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Finding optimal bipartite matchings—e.g., matching medical students to hospitals for
residency, items to buyers in an auction, or papers to reviewers for peer review—is a
fundamental combinatorial optimization problem. We found a distributed algorithm
for computing matchings by studying the development of the neuromuscular circuit.
The neuromuscular circuit can be viewed as a bipartite graph formed between motor
neurons and muscle fibers. In newborn animals, neurons and fibers are densely
connected, but after development, each fiber is typically matched (i.e., connected)
to exactly one neuron. We cast this synaptic pruning process as a distributed matching
(or assignment) algorithm, where motor neurons “compete” with each other to “win”
muscle fibers. We show that this algorithm is simple to implement, theoretically sound,
and effective in practice when evaluated on real-world bipartite matching problems.
Thus, insights from the development of neural circuits can inform the design of
algorithms for fundamental computational problems.

neural algorithm | bipartite matching | neuromuscular circuit | circuit development |
neural-inspired computing

The development of neural circuits provides optimized network architectures for
subsequent learning and behavior (1). Here, we found that the development of the
neuromuscular circuit can be formulated as a distributed algorithm to form a network
architecture, called a bipartite matching (Fig. 1A). Bipartite matchings are central to
numerous optimization problems in economics, operations research, and computer
science (2, 3).

The neuromuscular circuit can be viewed as a bipartite graph between N motor
neurons and M ≥ N muscle fibers (Fig. 1B). To execute a particular motor command,
the cortex provides all motor neurons with a common drive (4). When the drive exceeds a
motor neuron’s firing threshold, the neuron fires, and all of the muscle fibers it innervates
contract, increasing the tension of the muscle. As the drive increases, more neurons fire
and larger forces are created. The main challenge of this circuit is to efficiently generate
the precise amount of force needed to perform an action.

Two properties are observed in this biological bipartite graph to address this challenge.
First, the bipartite graph forms a “1-to-many matching” (Fig. 1C ), where each motor
neuron connects to one or more fibers, but each fiber is connected to exactly one neuron.
In contrast, if a fiber had two inputs, then the neuron with the lower firing threshold
would always drive the fiber to contract, and subsequent firing from the second neuron
would provide no additional tension to the muscle, thus wasting synapses (5). A matching
ensures that muscle tension is graded, where each successive motor neuron that is activated
adds a discrete unit of tension; this makes muscle contraction smooth, precise, and easier
to control (5, 6).

The second property is that the bipartite graph contains diverse sizes of motor units,
defined as a motor neuron and the set of fibers it connects to. For many everyday actions,
such as picking up a pencil, only a small force is required, and this force is generated
by small motor units (anchored by low threshold neurons) that are recruited (activated)
first. For demanding actions, such as picking up a heavy dumbbell, small motor units
are first recruited, followed by larger units (anchored by high threshold neurons), which
generate more force but are energetically more costly to use. This linear recruitment order
of motor units, called Henneman’s size principle (7, 8), has been repeatedly validated
over decades of research, with few exceptions (9).

Thus, the matching, along with diversity in motor unit sizes, provides an efficient
way to generate a large, discrete range of muscle forces. Nearly all mammalian muscles
exhibit these properties, suggesting the importance of this motor control architecture in
nature.

How is the matching specified? The connectivity between motor neurons and
muscle fibers is formed during development by a competitive pruning process (10–12)
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Fig. 1. Correspondence between bipartite matchings and the neuromuscular circuit. (A) The bipartite matching problem. The input is a weighted bipartite
graph (Left). The desired output is a matching (i.e., a pairing-off of nodes) that has maximum total weight. The Middle panel shows the greedy solution, and
the Right panel shows the optimal solution. (B) The neuromuscular circuit is a bipartite graph between motor neurons and muscle fibers. In newborn animals,
motor neurons are densely connected to muscle fibers. (C) After developmental pruning, each neuron connects to at least one fiber, and each muscle fiber
is matched to exactly one neuron, forming a “1-to-many” matching. Each blob corresponds to a motor unit. Small motor units are highly active, are recruited
first during muscle contraction (because their neurons have low firing thresholds), and provide a small force. Large motor units are less active, are recruited
last (since their neurons have large firing thresholds), and provide stronger forces. (D) Left: Example with N = 3 motor neurons and M = 6 muscle fibers. Each
neuron has the same amount of total resources (R = 20), which are distributed among its connections. The thickness of the arrow indicates the amount of
resources devoted to the connection. Middle: Competition occurs among all neurons connected to the same fiber, resulting in each neuron withdrawing some
resources (i.e., losing some synaptic area) at that fiber, and causing some connections to be pruned (dashed edges). Right: The retracted resources are then
reallocated to the remaining fibers the neuron still occupies.

