalanche-size distribution in the absence of self-
excitation. For the critical network, the cutoff location of the
avalanche-size distribution shifts with system size (L2) (right), while
quasicritical avalanches exhibit a characteristic scale for large sys-
tems (left). Gray lines indicate the fitted power-law distribution with
the exponent τ . L = 128, k = 1 (similar results to Fig. 3).

those for ps = 0.5 (Fig. 3) in both critical and quasicritical
networks. These results suggest that the amount of ps does
not create significant differences in macroscopic dynamics, al-
though it affects microscopic properties of dynamics [10,31].
Additionally, we report the avalanche-size distributions for the
case ps = 0 in Fig. 8, which are similar to the ones reported
for ps = 0.5.

APPENDIX C: CONTINUOUS MEAN-FIELD APPROACH

It is possible to demonstrate that our discrete model has a
second-order phase transition in the mean-field, and to obtain
an exact relationship between the probabilities ps, pr , and the
branching ratio m. To do so, we proceed in the following
way: first, the discrete probabilities are written as a contin-
uous Markov process, from which it is possible to derive a
Master equation to apply our formalism; second, one performs
a Kramers-Moyal expansion of the master equation, from
which it is possible to identify a Langevin dynamics for the
density of active particles; finally, this equation is expanded
near the absorbing state and mapped to the “normal form” of
the contact process.

First, under the mean-field approach, the transition proba-
bility of a single node becoming active is given by

p(0 → 1) = 1 − (1 − pr )x ≡ F (x), (C1)

where x = A/N is the particle density of the system, which
is an intensive variable, well-defined in the thermodynamic
limit. Thus, the transition probability matrix between states is
given by

P̂(�t ) =
(

1 − F (x) F (x)

(1 − ps)[1 − F (x)] ps + (1 − ps)F (x)

)
.

(C2)

In a continuous time model described by the Markov tran-
sition matrix Q̂, the probability that a transition took place
during the time step �t is given by P̂ = exp(Q̂�t ). Equating
both allows us to find the Markov transition rates [31],

ω(0 → 1) = − F (x)

�t{1 − ps[1 − F (x)]} log [(1 − ps)F (x)],

(C3)
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ω(1 → 0) = − [1 − F (x)](1 − ps)

�t{1 − ps[1 − F (x)]} log [(1 − ps)F (x)].

(C4)

In the mean-field, since all the particles are identical, the
probability of increasing the activity by one particle is given
by the probability of picking an empty site and performing a
transition up. Conversely, the probability of decreasing activ-
ity is given by the probability of picking an active particle and
transitioning down, i.e.,

�(x → x + �x) =(1 − x)ω(0 → 1), (C5)

�(x → x − �x) =xω(1 → 0). (C6)

An interesting theoretical note is to realize that the nonlin-
ear activation rate will yield arbitrary powers of the density
x when it is Taylor-expanded. This can be interpreted as hav-
ing n-body interactions, since in simple models with linear
rates transitions involving n bodies have rates proportional to
xn (the contact process, for example, only involves up to a
quadratic term). This is a direct consequence of coalescence,
and in practice it means that in the discrete model a particle in
contact with two active neighbors can be activated by either
one of those or by the effect of both acting together. So, if
rates are Taylor-expanded around the absorbing state x = 0,

�(x → x ± �x) =
+∞∑
k=1

λ±
k xk, (C7)

then the rate at which a particle in contact with two active
neighbors activates is given by 2λ+

1 + λ+
2 .

Once the global rates have been identified, one can write
a Master equation and expand it using the Kramers-Moyal
approximation. Since this is a standard procedure, we will

skip the technical details, redirecting the reader instead to a
classic textbook on the subject [55]. One can then show that a
Langevin equation for the density of active particles is given
by

ẋ = �(x → x + �x) − �(x → x − �x)

+ 1√
N

√
�(x → x + �x) + �(x → x − �x)ξ (t ),

(C8)

where ξ (t ) is a Gaussian, δ-correlated white noise. Finally, the
rates are Taylor-expanded. Following the Landau-Ginzburg
theory of critical phenomena, the critical properties of the
transition are to be controlled by the first term that becomes
always negative (hence, controlling saturation) [33]. It is pos-
sible to show that it is sufficient to expand the equation up to
second order,

