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Abstract of the Dissertation

Scalable and robust deep-learning methods power
evolutionary-genetic studies of biobank-scale population

genomic data

by

Ziyi Mo

Doctor of Philosophy

in

Biological Sciences

Cold Spring Harbor Laboratory School of Biological Sciences

2024

The advent of next-generation sequencing has brought forth an era where
datasets containing genomic sequences for thousands of individuals are com-
mon. The key to leveraging rich datasets to generate impactful biomedical
insights are high-quality computational tools for biological data analysis. The
field of population genetics has a long tradition of using mathematical models
to investigate how evolutionary forces shape the dynamics of genetic variants
and their biological implications. More recently, artificial intelligence (AI) and
machine learning (ML) methods have demonstrated state-of-the-art perfor-
mance for a wide range of applications involving big data and are increasingly
dominant in all areas of quantitative research. My thesis work addresses the
unique promises and challenges of analyzing genomic data with AI/ML meth-
ods by pioneering rigorous, scalable and innovative deep learning models for
population-genetic inference tasks, which ultimately open up broad opportu-
nities for this emerging field of research.

A fundamental pursuit in evolutionary genetics is to identify beneficial
mutations and measure the strength of their selective advantage, based on
patterns of genetic variation. Studies of positive selection have led to new in-
sights into the biological relevance of particular genomic elements, such as the
discovery of mutations involved in immunity or adaptation to extreme envi-
ronments. Despite many advances, major limitations remain in the sensitivity
and accuracy of computational methods for identifying and characterizing se-
lection. These limitations stem, in part, from the difficulty of estimating selec-
tive effects directly from DNA sequences. We developed a novel deep-learning
method called Selection Inference using the ARG (SIA), which makes use of
a rich set of features extracted from a reconstructed ancestral recombination
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graph (ARG) to make accurate inferences about selection from large-scale ge-
nomic data. The ARG can be thought of as a collection of local genealogies
and therefore augments the raw sequences by encoding their complete evolu-
tionary history. By exploiting both the richness of information in the ARG
and the flexibility and scalability of deep-learning models, SIA offers notable
improvements over a wide range of previous methods and therefore emerges
as the state of the art for selection inference.

A defining feature of the new generation of AI/ML methods for applications
in population genetics, including SIA, is that they generally rely on simulated
data for supervised training. This simulate-and-train paradigm has the ad-
vantage of virtually unlimited and perfectly labeled training data, but the
disadvantage that its performance depends strongly on simulation modeling
assumptions. These methods can fail catastrophically when the simulations are
mis-specified, such as when a demographic model fails to include a bottleneck
event or migration between populations. To go beyond the current ad-hoc
methods for handling this essential problem, we devised a domain-adaptive
framework for deep-learning models trained on simulated population genetic
data. This approach used domain adaptation – a specific form of transfer
learning – to train models on one data distribution (simulated genomic data)
that can perform well when applied to datasets drawn from a different distribu-
tion (real genomic data). This framework is the first to effectively address the
critical problem of simulation mis-specification, which has hitherto been the
major concern about current applications of AI/ML approaches in population
genetics.

Our novel methodological frameworks mark a pivotal step to capitalize on
hardware and software advancements for AI/ML, but only the beginning of
AI/ML approaches to evolutionary modeling. Recently, large language mod-
els (LLMs) of protein and DNA have shown promising performance in a va-
riety of problems in molecular biology such as protein structure or variant
effect prediction. Similarly, large generative pre-trained evolutionary models
based on genealogical embeddings of the ARG in the future have the poten-
tial to revolutionize population genetic research. Such models can be trained
in a self-supervised manner with an incredibly wide range of simulations to
learn the grammar and logic of how evolutionary processes manifest in dif-
ferent topologies of the ARG, much like the way LLMs “understand” natural
languages. Generative models of evolution can be subsequently fine-tuned to
perform diverse tasks such as inference of demography, population structure
or admixture events. From this line of research that my thesis helped to pi-
oneer, many more powerful AI/ML methods will emerge in the coming years
to revolutionize population genetic research and other areas of genomics.
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Chapter 1

Introduction

Population geneticist are historians telling the story of evolution. Mutation
and recombination leave faithful historical records in the genome of every single
organism on earth. The records have always been there, but over the past
decades, the experimental and computational tools to decipher those records
have improved dramatically. This introductory chapter surveys several key
methodological trends that have transformed population genetic research, and
finally delineates how these trends have built up the momentum for the original
work presented in this thesis.

1.1 Genealogical modeling of evolution using

the ancestral recombination graph

The genetic relationships between ancestors and descendants form the basis
of all evolutionary genomics research. The simplest data structure that en-
codes ancestor-descendant relationships is a pedigree (light grey in Fig. 1.1A),
commonly known as a “family tree”. The pedigree is a graphical structure
representing genealogical ancestry of individual organisms. During meiosis in
sexually-reproducing diploid organisms, any given position in a haploid gamete
is randomly sampled from either chromosome through meiotic recombination.
Consequently, the pedigree alone cannot fully specify the genetic ancestry of
every position in the genome. Since random shuffling of parental chromosomes
through recombination creates a mosaic of genetic ancestry along the genome,
different non-recombining segments of the genome have different paths of ge-
netic inheritance in the pedigree. The collection of all paths (or lineages)
along which inherited segments of the genome have been transmitted forms a
complex graphical structure embedded in the pedigree known as an ancestral
recombination graph (ARG) (dark grey in Fig. 1.1A, Griffiths et al., 1997).
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The ARG is a complete record of the history of genetic inheritance for a set
of sampled genomes (solid nodes A○, B○, C○ and D○ at the tips of the ARG in
Fig. 1.1).

Bifurcating nodes in an ARG represent two types of events – coalescence
and recombination. A node where two edges enter from the future but only a
single edge exit to the past represents when two lineages find common ancestry
and coalesce into a single lineage backward in time (e.g. grey coalescence nodes
K○, P○, R○, W○ and X○ in Fig. 1.1). Forward in time, a coalescence event occurs
through a parent providing the same copy of genomic segment to multiple
descendants. Conversely, a node where a single edge enter from the future but
two edges exit to the past represents a single lineage of a recombinant offspring
from two parental lineages (e.g. red recombination nodes C○ and Q○ in Fig.
1.1). Forward in time, a recombination node corresponds to a parent passing
on a haploid gamete resulting from recombination between its two haploid
genomes.

The ARG additionally records the age of each node (not labeled in Fig.
1.1) as well as the position of the recombination breakpoint (dashed red lines in
Fig. 1.1) associated with each recombination node. Therefore, the full geneal-
ogy of every non-recombining genomic region can be constructed by traversing
the the ARG backwards in time and following the lineage on the appropriate
side of the recombination breakpoint. The correspondence between the full
ARG and local genealogies naturally leads to an equivalent representation of
an ARG as a series of genealogical trees along the genome with shared nodes
and edges (Fig. 1.1B). Each local tree encodes the evolutionary history of a
non-recombining genomic segment and can be transformed into the next one
by removing a single edge and attaching it to a different node (arrows in Fig.
1.1B). This operation termed subtree prune-and-regraft (SPR) reflects the out-
come of a recombination event manifested in local genealogies. The graphical
representation of a full ARG can be recovered by sequentially combining the
shared nodes and edges of each local tree while annotating each recombination
node with its breakpoint position. In practice, the tree-sequence form of the
ARG (see 1.2) is frequently used both as the output of inference algorithms
and input for downstream applications (Lewanski et al., 2023), due to not only
its tractability, but also the spatially local nature of many population genetic
inference problems (such as identifying sites or region under selection).

The ARG constitutes the complete record of ancestral information among
a set of genomes. Evolutionary processes such as selection, drift and gene flow
all have a direct impact on the structure of an ARG. Consequently, many pop-
ulation and evolutionary genetic questions can be formulated as inquiries into
the ARG (Rasmussen et al., 2014; Lewanski et al., 2023). For example, the rate
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Figure 1.1: A simple example of an ancestral recombination graph
(ARG). (A) An ARG (dark grey) embedded in a pedigree (light grey). Each
node of the pedigree corresponds to an individual organism, connected by edges
representing parent-offspring relationships. Each node of the ARG corresponds
to a haploid genome, connected by edges representing genetic inheritance be-
tween an ancestor and a descendant. Note that the example here assumes
the samples are from the nuclear genome of sexually-reproducing diploid or-
ganisms, which is the most common scenario of interest. (B) An alternative
representation of the ARG in (A) as a series of local genealogies that share
nodes and edges. The arrows represent subtree prune-and-regraft (SPR) oper-
ations associated with recombination events that convert local genealogies to
their rightward neighbor. The dashed lines highlight each tree’s shared struc-
ture with its leftward neighbor. Figure adapted from Lewanski et al., 2023
under a CC BY 4.0 license.
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of coalescence reflected by the ARG is informative of the effective population
size over time, whereas the distribution of recombination breakpoints in the
ARG is directly tied to recombination rate across the genome. Furthermore,
under the infinite sites model, samples of genomic sequences are stochastic
readout of the ARG through a Poisson process of mutations (Wakeley, 2005).
Thus, any quantity or statistic derived from the genomic sequences (e.g. the
SFS, FST, π, θ, heterozygosity etc.) is but a low-dimensional summary of the
underlying ARG (Ralph et al., 2020). While these summary statistics have
demonstrated great utility in providing meaningful evolutionary insights, the
ARG holds much richer information that can be tapped into for evolutionary
analyses.

Although the ARG is a powerful theoretical and conceptual tool to crack
the code of evolution, in practice it must be inferred from population genomic
data. ARG inference has historically been a very challenging problem (Ras-
mussen et al., 2014; I. Mathieson and Scally, 2020). The search space of all
possible structures of an ARG grows rapidly with increasing genome and sam-
ple sizes. In addition, as mentioned previously, the observed genomic sequences
are noisy readout of the true ARG. Mutation creates concordant patterns of
genetic variation from which ARGs can be inferred, whereas recombination
breaks up such patterns and reduces the amount of information per genealogy.
The opposing forces of mutation and recombination impose a limit on ARG
identifiability from genomic sequences (Hubisz and Siepel, 2020; Hayman et
al., 2023), which in turn limits the utility of ARGs in downstream applications.
Early methods aimed to built a parsimonious ARG that contains the minimal
number of recombination events given a genotypic matrix (Wong et al., 2023),
which is a NP-hard problem (L. Wang et al., 2001). These methods there-
fore rely on heuristics and are limited in scale of their applications. Recently,
there has been great stride towards accurate ARG inference at a practical
scale. ARGweaver (Rasmussen et al., 2014) and its extension ARGweaver-D
(Hubisz et al., 2020) mark the inception of statistically rigorous genome-wide
ARG inference. ARGweaver introduces a novel technique termed “threading”
which adds an n-th sequence to an existing ARG of n − 1 sequences under
a likelihood model defined by a hidden Markov model (HMM). The state
space of the HMM is simplified using approximations of the coalescent and
discrete time to make the “threading” operation a computationally tractable
sampling step from the posterior distribution of ARGs using Markov chain
Monte Carlo (MCMC). ARGweaver can be applied to up to a hundred whole
genomes and remains the state of the art in terms of accuracy (Brandt et al.,
2022). With the rapid growth of modern biobank-scale genomic datasets, a
number of methods that balances statistical rigor and computational efficiency
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have been developed, such as Relate (Speidel et al., 2019) and tsinfer/tsdate
(Kelleher et al., 2019; Wohns et al., 2022). These methods employ various
heuristics and simplifications and consequently tend to underestimate recom-
bination and only provide point estimates of the ARG (Lewanski et al., 2023;
Wong et al., 2023), but have the remarkable ability to scale up to tens or
even hundreds of thousands of genomic samples (see Brandt et al., 2022 for
a benchmark and comparison of prevailing inference methods). The suite
of ARG inference tools with a spectrum of accuracy-scalability tradeoffs has
paved the way for a new generation of methods that tackle a variety of empir-
ical questions in population genetics (Speidel et al., 2019; Stern et al., 2019;
Stern et al., 2021).

1.2 Population-genetic simulations power large-

scale in silico experiments of evolution

Without the ability to rewind time, we cannot observe evolution occur in real
time in natural populations (barring some rare exceptions of feasible large-scale
experimental evolutionary studies in species with short generation times). In
most cases, in silico simulations provide the only way to replay various evolu-
tionary scenarios and conduct experiments of evolution. Population simulators
are therefore an indispensable tool across all aspects of population genetic re-
search ranging from validating theoretical expectations, testing hypothesis to
powering Monte Carlo methods.

The process of simulating the evolution of a population may seem straight-
forward. We can simulate the reproduction of every individual in the popu-
lation according to some model of choice, most commonly the Wright-Fisher
model (Wakeley, 2005; M. W. Hahn, 2018). The simulation runs forward
in time for many generations while mutation and recombination processes are
recorded in the genomes of extant individuals at each generation. In the end, to
generate one simulated dataset, some number of individuals and their genomes
are sampled from the latest generation. This forward simulation approach can
be very flexible since it is facile to incorporate a wide range of evolutionary
processes such as different forms of natural selection, complex demographic
history or migration patterns into the simulations (M. W. Hahn, 2018). How-
ever, forward simulations can become unwieldy in practice. First, since each
individual needs to be tracked every generation, the amount of computation
scales with the population size Ne, which is not uncommon to be quite large.
In addition, simulations need to run until the population reaches equilibrium,
which usually takes a number of generations on the order of the long-term Ne
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(Wakeley, 2005). Hence, forward simulations scale approximately quadrati-
cally with the population size.

Researchers have come up with two types of techniques to circumvent the
computational challenge. At its heart, population genomic simulations are
simulations of the ARG (see 1.1). Given a particular mutation model, neutral
genetic variations in the genome are strictly governed by the ARG (Wake-
ley, 2005; M. W. Hahn, 2018). Therefore, it is not necessary to generate
neutral mutations during forward simulation. They can be overlaid onto the
genealogies under a mutation model of choice to generate genomic sequences
post hoc. The forward simulator SLiM (Haller and Messer, 2019) employs
this tree-sequence recording procedure (Haller et al., 2019, also see below)
to improve computational efficiency. Another key observation of the forward
simulation process is that many historical individuals do not turn out to be
genetic ancestors to the contemporary population from which the samples
are taken. Therefore, if we take a backwards-in-time approach, start from a
sample of contemporary individuals and generate only the ancestors of these
samples, we can avoid the computational burden of keeping track of the entire
population every generation. This can be accomplished by sampling ancestral
lineages under the coalescent process (Kingman, 1982a, 1982b; Tajima, 1983;
Hudson, 1990). The coalescent is an approximation of a forward Wright-Fisher
population under the key assumption Ne >> n, where Ne is the effective pop-
ulation size and n the sample size. This assumption holds for many realistic
use cases and therefore coalescent simulators provide a highly efficient way to
generate population samples at scale. Coalescent simulations trade flexibility
for computational efficiency. Early coalescent simulators were limited to only
neutrally evolving populations (M. W. Hahn, 2018; Lewanski et al., 2023).
However, a new generation of coalescent simulators have emerged with the
ability to handle more complex demographic scenarios and some form of selec-
tion. Among these, discoal (Kern and Schrider, 2016) and msprime (Kelleher
et al., 2016) have been most widely adopted to simulate biologically realistic
samples at a practical scale.

A key innovation that has further revolutionized evolutionary simulations
is the introduction of a hybrid approach that exploits the strengths of both
forward and backward (coalescent) simulators. The overall idea is to per-
form the more complex portion of the simulation where biological realism is
paramount (e.g. population under various modes of selection) with a forward
simulator and leave the simpler or less important portion (e.g. neutrally evolv-
ing population) to a coalescent simulator. This can be accomplished through
either “recapitation” of uncoalesced lineages in the first generation of a for-
ward simulation until a most recent common ancestor (MRCA) is found with
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a coalescent simulator (Haller and Messer, 2019), or using a complete coales-
cent simulation to initialize a population and carry on the simulation with a
forward simulator. This approach has been popularized thanks to the tskit
python API (Kelleher et al., 2016; Kelleher et al., 2018), which provides an
interoperable data structure (ts format) for the tree-sequence encoding of the
ARG. The ts format is flexible, has a low storage footprint, and therefore has
fostered an ecosystem of software tools along the simulation, inference and
analysis pipeline of population genetic research.