(Fig. 1 B and C ). In newborns, motor neurons and muscle fibers
are densely connected; e.g., roughly, 50% of all possible con-
nections exist in the newborn mouse interscutularis muscle (12).
By adulthood, however, typically all but one synapse onto each
muscle fiber is pruned. Neurons battle for fibers by allocating
resources that are required to support connections and eliminate
competitors; technically, these resources are acetylcholine neuro-
transmitters, and the competition is over acetylcholine receptor
sites at the neuromuscular junction of a fiber (13). During
development, all neurons that innervate the same fiber engage
in an activity-dependent competition; competition causes each
neuron to withdraw some resources from that fiber, and these
retracted resources are then believed to be redistributed over the
remaining fibers that the neuron still occupies (Fig. 1D). Under
this model, losing one fiber increases the chances of winning
other fibers, and vice versa.

The diversity in motor unit sizes emerges as a consequence
of diversity in activity levels of motor neurons, which within a
muscle can range from 10- to 50-fold from the least to the most
active neuron (12, 14, 15). Highly active neurons (i.e., those
with low activation thresholds and that are activated first) tend
to compose small motor units and provide a small force, whereas

less active neurons compose large motor units and provide larger
forces.

Our Contributions. From a computer science perspective, we
view the neuromuscular circuit development process as a dis-
tributed bipartite matching algorithm. Finding optimal match-
ings (also called assignments) is one of the oldest and most
well-studied problems in combinatorial optimization (2, 3). In
this problem, a bipartite graph is provided as input, with each
edge weight indicating how beneficial it would be to match
the two nodes at its endpoint; the goal is to find a matching
of all the nodes with maximum total weight (Fig. 1A). This
problem comes up frequently, such as when matching donors
to recipients for transplants, advertisers to keywords for online
search advertisement, or in match-making scenarios, for example,
assigning medical students to hospitals for residency. How-
ever, unlike prior bipartite matching algorithms (16–18), the
neuromuscular matching algorithm is fully distributed, making
minimal assumptions about the computational abilities of nodes,
and requiring no global memory or central coordination.

In exploring this connection, we offer the following contribu-
tions:
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1. We translate insights from neuromuscular circuit develop-
ment into a class of distributed algorithms for finding near-
optimal bipartite matchings in terms of both efficiency (total
weight) and fairness (percentage of nodes matched).

2. We interpret the algorithm as a gradient descent process, and
we mathematically derive its underlying loss function and its
set of stable equilibrium solutions.

3. We show empirically that this algorithm performs competi-
tively with centralized bipartite matching algorithms, and that
it can generate matchings with similar biological properties as
those observed experimentally.

Results

Neuromuscular Circuit Development as a Distributed Matching
Algorithm. As input, we are given a weighted bipartite graph with
N motor neurons and M ≥ N muscle fibers. Let Ri be the total
amount of resources belonging to neuron i; we assume that all
Ri = R, that is, all neurons have the same amount of resources.
Let fi be the activity level of neuron i; the f ’s can be viewed as a
spending denomination, that is, some neurons allocate resources
using $1 bills (f = 1, low activity neurons) and others use
$50 bills (f = 50, high activity neurons). Let A(t)

ij ≥ 0 be the
synaptic area that neuron i controls at fiber j at time t. Synaptic
area is defined as the surface area of the contact region between
the motor neuron axon and the muscle fiber (19). The edge
weights in the graph A(0) indicate the initial sizes of synaptic
areas established at time t = 0. A primary constraint* for all
neurons i is that

∑
j fiAij ≤ R, or equivalently,

∑
j Aij ≤ R/fi.

The evolution over time of the A variables (one per synapse)
can be abstracted to a two-step process: loss of synaptic area due
to competition from other neurons innervating the same fiber,
followed by gain of synaptic area due to reallocation of retracted
resources:

A(t−1)′
ij =

(
A(t−1)

ij − �
∑
k 6=i

fkA(t−1)
kj

)
+

(competition) [1]

A(t)
ij = A(t−1)′

ij

+ �

((
R/fi −

∑
j′

A(t−1)′
ij′︸ ︷︷ ︸

retracted resources

) A(t−1)′
ij∑

j′ A
(t−1)′
ij′︸ ︷︷ ︸

multiplicative

)
(reallocation)

[2]

Eq. 1 says that neuron i loses synaptic area at fiber j based on
competition from all other neurons k 6= i that also synapse onto
fiber j. Technically, when a neuron fires, it releases punishment
signals at the fibers it contacts, which destabilizes neurotrans-
mitter release sites from other neurons at those same fibers;
neurons also release protection signals that prevent their own
release sites from being lost (5, 20). The amount of punishment
signal received by neuron i from each competing neuron k is
proportional to the area occupied by the competing neuron (Akj),
as well as its activity level (fk) (14). These punishment signals
cause neuron i to retract area (resources) from fiber j. If the effect

*When implemented biologically, these hard constraints could be bent—e.g., a neuron
may fire without releasing neurotransmitter—however, such instances do not change the
effective behavior of the model.

of competition renders A(t−1)′
ij = 0, the synapse is pruned, and

neuron i is no longer involved in the competition at fiber j. The
parameter � < 1 is a competition coefficient.