ẋ = a1x − a2x2 + σ
√

xξ (t ), (C9)

where

a1 =1 − ps − log (1 − pr )

1 − ps
log ps, (C10)

a2 = − log (1 − pr )

2(1 − ps)2 [2(1 − ps)2

+ log (1 − pr )[2(1 − ps) + (1 + ps) log ps]]. (C11)

One can demonstrate that a2 > 0 always by direct plot-
ting, or more elegantly, by demonstrating that the function is
monotonously increasing and its minimum is positive [56].
The critical point happens when the linear term (the “mass”)
vanishes, which happens at − log(1 − pr ) = 1 − p∗

s . Finally,
it is possible to evaluate the branching ratio of the contin-
uous model, knowing that in the contact process we have
a1 = (1 − m)a2. The actual relation between the branching
ratio and the probabilities is then

m = log (1 − pr )[2(1 − pr )2 + log (1 − pr )[2(1 − ps) + (1 + ps) log ps]]

2(1 − ps) log (1 − pr )(1 − ps + log ps) + 2(1 − ps)2 log ps + log2 (1 − pr )[2(1 − ps) + (1 + ps) log ps]
, (C12)

which reduces to m = 1 when the critical p∗
r is set. One

can then see that small changes to the probabilities trans-
late into nonlinear changes to the branching ratio, which
makes the model extremely sensitive to the choice of prob-
ability when trying to locate the critical point, and makes
it difficult to find a clean scaling for the avalanches for
the structured networks. In the mean-field case, however,
the critical point can be found exactly, and avalanches
with the expected exponents are found, as shown in
Fig. 9.

APPENDIX D: ESTIMATING THE POWER-LAW
EXPONENT FROM THE AVALANCHE-SIZE

DISTRIBUTIONS

We compute the avalanche-size distributions in the sepa-
rated timescale regime (pext = 0). Each avalanche starts with
a single active unit and ends when the whole network activity

dies out. We define the size of an avalanche as the total
number of units activated during the avalanche. To obtain
the avalanche-size distributions, we simulated 107 avalanches
for each network. For coalescence analysis and the adaptive
branching process, we simulated 105 avalanches.

At the critical point, the size of avalanches S follows a
power-law distribution. We estimate the power-law exponent
τ by fitting the avalanche-size distribution with a discrete and
truncated power-law distribution as [57,58]

P(S) = S−τ

ζ (τ, Smin) − ζ (τ, Smax)
. (D1)

Here, Smin and Smax are, respectively, the minimum and max-
imum avalanche size considered for fitting, and ζ (τ, S) is the
Hurwitz zeta function defined as

ζ (τ, S) =
∞∑

n=0

(n + S)−τ . (D2)
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FIG. 9. Scaling of mean-field avalanches. (a) Finite-size scaling
of the mean-field avalanche size distribution for different system
sizes at criticality, ps = 0.5 and pr = 0.393 469. Theoretical scaling
P(s) ∼ s−3/2 is displayed with a discontinuous line. (b) The same
distribution, multiplied by s3/2 to display it as a horizontal line,
in order to ease the visual inspection of the correct scaling. The
distributions were obtained with 107 avalanches.

We find the optimal value of τ using the maximum-likelihood
estimation (MLE) with a grid search. For the fits, we set
Smin = 10 and Smax to the 96th percentile of the distribution.

We found that the estimated exponents depend on the
network topology (Fig. 3). In particular, Fig. 10 shows the
avalanche-size distribution for the k = 5 quasicritical net-
work, which has an exponent closer to 1.5 than the low-k cases
shown in the main text [Figs. 3(b) and 3(c)]. This is because
the critical local branching parameter mc approaches 1 as k
increases for fixed N , meaning that the quasicritical network
becomes closer to actual criticality with a larger k. We also
observe an apparent shift of the cutoff with the system size
(that will disappear for even larger networks). Therefore, finite
structured quasicritical networks can appear critical when the
connectivity radius is large enough (Fig. 10) or the network
size is small [Figs. 3(b) and 3(c)].
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FIG. 10. Quasicritical (m = 1) avalanche size distribution for
k = 5. At finite sizes, avalanches for larger k present seemingly
critical distributions, with a cutoff shifting with the system size, and
the mean-field exponent close to 1.5.