Finally, it is worth mentioning that a community-driven effort to maintain
a catalog of simulation models and a high-level API to simulate under these
models out-of-the-box has emerged (Adrion, Cole, et al., 2020; Lauterbur et
al., 2022). The stdpopsim project has made efficient large-scale simulations of
complex evolutionary scenarios ever more accessible. The advancement of the
simulation infrastructure has ultimately opened up opening up new opportu-
nities and avenues for population genetic research, such as using simulations
to generate perfectly labeled training data for supervised machine learning
models.

1.3 Deep learning methods for population ge-

netics

Population genetics is a century-old discipline that arose long before the era
of genomics. Over the 20th century, a rich body of theory has emerged that
aims to describe how the interplay among different evolutionary forces (such as
mutation, recombination, selection, drift and gene flow) shapes the population
dynamics of genetic variants. This tradition of probabilistic and statistical
modeling led to the creation of many mathematical approaches to infer evo-
lutionary parameters from observed patterns of genetic variation even before
molecular genetic data became readily available (Korfmann et al., 2023). Tra-
ditional computational methods for population genetic inference (see Marjo-
ram and Tavaré, 2006 for a detailed review) typically employ likelihood-based
statistical approaches, such as maximum likelihood, Bayesian or Monte Carlo
method to fit an evolutionary model, commonly derived from the Wright-
Fisher model or the coalescent (see 1.2), to empirical data for parameter esti-
mation. Traditional statistical approaches have dominated the field because of
their interpretability. Since they are rooted in mechanistic or at least genera-
tive models of evolutionary processes, traditional methods can often be teased
apart under population genetics theory to further our understanding of the
molecular genetic mechanism of evolution.
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The explosion of massive genomic datasets (e.g. 1000 Genomes Project
[Auton et al., 2015], Allen Ancient DNA Resource [Mallick et al., 2023], UK
Biobank [Sudlow et al., 2015], 1001 Genomes Project [Alonso-Blanco et al.,
2016]) with the advent of high-throughput sequencing technologies has shifted
the bottleneck of population genetic inference from the lack of data to the need
for highly scalable and robust computational methods. Traditional model-
based statistical methods rest on the assumption that the model sufficiently
describes the data (Schrider and Kern, 2018). However, such probabilistic
models more or less simplify complex evolutionary processes and sacrifice bio-
logical realism for computational tractability in practical applications. These
simplifications may be appropriate when each evolutionary force is studied in
isolation, but severely limit the utility of traditional statistical methods in de-
ciphering complex evolutionary scenarios from the plethora of genomic data.
In addition, the growing size and dimension of population genetic datasets pose
a direct challenge to the computational efficiency of traditional methods. Pop-
ular algorithms for fitting probabilistic models to molecular genetic data such
as Markov chain Monte Carlo (MCMC) and expectation-maximization (EM)
scale poorly with sample size (Korfmann et al., 2023). Approximate Bayesian
computation (ABC), a widely used method in population genetics for bypass-
ing the calculation of intractable likelihood functions, suffers from “the curse
of dimensionality” in that the approximation error increases with the growing
number of summary statistics necessitated by high-dimensional data (Prangle,
2018). Therefore, while traditional inference methods established from pop-
ulation genetics theory have been successful in yielding valuable evolutionary
insights from small-scale molecular markers, the emergence of modern biobank-
scale genomic datasets has inevitably transformed population genetics from a
theory-driven discipline to a data-driven one.

Machine learning (ML) has demonstrated state-of-the-art performance over
a wide range of empirical applications involving big data and become increas-
ingly dominant in all areas of quantitative research. ML methods are particu-
larly successful in tackling problems for which large amount of data exist but
no analytical solution is available or practical, such as computer vision (CV)
and natural language processing (NLP) (Huang et al., 2023). ML algorithms
are designed to automatically extract informative patterns in the data without
explicit parametric models of the data and find solutions to specific inferential
tasks. There has been several well-established applications of ML to popula-
tion genetics. For example, hidden Markov models (HMMs) are widely used to
segment genomic sequences and estimate ancestry (N. Li and Stephens, 2003)
or other evolutionary parameters (Felsenstein and Churchill, 1996; Siepel et
al., 2005; Boitard et al., 2009; Kern and Haussler, 2010) along chromosomes,
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whereas principal component analysis (PCA) has become an essential tool to
visualized high-dimensional genotypic matrices in low-dimensional clusters to
inform relatedness among individuals (Schrider and Kern, 2018). These are
examples of unsupervised ML where the model finds structure within the data
without prior knowledge of labels provided by humans. Supervised ML, on
the other hand, relies on training data with known labels to make predic-
tions about new datapoints and does so by optimizing model parameters to
maximize the prediction accuracy of a response variable from the input. The
application of supervised ML is relatively new to the field of population ge-
netics and was introduced by Pavlidis et al., 2010, where they addressed the
lack of evolutionary ground truth (1.2) by utilizing synthetic training data
generated via simulations.

The advancement in deep learning has an outsized impact on the success of
the supervised ML paradigm. Deep learning uses neural networks with nodes
in multiple layers that are capable of many possible mathematical operations
and can therefore learn a deep hierarchical representation of the data. During
training, the connection weights between nodes are optimized to minimize the
loss usually defined by the prediction error. Neural networks are universal
function approximators that automatically learn complex features from raw
data and thus provide exceptional performance on prediction tasks across a
wide range of domains (LeCun et al., 2015). The rest of this section will
briefly examine the major neural network architectures with a focus on su-
pervised deep learning models for predictive tasks (other learning paradigms
in population genetics are reviewed by Huang et al., 2023; Korfmann et al.,
2023, see also 5.2 for discussion of the most recent developments in generative
models).

Feed-forward neural networks (FNNs) are the archetypal architecture of
deep learning models. A vector of input features enters the FNN via the input
layer, which is connected to the output layer via a series of hidden layers. Each
layer receives output from the previous layer and applies some form of non-
linear transformation through activation functions before passing its output
to the next layer. Under the Universal Approximation Theorem, FNNs can
approximate any continuous function to any desired precision and therefore
are suitable for many generic prediction tasks (Korfmann et al., 2023). A
notable early adoption of FNNs in population genetics is the evoNet model
that jointly infers selection and demography from summary statistics (Sheehan
and Song, 2016). FNNs have subsequently been applied to various problems
such as inferring mutation rates, population structure or admixture events
(Huang et al., 2023).

Convolutional neural networks (CNNs) are uniquely suited for genomic ap-

9



plications as they are specifically designed to handle grid-like input. Originally
proposed to process image data, CNNs are widely adopted for CV tasks such
as image classification or segmentation (LeCun et al., 2015). CNNs consist
of consecutive sets of convolutional and pooling layers. Each convolutional
layer uses a set of kernels (or filters) to generate feature maps of its input
through convolution operations, and the subsequent pooling layer reduces the
size of the feature maps by combining information from adjacent regions. It is
straightforward to treat genotype or haplotype sequences as images and CNNs
have indeed been utilized in this manner for inferring demography (Flagel et
al., 2019; Sanchez et al., 2021), local ancestry (Montserrat et al., 2020; Oriol
Sabat et al., 2022), selection (Flagel et al., 2019; Torada et al., 2019), intro-
gression (Blischak et al., 2021; Gower et al., 2021; Ray et al., 2023; Zhang
et al., 2023) and recombination (Adrion, Galloway, et al., 2020).

Another deep learning architecture tailored to specific input format are re-
current neural networks (RNNs). RNNs incorporate a mechanism that allows
the output of a layer to flow back to a previous or current layer and thereby
are capable of retaining information from previous inputs. At each stage the
current input and the previous output can be combined to produce the next
output. The iterative nature of an RNN makes it suitable for handling sequen-
tial inputs such as speech or text, although novel architectures based on the
transformer (Vaswani et al., 2017) have emerged as the state of the art for NLP
tasks (see 5.2). In the context of population genetics, the input data could be
spatially sequential along biological sequences or temporally sequential along
evolutionary time. RNNs have been used for genome-wide estimation of coa-
lescence rate (Khomutov et al., 2021) and recombination landscape (Adrion,
Galloway, et al., 2020).

There are rich opportunities for deep learning approaches to drive profound
scientific discoveries in the genomic era, especially in light of the recent suc-
cess of generative AI models (discussed in 5.2). Within the supervised learning
paradigm, two challenges for building accurate and robust deep learning mod-
els in population genetics stand out. First, deep learning models so far take
either summary statistics or raw genotypic data as input. Given that ARGs
are the ultimate record of evolution but difficult to model analytically (see
1.1), can we take advantage of deep learning models to perform inference from
the ARG? Second, since most deep learning models in population genetics
rely on synthetic data for training, inference on real data is prone to be biased
by ill-defined simulation model. This “simulation mis-specification problem”
remains a major concern about current applications of deep learning in popu-
lation genetics (Korfmann et al., 2023) and calls for a timely solution.
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1.4 Studies of selective sweeps generate key

insights into adaptive evolution

The ability to accurately detect and quantify the influence of natural selection
from genomic sequencing data is one of the main pursuits in population ge-
netics. Studies of natural selection aim to tackle questions ranging from the
genetic basis of historical evolutionary events to the functional and disease
relevance of genetic variants in both human and non-human contexts (Henry
and Nevo, 2014; Karlsson et al., 2014). Selection can be broadly categorized
into different modes, including positive selection, where an allele is favored and
increases in frequency, negative selection (or purifying selection), where dele-
terious alleles are removed from the genome, and balancing selection, where
multiple alleles are actively maintained at an appreciable frequency (Vitti et
al., 2013).

Adaptive evolution, at the molecular level, is driven by selection acting on
alleles that enhance organismal fitness, thereby increasing their frequency in
a population (Vitti et al., 2013). Alleles under positive selection often carry
important phenotypic relevance and therefore are of particular interest. For
example, genome-wide scans of positive selection in human have identified
immune-related alleles (e.g. in genes encoding signal transducer of inflam-
matory response) implicated in pathogen resistance (Fumagalli et al., 2011).
These immune-related variants may have therapeutic relevance for both infec-
tious diseases and autoimmune diseases. Studies of selection in plants have
also identified alleles associated with adaptation to biotic and abiotic stress,
potentially leading to breeding strategies that help create crops resilient to
adverse conditions caused by climate change (Henry and Nevo, 2014).

Population genetics methods identify positive selection through the detec-
tion of selective sweeps, which are genomic signatures of positive selection at
the population level. A hard sweep is the classic case where a de novo benefi-
cial allele rapidly increases in frequency due to selection. A soft sweep differs
from a hard sweep in that selection acts on a standing genetic variant rather
than a de novo mutation. More recent works have started to elucidate cases
of polygenic selection in the human genome (Berg and Coop, 2014; Racimo et
al., 2018; Edge and Coop, 2019), which is a more complex scenario of positive
selection where selection of a trait acts simultaneously on many variants across
the genome. Traditionally, methods to detect selective sweeps take advantage
of the hitchhiking effect, where the neutral alleles around the site under se-
lection that are linked to the beneficial allele “hitch-hike” to high frequency.
The hitchhiking effect leads to a characteristic reduction of genetic diversity in
the vicinity of the site under selection, manifested in both the site frequency
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spectrum (SFS) and the haplotype structure. The hitchhiking effect can be
captured by specifically designed summary statistics to make inferences about
selection. Newer approaches to detect selection include likelihood-based sta-
tistical methods and more recently machine learning methods are increasingly
adopted for selection inference. Despite many advances, major limitations
remain in the sensitivity and scalability of computational methods for identi-
fying and characterizing selection. These limitations stem, in part, from the
difficulty of estimating selective effects directly from DNA sequences (Hejase,
Dukler, et al., 2020).

1.5 Objectives and outline of thesis

This general introductory chapter 1 is followed by three stand-alone chapters,
each presenting the entirety of a research project and featuring its own in-
troduction, results, discussion and methods. These projects share the goal of
capitalizing on the progress in AI/ML and genomic big data to drive scien-
tific discoveries in population genetics. The concluding chapter 5 discusses
the findings of the chapters as a whole and raises several promising avenues
for future work with a focus on opportunities presented by advancements in
generative AI.

Chapter 2 presents a novel deep learning method – SIA – to infer posi-
tive selection from reconstructed ARGs. This chapter describes in detail the
methodological innovations and demonstrates notable improvements in perfor-
mance over a wide range of previous methods using simulation experiments.
The work on SIA ultimately serves to extend the frontier of analyzing ARGs
with deep learning models.

Chapter 3 describes an application of the SIA method to uncover the ge-
netic components that drive the speciation of Monarcha bird populations in
the Solomon Islands. This chapter provides a blueprint for addressing various
open evolutionary questions with SIA.

Chapter 4 introduces an original approach to train deep learning models
on both simulated and real population genetic data with a domain-adaptive
neural network architecture. This framework goes beyond the current ad-
hoc methods for handling the simulation mis-specification problem and is the
first to effectively address this major concern about current applications of
supervised ML models for population genetics inference.
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Chapter 2

A deep-learning approach for
inference of selective sweeps
from the ancestral
recombination graph

Content of this chapter was previously uploaded to bioRxiv (2021) under the
title “SIA: Selection Inference Using the Ancestral Recombination Graph” by
Hussein A. Hejase, Ziyi Mo, Leonardo Campagna and Adam Siepel. The
manuscript was published in Molecular Biology and Evolution (2021) under
the title “A Deep-Learning Approach for Inference of Selective Sweeps from
the Ancestral Recombination Graph”. H.H. and Z.M. contributed equally to
this work.

2.1 Abstract

Detecting signals of selection from genomic data is a central problem in popu-
lation genetics. Coupling the rich information in the ancestral recombination
graph (ARG) with a powerful and scalable deep-learning framework, we de-
veloped a novel method to detect and quantify positive selection: Selection
Inference using the ARG (SIA). Built on a long short-term memory (LSTM)
architecture, a particular type of a RNN, SIA can be trained to explicitly infer
a full range of selection coefficients, as well as the allele frequency trajectory
and time of selection onset. We benchmarked SIA extensively on simulations
under a European human demographic model, and found that it performs as
well or better as some of the best available methods, including state-of-the-art
machine-learning and ARG-based methods. In addition, we used SIA to es-
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timate selection coefficients at several loci associated with human phenotypes
of interest. SIA detected novel signals of selection particular to the European
(CEU) population at the MC1R and ABCC11 loci. In addition, it recapitu-
lated signals of selection at the LCT locus and several pigmentation-related
genes. Finally, we reanalyzed polymorphism data of a collection of recently
radiated southern capuchino seedeater taxa in the genus Sporophila to quan-
tify the strength of selection and improved the power of our previous methods
to detect partial soft sweeps. Overall, SIA uses deep learning to leverage
the ARG and thereby provides new insight into how selective sweeps shape
genomic diversity.

2.2 Introduction

The ability to accurately detect and quantify the influence of selection from
genomic sequence data enables a wide variety of insights, ranging from un-
derstanding historical evolutionary events to characterizing the functional and
disease relevance of observed or potential genetic variants. Adaptive evolution
is driven by increases in frequency of alleles that enhance reproductive fitness.
In addition, alleles experiencing such positive selection often provide insights
into the functional or mechanistic basis of phenotypes of interest. Examples of
genetic determinants of important phenotypic traits under selection in human
populations include a family of mutations in the hemoglobin-β cluster, which
confer resistance to malaria and are at high frequencies in many populations
(Currat et al., 2002; Ohashi et al., 2004), loci controlling growth factor sig-
naling pathways that contribute to short stature in Western Central African
hunter-gatherer populations (Jarvis et al., 2012; Lachance et al., 2012), as well
as mutations in several genes involved in immunity, hair follicle development,
and skin pigmentation (Sabeti et al., 2007)(reviewed in Sabeti et al., 2006;
Kelley and Swanson, 2008; Fu and Akey, 2013; Hejase, Dukler, et al., 2020).