Eq. 2 says that resources retracted in the first step are
reallocated over the remaining fibers the neuron still forms
synaptic contacts with (21, 22). Multiplicative reallocation is
consistent with the notion that large synapses have large axonal
branches with more microtubules along which neurotransmitter
vesicles can be transported; thus, large synapses get more resources
than small synapses (22, 23). An alternative and equally simple
rule to implement is constant reallocation, where each remaining
synapse gets boosted by the same amount:

A(t)
ij = A(t−1)′

ij

+ �

((
R/fi −

∑
j′

A(t−1)′

ij′︸ ︷︷ ︸
retracted resources

) 1∑
j′,A(t−1)′

ij′ >0
1

︸ ︷︷ ︸
constant

)
, (reallocation) [3]

where the new denominator is the degree of neuron i. For both
rules, we fix � = 1, which means that neurons always allocate all
of their resources.

These equations follow the dynamics described in the classical
models of Willshaw (24) and Barber and Lichtman (14), as well
as other highly parameterized, differential equations models that
incorporate varying degrees of biological realism (25–27).

To summarize, there are two factors that contribute to how
motor neurons compete to “win” muscle fibers (28). First, for
each fiber, there is a competition for synaptic area among all
motor neurons innervating the fiber. The ability of a neuron
to eliminate competing neurons is based on the size (area) it
occupies at the fiber, and its activity level. Second, resources
lost due to competition are redistributed over the neuron’s
remaining connections, increasing the chances of winning other
competitions, while keeping the overall amount of resources used
constant.

Relationship to Prior Matching Algorithms. In computer sci-
ence, there are two broad classes of algorithms for solving
the bipartite matching problem. The first use network flow
techniques (29–32), and the second, which are closer to the
mark, are called auction algorithms (16, 33), which produce
matchings by mimicking an auction, where “buyers” (motor
neurons) compete for “items” (muscle fibers) based on individual
valuations. Both of these classes of algorithms, however, require
centralized computation or coordination. For example, network
flow techniques require computing augmenting paths or hav-
ing shared memory [e.g., the parallel random-access machine
model (34)], and auction algorithms require maintaining shared,
globally accessible information, such as a queue of which buyers
remain unmatched, and a list of the current prices of each item.

Degree diversity is considered in what are called b-
matchings (38). The b vector (one entry per node in the bipartite
graph) denotes the maximum number of edges that can be
incident to that node in the final matching. In our case, the
b-value for a fiber would be 1, and for neurons, it would be
between a lower bound of 1 and some upper bound capacity (39).
Both exact and approximate b-matching algorithms, however,
also require global computations or shared memory (37, 40–44).

The distributed computing community has developed match-
ing algorithms with provable approximation bounds, under
models where signals (messages) are only passed locally via
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neighbor communication. These algorithms, however, require
computational liberties that are not likely biologically plausible,
including unique identifiers for nodes (35–37) (i.e., messages
received by a postsynaptic neuron are tagged with the identity of
the presynaptic neuron who sent the message), message sizes
that depend on the number of nodes in the graph (37), or
invocation of complex subroutines in the matching process, such
as calculating a maximal independent set (36).

Finally, the economics literature has considered problems in
which there are N agents and M indivisible goods, and the
goal is to assign goods to agents. Generally, each agent i has
a valuation function vi : 2[M ]

→ R that captures the benefit
of any bundle of goods. Two broad goals are efficiency, which
corresponds to assignments with large total benefit, and fairness,
which means roughly that assignments should not favor some
agents too heavily over others (45–47). In most settings, it is
computationally hard to achieve guarantees of both efficiency
and fairness (48). One common assignment scheme is round-
robin, in which a permutation of the agents is chosen and then
assignment is done in a sequence of rounds in which the agents
go in order and each picks one of the remaining goods (49). This
scheme, however, requires a global picking order to be selected
and shared.

In contrast with the above, the neural matching algorithm
requires no shared memory nor centralized computation; nodes
(neurons) act as individual “agents” and communication with
other nodes only occurs locally at each connection point (neuro-
muscular junction at a fiber) (11). For the competition step, each
node receives an aggregate punishment signal (a scalar value) at
each connection it occupies, but it does not even “know” which
nodes nor how many nodes sent these signals. For the reallocation
step, each node simply redistributes its retracted resources over
its own connections. Thus, the neural matching algorithm
is distributed and privacy-preserving—which is important in
medical (50), security (51, 52), and financial applications of
matchings—since all messages are local, and nodes have no
unique identifiers.

Theoretical Analysis. Does iterative application of the two
update equations (competition and reallocation) converge to a
matching? We analyzed the behavior of the neural matching
algorithm on bipartite graphs with N neurons and M fibers. At
any time, the bipartite graph is given by a matrix A that satisfies
the constraints Aij ≥ 0 and fi

∑
j Aij ≤ R, for all neurons i.