APPENDIX E: INCREASING RADIUS VERSUS
REWIRING: THE EFFECT OF DIMENSIONALITY

We argued in the main text that increasing both the con-
nectivity radius and rewiring probability brings the critical
exponents closer to the mean-field ones, while exhibiting
different behaviors in the thermodynamic limit behavior. In
this Appendix, we show how the topology modulates the
dimension of the system. Dimensionality plays an essential
role in the theory of critical phenomena [19,20,33]. One can
see that in the increasing radius case, the critical exponents
must be continuously varying based on the following argu-
ment: for any arbitrarily large size N , one can always take a
large enough k to make the network almost fully connected,
displaying avalanches with near-mean-field scaling, up to size
Smax(N ), which depends on N . For S > Smax, P(S) is no longer
described by a power-law due to finite-size effects. Now, if N
is further increased to N ′ � N , the distribution up to Smax(N )
must be exactly the same as before, since by hypothesis we
assumed all boundary effects are taking place for larger sizes.
At the same time, we know that for a critical system we have
finite-size scaling, so the scale-free distribution now must hold
for Smax(N ) < S < Smax(N ′). But if N ′ → ∞, then k � N ′
again, making the network structured so the exponent of this
new scaling should be different from the one presented until
Smax.

One could argue that by increasing N ′, the network’s effec-
tive dimensionality is reduced to d = 2. In fact, the classical
definition of dimension is that the mass encompassed in the
ball of radius r scales as M ∼ rd . When this scaling relation-
ship is not present, it is assumed that the dimension is not
well defined (i.e., d → ∞). One can naively generalize the
dimension definition to networks by letting r be the distance
between nodes, and 〈M〉 the average total number of nodes at
a distance less than or equal to r. For the structured lattice,
it is clear that M ∼ r2, as long as the network is infinite. If
the network is finite, then there is a distance r∗(k, N ) such
that 〈M(r � r∗)〉 = N . Hence, the network appears to be 2D
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FIG. 11. True scaling of the system in the thermodynamic limit
at criticality for k = 1. Avalanches of very large system sizes are
plotted to show that as N → +∞ the expected 2D directed per-
colation exponents (τ = 1.27 for sizes and α = 1.45 for duration
[27]) are recovered. Avalanche-size (a) and duration distributions (b),
scaled to render distributions horizontally based on the 2D directed
percolation exponents (dashed lines) to appreciate the possible de-
viations from the theoretical scaling in detail. Parameters, ps = 0,
pr = 1.089 75, and 107 avalanches.
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FIG. 12. Dimensionality estimation based on topology. (a) Scal-
ing of 〈M〉—the average total number of nodes at a distance less than
or equal to r—as r increases for different connectivity radii k. Notice
that the slope is always the same, d = 2, marked with dashed black
lines, but as k grows, the saturation appears in smaller k. (b) Same
as (a) for increasing rewiring probability prw. The saturation point
changes due to different slopes, increasing with prw. Dimensions
d = 2 and 5 are indicated for reference (dashed back lines).

for r � r∗. In practice, even for low values of k one needs
huge sizes to see the 2D network scaling. Figure 11 shows
that indeed the structured system with k = 1 relaxes to the
critical exponent of the directed percolation universality class,
τ ≈ 1.27. However, notice that the scaling is not clear until
reaching very large system sizes.

For the case of rewiring, long-ranged connections allow
connecting any arbitrary pair of nodes in a small number of
steps, making again 〈M〉 = N for small distances. However,
in this case, as rewiring probability prw is increased, so does
the slope of 〈M(r)〉. In this case, the scaling relation is only
lost if the network is completely random, since this is the only
case in which any two nodes could be possibly connected at
a finite distance. Any small amount of structure will make
certain nodes infinitely separated, allowing them to fulfill the
scaling for 〈M〉. Figure 12 illustrates the differences in the
function 〈M〉 between the increasing radius and the rewiring
cases. Similar to the case of increasing radius, the true scaling
exponents can only be observed at the thermodynamic limit
(Fig. 13).
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FIG. 13. Dependence of avalanche-size distributions on rewiring
probability prw and system size L2. For a large system size (L =
1024), the exponent of the avalanche-size distribution (shown as
dashed lines) converges to 1.5, the exponent of MF-DP. However,
for smaller systems (L = 32), the exponent largely depends on the
rewiring probability.
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FIG. 14. Avalanche-duration distributions for quasicritical (a),
(b) and critical (c), (d) networks, for k = 1 (a), (c) and k = 3 (b),
(d). Distributions correspond to the same simulations as in Fig. 3.