Population genetic methods predominantly identify positive selection throu-
gh the detection of selective sweeps. As the frequency of an advantageous
allele increases, linked variants in the vicinity can “hitchhike” to high fre-
quency, leading to local reductions in genetic diversity. Previous approaches
to detecting selective sweeps (such as traditional summary statistics [Tajima,
1989], approximate likelihood and approximate Bayesian computation [ABC]
methods [Peter et al., 2012], or supervised ML methods [Schrider and Kern,
2016; Kern and Schrider, 2018]) exploit the effect of genetic hitchhiking on the
spatial haplotype structure and SFS. Summary statistics have the advantage
of being fast and easy to compute, but may confound the effects of selection
on genetic diversity with the effects of complex demographic histories includ-
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ing bottlenecks, population expansions, and structured populations. Besides,
they cannot easily be used to estimate the value of the selection coefficient.
Approximate likelihood and ABC methods, on the other hand, can provide an
estimate of the strength of selection by aggregating multiple summary statistics
(Peter et al., 2012), but can be prohibitively computationally expensive when
applied at a large scale. ML methods for inferring selection can be more scal-
able and can capture complex nonlinear relationships among features. With
the exception of a handful of recently developed methods that operate on the
multiple sequence alignment itself (Flagel et al., 2019; Torada et al., 2019),
however, the majority of ML approaches to selection inference solely make use
of traditional summary statistics as features for prediction. In short, previous
methods (including ABC and most ML methods) predominantly rely on low-
dimensional summary statistics, which, even in combination, capture only a
small portion of the information in the sequence data.

Recently, a new generation of inference methods have made it possible to
go beyond summary statistics and estimate or sample a full ARG (Hudson,
1990; Griffiths and Marjoram, 1996; Wiuf and Hein, 1999) for a collection of
sequences of interest. The ARG is a complex data structure that summarizes
the shared evolutionary history and recombination events that have occurred
in a collection of DNA sequences, and therefore contains highly informative
features that can potentially be leveraged to make accurate inferences about
selection. The ARG representation is interchangeable with a sequence of local
genealogies along the genome and the recombination events that transform
each genealogy to the next. The influence of selection on each allele can be
characterized from the ARG, based on departures from the patterns of coa-
lescence and recombination expected under neutrality as reflected in the local
genealogies. Traditional ARG inference methods (Hein, 1993; Song and Hein,
2005; Kuhner, 2006; Minichiello and Durbin, 2006; O’Fallon, 2013) were re-
stricted in accuracy and scalability, limiting the practical application of ARGs.
Recent advances (Rasmussen et al., 2014), however, have enabled scalable yet
statistically rigorous genome-wide ARG inference with dozens of genomes.
Moreover, methods such as Relate (Speidel et al., 2019) and tsinfer (Kelleher
et al., 2019) have further dramatically improved the scalability of ARG infer-
ence to accommodate thousands or even hundreds of thousands of genomes.
The latest progress in genealogical inference has paved the way for ARG-based
methods to address many different questions in population genetics (Arenas,
2013; Rasmussen et al., 2014; Kelleher et al., 2019; Speidel et al., 2019).

One natural way to exploit the richness of the ARG representation in
inference of selection would be to extract features from inferred ARGs and
feed them into a modern supervised ML framework. Deep-learning methods,
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in particular, have recently achieved unprecedented success on a variety of
challenging problems, including image recognition, machine translation, and
game-play (LeCun et al., 2015). Deep learning is also highly flexible, providing
many opportunities for the design of novel model architectures motivated by
biological knowledge. An ARG-guided deep-learning model could potentially
provide new insight into how natural selection impacts the human genome,
human diseases and other phenotypes, and human evolution.

With these goals in mind, we developed a new method, called Selection
Inference using the ARG (SIA), that uses an RNN (Hochreiter and Schmidhu-
ber, 1997; Maas et al., 2011) to infer the selection coefficient and AF trajectory
of a variant that maps to a gene tree embedded in an ARG. Rather than relying
on traditional sequence-based summary statistics, SIA makes use of features
based on the local genealogies extracted from the ARG. Based on these local
topological features, SIA learns to infer the selection coefficient and AF trajec-
tory of a beneficial variant (see Fig. 2.1). As described below, SIA performs
well on benchmarks and is reasonably robust to model mis-specification. Ap-
plying SIA to data from the 1000 Genomes Northern and Western European
(CEU) population, we identified new and known loci under positive selection
that are associated with a variety of phenotypes and estimated selection co-
efficients at these loci. In addition, using SIA, we built on our previous work
(Hejase, Salman-Minkov, et al., 2020) on a bird species-complex in the genus
Sporophila by elucidating the strength and targets of selection at specific loci
tied to a collection of rapid speciation events. Overall, SIA is the first method
that couples ARG-based features with an ML approach for population genetic
inference.

2.3 Results

2.3.1 Methodological overview

SIA is based on a RNN that is trained to predict selection at a genomic site
from genealogical features at that site of interest and nearby sites (see Ma-
terials and methods for detailed descriptions; see Fig. 2.1 for a conceptual
overview of SIA; and Fig. S1 in Appendix A for an illustration of ARG fea-
tures and the RNN architecture). Based on the demography of a particular
population of interest, training data including genomic regions under various
strengths of selection are simulated. The ARG is then inferred from each sim-
ulated data set. ARG-level statistics are extracted at the site under selection
(or a neutral site) as features to be used as input to the deep-learning model.
Specifically, we use lineage counts at a set of discrete time points as a fixed-
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Figure 2.1: A high-level framework for automating the detection of
selective sweeps. We first estimate the demographic history for the popula-
tion of interest, then based on the estimated demographic history, we simulate
neutral regions and sweeps using the discoal simulator (Kern and Schrider,
2016). We proceed with ARG inference and then extract ARG-level statistics
from each simulated region. The ARG-level statistics are used as features for
a deep-learning RNN model. Finally, the trained model is applied to the em-
pirical data to infer sweeps, selection coefficients, and AF trajectories.

dimension encoding of a genealogy. The encoding of the genealogy at the focal
site as well as similar encodings of flanking genealogies constitute the feature
vector for that site. SIA uses a LSTM architecture, designed specifically to
handle the temporal nature of the feature set. The LSTM unrolls temporally
such that the lineage counts at each time point are fed to the network itera-
tively. Finally, the model trained on simulations is applied to ARGs inferred
from empirical data to identify sweeps, infer selection coefficients, and AF
trajectories.
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2.3.2 Classification of sweeps

We first compared SIA with several existing methods, including the Tajima’s
D (Tajima, 1989) and H1 (Garud et al., 2015) summary statistics, iHS (Voight
et al., 2006), a genealogy-based statistic (Speidel et al., 2019), and a summary-
statistic-based ML method (Schrider and Kern, 2016; Kern and Schrider, 2018)
(see Materials and methods), in the classification task of distinguishing hard
sweeps from neutrally evolving regions. Our performance comparison was
conducted across 16 combinations of selection coefficients and segregating allele
frequencies such that the beneficial site was subjected to selection ranging from
weak to strong, resulting in low to high derived allele frequencies (DAFs).
Because a priori we expected sweep sites with lower selection coefficients and
lower DAFs to be harder to detect, we performed a stratified analysis of SIA’s
performance by selection coefficient and DAF. Figure 2.2 reports the receiver-
operating characteristic (ROC) curves using simulations based on the CEU
demographic model (Tennessen et al., 2012) where inferred genealogies were
used as input to SIA to account for gene tree uncertainty. As expected, all
methods tended to perform better in a regime with higher selection coefficients
and DAFs, as indicated by increasing values of the area under the ROC curve
(AUROC) statistic from left to right (increasing selection) and from top to
bottom (increasing DAF). SIA outperformed the other methods across model
conditions, with a more pronounced performance advantage for sites under
weaker selection and segregating at lower DAFs (Fig. 2.2). For each given
selection coefficient, the AUROC of the Relate tree statistic (shown in red
in Fig. 2.2), which measures how unlikely it is that the observed expansion
of the derived lineages is purely due to genetic drift, did not substantially
improve as the DAF increased. Alleles at higher frequency tend to be older
and subjected to drift over longer periods, which may lead to reduced power
for Relate to distinguish lineage expansion under selection from the neutral
expectation. Consequently, although the ARG-based methods SIA and Relate
both outperformed other methods at low DAFs, SIA was alone in maintaining
this advantage at higher DAFs.

In addition, we validated the ability of SIA to classify genomic regions
with additional test sets simulated under a demographic model for southern
capuchinos, a group of songbirds in which we previously identified and char-
acterized many examples of sweeps (Hejase, Salman-Minkov, et al., 2020),
finding a predominance of “soft” rather than “hard” sweeps (meaning that
they tend to be based on standing genetic variation rather than new muta-
tions; see Materials and methods). Figure S2 in Appendix A reports the ROC
curves for the task of distinguishing partial soft sweeps from neutral regions.
Despite soft sweeps being harder to detect, the classifier achieved good perfor-
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Figure 2.2: Classification performance of SIA and other methods on
simulated data. Sequence data were simulated under a variety of selection
regimes (s, shown horizontally) and DAFs for the beneficial mutation under
selection (f, shown vertically) (see Materials and methods for more details).
The prediction task distinguished neutral regions and sweeps. The methods
were tested on a set of 200 regions per panel (100 per class), and the ROC
curve records the true positive (TP) rate as a function of the false positive (FP)
rate. The curve is obtained by varying the prediction threshold from 0 to
1 and recording for each threshold the number of regions correctly assigned
(TPs) or misassigned (FPs) as positives (with prediction probability above
the threshold). The performance of each method was evaluated based on the
area under its ROC curve, or AUROC (shown in parenthesis in figure legend).
Note that inferred genealogies were used as input to SIA.
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mance in the moderate-to-strong selection regimes (s = 0.005 and s = 0.0075)
where the accuracy ranged between 82% and 96%, a substantial improvement
over the previous accuracy of 56% (Hejase, Salman-Minkov, et al., 2020). SIA
performed particularly well in identifying partial soft sweeps when the site un-
der selection was at a high segregating frequency. For example, at segregating
frequencies of 0.75 and 0.9, the performance of SIA ranged between 80% and
96% across a variety of selection regimes (s = 0.0025, 0.005, and 0.0075). The
performance of SIA degraded somewhat for weak selection (s = 0.001) with
an accuracy ranging between 63% and 74%.

2.3.3 Selection coefficient inference using true gene trees

We assessed the performance of SIA in correctly predicting the selection coef-
ficient and compared it with CLUES (Stern et al., 2019). Like SIA, CLUES
uses local genealogies based on the ARG to infer a selection coefficient. How-
ever, CLUES calculates the likelihood of the genealogy analytically using a
HMM, and does not rely on simulated training data. In addition, CLUES
uses a single genealogy at the focal site, whereas SIA additionally considers
flanking trees.

We began by supplying both methods with true genealogies, in order to
later disentangle the error deriving from the ARG inference step from other
sources of error (see Discussion). We found that SIA identified regions under
neutrality with approximately no bias (median inferred s = 7.5 × 10−5; Fig.
2.3). Similarly, SIA correctly inferred the selection coefficient for regions un-
der moderate to strong selection (s ∈ {0.0025, 0.005, 0.0075, 0.01}) with the
median inferred s deviated from the true s by at most 3%. On the other
hand, SIA somewhat underestimated the selection coefficient (median inferred
s = 0.00037) for the weak selection regime (true s = 0.001), likely owing to
limits in the training set within that selection regime (see Discussion). We
further binned the results by segregating frequency and selection coefficient
and found that, in general, the variance in estimates of s for SIA (as well as
CLUES) tended to decrease as the segregating frequency of the beneficial allele
increased (Fig. S3 in Appendix A).

CLUES performed roughly similarly to SIA in this experiment, but tended
to slightly overestimate s for the neutral regions (i.e., true s = 0) and un-
derestimate s for the moderate to high selection regimes (i.e., true s = 0.005,
0.0075, and 0.01). Under these conditions, SIA’s median predictions of s were
noticeably closer to the true values (Fig. 2.3A). At the same time, CLUES
performed slightly better than SIA in weak selection regimes (i.e., true s =
0.001 and 0.0025) (Fig. 2.3). Overall, SIA (RMSE = 9.52 × 10−4) achieved
a lower error in estimating s than CLUES (RMSE = 1.44 × 10−3), when true
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Figure 2.3: Predictions of selection coefficients on simulated regions
using SIA and CLUES based on true genealogies. (A) The distribution
of inferred selection coefficients for each method under each model condition
are reported using a box plot. The box plot for each method reports these
five statistics (from bottom to top): minimum, first quartile, median, third
quartile, and maximum. The y-axis shows the inferred selection coefficient,
whereas the x-axis shows the true selection coefficient. The dashed-black line
indicates the true selection coefficient for each model condition. The simula-
tions are based on the CEU demographic model and true genealogies were used
as input to both methods. Each model condition (i.e., box plot) represents
a set of 400 independent simulations. The mean ranks and variances of the
distributions of inferred s were compared using the Wilcoxon signed-rank test
(pW) and the Brown–Forsythe test (pBF), respectively. (B) The root mean
square error (RMSE) for each method under each model condition evaluated
on 400 independent simulations.

genealogies were used as input to both methods (Wilcoxon signed-rank test
for difference in mean of squared error, P = 1.25 × 10−42). This finding po-
tentially reflects the benefit of linkage information utilized by SIA through the
additional flanking genealogies (see Discussion).

2.3.4 Selection coefficient inference using inferred gene
trees

To account for gene-tree uncertainty, we next used ARGs inferred with Relate,
which is scalable to the size of the training data set for SIA (see Materials and
methods), as input to SIA and CLUES and compared their performance on
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CEU simulations. Using a reduced sample size of 32 haplotypes, we addi-
tionally compared SIA with CLUES supplied with genealogies sampled using
ARGweaver. Furthermore, we compared both methods with a supervised ML
method, ImaGene (see Fig. S23 in Appendix A), that operates directly on an
image of the alignment itself. ImaGene does not require gene trees as input
and instead uses a CNN to perform dimensionality reduction of the sequence
alignment, allowing for accurate and efficient classification and regression.

Overall, we found that SIA and ImaGene outperformed CLUES in these
experiments (Fig. 2.4). CLUES tended to underestimate selection coefficients
for the moderate-to-strong selection regimes, to a greater extent compared with
the case where true genealogies were used for inference (Figs. 2.3A and 2.4A).
This decrease in performance of CLUES evidently derives from error at the
ARG reconstruction step. SIA, on the other hand, appeared to be more robust
to the same ARG reconstruction error, and maintained an advantage even
when CLUES was provided posterior samples of genealogies from ARGweaver
(Fig. S5 in Appendix A). ImaGene performed remarkably similarly to SIA,
given that it relies solely on the sequence alignment. SIA exhibited lower error
at neutral sites and sites with low-to-moderate values of s, whereas ImaGene
prevailed at sites under strong selection (Fig. 2.4B). Nevertheless, SIA showed
a slightly smaller overall RMSE (2.75×10−3) compared with ImaGene (2.91×
10−3) (Wilcoxon signed-rank test, P = 6.18 × 10−38), and in particular, SIA
produces estimates of s much closer to 0 for neutral loci. Notably, in this case
both SIA and ImaGene were trained with simulations under the same uniform
distribution of s values (see Materials and methods). A different choice of
training distribution could impact their performance across selection regimes
(see Discussion). Furthermore, we binned the results of these methods by
both the segregating frequency and the selection coefficient (see Fig. S4 in
Appendix A) and again found that in general they exhibit higher variance
under low segregating frequency of the beneficial allele. As before, we also
tested our regression framework on true and inferred gene trees of test sets
simulated under the Sporophila hypoxantha demographic model (see Fig. S6 in
Appendix A). We found that SIA was approximately unbiased for the moderate
(s = 0.005) and high (s = 0.01) selection regimes but appeared to overestimate
the selection coefficient for regions under weak selection (s = 0.001 and 0.0025),
when both true and inferred genealogies were used as input. Furthermore, SIA
appeared to overestimate the selection coefficient for neutral regions when
inferred gene trees were used as input, whereas it was approximately unbiased
for true gene trees.
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Figure 2.4: Predictions of selection coefficient on simulated regions
using SIA and CLUES based on inferred genealogies, and ImaGene.
(A) The distribution of inferred selection coefficients and (B) RMSE for each
method under each model condition. The simulations are based on the CEU
demographic model where inferred genealogies were used as input to SIA and
CLUES, whereas sequence alignments were used as input to ImaGene. Figure
layout and description are otherwise similar to Figure 2.3.