Once an initial condition A(0) is specified, the matrix evolves
deterministically according to the update rule (Eqs. 1 and 2). At
any time t, when the matrix is A(t), we think of the underlying
connections E(t) in the bipartite graph as being the (neuron,
fiber) pairs (i, j) for which A(t)

ij > 0. As the algorithm progresses,
some connections may be destroyed due to competition but new
connections are never created.

Computationally, the goal of the bipartite matching problem
is to find a valid assignment of maximum weight (Fig. 1A), while
leaving no neurons nor fibers disconnected. In a valid assignment,
each fiber is connected to one neuron. We define the weight of
the assignment encoded by A(t) as

∑
(i,j)∈E(t) A(0)

ij , where E(t)

denotes the underlying connections in A(t), and A(0) is the input
matrix.

We theoretically characterized the set of equilibrium solutions:
the matrices A that are left unchanged by the update rule
(Theorem 1). Of particular interest are stable equilibria, those

to which the system returns after small perturbations. The
set of stable equilibria has a simple characterization (Theorem
2): The underlying connection graph is a union of connected
components, where each component is a single neuron connected
to several fibers, or a single fiber connected to several neurons.
The latter category is undesirable from the point of the view of
assignment, and empirically seems to occur infrequently.

We also found that the update rule can be interpreted as
projected gradient descent on a loss function, whose minima
correspond exactly to valid assignments. The competitive update
(Eq. 1) is the gradient step, while reallocation (Eq. 2) is an
approximation to the projection step. Finally, we showed that as
long as the � parameter is not too large, no neuron nor fiber ever
becomes disconnected (Theorem 3).

Thus, the neural matching algorithm typically converges to a
valid and connected matching using a local, distributed gradient
descent process. See SI Appendix for full details and proofs.

Empirical Analysis on Random and Real-World Datasets. How
well does the neural matching algorithm work in practice, and
does it find near-maximum weight assignments? We constructed
fully connected N × M bipartite graphs with N = 500
and M ∈ {550, 1,000, 2,000, 5,000}. To explore a range
of competitive scenarios, neuron-to-fiber synaptic weights A(0)

ij
were drawn independently from three distributions (log-normal,
Poisson, uniform); the former two are commonly used to model
synaptic weight distributions in the brain (53). For each neuron
i, we normalized the sum of its synaptic weights such that∑

j A(0)
ij = R. Starting from this initial graph A(0), we ran the

neural matching algorithm (Eqs. 1 and 2) for t steps. We fixed
� = 0.001 and the activity level fi = 1 for each neuron i (unless
otherwise noted).

The quality of the matching was judged according to two
measures. Efficiency is the weight of the matching found; i.e.,
the sum of the edge weights in the input graph A(0) for all of
the valid matched edges in the final graph A(t). Fairness is the
percentage of neurons that were matched to at least one fiber.
Efficiency describes the total benefit of the matching, and fairness
measures equity, which is important biologically since leaving
motor neurons disconnected is wasteful.

We compared the neural matching algorithm (SI Appendix,
Algorithm 1) to four alternative algorithms: Max-Eff finds the
maximum-weight matching, with no regard to fairness. This is a
trivial algorithm where each fiber simply keeps its maximum
weight input in A(0). This is an extreme upper bound on
efficiency that is not used in practice because it tends to have
poor fairness. Optimal (OPT) (54, 55) is a centralized algorithm
that is most commonly used to balance the weight of the matching
(efficiency) with the number of disconnected neurons (fairness).
Greedy is a distributed algorithm where synapses are deleted
stochastically with probability proportional to their inverse
weight, until a single input remains for each fiber. Random is
baseline weight-agnostic matching. See Methods for details.

Strikingly, the neural algorithm found matchings that were
very close to optimal according to both quality measures
(Table 1). Across all nine bipartite graphs with different sizes and
weight distributions, the neural matching was at least 96% as
efficient as Max-Eff. For example, with N = 500, M = 5,000,
and log-normal initial weights, the neural algorithm found a
matching whose efficiency was 99.1% of Max-Eff, compared
to 63.4% for Greedy, and 7.3% for Random. Moreover, the
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Table 1. Matching performance on random bipartite graphs
Efficiency Fairness

Matching N M Weights Max-Eff OPT Neural Greedy Rand. Max-Eff OPT Neural Greedy

1-to-many 500 5,000 Log-normal 100.0 99.1 99.1 63.4 7.3 100.0 100.0 100.0 100.0
500 2,000 100.0 97.8 97.9 63.1 7.5 98.5 100.0 100.0 98.0
500 1,000 100.0 95.6 96.0 63.1 7.5 88.7 100.0 99.9 87.3
500 550 100.0 99.1 91.9 63.4 7.3 69.1 73.6 99.8 68.0
500 5,000 Poisson 100.0 99.5 99.6 65.5 30.6 99.9 100.0 100.0 100.0
500 2,000 100.0 98.9 99.2 65.2 30.6 96.4 100.0 100.0 98.5
500 1,000 100.0 97.7 98.3 65.0 30.5 83.8 100.0 100.0 85.8
500 550 100.0 99.4 95.9 64.8 30.4 66.1 72.2 99.3 66.5
500 5,000 Uniform 100.0 99.3 99.3 85.9 49.7 70.7 100.0 100.0 100.0
500 2,000 100.0 98.7 98.7 85.5 49.5 49.4 100.0 100.0 98.4
500 1,000 100.0 97.8 97.9 84.9 48.9 35.3 100.0 100.0 87.1
500 550 100.0 98.5 97.0 83.9 49.0 26.6 58.2 99.5 66.5