Differences between increasing the connectivity radius and
the rewiring probability can also be observed when measuring
the effective branching parameter from the dynamics of these
two network types (Fig. 5). Due to the coalescence, the effec-
tive branching parameter is smaller than the local branching
parameter.

APPENDIX F: VALIDITY OF THE CRACKLING
NOISE RELATION

The size and duration of the avalanches are not indepen-
dent. The relation between avalanche duration T and mean
avalanche size 〈S〉 for this given duration is characterized by
〈S〉 ∼ T γ . At the critical point, exponent γ is directly related
to the exponents of avalanche-size and -duration distribu-
tions. This relationship, known as the crackling noise relation,
can be obtained for the directed percolation universality
class [27,37] as

α − 1

τ − 1
= γ . (F1)

The absence of a cracking noise relation between empirical
exponents can be used as a signature for the absence of critical
dynamics [59].

We show that the cracking noise relation holds in both
critical and quasicritical networks (Fig. 4). Using the same
simulations as in Fig. 3, we compute the avalanche-size and
-duration distributions and compare the relationship between
their exponents to the cracking noise relation. Similar to the
avalanche sizes (Fig. 3), the exponents of avalanche-duration
distribution change with network topology (Fig. 14). For the
critical structured network (k = 1), α ∼ 1.5 is close the ex-
pected exponent of 1.45 for 2D-DP, while the exponent for
quasicritical networks has larger deviations from the expected
value of 2 for the MF-DP. Nevertheless, the cracking noise
relation holds for both critical and quasicritical networks,
suggesting that just fulfilling this relation might not be a good
indicator of criticality: as long as both sizes and duration
distributions are scale-free, it is possible to fulfill the relation,
even at a quasicritical regime. The only hint that suggests that
the system is not critical is the deviation of the duration ex-
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FIG. 15. Impact of windowed subsampling on quasicritical and
critical dynamics. For each network, avalanche-size (S) distributions
are measured from the subsampled window with size L2

s . For critical
systems, the cutoff location of the avalanche-size distribution shifts
with window size. Quasicritical avalanches follow a power law up
to a cutoff that is scaling with the window size for small systems.
Gray lines indicate the fitted power-law distribution with exponent
τ . Simulations are performed for k = 1 and 3 with the full system
size of side L = 128. Subsample sizes are chosen so the subsampled
window 6×6 (covers 5%), 12×12 (10%), and 32×32 (20% percent
of the total area).

ponents (and hence the γ exponent) from the expected values
in DP. However, in experimental data, it is difficult to assess
if different exponents come from a quasicritical spreading
process, or a critical system with a different universality class
[37].

APPENDIX G: IMPACT OF SUBSAMPLING ON CRITICAL
AND QUASICRITICAL DYNAMICS

In the main text, we showed how finite system size
might hinder the dynamical state of a network, as quasi-
critical dynamics in small structured networks might appear
as critical. Here we test whether the same behavior can be
observed in subsampled units from a larger network, which
is a more realistic setting for comparison for neuroscience
experiments.

Motivated by multielectrode array recordings, we perform
a windowed subsampling, where avalanches are recorded only
in a window of size Ls × Ls out of the whole system [53].
We analyze the avalanche statistics within the subsampled
window for critical and quasicritical networks. An avalanche
starts with the activation of one of the subsampled units inside
the window and ends when no active unit remains in the
window. Notice that the activity might continue spreading in
the network afterward. In the original network, this would
count as a single avalanche, but in the subsampled network
it might be observed as multiple avalanches.

We find that the effect of subsampling is similar to that of
finite-size scaling. Quasicritical avalanche-size distributions
follow an apparent power law with exponents close to MF-DP
and their cutoff shifts with the number of subsampled units
[Figs. 15(a) and 15(b)]. The subcritical nature of quasicritical
dynamics is observed in comparison with critical networks
that scale beyond the subsampled size and exhibit exponents
close to 2D-DP [Figs. 15(c) and 15(d)]. Therefore, it is diffi-
cult to distinguish between critical and quasicritical dynamics
from small subsampled recordings of neural activity.
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