2.3.5 Performance on selection coefficient prediction with
different sample sizes

To explore the tradeoffs associated with the use of larger data sets, we exam-
ined the performance of SIA under different sample sizes, assuming a constant-
sized demographic model (Ne = 10, 000). Figure S7 in Appendix A shows the
error in selection coefficient inference on a held-out test set, stratified by the
age of the allele (Fig. S7A and B in Appendix A) and present-day DAF (Fig.
S7C and D in Appendix A) at the site of interest. We observed that sites
with low frequency (AF < 0.33) and more recent (onset < 0.2 × 2Ne gen-
erations) alleles experience the most significant reduction in error as sample
size increases. Notably, the performance of SIA on more ancient alleles (on-
set > 0.2 × 2Ne generations) had little to no improvement as the sample size
increased from 32 to 254. These observations are in line with the expectation
that having more samples improves the chance of capturing low-frequency al-
leles, but provides limited information about more ancient events. The reason
for this age-dependency is that, looking backwards in time, most lineages coa-
lesce rapidly and only a few survive to more ancient epochs, in a manner that
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depends only weakly on the sample size. It may be useful to consider these
observations when choosing the sample size for use in studying selection in a
particular context (see Discussion).

2.3.6 Inference of AF trajectory

We further adapted the deep-learning architecture of SIA to model the AF
trajectory at a site by retaining the output of the LSTM at each time point
(Fig. S1 in Appendix A; see Materials and methods). We then evaluated
the performance of SIA in the inference of the AF trajectory using simulations
under the CEU demography across a range of selection coefficients and current
DAFs. SIA was largely able to capture the expected trend of more rapidly
increasing AF under stronger selection (Figs. S8 and S11 in Appendix A).
In addition, AF estimates by SIA using both true and inferred genealogies
were generally unbiased, although AF at more recent time points tended to be
slightly underestimated when data was simulated under weaker selection. AF
estimates also appeared to be more accurate in terms of variance for alleles
under stronger selection (Figs. S9 and S12 in Appendix A). As expected,
the variance of AF estimates tended to increase going further back in time
(Figs. S9 and S12 in Appendix A). We also observed that overall SIA tended
to produce more accurate AF estimates than CLUES (Figs. S9 and S10 in
Appendix A).

2.3.7 Model performance on simulations with mis-specified
demographic models

To evaluate the robustness of SIA to mismatches between the demographic
parameters used for simulating training data and the true underlying demog-
raphy of real data, we tested the method on the selection-coefficient inference
task with data sets simulated under a range of alternative parameters. Each
aspect of this model mis-specification was assessed independently of the oth-
ers. In particular, the mis-specified data sets contained simulations under 1)
combinations of population mutation (θ) and recombination (ρ) rates sampled
beyond the range used for the training data (Figs. S13 and S16 in Appendix
A); 2) various alternative demographic scenarios (Figs. S14, S17, and S19 in
Appendix A); and 3) various effective population sizes (Figs. S15 and S18
in Appendix A). We compared the performance of SIA on these mis-specified
data sets with that of CLUES (Stern et al., 2019), supplying both methods
with the true genealogies. We consider CLUES the “silver standard” when it
comes to robustness because it is unsupervised and therefore should not be
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susceptible to mis-specified training data compared with supervised learning
methods such as SIA. Overall, we found that both CLUES and SIA were
reasonably robust to model mis-specification (Figs. S13–S15 in Appendix A),
although the performance of both methods inevitably declined when tested on
severely mis-specified data (Fig. S15 in Appendix A). Interestingly, SIA tended
to overestimate selection coefficient when the true Ne was much smaller than
that used for training, and underestimate it when the true Ne was much larger,
whereas CLUES did the opposite (Fig. S15 in Appendix A). Because the
CLUES likelihood model of AF transition is parameterized by the population-
scaled selection coefficient (α = 2Ns), a larger Ne likely appears to CLUES
as equivalent to a higher s. On the other hand, features used by SIA cap-
ture broad information of coalescence and linkage in the ARG, and therefore
can be distorted by mis-specified Ne in more subtle ways (see Discussion).
Using the same mis-specified data set, we also ran SIA with Relate-inferred
genealogies and compared its performance with that of the genotyped-based
deep-learning model ImaGene (Flagel et al., 2019; Torada et al., 2019). In
general, SIA appeared to be more robust to model mis-specifications, achiev-
ing an overall RMSE of 0.00362, 0.00318, and 0.00374 in the mis-specified
θ/ρ, demography, and Ne experiments, respectively, compared with ImaGene,
whose RMSE was 0.00416, 0.00330, and 0.00462 in the corresponding experi-
ments (Figs. S16–S18 in Appendix A). The advantage of SIA was particularly
noticeable in cases of mis-specified demographic parameters (Figs. S17 and
S18 in Appendix A). Notably, SIA exhibited reduced bias when working with
inferred genealogies compared with true genealogies, under conditions of ex-
tremely mismatched Ne (compare Figs. S15 and S18 in Appendix A).

2.3.8 Model prediction at genomic loci of interest in
CEU population

We then applied the SIA model to identify selective sweeps and infer selection
coefficients at selected genomic loci in the 1000 Genomes CEU population.
These loci included the canonical example of selection at the MCM6 gene,
which regulates the neighboring LCT gene and contributes to the lactase per-
sistence trait (Bersaglieri et al., 2004), the ABCC11 gene regulating earwax
production, several pigmentation-related genes, as well as genes associated
with obesity, diabetes and addiction (Table 2.1).

For LCT, SIA detected a strong signal of selection at the nearby SNP that
has been associated with the lactase persistence trait (rs4988235). At this
SNP, SIA inferred a sweep probability close to 1 and a selection coefficient
> 0.01, making this one of the strongest signals of selection in the human
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genome. A close examination of the local genealogy at this site reveals a clear
pattern indicative of a selective sweep––a burst of recent coalescence among
the derived lineages (orange taxa are the lineages carrying the derived allele)
is clearly visible from the tree (Fig. 2.5).

At a number of pigmentation genes (Sulem et al., 2007; Han et al., 2008;
Sturm et al., 2008; F. Liu et al., 2010; Kenny et al., 2012), SIA detected
signals of moderate selection, including MC1R (rs1805007, Psweep = 0.95, s ≈
0.0037), KITLG (rs12821256, Psweep = 0.87, s ≈ 0.0019), ASIP (rs619865,
Psweep = 0.78, s ≈ 0.0019), OCA2 (rs12913832, Psweep = 0.75, s ≈ 0.0056),
and TYR (rs1393350, Psweep = 0.62, s ≈ 0.0011). In addition, SIA identified
a weak signal of selection at a SNP in the ABCC11 gene (rs17822931), which
influences earwax and sweat production (Yoshiura et al., 2006), with a selection
coefficient of around 0.00035. There are few other estimates for these genes
available for comparison, but, notably, our estimate for LCT of s ≈ 0.01 is
consistent with a previous estimate on the order of 0.01–0.1 (Bersaglieri et
al., 2004), and with recent studies of ancient DNA samples (S. Mathieson
and Mathieson, 2018; I. Mathieson, 2020) suggesting a value closer to 0.01.
Our estimates suggest that selection at the pigmentation loci is considerably
weaker than at LCT, in contrast to previous estimates for these loci, which
covered a wide range but were generally considerably larger (ranging from 0.02
to 0.1) (Wilde et al., 2014). Interestingly, CLUES estimated s at the OCA2
locus to be on the order of 0.001 (roughly similar to SIA’s estimate of 0.0056),
but s at the KITLG, ASIP, TYR loci to be > 0.01 (in comparison to SIA’s
considerably smaller estimates of 0.0019, 0.0019, and 0.0011) (Stern et al.,
2019). The apparent discrepancy between the estimates may be partially due
to the fact that the two methods used samples from two different populations
(CEU for SIA and GBR/British for CLUES).

On the other hand, SIA did not detect significant evidence of positive selec-
tion at several disease-associated loci (rs7903146/TCF7L2, rs1800497/ANKK1,
and rs9939609/FTO) or at several other pigmentation loci (rs13289810/TYRP1,
rs1003719/TTC3, and rs7495174/OCA2 ) (Table 2.1). Notably, allele frequen-
cies at these six loci tend to be similar in African and European populations
(Marcus and Novembre, 2017), suggesting that they are not likely to be under
strong environment-dependent positive selection, although it is possible that
they have experienced very recent selective pressure that SIA lacks the power
to detect (see Discussion). Notably, TYRP1 and TTC3 also lacked signals
of selection in the CLUES analysis. Compared with the genealogies at sweep
sites (Fig. 2.5), the trees at these putatively neutral loci lack the distinctive
signature of recent bursts of coalescence among derived lineages (Fig. 2.6).
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Figure 2.5: Local genealogies at six loci inferred to be under positive
selection in the 1000 Genomes CEU population. Gene name, RefSNP
number, derived AF, SIA-inferred sweep probability and SIA-inferred selection
coefficient range for each locus are indicated at the top of each panel (see
Table 2.1 for more details). Taxa carrying the ancestral and derived alleles are
colored in blue and orange, respectively.
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Figure 2.6: Local genealogies at six loci lacking signal of positive
selection in the 1000 Genomes CEU population. Gene name, RefSNP
number, derived AF and probability of neutrality inferred by SIA for each
locus are indicated at the top of each panel (see Table 2.1 for more details).
Taxa carrying the ancestral and derived alleles are colored in blue and orange,
respectively.
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2.3.9 Southern capuchino species analysis

Our previous study of southern capuchino seedeaters made use of the full ARG
and ML to detect and characterize selective sweeps, and suggested that soft
sweeps are the dominant mode of adaptation in these species (see Materials and
methods for more details). To further characterize the targets and strengths
of positive selection in these species, we applied SIA to polymorphism data
(Turbek et al., 2021) for S. hypoxantha, and adopted a conservative approach
by reporting only sites with DAF ≥ 0.5, SIA-inferred s ≥ 0.0025, and SIA-
inferred sweep probability Psweep ≥ 0.99 (see Materials and methods). In addi-
tion to loci near top FST peaks and known pigmentation-related genes (Table
2.2), we identified many more sites under positive selection located outside
the previously scanned FST peaks, amounting to a total of 15,551 putative
partial soft sweep sites across the 333 scanned scaffolds for S. hypoxantha.
These sites can be prioritized for further evaluation and downstream analysis.
Notably, SIA enabled us to distinguish between selection at regulatory and
coding sequences, and we found that sweep loci near FST peaks and pigmen-
tation genes fall mostly in noncoding regions (Table 2.2). We additionally
surveyed all putative sweep sites identified by SIA and found that they are
indeed enriched in noncoding regions (Fisher’s exact test, P = 6.80 × 10−5),
particularly noticeable in the “near-coding” regions (Fig. S22 in Appendix
A). Consistent with the observation that the most highly differentiated SNPs
among taxa are noncoding (Campagna et al., 2017; Turbek et al., 2021), our
finding suggests that positive selection may act on cis-regulatory regions to
drive differentiation and the subsequent speciation process. Furthermore, we
examined many individual predictions in detail, considering the local trees in-
ferred by Relate at these high-confidence predictions (Fig. 2.7). We found, in
numerous cases, that these sweeps had distinct genealogical features, display-
ing evidence of a burst of coalescence events, corresponding to unusually large
and young clades. Prominent examples include predictions near pigmentation-
related genes ASIP, KITL, SLC45A2, and TYRP1.

2.4 Discussion

The ARG is useful for addressing a wide variety of biological questions ranging
from inferring demographic parameters to estimating allele ages. SIA exploits
the particular utility of the ARG for accurate inference of positive selection
in a way that makes use of the full data set, as opposed to traditional sum-
mary statistics, which necessarily discard substantial information. Direct use
of the ARG improves upon traditional summary statistics in two key ways.

30

https://academic.oup.com/mbe/article/39/1/msab332/6433161?login=true#supplementary-data


Table 2.2: The top 25 FST peaks identified in Hejase, Salman-Minkov, et al.,
2020 along with the number of partial soft sites in S. hypoxantha identified for
each scaffold using SIA.

Scaffold Start position
(Mb)

End position
(Mb)

Length
(kb)

No. of partial
soft sites*

59 5.74 5.86 120 11
118 7.16 7.22 60 5
252 0.40 0.54 140 3
257.1 21.24 21.78 540 26
257.2 24.40 24.84 440 43
257.3 28.66 28.96 300 10
257.4 31.30 31.38 80 8
257.5 5.78 6.20 420 25 (1)
263 0.00 0.58 580 31
308 0.04 0.20 160 0
404.1 5.04 5.84 800 115 (7)
404.2 10.76 10.96 200 30
412 3.38 3.62 240 15
430 10.98 11.10 120 24
567 2.50 2.80 300 0
637.1 6.00 6.32 320 2
637.2 6.84 6.92 80 4
762 1.65 1.73 80 30
766 1.98 2.10 120 1
791 9.90 9.98 80 15
1,717 0.92 0.98 60 7
3,622 0.96 1.36 400 8
1,635 3.71 3.75 40 4
1,954 2.8 2.9 100 17
579 0.1 0.16 60 0
Note: To avoid cases with limited power, we focused on sites with segre-
gating frequency ≥ 0.5, SIA-inferred s > 0.0025, and SIA-inferred sweep
probability Psweep ≥ 0.99.
* The number of sweep sites in coding regions is shown in parenthesis.
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Figure 2.7: Local genealogies at six loci inferred to be under posi-
tive selection in S. hypoxantha. Contig name, position of SNP, DAF,
SIA-inferred selection coefficient range, and the pigmentation gene closest to
the locus in question are indicated at the top of each panel. Haploid genomes
carrying the ancestral and derived alleles are colored in blue and orange, re-
spectively.
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First, it enables consideration of the temporal distribution of coalescence and
recombination events in the history of the analyzed sequences, in contrast
to traditional summary statistics that simply average over these coalescence
and/or recombination events. In addition, ARG-based methods provide bet-
ter spatial resolution by separately examining individual genealogies and the
recombination breakpoints between them, rather than averaging across win-
dows containing unknown numbers of genealogies. These detailed patterns of
coalescences and linkage enable the ARG-based approaches to capture a more
localized and fine-grained picture of selection (e.g., infer selection coefficient
and AF trajectory) as well as to achieve a better classification performance.
This performance advantage is particularly noticeable at lower DAFs and when
selection is weak, a regime where previous methods for selection inference fall
short (Fig. 2.2).

At the same time, the supervised ML approach sets SIA apart from another
ARG-based method, CLUES, which approximates a full likelihood function for
ARGs in the presence of selection using importance sampling and an HMM.
Although the accuracy of both SIA and CLUES degraded when using inferred
genealogies compared with true genealogies, reflecting the error and uncer-
tainty at the ARG inference step, SIA appeared to be more robust to gene
tree uncertainty (Figs. 2.3 and 2.4). One possible reason for this observation
is that CLUES effectively assumes that the selection coefficient at the focal
site is conditionally independent of the flanking trees given the focal tree. This
assumption should hold in the presence of fully specified genealogies, but it
may make CLUES more sensitive to errors in the inferred genealogies. In other
words, through its use of supervised learning, SIA may be able to compensate
for the effects of genealogy inference error on its estimation of the selection co-
efficient by also directly considering the flanking trees and LD-related patterns
among them. Still, the drop in accuracy observed across methods underscores
the dependency of ARG-based approaches on the ARG inference method. For
this reason, we anticipate that SIA may benefit substantially from further
improvement in ARG inference tools (see Hejase, Dukler, et al., 2020).

The ARG-based feature set distinguishes SIA from other supervised ML
approaches for characterizing selective sweeps. SIA uses local topological fea-
tures of the ARG, which are more informative than the SFS- or LD-based
summary statistics employed by ML methods such as S/HIC, SFselect, and
evolBoosting. Using simulations, we demonstrated that the SIA classifier out-
performed a deep-learning method that aggregates these traditional summary
statistics (Fig. 2.2). We also compared SIA with ImaGene, which represents
another flavor of supervised learning methods, inspired by the recent rise of
CNNs for image recognition. ImaGene encodes sequence alignments as images
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for powerful population genetic inferences with CNNs and provides a state-
of-the-art benchmark to compare against. We found that ImaGene performs
remarkably well across a wide range of simulations, but SIA does appear to
be somewhat less biased and more robust to model mis-specification than Im-
aGene. The evolutionary information in the ARG is implicit in the sequence
alignment but some of this information may be difficult for a brute-force ML
model to discover directly.