1-to-1 1,000 1,000 Log-normal — 100.0 98.6 68.1 6.8 — 100.0 97.5 63.6
500 500 — 100.0 98.7 70.6 8.6 — 100.0 97.5 64.6
250 250 — 100.0 98.7 69.6 10.3 — 100.0 97.3 64.9

1,000 1,000 Poisson — 100.0 97.3 66.6 29.5 — 100.0 96.8 63.6
500 500 — 100.0 97.4 68.1 31.7 — 100.0 96.8 63.6
250 250 — 100.0 97.5 69.4 34.0 — 100.0 96.9 62.3

1,000 1,000 Uniform — 100.0 96.6 87.8 49.7 — 100.0 96.6 62.8
500 500 — 100.0 96.6 86.8 50.1 — 100.0 96.5 62.6
250 250 — 100.0 97.0 85.7 52.2 — 100.0 97.0 63.2

We constructed fully connected N×M bipartite graphs, with random initial weights drawn from the indicated distribution. We compared the efficiency and fairness of the neural algorithm
to four algorithms: Max-Eff (weight-maximizing upper bound), OPT (centralized algorithm that balances efficiency and fairness), Greedy (stochastic, distributed greedy algorithm), and
Rand (random matching). Efficiency is normalized to Max-Eff for 1-to-many matchings, and to OPT for 1-to-1 matchings. Overall, the neural algorithm finds matchings that near-perfectly
optimize both efficiency and fairness.

neural algorithm was nearly 100% fair across all nine graphs,
whereas Max-Eff generally performed poorly, especially for
smaller ratios of M/N (e.g., 50.6% of neurons disconnected
with N = 500, M = 2,000, and uniform initial weights).
Compared to OPT, the neural algorithm performed almost
identically despite being decentralized.

Finally, in instances where M is only slightly larger than
N , the neural algorithm achieves arguably a better balance
between efficiency and fairness compared to other algorithms.
For example, when N = 500 and M = 550 using Poisson
weights, the neural algorithm achieves 96% efficiency and 99%
fairness, whereas MaxEff and OPT achieve >99% efficiency but
only roughly 70% fairness (Table 1).

We next applied the algorithm to three real-world matching
problems:

• A conference peer reviewer dataset (56): N = 73 papers,
M = 188 reviewers. The weights A(0)

ij are the cosine similarity
between keywords of paper i and reviewer j, indicating the
relevance between the reviewer’s expertise and the topics
covered by the paper. The goal is to match each reviewer to a
paper that maximizes the overall relevance, while covering all
papers.

• A cross-species gene regulation dataset (57): N = 1,501 yeast
genes, M = 2,251 roundworm genes. The genes were selected
such that each yeast gene has≥1 sequence-derived orthologous
roundworm gene, and each roundworm gene has exactly one
orthologous yeast gene. The weights A(0)

ij indicate the similarity
in coexpression between genes i and j across conditions (57).
The goal is to find a maximum-weight matching between the
two species, which can be used to determine how overlapping

transcriptional conservation is with the known sequence-based
conservation.

• A movie recommendation dataset (58): N = 3,706 movies,
M = 6,040 users. The weights A(0)

ij are the rating that user j
assigns to movie i. The goal is to recommend one movie to each
user that maximizes the overall rating score, while covering all
movies.

For each dataset, the neural algorithm found a matching that was
at least 95% as efficient as OPT (Fig. 2 A–C ), while having better
fairness (Fig. 2H ).

Finally, we applied the neural algorithm to a bipartite graph
simulating the neuromuscular wiring diagram of the mouse
interscutularis muscle (a small muscle at the base of the
ear) (12, 23). Here, N = 15 motor neurons and M = 217
muscle fibers in the newborn animal (12). The synaptic weights
A(0)

ij were drawn from a log-normal distribution (22, 53). The
N motor neurons were assigned integer activity levels f ranging
from 1 to 15, mimicking a roughly 20-fold activity range from the
most to the least active neuron in this muscle (14). We found that
the neural algorithm matched each fiber to exactly one neuron,
left no neurons disconnected, and achieved a 97.3% efficiency
(Fig. 2D).