We demonstrated that utilizing the ARG granted SIA considerably im-
proved performance over deep-learning models solely employing traditional
summary statistics. However, a possible drawback of an ARG-based model
is the potentially prohibitive computational overhead incurred by ARG infer-
ence, especially as sample size grows. Picking a sample size when running SIA
involves a tradeoff between scalability (fewer samples, faster ARG inference)
and performance (more samples, slower ARG inference). We have found that
SIA can infer selection coefficients reasonably well with as few as 16 haplo-
types. Including more samples did improve performance but with a sublinear
reduction in error (Fig. S7 in Appendix A). Therefore, a sample size from
a few dozen to a few hundreds—well within the capabilities of most modern
ARG inference methods—strikes a good balance between performance and
scalability. Moreover, we found that larger sample sizes improved prediction
performance primarily for alleles at lower frequencies but had little impact on
the performance for more ancient alleles (as most lineages would have already
coalesced going further back in time) (Fig. S7 in Appendix A). This observa-
tion suggests that the choice of the sample size when applying SIA should be
guided by the biological question of interest – ancient selection can be studied
with just a handful of samples, whereas a larger sample size is better suited
to detect more recent sweeps. Notably, the addition of ancient DNA samples
could potentially enable selection to be inferred over much longer time scales.
It should be possible to accommodate them with a relatively straightforward
extension of the method.

Like other supervised learning methods, SIA relies on simulations to gener-
ate training data. In order to apply SIA in a particular population, a fresh set
of training data tailored to that population needs to be simulated. Although
it takes on the order of 100 CPU hours to simulate the training data compared
with ten CPU hours to train the model (see Materials and methods), simula-
tions can be easily distributed across multiple machines as each of them runs
independently. Another potential drawback common to supervised methods
is that they could be biased by subjective choices of simulation parameters.
For example, SIA and ImaGene cannot make accurate predictions of selection
coefficients outside the range represented in the training data (Fig. S20 in Ap-
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pendix A), whereas unsupervised methods such as CLUES are not limited to
a predefined range (Fig. S21 in Appendix A). This problem could be circum-
vented by training on an extended range of s. Similarly, the tendency of SIA
to underestimate the selection coefficient for sites under weak selection (Figs.
2.3 and 2.4) could be mitigated by augmenting the training set with simula-
tions densely sampled from the weak selection regime. A more subtle issue,
however, arises when the underlying generative process of the real data does
not match the assumptions made for the simulations of the training data, po-
tentially compromising the accuracy of the method when applied to real data.
Thus, we tested SIA on simulations with parameters mismatching those used
in the training procedure. In general, we found that SIA was fairly robust
to alternative parameter values, although, as expected, performance did de-
grade somewhat under severely mis-specified models. Notably, SIA achieved
a similar level of robustness to model parameter mis-specification as the un-
supervised (i.e., not relying on training data) likelihood method CLUES, yet
outperformed the supervised deep-learning method ImaGene.

Applying SIA to the CEU panel from the 1000 Genomes Project yielded
several noteworthy findings at loci with known ties to phenotypes of interest.
In addition to confirming the canonical signal of selective sweep at the LCT
locus, SIA detected a novel signal of selection at a GWAS SNP in the MC1R
gene associated with red hair color, contrasting a previous study that could
not find evidence of selection at MC1R in the European population (Harding
et al., 2000). The derived allele at this locus segregates at around 10% in the
CEU population but is nearly absent in non-European populations (Marcus
and Novembre, 2017). In addition, at the MC1R locus the Relate test statis-
tic for selection (Speidel et al., 2019), which tends to perform particularly
well at low segregating frequencies (Fig. 2.2), falls slightly below the signifi-
cance threshold of 0.05, supporting the evidence of positive selection at this
locus. SIA also detected evidence of selection at a SNP in the ABCC11 gene
reported to be the determinant of wet versus dry earwax as well as sweat pro-
duction, mirroring the signal of selection previously found in the East Asian
population (Ohashi et al., 2011), although selection in the CEU population
appeared to be much weaker. In addition, SIA identified selection at a few
other pigmentation-related loci, yet determined previously identified SNPs in
the TYRP1 and TTC3 genes to be largely free from selection (Table 2.1).
These results were consistent with a previous study (Stern et al., 2019), which
reported similar results for these pigmentation-related loci, albeit in a slightly
different population (GBR). SIA notably did not detect positive selection at
GWAS loci in the TCF7L2 gene associated with type-2 diabetes, the ANKK1
gene implicated in addictive behaviors, and the FTO gene associated with
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obesity. Overall, this empirical study with the 1000 Genomes CEU popula-
tion has illustrated how SIA can be applied to assess natural selection at the
resolution of individual sites, suggesting that it may be useful in prioritizing
GWAS variants for further scrutiny.

In our previous work on southern capuchino seedeaters (Hejase, Salman-
Minkov, et al., 2020) (see Materials and methods), we applied newly developed
statistical methods for ARG inference and ML for the prediction of selective
sweeps. We found evidence suggesting that a substantial fraction of soft sweeps
is partial but had limited power to identify them (i.e., average accuracy of
56%). SIA considerably improved our characterization of positive selection
in the southern capuchino species in two key ways. The SIA framework per-
forms inference of selection directly from genealogies instead of traditional
summary statistics, and in doing so achieved an accuracy of up to 96% in
detecting partial soft sweeps. Consequently, we found abundant evidence of
soft sweeps beyond the previously scanned FST peaks, and additionally were
able to estimate their selection coefficients. Importantly, SIA also took the
analysis of selection beyond broad genomic windows containing sweeps to the
identification of specific putative causal variants. We took advantage of this
substantial improvement in genomic resolution and analyzed the distribution
of these sweep sites, which revealed that positive selection on regions that likely
contain cis-regulatory elements plays a role in driving the differentiation and
speciation of southern capuchino seedeaters.

Although we believe SIA represents an important step forward in the use
of the ARG for ML-based selection inference, there remain several possible
avenues for improvement. For example, SIA currently uses a point-estimate
of the ARG, rather than a distribution, and therefore does not explicitly take
gene-tree uncertainty into account. Instead, the uncertainty of the inferred
parameters is estimated with neural network dropouts (Gal and Ghahramani,
2016). The variance of parameter inference could alternatively be assessed
from uncertainty in genealogy reconstruction by resampling coalescent times
with Relate (Speidel et al., 2019), and moreover resampling trees from the
posterior distribution of ARGs with ARGweaver (Rasmussen et al., 2014).
Thus, it may be enlightening to compare these different approaches to ana-
lyzing uncertainty. Likewise, SIA will greatly benefit from better algorithms
for ARG reconstruction that balance accuracy with scalability and can handle
thousands of genomes. In addition, the SIA framework was applied in the con-
text of single-locus selective sweeps, but could be extended to study polygenic
selection, by making use of summary statistics from genome-wide association
studies (as in Stern et al., 2021) and adapting the architecture of our neural
network to account for selection acting at multiple sites. Finally, the robust-
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ness of SIA to model mis-specifications can be further improved by ensuring
the simulated data is generated under a distribution that is compatible with
the real target data set. We anticipate that the continual advancement in
ARG inference methods has the potential to open up many new applications
for this flexible and powerful model of ARG-based deep learning in population
genetics.

2.5 Materials and methods

2.5.1 Simulated data sets used for training and testing
the SIA model

Training and testing data sets were generated using discoal (Kern and Schrider,
2016) by simulating 1,000,000 regions of length 100 kb for each model we
considered (i.e., “neutral” or “hard sweep”). Aside from these regions, 2,000
were simulated for validation and 5,000 were simulated for testing. The number
of sampled sequences was selected to match the number of individuals in the
CEU population in the 1000 Genomes data set. Thus, a total of 198 haploid
sequences were sampled. Simulations used a demographic model based on
European demography (Tennessen et al., 2012). In non-neutral simulations,
selection was applied to a single focal site located in the middle of the simulated
region. We sampled each of the main demographic and selection parameters
from a uniform distribution: 1) mutation rate µ ∼ U(1.25× 10−8, 2.5× 10−8);
2) recombination rate ρ ∼ U(1.25 × 10−8, 2.5 × 10−8); 3) selection coefficient
s ∼ U(0.0001, 0.02); and 4) segregating frequency of the site under selection
f ∼ U(0.01, 0.99). The total storage footprint for the simulations was 1.6TB.
The average cost of one simulation was 0.53 s, amounting to a total of 148
CPU hours to simulate the entire training set. The cost of simulation was
mitigated by parallelization across multiple compute nodes.

2.5.2 ARG feature extraction

For each target variant, we extracted the corresponding gene tree from the
ARG, then overlaid it with 100 discrete timepoints. These timepoints were
fixed across all trees in an approximately log-uniform manner that resulted in
finer discretization of more recent time scales (as in Rasmussen et al., 2014).
We considered biallelic sites only and assumed no recurrent mutations; thus,
each mutation was assumed to occur on the branch of the tree where the
ancestral allele switches to the derived. For each timepoint, we calculated the
number of active ancestral and derived lineages. Furthermore, we computed
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the number of all active lineages (not distinguishing between ancestral and
derived) at the same set of predefined timepoints in the two left- and right-
flanking gene trees to account for linkage disequilibrium. We experimented
with alternative numbers of flanking gene trees and found that the SIA model
with two flanking gene trees (RMSE = 0.0027) outperforms a model with
one (RMSE = 0.0029) or no (RMSE = 0.0030) flanking gene tree. Generally,
more gene trees provide SIA with richer linkage information and thus improve
its ability to estimate the effect of positive selection on a locus. The exact
threshold of diminishing returns, however, can be computationally costly to
establish. We therefore opted to include two flanking gene trees while noting
that the user can control this hyperparameter when running SIA.

In the end, the ARG feature for each locus consisted of a 600-dimensional
vector, which was then used as input to an RNN. The features for each simu-
lated sweep region were extracted from the sweep site (by default at the center
in all simulations) whereas the features for a simulated neutral region were ex-
tracted from a variant site (randomly chosen) with a predefined matched DAF.
The features for each genomic locus of interest in the CEU population were
extracted from all variant sites at that locus having a DAF of > 0.05.

2.5.3 Training a RNN to predict different modes of se-
lection

An RNN was applied to the simulated training data sets to learn a classifica-
tion or regression model for the task at hand. We used a LSTM, a particular
form of RNN, to accommodate the temporal nature of our features, account for
long-term dependencies, and tackle the vanishing gradient problem observed
in traditional RNNs. Our model had 100 timepoints with the final target
output depending on the use of classification or regression. For the classifica-
tion task, the final target output is a binary class label predicting whether a
region is under selection or neutrality. For the regression task, the final tar-
get output is a continuous value, representing the selection coefficient or the
time of selection onset. We also took a many-to-many approach to model the
AF trajectory for the site under selection. The Keras software was used to
train and test the model. We used a two-stacked LSTM to account for greater
model complexity where the number of units in each stack was set to 100 and
the hyperbolic tangent (tanh) was used as an activation function. The Adam

optimization method with its default operating parameters was used to up-
date the network weights. For the classification task, the Softmax activation
function was applied on the final dense layer and the binary crossentropy

was used to compute the cross-entropy loss between true labels and predicted
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labels. For the regression task, the linear activation function was applied
on the final dense layer and the mean squared error loss was used. The SIA
deep-learning model took on average 7–10 h to train on a single GPU node
with 32 GB memory and four threads, whereas applying the trained model for
prediction took less than a minute.

2.5.4 Estimation of confidence intervals

To turn our single-valued regression model into one capable of returning a dis-
tribution of predictions of s, we reused the dropout technique that is typically
used during training. Dropout enables a fraction of nodes to be randomly
“turned off” in a certain layer, which assists in the regularization of the model
and helps prevent overfitting. We applied dropout during inference, enabling
us to sample a “thinned” network to generate a sample prediction. By repeat-
edly sampling thinned networks, we generated a distribution of predictions
and then computed confidence intervals based on this distribution (Gal and
Ghahramani, 2016).

2.5.5 ARG inference

Relate (Speidel et al., 2019) (v1.0.17) was used for inferring ARGs underlying
simulated genomic samples as well as the CEU population in the 1000 Genomes
data set. For simulations under the Tennessen et al., 2012 demography, Relate
was run with the true simulation parameters (µ, ρ, and Ne) specified; whereas
for genomic loci of the CEU population, Relate was run with a mutation
rate of 2.5 × 10−8/base/generation (-m 2.5e-8), a constant recombination
map of 1.25 × 10−8/base/generation and a diploid effective population size of
188,088 (-N 376176). The choice of mutation rate follows Stern et al., 2019
based on estimates from Nachman and Crowell, 2000. Although some more
recent estimates have been lower (Scally and Durbin, 2012), these differences
in mutation rate are unlikely to have a major effect on our selection inference
because SIA appears to be fairly robust to mis-specification of mutation rate
(Figs. S13 and S16 in Appendix A). For simulations and genomic loci of the S.
hypoxantha population, Relate was run with µ = ρ = 1×10−9/base/generation
and a diploid Ne of 130,000. The branch lengths of Relate-inferred genealogies
were estimated iteratively with the EstimatePopulationSize.sh script in
the Relate package. Specifically, population size history was inferred from the
ARG, the branch lengths are then updated for the estimated population size
history and these steps are repeated until convergence. This was done for a
default of five iterations (-num iter 5).
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2.5.6 Alternative methods for selection inference

To benchmark the performance of SIA for classification of sites under neutral-
ity versus selective sweep, we ran the following methods: Tajima’s D (Tajima,
1989), H1 (Garud et al., 2015), iHS (Voight et al., 2006), a summary statistics-
based deep-learning model, and a tree-based statistic that is part of the Re-
late (Speidel et al., 2019) program. Tajima’s D, H1, and iHS were calculated
with the scikit-allel package. Haplotypes of the entire 100 kb simulated
genomic segment were used for Tajima’s D and H1 calculations. The unstan-
dardized iHS was computed at every site with minor AF > 5%, with respect
to all other sites in the genomic segment (min maf = 0.05, include edges

= True). iHS scores of all sites were then standardized in 50 AF bins. Finally,
the iHS score of a genomic region was taken to be the mean of the iHS scores of
all of its variant sites. For the summary statistics-based deep-learning model,
we made use of the summary statistics used by S/HIC (Schrider and Kern,
2016; Kern and Schrider, 2018) as features for our deep-learning architecture.
These included 11 sequence-based summary statistics (see Figure 3 in Schrider
and Kern, 2018) which were used as features for our deep-learning model to
distinguish among the two classes at hand (selective sweep vs. neutral drift).
All statistics were collected along five consecutive 20-kb windows with the ob-
jective of identifying possible sweeps induced by a positively selected mutation
in the third (middle) window. Some of these summary statistics corresponded
to standard measures of diversity, such as ss (the number of segregating sites),
π (Nei and Li, 1979), Tajima’s D (Tajima, 1989), θW (Watterson, 1975), θH
(Fay and Wu, 2000), the number of distinct haplotypes (Messer and Petrov,
2013), H1, H12, H2/H1 (Garud et al., 2015), ZnS (Kelly, 1997), and maxi-
mum value of ω (Y. Kim and Nielsen, 2004). For each of these statistics, we
computed an average value for each of the five 20 kb windows for the simu-
lated population. Finally, each summary statistic was normalized by dividing
the value recorded for a given window by the sum of values across all five
windows. The Relate tree-based selection test was performed with an add-on
module (DetectSelection.sh) using the inferred genealogy with calibrated
branch lengths at a site of interest, yielding a log10 P value for each site.

We also compared the performance of SIA for selection coefficient inference
with that of CLUES (Stern et al., 2019) and a genotype-based CNN frame-
work (Flagel et al., 2019; Torada et al., 2019). Selection coefficient inference
from true genealogies was performed with clues-v0 (last accessed November
28, 2021). Transition probability matrices were built on a range of selection
coefficients [0, 0.05] at increments of 0.0001 and present-day allele frequencies
[0.01, 0.99] at increments of 0.01. Selection coefficient inference from Relate
inferred genealogies was performed with CLUES (last accessed November 28,
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2021). Branch lengths of the genealogy at the site of interest were resampled
with Relate for 600 MCMC iterations, and CLUES was run with the follow-
ing arguments: -tCutoff 10000 -burnin 100 -thin 5. For the genotype-
based CNN model, each simulated genomic segment was preprocessed by first
sorting the haplotypes and then converting the segment to a fixed-size geno-
type matrix. Haplotype sorting was performed by 1) calculating the pairwise
Manhattan distances between haplotypes; 2) setting the haplotype with the
smallest total distance to all other haplotypes as the first haplotype; and 3)
sorting the remaining haplotypes in increasing distance to the first haplotype.
To convert the sorted haplotypes to a fixed-size genotype matrix, centered
on the middle variant of a simulated region, up to 180 variants on each side
were retained. Variants beyond 180 were discarded and if there were fewer
than 180, the missing variants were padded with zeros. Ancestral and derived
alleles were coded with 0s and 1s, respectively. Consequently, each simulated
genomic region was encoded as a (198 × 360) binary matrix, along with a
real-valued vector encoding the genomic positions of the variants in the ma-
trix. The CNN model had a branched architecture – one branch with five 1D
convolution layers taking the genotype matrix as input and another branch
with a fully connected layer taking the vector of variant positions as input.
The output of the two branches was flattened, concatenated and fed into three
fully connected layers, followed by a linear output layer to predict selection
coefficient (Fig. S23 in Appendix A).

2.5.7 Evaluation metrics

To evaluate the performance of SIA’s classification model and alternative
methods, we computed an ROC curve for the binary class at hand (“neutral”
or “sweep”), to provide a more complete summary of the behavior of different
types of errors. We further assessed the performance of SIA and alternative
methods in terms of correctly predicting the selection coefficient numerically
using mean absolute error (MAE), root mean square error (RMSE), coeffi-
cient of determination (r2), and visually using a box plot that compares the
simulated ground truth against the predictions by the method at hand.

2.5.8 Robustness study

We carried out an extensive analysis of the robustness of our approach, consid-
ering not only alternative demographic parameters (such as population size),
but also alternative parameters for recombination rate, mutation rate, time of
selection onset, and selection coefficients. In all cases, we took care to test our
prediction methods under parameters well outside the range used in training.
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2.5.9 Analysis of CEU population in 1000 Genomes data

We applied SIA to infer selection coefficients and AF trajectories in the 1000
Genomes (Auton et al., 2015) CEU population at 13 genomic loci with known
association to phenotypes, some of which were previously identified as likely
targets of positive selection (Table 2.1). For each gene of interest, the ARG
was inferred with Relate from SNPs within a 2-Mb window centered at the
gene. Once the ARG was inferred, only SNPs with valid ancestral allele (“AA”
INFO field in the vcf file) were retained for downstream analysis. Following the
aforementioned protocol (see ARG feature extraction), features at all variant
sites in the 2 Mb window above a DAF threshold of 0.05 were extracted.
Lastly, the SIA model was applied to classify neutrality versus selection, and
infer selection coefficient and AF trajectory at each site.

2.5.10 Localizing sweeps in southern capuchino seedeaters

We recently applied a combination of ARG inference and ML methods for
identifying selective sweeps to study previously identified “islands of differ-
entiation” in southern capuchino seedeaters and distinguish among possible
evolutionary scenarios leading to their formation (Hejase, Salman-Minkov, et
al., 2020). Taking advantage of its improved power and genomic resolution,
we applied SIA to sequence data for the species for which we have the most
samples, S.hypoxantha. We simulated training (250,000 neutral; 250,000 soft
sweeps), validation (1000 neutral; 1000 soft sweeps), and testing (2,500 neutral;
2,500 soft sweeps) data sets for SIA under a demographic model inferred by
G-PhoCS (Campagna et al., 2015). Simulations were performed using discoal
with the following parameters: 1) mutation rate µ = 1 × 10−9; 2) recombi-
nation rate ρ = 1 × 10−9; 3) derived Ne = 130, 000; 4) root divergence time
= 1,850,000 generations ago; 5) root Ne = 1, 450, 000; 6) ancestral divergence
time = 44,000 generations ago; 7) ancestral Ne = 14, 380, 000; 8) selection
coefficient s ∼ U(0.001, 0.02); 9) initial frequency at which selection starts
acting on the allele finit ∼ U(0.01, 0.05); and 10) segregating frequency of the
site under selection f ∼ U(0.25, 0.99). A total of 56 haploid sequences were
sampled from each simulation, matching the number of S. hypoxantha individ-
uals (28) in the real data. The SIA model for S. hypoxantha was built, trained
and evaluated in an otherwise similar fashion to that for the CEU population
as outlined above.

Using a subset of polymorphism data from Turbek et al., 2021 of 28 S.
hypoxantha and 2 S. minuta individuals, we applied our trained model to lo-
calize selective sweeps in S. hypoxantha on 19 scaffolds that contain top FST

peaks in at least one pairwise species comparison (Campagna et al., 2017)
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and/or harbor known pigmentation-related genes such as ASIP (located on
scaffold 252; induces melanocytes to synthesize pheomelanin instead of eume-
lanin), KITL (located on scaffold 412; stimulates melanocyte proliferation),
SLC45A2 (located on scaffold 404; transports substances needed for melanin
synthesis), and CAMK2D (located on scaffold 1717; cell communication), as
well as 316 scaffolds that 1) are longer than 100 kb; 2) contain more than
1,000 variants; and 3) where more than 95% of sites have a consensus an-
cestral allele, as determined by four identical haplotypes for two individuals
from the outgroup species S. minuta. The ARG was inferred with Relate for
each scaffold independently. Once the ARG was inferred, the SIA model was
applied to sites with consensus ancestral allele for classification and selection
coefficient inference.
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Chapter 3

Selective sweeps on different
pigmentation genes mediate
convergent evolution of island
melanism in two incipient bird
species

Content of this chapter was published in PLoS Genetics (2022) under the title
“Selective sweeps on different pigmentation genes mediate convergent evolu-
tion of island melanism in two incipient bird species” by Leonardo Campagna,
Ziyi Mo, Adam Siepel and J. Albert C. Uy. L.C. conceptualized the study,
curated data, performed formal analyses, developed methodology and wrote the
manuscript. Z.M. characterized selective sweeps in the bird populations using
the SIA method, developed methodology and edited the manuscript. A.S. de-
veloped methodology and edited the manuscript. J.A.C.U. conceptualized the
study, curated data, performed formal analyses, developed methodology and
wrote the manuscript.

3.1 Abstract

Insular organisms often evolve predictable phenotypes, like flightlessness, ex-
treme body sizes, or increased melanin deposition. The evolutionary forces
and molecular targets mediating these patterns remain mostly unknown. Here
we study the Chestnut-bellied Monarch (Monarcha castaneiventris) from the
Solomon Islands, a complex of closely related subspecies in the early stages of
speciation. On the large island of Makira M. c. megarhynchus has a chestnut
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belly, whereas on the small satellite islands of Ugi, and SA/SC M. c. ugiensis
is entirely iridescent blue-black (i.e., melanic). Melanism has likely evolved
twice, as the Ugi and SA/SC populations were established independently. To
investigate the genetic basis of melanism on each island we generated whole
genome sequence data from all three populations. Non-synonymous mutations
at the MC1R pigmentation gene are associated with melanism on SA/SC,
while ASIP, an antagonistic ligand of MC1R, is associated with melanism
on Ugi. Both genes show evidence of selective sweeps in traditional summary
statistics and statistics derived from the ancestral recombination graph (ARG).
Using the ARG in combination with machine learning, we inferred selection
strength, timing of onset and allele frequency trajectories. MC1R shows ev-
idence of a recent, strong, soft selective sweep. The region including ASIP
shows more complex signatures; however, we find evidence for sweeps in mu-
tations near ASIP, which are comparatively older than those on MC1R and
have been under relatively strong selection. Overall, our study shows conver-
gent melanism results from selective sweeps at independent molecular targets,
evolving in taxa where coloration likely mediates reproductive isolation with
the neighboring chestnut-bellied subspecies.

3.2 Introduction

The extent to which evolutionary change can be predicted has been a long-
standing matter of debate in evolutionary biology (Gould, 1989; Grant and
Grant, 2002; Blount et al., 2018). Instances of convergent evolution support
the argument that evolutionary change can be deterministic, yet stochastic
historical events can lead to divergent outcomes from recently split taxa. A
better understanding of the eco-evolutionary forces and genetic mechanisms
behind evolutionary changes will shed light on the conditions under which
deterministic or stochastic outcomes can occur. Some examples of conver-
gent evolution occurred deep in the tree of life, like the independent origins
of wings in birds, bats and insects (Blount et al., 2018), while other cases
represent more recent (and potentially ongoing) phenomena like the repeated
radiations of ecomorphs in Caribbean lizards (Mahler et al., 2013), the loss of
flight associated to insularity in insects and birds (Roff, 1994; Wright et al.,
2016) or the evolution of island melanism (Mundy, 2005). These recent classic
examples of phenotypic convergence can be leveraged to study the evolutionary
forces and molecular mechanisms behind phenotypic change. Here we focus on
island melanism in birds, a phenotype that involves the increased deposition
of eumelanin, which leads to entirely black plumage coloration (Theron et al.,
2001; Uy et al., 2016; Walsh et al., 2021).

45



The Chestnut-bellied Monarch (Monarcha castaneiventris) from the Solomon
Islands represents a complex of closely related subspecies which are in the early
stages of speciation and vary in plumage color, song, and body size (Mayr,
1999; Mayr and Diamond, 2001; Uy, Moyle, and Filardi, 2009). One of these
subspecies, M. c. ugiensis, has entirely iridescent blue-black plumage, and is
found on the small satellite islands to the north and southeast of the larger
island of Makira (Fig. 3.1A). In contrast, the endemic subspecies on Makira
is M. c. megarhynchus and has a chestnut belly and iridescent blue-black up-
per parts. Phylogenetic analyses using reduced-representation genomic data
show that M. c. ugiensis individuals from the satellite islands of Ugi, and
Santa Ana and Santa Catalina (SA/SC) are independently derived from the
chestnut-bellied Makira population, suggesting that M. c. ugiensis is poly-
phyletic and melanism has evolved repeatedly and convergently (Cooper and
Uy, 2017). A candidate gene study suggested that the molecular basis of in-
creased melanin deposition differs between the Ugi and SA/SC populations
(Uy et al., 2016). Melanism on each of the satellite islands is associated with
mutations that affect the coding sequence of the MC1R/ASIP receptor and
ligand pair, two molecules that regulate the balance between the production
of eumelanin (a pigment conferring black/gray coloration) and pheomelanin
(a pigment which leads to brown/yellow coloration). While the melanic indi-
viduals from SA/SC carry a derived non-synonymous mutation on the MC1R
receptor, their counterparts from Ugi possess a non-synonymous mutation on
the ASIP ligand, and heterozygotes at either mutation display an intermedi-
ate coloration phenotype (Fig. 3.1B; Uy et al., 2016). Finally, it is likely that
changes in plumage color mediated by these mutations generate prezygotic
reproductive isolation between the melanic populations on the satellite islands
and the chestnut-bellied population on nearby Makira, as territorial males dis-
criminate individuals by their phenotype, and respond predominantly to sim-
ulated territorial intrusions of males with the local plumage (and song) traits
(Uy, Moyle, Filardi, and Cheviron, 2009; Uy and Safran, 2013). Convergent
melanism, therefore, may result in repeated speciation between the chestnut-
bellied population of Makira, and each of the two melanic populations of Ugi
and SA/SC.

Here we generate a reference genome for the Chestnut-bellied Monarch
and obtain high coverage whole-genome data for a sample of individuals from
Makira and its satellite islands. Our study aims to uncover the molecular
targets and evolutionary forces that shape convergent evolution of adaptive
traits that can contribute to generating prezygotic reproductive isolation. We
use these data to quantify differentiation, reconstruct phylogenetic affinities,
and infer the demographic history of these populations. We then use a genome-
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Figure 3.1: Genetic differentiation and demography of M. c.
megarhynchus and M. c. ugiensis. A. Study area, sample sizes and
predominant phenotype on each island. The map was downloaded and mod-
ified from www.diva-gis.org. B. Representative pictures of chestnut-bellied,
intermediate and melanic individuals (color key used throughout Chapter 3).
Maximum Likelihood tree (C) and PCA (D) indicating the origin and col-
oration phenotype of each individual. E. Admixture plot showing the propor-
tion of ancestry for each individual belonging to three different genetic clusters.
Each cluster is color-coded by the island from which samples originated and
the phenotype is shown by color-coded circles on the left of the plot. F. Pair-
wise FST estimates summarized by contig. G. Demographic reconstructions
indicating estimates of divergence times, effective population sizes, and mi-
grants per generation.
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wide approach to identify variants associated with melanic plumage. Finally,
we infer the evolutionary processes that have shaped these phenotypes on each
of the satellite islands of Ugi and SA/SC, estimate when mutations arose and
the timing of these selective events.

3.3 Results

3.3.1 Melanic populations are independently derived from
a chestnut-bellied ancestor

Birds grouped together by island, irrespective of their coloration phenotype
(Fig. 3.1C&D). Individuals from the satellite islands of SA/SC (which are pri-
marily melanic, yet show a low prevalence of the intermediate coloration phe-
notype) and Ugi (which are exclusively melanic) formed island-specific clades
which were embedded among clades containing primarily chestnut-bellied indi-
viduals from the larger island of Makira (Fig. 3.1C). The relationships among
birds from the three islands could not be resolved using mtDNA, as individuals
from every locality share haplotypes (Fig. S1 in Appendix B). Consequently,
melanism on the two satellite islands likely originated twice, independently
from a chestnut-bellied ancestor (Uy et al., 2016; Cooper and Uy, 2017). We
did not observe clear evidence of early generation inter-island hybrids in the
genome-wide PCA (Fig. 3.1D), however the two individuals from Makira
which form a clade with the individuals from Ugi (Fig. 3.1C) showed inter-
mediate coloration and were sampled in the locality which is closest to Ugi
(Waimasi), suggesting the possibility of either incomplete lineage sorting or
gene flow. Furthermore, we observed Makira ancestry in one individual of
each of the satellite islands, and SA/SC or Ugi ancestry in a few individuals
on Makira (Fig. 3.1E). The admixed individuals on Makira were from the lo-
calities closest to the satellite island with which they shared ancestry (Waimasi
for Ugi and Star Harbour for SA/SC). The levels of differentiation among pop-
ulations were largest between Ugi and SA/SC, intermediate between Ugi and
Makira, and smallest between SA/SC and Makira (Fig. 3.1F). The contigs
showing the highest differentiation for each pairwise population comparison
were in all cases Z-linked. The difference in the magnitude of genetic differ-
entiation between populations could be due to variation in a combination of
demographic parameters (i.e, the splitting time, the degree of gene flow ex-
perienced after this split, or the intensity of genetic drift due to differences
in effective population sizes). We therefore used sequence data to conduct a
demographic reconstruction with G-PhoCS, which suggested that the main
reason for the observed difference in the levels of differentiation between pop-
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ulations was that Ugi split from Makira approximately six times earlier than
SA/SC branched from Makira (Fig. 3.1G). Additionally, the effect of genetic
drift is likely to be slightly stronger in Ugi, as its effective population size
was inferred to be nearly two thirds of that of SA/SC (and approximately one
eighth of Makira’s). Finally, G-PhoCS inferred significant levels of gene flow
from Makira into each of the satellite islands (higher into SA/SC) and not in
the reverse direction Fig. 3.1G, suggesting that the admixture observed on
Makira (Fig. 3.1E) may be due to the retention of ancestral polymorphisms
in this larger population.