The process of forming the matching on the neuromuscular
connectome demonstrated four biological features found in real
muscle development. First, the final degree distribution of motor
neurons (i.e., the number of fibers each neuron connects to)
closely matched the degree distribution from the recently recon-
structed connectome of the adult interscutularis muscle (12),
with similar minimum and maximum motor unit sizes (Fig. 3A).
Second, there was an inverse relationship between the activity
level of a neuron (fi) and its degree in the final matching
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96.6
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Fig. 2. Matching performance on real-world bipartite graphs. (A–G) Each panel denotes a dataset, with values of N and M shown on Top. The x-axis shows four
matching algorithms: OPT (optimal, centralized algorithm), Alg (neural matching algorithm), Grdy (stochastic greedy algorithm), and Rand (random matching).
The y-axis shows the efficiency (weight of the matching), normalized to OPT; higher is better. (H) Fairness (i.e., the number of disconnected neurons) for each
algorithm on each dataset in panels (A–G). Overall, despite being decentralized, the neural algorithm finds matchings that are nearly as efficient as OPT, with
similar or better fairness on average.

(Fig. 3B). This relationship has been dubbed a paradox (59–63),
since in typical activity-dependent competition models, more
activity tends to garner more connections, not fewer. In this case,
however, highly active neurons compete more aggressively at the
fibers they occupy, which leads to them winning fibers faster,
albeit winning fewer fibers overall (“early and few”) (62, 63),
whereas less active neurons win “late and many” (28). Third,
fibers demonstrated flip-flop behavior (Fig. 3C ), where the largest
fiber input at some time t was not always the winning input.
Experimentally, if a fiber has two inputs, then the stronger of
the two inputs often wins the fiber (21, 24, 64), however, flip-
flops do, and are expected to, occur (11, 65)—otherwise, the
initially most dominant input (in A(0)) would always win the
fiber, which, as we showed with the Max-Eff algorithm, could
lead to disconnected neurons. Fourth, synapses were pruned at
an exponential rate over time (Fig. 3D); i.e., pruning was more
aggressive early in development, when many axons compete at a
fiber, and then tapered off as the few remaining axons compete
more slowly (66); this behavior is consistent with rates found
experimentally (22).

Thus, the neural algorithm finds near-optimal matchings on
random and real-world datasets, while also recapitulating key
features of neuromuscular development.

Special Case of 1-to-1 Matchings. If N = M and f = 1 for all
neurons, then the problem reduces to classic 1-to-1 weighted
bipartite matching. Here, each fiber again only receives one
input, but now each neuron must connect to exactly one fiber.

Biologically, some muscles nearly solve the 1-to-1 matching
problem, such as the extraocular muscle (for eye movement
control), where M ≈ 1.5N ; i.e., each neuron matches with
only 1 to 2 fibers on average, and each fiber still has only 1
input (67).

As above, we first evaluated performance on random bipartite
graphs with N = M ∈ {250, 500, 1,000}, and with the same
breadth of weight distributions. For the neural matching algo-
rithm, we used Eq. 3 (constant reallocation), which was slower to
converge compared to multiplicative reallocation but performed
slightly better. For 1-to-1 matchings, OPT is centralized and
guaranteed to find the maximum weight matching with perfect
fairness (Methods).

Across all random graphs, the neural algorithm found match-
ings that were at least 96% of OPT with respect to both efficiency
and fairness (Table 1). The small gap in performance is mostly
attributed to triangles (2 neurons → 1 fiber, or 1 neuron
→ 2 fibers) that form in the final matching, which represent
stable equilibria of the update equations. For example, the first
type of triangle forms when two neurons lose all other fibers
except for one, dump all their resources into that fiber, and
reach “stalemate.” To resolve these triangles, we picked one
random edge from the triangle, and the remaining node was
left unassigned. These triangle issues may be further avoided by
using a slightly modified version of the algorithm, where pruned
synapses can be resurrected (SI Appendix), though we do not
implement this version here because it is likely not biologically
plausible.
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A B

C D

Fig. 3. Recapitulating features of the neuromuscular circuit. (A) Histograms comparing the neuron degrees from the neural algorithm (blue) and the actual
degrees from the reconstructed mouse interscutularis muscle (12) (red). Error bars indicate SD over 10 random synaptic weight initializations. (B) Inverse
relationship between neural activity (f , x-axis) and the final degree of the neuron (y-axis). (C) Histogram of fiber flip-flops: A flip-flop occurs when the largest-
weight neuronal input to a fiber at time t changes at time t + 1. The x-axis shows the number of flip-flops that occur, and the y-axis shows the percentage
of fibers. (D) Exponential rate of pruning during development: The x-axis shows the step number of the algorithm, and the y-axis shows the percentage of
synapses remaining in the bipartite graph.

Last, we applied the neural matching algorithm to three real-
world 1-to-1 matching datasets:

• A Caenorhabditis elegans matching dataset (68): N = 47
neurons in animal 1, M = 47 neurons in animal 2. The
weights A(0)

ij are the normalized mutual information between
neurons i and j, indicating how similar the activity of the
two neurons are in response to odor stimuli. The goal is to
find a correspondence between the same neurons in the two
animals, to test the similarity of neural representations across
animals (69).

• An entity resolution dataset (70): N = 1,076 Abt.com sellers,
M = 1,076 Buy.com sellers. The weights A(0)

ij are the cosine
similarity between product profiles of sellers, indicating how
likely they correspond to the same entity (seller). The goal is
to find a correspondence between the same seller on the two
websites.

• An operations research assignment problem (71): N = 5,000
agents, M = 5,000 items. The weights A(0)

ij are the benefit
when allocating agent i to item j. The goal is to find an
assignment that maximizes the overall benefit.

Overall, we observed similar trends (Fig. 2 E–H ): The neural
algorithm found a matching that was on average 97 to 98% of

the optimal efficiency and optimal fairness. Thus, near-optimal
1-to-1 matchings can be found with the exact same algorithm.

Discussion

In summary, we found a bipartite matching algorithm that
produces near-maximum weight matchings and near-perfect
fairness, despite being distributed and privacy preserving. The
algorithm was inspired by circuit-level insight of the development
of the neuromuscular circuit, a key neural network architecture
used for motor control that is found within many vertebrate
muscles.

Potential Lessons for Biology. An algorithmic perspective on
neuromuscular development offers two potential lessons for
biology. First, it suggests that the initial synaptic weights formed
between neurons and fibers, even if random, strongly determine
the architecture of the final matching circuit. Theoretically,
we showed that the loss function of the update equations is
stably minimized under any valid matching, and empirically, we
found that the matching found is one that nearly maximizes
the weights of the input. This is an intriguing aspect of the
neural matching algorithm; it seems to produce approximately
maximum assignments, even though the initial A(0) is never
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explicitly stored and might quickly be forgotten by the updates.
Why might this occur, and why may it be beneficial biologically?
One idea is that an approximately maximum-weight matching
may be the fastest to find: Since winning inputs must have
large weights to eliminate competitors, preserving connections
that already have relatively large initial weights may speed
development and convergence to a functional circuit. Indeed,
if a neuron initially forms a very small contact with a fiber, it
is unlikely that this synapse will grow large enough to dominate
all other competitors, and if this does happen, it may take a
long time. Another possibility is that the newborn connectome
contains important inductive biases, and that an architectural
trace of these biases is approximately preserved in the adult.
For example, if some fibers have predefined types (72, 73),
they may form stronger initial weights to neurons with the
preferred activity level—e.g., slow twitch fibers connected to
very active neurons—and the matching process would likely
preserve these biases. Better understanding of how the initial
A(0) constrains the space of matchings explored through the
updates may help derive the approximation factor achieved by the
algorithm. Second, our theoretical analysis assuages some debate
about how development “needs to” sets the initial condition
in the newborn neuromuscular connectome by showing that
matchings are robustly and scalably produced in the adult given
a wide variety of bipartite graphs as input. This is conceptually
pleasing because the same algorithm can be applied across
muscles with different sizes (values of N and M ), different scales
(ratios of M/N ), and different competitive scenarios (weight
distributions).

Algorithm Parameters. How do different settings of algorithm
parameters affect the matching produced? The first parameter,
� (competition coefficient), simply needs to be set small enough
such that all of the connections of a single node (neuron or fiber)
are not eliminated in a single competitive update. The second
parameter, � (reallocation coefficient), we set to 1 to ensure that
neurons allocate all of their resources in each step. We are not
aware of a benefit to setting � < 1 in our model. However,
in prior differential equations models (14) � reflects the rate
at which a neuron can physically generate and move resources;
this rate could be less than 1 for small time steps. The third
parameter, f (neuron firing rates), we empirically showed was
inversely related to the final degrees of the neurons (Fig. 3B).
One potential connection here is to the b-matching problem,
where each node i is provided as input an upper bound degree
bi on the number of final connections it can make, and the
final matching must satisfy these degree constraints (i.e., large
fi → small bi). The neural algorithm seems to also adhere to
a lower bound degree constraint, such that fibers have exactly
1 connection, and neurons connect to at least 1 fiber. Thus,
the neural algorithm may have an implicit bias for optimizing
fairness, and careful selection of f could be used to approximate
b-matchings.

Other Variants of Matching Problems. There are numerous
variants on matching problems with potential neural analogs.
First, in online matching problems (74) nodes in the graph
arrive and depart over time and need to be matched accordingly.
For example, when matching drivers to passengers on a ride-
sharing service, both drivers and passengers enter and leave the
network as they serve or are served. Biologically, new motor
neurons are not believed to be gained in the adult, but all other
changes—the loss of motor neurons, the gain and loss fibers (75),

and the gain and loss of synapses (76, 77)—can reactivate the
matching process. For example, if motor neurons are lost after
injury or during the onset of disease, regeneration signals are
sent by the disconnected fibers, which cause healthy motor
units to sprout new connections, reinnervate the disconnected
fibers, and reinitiate competition (78). These kinds of dynamics
could inspire new online matching strategies and algorithms that
can recover from network damage. Second, there are matching
variants that promote alternative forms of diversity (39, 79–
81), including allowing nodes to have different spending budgets
and different degree capacities. Biologically, similar kinds of
diversity may emerge from variation in resource availability
(neurotransmitter production, related to R) and different firing
patterns of motor neurons (related to f ) (14, 23).