3.3.2 Melanism on each satellite island associates with
mutations in different genes

To test if the convergent melanic phenotype on each of the satellite islands was
also convergent at the molecular level, we conducted two genome-wide associ-
ation studies (GWAS) while controlling for population structure by including
an inter-individual relatedness matrix as a covariate. The first included in-
dividuals from Makira and SA/SC and revealed a single peak on contig 400
(corresponding to chromosome 11) composed of 61 SNPs with association val-
ues above the significance threshold (Fig. 3.2A). This region contained 15
annotated genes, including the coloration gene MC1R (Fig. 3.2B and S1 Ta-
ble in Appendix B). The second GWAS, derived from individuals from Ugi
and Makira showed seven association peaks with 83 annotated genes (Fig.
3.2C and S1 Table in Appendix B), suggesting a larger number of genes could
mediate melanism on Ugi. One of these association peaks, on contig 947
(located on chromosome 20), contained four of the six strongest hits in the
GWAS. The MC1R antagonist ASIP was one of the 14 genes in this region
(Fig. 3.2D). The variants within the seven association peaks were in high
linkage disequilibrium (LD) (average intrachromosomal R2 = 0.84; average
interchromosomal R2 = 0.79; Fig. S2 in Appendix B). We did not find other
known coloration genes within the remaining association peaks (S1 Table in
Appendix B), suggesting these genes have unknown functions in melanism or
mediate other differences between the Ugi and Makira populations which may
covary with changes in coloration (e.g., Ugi individuals are larger than those
from Makira). Three of the seven association peaks were on the Z sex chro-
mosome, which is consistent with this chromosome evolving faster than the
autosomes in birds (Irwin, 2018). Additionally, when comparing within the
region encompassed by the association peaks containing MC1R and ASIP and
outside of this region (for contig 400 and 947 separately), we observed higher
levels of differentiation between Makira and each of the satellite islands (Fig.
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S3A&B in Appendix B).
The melanic individuals from SA/SC had two haplotypes in the region

which contained the 61 association hits on contig 400, which were different
from the most prevalent haplotype on Makira and Ugi (Figs. S4 and S5 in
Appendix B). Three variants fell within the coding region of MC1R; two of
these positions involved synonymous changes and one coded for an Asp119Asn
substitution. Similarly, all the individuals from Ugi possessed two haplotypes
that were different from the main one present in SA/SC and Makira individuals
in the association region around ASIP (38 SNPs; Figs. S5 and S6 in Appendix
B). A single position fell within the coding region of ASIP and involved a
non-synonymous Ile55Thr substitution, with all Ugi individuals carrying the
Thr55 allele. In conclusion, melanic individuals always carried two copies of
the coding MC1R mutation (Asn119 ) observed on SA/SC or of the coding
ASIP mutation (Thr55 ) observed on Ugi.

3.3.3 The regions of the genome containing MC1R and
ASIP show signatures of selective sweeps

We first searched for signatures of selection by calculating summary statistics
from the focal contigs containing coloration genes. The region which includes
the MC1R gene produced negative values of Tajima’s D and low nucleotide
diversity in the SA/SC population (Fig. 3.3A), as expected for a selective
sweep, and high H12 and intermediate H2/H1 values, which are consistent
with a relatively soft selective sweep (Fig. 3.3B). However, because of the
windowed nature of this analysis we are cautious in interpreting the specific
type of sweep that affected the MC1R gene. We observed windows within
the peak on contig 947 for the Ugi population that showed an overall similar
pattern to the one seen for MC1R on SA/SC (Fig. 3.3C&D). The positive
value of Tajima’s D for the window containing ASIP on contig 947 (1.4) may
be consistent with balancing selection, yet represents an average for a 5 kb
window which only included a single SNP (out of 12) from the gene region. In
fact, when we calculate Tajima’s D for 500 bp windows, the one which includes
ASIP has a value close to zero (0.25; calculated from 3 SNPs in that window).
We opted to present our results for 5 kb windows as these contain an average
of 25 SNPs per window (vs. an average of 3 SNPs for 500 bp windows) and
therefore represent more robust values of the summary statistics. Finally, we
note that genome-wide values of Tajima’s D tend to be close to zero for the
three populations (-0.6 for Makira and 0.1 for both SA/SC and Ugi), which
suggests this statistic hasn’t been strongly impacted by demographic trends.

We next searched for signatures of selection on the focal contigs by calcu-
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Figure 3.2: Genome wide association study comparing individuals
from subspecies of Monarcha castaneiventris. A. Manhattan plot ob-
tained from the GWAS comparing individuals from Makira and SA/SC. B.
Zoom-in to the association peak in A indicating gene annotations within this
region with MC1R in red. Equivalent plots for the GWAS obtained with in-
dividuals from Makira and Ugi (C, D).
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Figure 3.3: Evidence of a selective sweep in MC1R for the SA/SC
population and on ASIP in the Ugi population. Biplots of Tajima’s
D vs. nucleotide diversity for contig 400 and contig 947 (A, C). Biplots of
H12 vs. H2/H1 for the same contigs as above (B, D). Dots represent statistics
derived from 5 kb windows (Tajima’s D vs. nucleotide diversity) or 100-SNP
windows (H12 vs. H2/H1), and are color coded based on the population of
origin. Larger dots denote windows that belong to the outlier peak region, and
those that have a red outline include the focal gene indicated by the arrow.

lating two statistics derived from the ancestral recombination graph (ARG): a
species (or population) enrichment score and a measure of normalized time to
most recent common ancestry (TMRCA) called the relative TMRCA half-life
(RTH’; Rasmussen et al., 2014; Hejase, Salman-Minkov, et al., 2020, Fig. S7A
in Appendix B). Species enrichment scores measure the probability of observ-
ing subtrees of different sizes containing individuals from a certain species.
RTH’ is the TMRCA of half of the haploid samples of a species divided by
the age of the youngest subtree containing half of all the haploid samples, and
measures the age of coalescence events independently of the overall coalescence
rate. We reasoned that areas of the genome that have undergone a selective
sweep in a given population should show shallow genealogies (low RTH’ val-
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ues) comprising most individuals of that population (high species enrichment
score) (Hejase, Salman-Minkov, et al., 2020). We averaged these statistics
across 20 kb windows and for each statistic we established population-specific
thresholds based on the distribution of values obtained from control windows.
In the MC1R region of contig 400, we observed a statistically significant el-
evation of the SA/SC enrichment score, which coincided with a dip in RTH’
(p < 0.005 in both cases; Figs. 3.4A and 3.4B). In the ASIP region of con-
tig 947, we observed a similar pattern for the Ugi population (enrichment:
p < 0.005, RTH’ p < 0.01; Figs. 3.4C and 3.4D). These statistical outliers
were generated from trees with large and shallow population-specific clades
(Fig. S8 in Appendix B). The statistics for the remaining populations in each
of the focal contigs did not surpass the thresholds of statistical significance and
resembled the values observed for the control contigs (see an example in Fig.
S9 in Appendix B). Finally, we also observed clades with extreme enrichment
scores on trees obtained from each of the gene regions themselves (Fig. 3.4E;
MC1R enriched for SA/SC and ASIP enriched for Ugi individuals).

We next used SIA (Hejase et al., 2022), a supervised deep-learning method,
to infer the strength and time of onset of selection on individual variants within
the candidate regions associated with melanism on SA/SC and Ugi. Our
models performed well on data simulated under the demographic parameters
inferred by G-PhoCS (using msprime and SLiM), distinguishing neutral sites
from those under selection, and were able to distinguish soft from hard sweeps
in most cases (Figs. S10A and S10B in Appendix B). For this task, we assigned
the class with the highest probability as the predicted class, which according
to the benchmark with simulated data, resulted in a false positive rate (FPR)
of 6–8% when distinguishing neutral regions from those under selection (Fig.
S10A in Appendix B). We note, however, that a more stringent probability
cutoff could be applied to specifically reduce the FPR for exploratory analyses
such as whole-genome selection scans. When applied to the real data, SIA
found evidence for soft selective sweeps on multiple variants in the peak region
of contig 400, including sites associated with melanism in our GWAS (Fig.
3.5A). We observed the strongest selection (s ≈ 0.02) on the variants within
and around MC1R (which were found on the same haplotype), with the timing
of selection onset inferred to be ∼500 generations before present on mutations
that were ∼78K generations old (Fig. 3.5B). Although our models tended to
overestimate selection coefficients when the true s was small, the overestimated
values of s were typically below 0.01 (Fig. S10 in Appendix B), which is not
the case for MC1R. On contig 947, the sites associated with melanism in
our GWAS did not vary (i.e., are fixed) in the Ugi population (Fig. S6 in
Appendix B), which may hinder our ability to detect signatures of selection
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Figure 3.4: Signatures of selective sweeps in ARG-based statistics on
the focal contigs with coloration genes. Plots showing species enrich-
ment (A, C) and RTH’ (B, D) in 20 kb windows along contig 400 and 947.
Horizontal lines show species-specific levels of statistical significance, dashed
vertical lines define the regions of the association peaks, and solid vertical lines
show the position of coloration genes (MC1R and ASIP). E. Outlier values
of species-enrichment within the MC1R and ASIP genes (the position on the
contig from which each topology is derived is shown on the bottom of each
tree). The terminal branches are color-coded by island and the color of inter-
nal branches represents an average over all offspring branches.
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Figure 3.5: Estimation of positive selection at MC1R in the SA/SC
population and at ASIP in the Ugi population using SIA. A. Neg-
ative log probability of neutrality (− log (pneu)) in the SA/SC population at
candidate sites near the MC1R gene. GWAS hits are highlighted with in-
verted triangles. Significantly non-neutral sites (pneu < 0.05) are colored by
the predicted class with the highest probability. B. Inferred derived allele
frequency (DAF) trajectories, local genealogies and selection parameters at
three loci of interest. 95% confidence intervals of inferred selection parameters
are shown in square brackets. These were estimated using random dropouts
at inference time (see Materials and methods). The vertical dashed line on
the DAF plot indicates selection onset inferred by SIA. Derived lineages are
colored in aquamarine. Highlighted here are a GWAS locus in the MC1R cod-
ing sequence, the locus inferred to be under the strongest selection near the
ASIP gene and a GWAS locus near the ASIP gene. The location of these
loci is projected onto panels (A) and (C) by dashed gray lines. C. Negative
log probability of neutrality in the Ugi population at candidate sites near the
ASIP gene. Details of the figure are otherwise similar to panel (A).
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when applying SIA to this population. Despite observing several signals of
selection in the association peak in other analyses (e.g., high species enrichment
or low RTH’), SIA inferred these sites as neutral (Fig. 3.5C). Although among
the sites identified by the GWAS we observed some towards the end of the
contig which showed the highest probability of having undergone soft sweeps,
they also had a pneu > 0.05 and were therefore conservatively classified as
neutral. We did however observe non-neutral sites close to ASIP. The site
with the highest assignment probability to a given class has undergone a soft
sweep (P (soft) = 0.842), is 12–14 k generations old, and was under selection
(s ≈ 0.01) for ∼2,200 generations. Overall, MC1R was among the strongest
and most recent targets of selection in the genome of individuals from the
SA/SC population (Fig. S11 in Appendix B).

3.4 Discussion

Our findings show how melanism originated twice in the polyphyletic M. c.
ugiensis from a chestnut-bellied ancestor: once on Ugi and a second time on
SA/SC (Uy et al., 2016; Cooper and Uy, 2017). Moreover, the molecular basis
of this convergent phenotype is likely to be different on each island. Our study
is novel in identifying how selection has shaped the phenotype on either island,
and by being able to time these events.

Black plumage on SA/SC likely originated under strong and recent selec-
tion (in the order of 1,000 years before present, assuming a generation time of
2 years) on a series of standing mutations (i.e., a soft sweep) in and around
the MC1R gene. Selection on MC1R is comparable in strength to what was
found for the same gene in pocket mice (Hoekstra et al., 2004) or on the LCT
gene (associated with the lactase persistence trait) in European human popu-
lations (Bersaglieri et al., 2004; Hejase et al., 2022). Our ARG-based analysis
dates the origin of these mutations to ∼78 K generations before present (Fig.
3.5B), which is older than the inferred split between SA/SC and Makira (∼68
K generations), suggesting they could have originated in the larger Makira
population and existed at low frequencies in SA/SC until the mating prefer-
ence for melanic males reached a frequency threshold that triggered the recent
selective sweep (e.g., Kokko et al., 2002). Consistent with this scenario, these
derived mutations are present at low frequencies on Makira and Ugi (Fig. S4
in Appendix B). We found among the strongest signatures of selection in the
genome on the coding Asp119Asn mutation in this gene, a substitution that
has been observed independently in other taxa and is known to constitutively
activate MC1R (Lu et al., 1998), leading to melanism in some domestic an-
imals (Kijas et al., 1998; V̊age et al., 1999; Mundy, 2005). Despite these
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lines of evidence, we can’t rule out that other nearby mutations (perhaps cis-
regulatory) also contribute to shaping the coloration phenotype in the SA/SC
population.

Various lines of evidence suggest selection in the genomic region contain-
ing ASIP in the melanic Ugi population, including high species enrichment,
higher levels of differentiation (FST), low RTH’, or low nucleotide diversity.
However, these statistics were calculated as windowed averages, making it
hard to precisely determine the variants under selection. The coding Ile55Thr
substitution on ASIP (and the other sites identified by the GWAS) was fixed
on Ugi and only found in five additional individuals from the other islands
(mostly in heterozygosity; Fig. S6 in Appendix B). This association, together
with the fact that mutations on the N-terminal portion of ASIP (where this
substitution occurs) can disrupt binding and lead to melanism in other taxa
(Hiragaki et al., 2008; Kingsley et al., 2009), suggest a causal role. However,
SIA did not infer this mutation to be under selection (or any of those identified
by our GWAS analysis) and instead found other positions close to ASIP to
be under selection. It is possible that these variants were not identified by
our GWAS because of their patterns of segregation on Makira and, conversely,
that SIA did not find the GWAS hits to be under selection because of their
lack of variation in the Ugi population or because those events may have been
too old. The estimated age of the Ile55Thr substitution is in the order of
174 K generations before present, and SIA was not trained to detect selection
older than 20 K generations, and rarely identified selection older than 10 K
generations (Fig. S10 in Appendix B). There are a few alternative interpreta-
tions of these complex signatures of selection on contig 947. It is possible that
the coding position on ASIP is an example of an old and completed sweep,
and that SIA has detected selection on additional, perhaps cis-regulatory, and
more recent mutations (dated to 12-14K generations before present with an
estimated selection onset in the order of 5–10 times older compared to what
was estimated for MC1R). These cis-regulatory mutations could modify the
direct (i.e., plumage color) or potential pleiotropic (e.g., stress response, food
intake) effects of the Ile55Thr substitution on ASIP (Ducrest et al., 2008).
Alternatively, the GWAS and SIA may have identified sites towards the end
of contig 947 (between positions 6.9 and 7) that are independent of selection
on ASIP and could contribute or be unrelated to differences in coloration.
Similarly, additional mutations in other association peaks may contribute to
melanism on Ugi, although we did not identify coloration genes in those ge-
nomic regions, suggesting they mediate additional phenotypes in which the
Ugi and Makira populations differ. Finally, recombination in the flanking re-
gions of hard sweeps can lead to the erroneous identification of soft sweeps
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(or “soft shoulders”; Schrider et al., 2015). SIA could have identified the soft
shoulder of a hard sweep on ASIP (Fig. 3.5C), yet we consider this scenario
to be unlikely since this erroneous classification was uncommon when using a
similar approach on a different study system (Hejase, Salman-Minkov, et al.,
2020). Overall, results from multiple population genetic approaches suggest
selective sweeps occurred in the genomic region containing ASIP in the Ugi
population.

The probability of gene reuse in parallel phenotypic evolution has been es-
timated to be particularly high when populations are young and closely related
(Conte et al., 2012), as is the case for SA/SC and Ugi. It is therefore surpris-
ing that the older ASIP mutations do not also mediate melanism on SA/SC,
especially since we observed one SA/SC and a few Makira individuals carrying
Ugi haplotypes from the ASIP region (Fig. S6 in Appendix B). One possible
explanation is that gene flow between satellite islands is sufficiently low that
the MC1R mutation swept before the ASIP mutations reached SA/SC.