Generality in the Brain. The biological strategy of constructing
networks by starting with an overabundance of connections
followed by pruning has repeatedly demonstrated computa-
tional benefits, for example, in network design (82) and deep
learning (83). For the neuromuscular circuit, overabundance
may serve as an insurance policy, to ensure each fiber has at
least one connection (5, 24); subsequent pruning then sculpts
a matching in a manner that is adaptive to unpredictable
changes during development [e.g., the loss of motor neurons
during early cell migration (84)], and that is less costly than
genetically prespecifying a matching. Finally, similar matching
problems are solved during the development of other circuits,
such as the thalamus (22), autonomic ganglia (85), the olfactory
system (86), and the cerebellum (87). For example, in the
newborn cerebellum, multiple climbing fibers innervate each
Purkinje cell, but after development, only one climbing fiber
remains (88, 89). Thus, finding matchings may be a general
principle of computation in the brain.

Methods

We compared the neural algorithm with four alternative matching algorithms.

Optimal (OPT and Max-Eff). For 1-to-many matchings (i.e., when M > N),
the weight-maximizing matching was found by reducing the problem to the
classic 1-to-1 matching case using the standard node splitting trick. Each of the
N neurons was split into some number of copies, and each copy was connected
to the same set of fibers, with the same weights, as the original neuron. For
example, if the number of copies was k = 2, then we created two copies, x1
and x2, for each original neuron x. Both x1 and x2 are connected to the same
fibers as x, with the same weights. We then run the Hungarian 1-to-1 matching
algorithm on this modified graph. If x1 and x2 are both matched to fibers, then
x would also be matched to those fibers in the final matching.

To ensure that each fiber is matched, a lower bound on the number of copies
is k = dM/Ne. This is the value we used for OPT. For example, with N = 3
neurons and M = 10 fibers, there must be at least k = 4 copies of each
neuron to ensure that each fiber is matched. This approach, however, can lead
to disconnected neurons. For example, if N = 3 neurons and M = 4 fibers,
and if k = 2, then the first neuron could be matched to the first two fibers,
the second neuron could be matched to the next two fibers, and the third
neuron would be left disconnected. In general, as k increases, there will be more
disconnected neurons. Thus, there is a trade-off between maximizing the weight
of the matching (i.e., efficiency) and keeping neurons connected (i.e., fairness).

An upper bound on the number of splits is k = M (i.e., each neuron is
copied M times). This is the value we used for Max-Eff. This could lead to the
maximum number of disconnected nodes because a single neuron could, in
principle, be matched to all M fibers. For example, on the peer review dataset
(N = 73 papers, M = 188 reviewers), if k = 188 then 36% of papers would
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be unmatched. Under this case, each fiber is simply matched to its maximum
weight input in the input graph, A(0).

The number of copies can be customized per neuron (e.g., in residency
matching, each hospital has a “capacity” or maximum number of slots available
for students). This is equivalent to the maximum weight b-matching problem,
where each node i can have up to b(i) = k matches. This, however, requires N
parameters (one per neuron), and instead for simplicity, we picked a fixed value
for k for all neurons.

For 1-to-1 matchings (i.e., when M = N), OPT is guaranteed to find the
maximum weight matching, while leaving no nodes disconnected. This is
equivalent to setting k = 1. Max-Eff is not a valid solution for 1-to-1 matchings
because a neuron could connect to more than one fiber.

Greedy. This is a biologically plausible distributed algorithm, where synapses
are deleted stochastically until a single input remains for each fiber. Starting
from the input graph A(0), in each step, we pick a random fiber that has >1
inputs, and we delete one random input, selected with probability proportional
to its inverse weight (smaller weight→ higher probability of deletion). This
method is guaranteed to converge to a matching (i.e., each fiber will have exactly
one input), but it may leave neurons disconnected.

Random. For 1-to-many matchings, each neuron, in a random order, picks an
unmatched fiber, until all fibers are picked. This requires dM/Ne rounds of
picking, and picking is weight-agnostic. This is a type of round-robin scheme

using a random ordering of the neurons (90), and it is guaranteed to have perfect
(100%) fairness.

Algorithm Parameters. For all experiments, we fix � = 0.001 and � = 1.0.

Dataset Preprocessing. For the Peer Review and MovieLens datasets, �-noise
was added to A(0) to ensure that no two rows (neurons) were exactly the same.
This was useful to break symmetries.

Data, Materials, and Software Availability. Code and data have been
deposited in Github (https://github.com/metalloids/nmj_matching) (91). All
other data are included in the manuscript and/or SI Appendix.
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