Our findings highlight how independent selective sweeps on a receptor/ligand
pair can lead to melanism on two island populations. In M. c. ugiensis this
trait has been repeatedly favored by selection, and it remains to be determined
if the same is true for other instances of island melanism (Theron et al., 2001;
Uy and Vargas-Castro, 2015; Walsh et al., 2021). There are several hypoth-
esized benefits of darker plumage coloration, including abrasion resistance,
protection from UV radiation, thermoregulation, crypsis, and parasite resis-
tance (e.g., Jacquin et al., 2011; Marcondes et al., 2021). Furthermore, avian
coloration is known to mediate reproductive isolation (Price, 2007), especially
in the early stages of speciation, and numerous incipient species have been
found to differ primarily in melanin-based coloration traits (Poelstra et al.,
2014; Bourgeois et al., 2017; Uy et al., 2018; Semenov et al., 2021; Turbek
et al., 2021). Field experiments have shown that species recognition is medi-
ated by plumage color in melanic and chestnut-bellied birds from Santa Ana
and Makira, respectively (Uy, Moyle, Filardi, and Cheviron, 2009; Uy and
Safran, 2013). Therefore, the strong selective pressures we observe in and
near pigmentation genes may be the combined product of the advantages of
melanic plumage and sexual selection driven by female choice. Overall, our
study shows how independent mutations on individual coloration genes can
lead to the convergent evolution of a phenotype that is favored on small is-
lands, which, in turn, could promote reproductive isolation and the repeated
evolution of incipient species.
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3.5 Materials and methods

3.5.1 Ethics statement

All birds were caught with mist nets then measured, tagged, blood-sampled
and released as part of a long-term study. Permission to collect samples and
work in the Solomon Islands was granted by the Ministry of Environment,
Climate Change, Disaster Management & Meteorology (BR/2014/002). Re-
search was approved by the University of Miami Institutional Animal Care
and Use Committee (IACUC) protocols number 11–116, 14–097 and 17–071.

3.5.2 Sampling and dataset

A total of 57 individuals from the island of Makira and the neighboring is-
lands of Ugi and Santa Ana/Santa Catalina (hereafter SA/SC) were included
in this study from samples collected between 2006 and 2018 (S2 Table in Ap-
pendix B). Twenty-two Chestnut-bellied Monarch (Monarcha castaneiventris
megarhynchus) birds were sampled from three sites on Makira: 7 birds from
Waimasi directly across Ugi, 8 birds from Kirakira along the northern coast of
Makira, and 7 birds from Star Harbour across from SA/SC. Thirty-five M. c.
ugiensis birds were included from two satellite island groups: 16 birds from the
island of Ugi, and 19 birds from SA/SC. Ten birds of intermediate plumage
color (partial chestnut) were sampled, 6 from Makira and 4 from SA/SC. The
remaining birds from SA/SC and all of those from Ugi were melanic, while
those from Makira were all chestnut-bellied except for one melanic individ-
ual. Finally, a sample from a chestnut-bellied M. c. obscurior bird caught in
the Russell Islands in 2013 was used to sequence and assemble the reference
genome, and five additional individuals caught in 2012 were re-sequenced as
outgroups for phylogenetic analysis.

3.5.3 Reference genome assembly and annotation

We assembled and annotated a genome from a male Chestnut-bellied Monarch
(Monarcha castaneiventris obscurior) sampled in the Russell Islands (Solomon
Islands; individual RU430). We obtained both short-read Illumina data and
long-read Pacific Biosciences (PacBio) data from the same individual, and all
sequencing was conducted by Novogene Co. A fragment library was prepared
using the NEBNext DNA Library Prep Kit with an insert size of 350 bp, and
paired-end sequenced on an Illumina Novaseq 6000 machine, producing 168
gb of raw data (approximately 140x coverage). PacBio SMRTbell libraries
were prepared and sequenced on 5 flow cells of the Sequel platform, generat-
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ing 71.4 gb of data (approximately 60x coverage) with 7 million subreads with
an average N50 of 15.5 kb. We used Samtools version 1.11 (H. Li et al., 2009)
to merge the subreads from the five flow cells, filter out subreads that were
shorter than 4.5 kb (retaining 67.6% of the subreads), and to convert the file
to fasta format. We performed the genome assembly with MaSuRCA version
3.3.3 (Zimin et al., 2013), an assembler which can incorporate both Illumina
and PacBio data by being able to use reads of variable lengths. We produced
assembly statistics with Quast version 5.0.2 (Gurevich et al., 2013), obtaining
a total assembly length of 1.08 gb distributed in 899 contigs, with an N50 of
20.2 mb and 2.1 Ns per mb. We assessed the completeness of our reference
assembly by searching for the Passeriformes set of 10,844 single copy orthologs
using BUSCO version 5.1.2 (Simão et al., 2015). Our reference genome con-
tained a complete copy of 95.7% of the orthologs in this gene set, 95.4% were
found as single copy genes and 0.3% were duplicated. There was a total of
3.4% of these genes that were missing from our assembly and an additional
0.9% were found fragmented. We estimated the chromosomal location of the
899 contigs in our assembly by aligning them to the chromosome level Zebra
Finch genome (bTaeGut2.pat.W.v2 downloaded from NCBI) with the Chro-
mosemble function from the Satsuma version 3.1 pipeline (Grabherr et al.,
2010), and assigning contigs to the chromosome with the top hit. This func-
tion also provides a version of the reference genome with contigs aligned and
oriented into pseudochromosomes, assuming synteny between the Chestnut-
bellied Monarch and the Zebra Finch. We conducted downstream analyses
with both versions of the reference genome and obtained equivalent results
(e.g., the same association peaks in our GWAS), so we decided to present
those based on the version of the genome that does not assume synteny with
the distantly related Zebra Finch.

We annotated the reference genome by first generating a library of the
repetitive sequences with RepeatModeler version 2.01 (Flynn et al., 2020).
These simple and complex (e.g., transposible elements) repeats can be subse-
quently masked to avoid being incorreclty annotated as genes from the organ-
ism of interest. We then ran two iterations of the MAKER pipeline version
3.01 (Cantarel et al., 2008) to produce gene models. The first iteration gener-
ated gene models by training algorithms with data from Zebra Finch transcript
and protein databases (downloaded from the bTaeGut2.pat.W.v2 assembly).
The models are subsequently refined during a second iteration of the pipeline
that uses the output of the first MAKER run as input. In total the pipeline
produced 15,226 gene models (72.3% of the 21,049 genes annotated for the
Zebra Finch).
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3.5.4 Population level genome sequencing and variant
discovery

We sequenced the genomes of 57 individuals, 22 belonging to M. c. megarhynchus
sampled on the island of Makira and 35 to individuals of M. c. ugiensis, 16
of which were sampled on the island of Ugi and 19 sampled on the islands
of SA/SC. We extracted DNA from blood samples using the DNEasy blood
and tissue kit (Qiagen, CA, USA) and libraries were prepared by Novogene
Co with the NEBNext DNA Library Prep Kit, with an inset size of 350 bp.
Sequencing was performed on an Illumina Novaseq 6000 machine by Novogene
Co, obtaining 5,967 million paired end, 150 bp reads. Based on the number
of raw (pre-filtering) reads, we expected the depth of coverage to range across
all individuals from between 21.5 and 36.8x (average of 26.2x).

We first assessed the quality of individual libraries using fastqc version
0.11.8 and performed quality filtering and trimming, adapter removal and
merged overlapping paired end reads with AdapterRemoval version 2.1.1 (Schu-
bert et al., 2016). Once reads were filtered we proceeded to align them to the
reference genome using Bowtie2 version 2.4.3 (Langmead and Salzberg, 2012)
using the very sensitive local option, which resulted in an average alignment
rate of 99.4%. We manipulated the alignment files using Samtools version 1.11
(H. Li et al., 2009), converting sam files into bam format and sorted and indexed
them. We used Picard Tools version 2.8.2 to mark PCR duplicates, GATK
version 3.8.1 (Van der Auwera and O’Connor, 2020) to realign around indels,
and finally Picard Tools to fix mate-pairs. We obtained an average depth of
coverage of 26.3 +/- 4.5x and an average duplication rate of 21.4 +/- 1.6 by
computing alignment statistics using qualimap version 2.2.1 (Garcia-Alcalde
et al., 2012).

Our genotyping pipeline started by producing individual genomic variant
call files for each sample with the “Haplotypecaller” module from GATK, and
we subsequently used the “GenotypeGVCFs” module to summarize variants
into a single variant file for the entire dataset. We selected SNPs with the “Se-
lectVariants” module of GATK and retained those that satisfied the following
filters: QD < 2, FS > 60.0, MQ < 30.0, ReadPosRankSum < -8.0. Finally, we
used VCFtools version 0.1.16 (Danecek et al., 2011) to retain 4,799,460 vari-
ant sites present in at least 80% of individuals, with mean depth of coverage
between 2 and 50 and a minor allele count of at least 8 (equivalent to a mini-
mum of four homozygote individuals, which represents 25% of the population
with the smallest sample size). We used this dataset for downstream analyses
unless otherwise stated.
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3.5.5 Population structure, genetic differentiation and
summary statistics

We assessed population structure and admixture among individuals in our
sample by conducting a PCA, constructing an admixture plot and building
a Maximum Likelihood tree. We also quantified differentiation by calculat-
ing FST values among the populations from the three sampled islands. The
PCA was conducted in R version 4.0.2 (R Core Team, 2021) with the package
SNPRelate version 3.3 (Zheng et al., 2012). We assessed structure and admix-
ture using the program Admixture version 1.3.0 (Alexander et al., 2009). For
this analysis we first thinned the dataset to avoid including linked SNPs with
VCFtools, retaining 101,076 SNPs that were at least 10 kb apart. We manip-
ulated the vcf file in VCFtools and plink version 1.9 (Purcell et al., 2007) to
convert it to bed format and ran Admixture with a K of three populations.
We also ran Admixture analyses exclusively for the two focal contigs with as-
sociation peaks, in 100 kb sliding windows. We ran the analysis separately for
Makira vs. SA/SC individuals on contig 400 and Makira vs. Ugi on contig 947
(i.e., K = 2). We plotted these values by using a smoothing line in ggplot2
(Wickham, 2016). To build a tree we first re-ran the pipeline described in the
previous section using identical parameters, but including five outgroup M. c.
obscurior individuals sampled in the Russel Islands (> 330 km away). This
iteration of the pipeline produced 5,811,866 SNPs, 5,094,873 of which (those
that had the minor allele in homozygosity in at least one individual) could
be used to build a tree using RAxML version 8.2.4 (Stamatakis, 2014). We
implemented the “ASC GTRGAMMA” model in combination with the Lewis
correction for ascertainment bias, and carried out 200 bootstrap replicates.
We used VCFtools to calculate FST values for non-overlapping 5 kb and 25 kb
windows, and subsequently obtained average values and standard deviations
for each contig/population comparison in R. We also calculated Tajima’s D
and nucleotide diversity (π) in non-overlapping, 5 kb windows, with VCFtools
(independently for each population) using a dataset without the minor allele
frequency filter (see the section on Demographic reconstruction). Addition-
ally, we calculated the haplotype-based statistics H1, H2, H12 and H2/H1,
which are designed to distinguish between soft and hard sweeps, using the
package SelectionHapStats (Garud et al., 2015). We obtained these statistics
for non-overlapping windows of 100 SNPs, merging haplotypes with only one
difference (-distanceThreshold 1) and using the dataset without the minor
allele frequency filter. Finally, we used the information of the chromosomal
location of each contig (based on the results from Chromosemble, see above) to
plot FST estimates obtained from autosomes and the Z chromosome separately,
as values from the latter chromosome tended to be higher. We only plotted
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values for contigs that were at least 150 kb (six non-overlapping windows).
We also built minimum spanning networks in PopART 1.7 (Bandelt et al.,

1999; Leigh and Bryant, 2015) from mitochondrial genomes. We first assem-
bled mtDNA genomes from our filtered reads with MITObim 1.9.1 (C. Hahn et
al., 2013), using the “quick” option and up to 40 iterations with the full mito-
chondrial genome from the Hooded Crow as a template (Corvus cornix cornix,
GenBank number NC 024698.1). We subsequently aligned the 57 individual
sequences in Geneious version 10.2.6 (Kearse et al., 2012) and imported the
alignments into PopART 1.7. We repeated this process restricting the analy-
sis to the COI gene alone, which is commonly used for species identification
(Hebert et al., 2003).

3.5.6 Demographic reconstruction

We conducted demographic reconstructions using G-PhoCS version 1.3 (Gronau
et al., 2011) which implements an isolation-with-migration model, obtaining
estimates of effective population sizes, splitting times and bi-directional mi-
gration rates. Because of the computationally intensive nature of this analysis,
we conducted two separate demographic reconstructions, one including indi-
viduals from Makira and Ugi and the second with individuals from Makira and
SA/SC. We also subsampled our dataset, retaining 7 individuals per island
(we did not include individuals with intermediate coloration or the melanic
individual from Makira). We re-exported 11,537,213 SNPs without a minor
allele frequency filter to avoid biasing our analysis by only using data includ-
ing alleles segregating at higher frequencies, and used these SNPs to generate
sequence files for each individual with the “FastaAlternateReferenceMaker”
module in GATK. We subsequently sampled for each individual 1,700, 1 kb
sequences at intervals of at least 100 kb from autosomal contigs that were
larger than 1 Mb. We ran the multi-threaded version of the program for 2
million iterations, discarding the initial 100,000 as burn-in, and estimated 6
demographic parameters in each of our two models (three effective popula-
tion sizes, one splitting time, and two migration rates). We checked that the
traces from the different parameter estimates were stationary and that the
effective sample sizes were large (range: 228–9020) using the coda package
in R (Plummer et al., 2006). To convert median and 95% Bayesian credible
intervals for each parameter from mutation scale to generations or individuals
we used an approximate mutation rate estimate of 10−9 per bp per generation
(Smeds et al., 2016). We note that the assumption of mutation rate will impact
the absolute estimates of population sizes and divergence times produced by
the model, however we try to focus our interpretations on relative comparisons
which are independent of the assumed mutation rate. The number of migrants
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per generation, which is independent of the assumption of mutation rate, was
calculated as the mutation scaled per generation migration rate times a fourth
of the theta parameter for the receiving population (ma>b × θb/4).

3.5.7 Genome wide association analysis (GWAS) and
identification of genes in divergent regions

We conducted a phenotype-genotype association analysis using the Wald test
implemented in Gemma version 0.98.4 (Zhou and Stephens, 2014). We gen-
erated a phenotypic variable in which chestnut individuals were scored as 1,
fully melanic individuals were scored as 2, and intermediate individuals as 1.5.
The GWAS tests the association between this phenotypic variable and SNP
genotypes by fitting univariate linear mixed models, which account for pop-
ulation structure by calculating and including an inter-individual relatedness
matrix among all samples as a covariate. We conducted two analyses, one
including individuals from Makira and SA/SC and a second with individuals
from Makira and Ugi, as we had previous evidence indicating that each island
had a different origin of melanism (Uy et al., 2016). We did not conduct a
GWAS comparing SA/SC and Ugi individuals as these two populations are
not sister and have pronounced population structure. We corrected for mul-
tiple tests by using the total number of comparisons conducted across both
GWAS (Makira vs. SA/SC and Makira vs. Ugi), and used this conservative α
threshold to assess significance (α = 0.05/(2 ∗ 4.7) M SNPs ≈ 5.3× 10−9). We
subsequently visualized our results by log-transforming the p-values, changing
their sign, and building Manhattan plots with the R package qqman (Turner,
2018). SNPs showing statistically significant associations tended to cluster to-
gether in groups (generally more than 5 SNPs) which we defined as association
peaks. In other cases, we also observed single or at most a couple of isolated
SNPs beyond the level of statistical association which we did not treat as as-
sociation peaks. We searched for the genes contained in the association peaks
by inspecting these regions in the annotation file using Geneious version 10.2.6
(Kearse et al., 2012) and compiled a list of gene models within each region. We
subsequently obtained information on these annotations of interest from the
NCBI database. We explored the relationship between genotypes at different
loci within each association peak by phasing and imputing missing data using
BEAGLE version 3.3.2 (Browning and Browning, 2007). This resulted in two
haplotypes per individual for each peak with which we calculated a distance
matrix in the R package vegan (Oksanen, 2022) and plotted it with the func-
tion phylo.heatmap() from the R package phytools (Revell, 2012). We also
calculated LD between different sites by computing R2 values in VCFtools.
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3.5.8 ARG inference and derivation of ARG-based statis-
tics

We generated statistics derived from ARGs as described in detail in Hejase,
Salman-Minkov, et al., 2020 using scripts deposited in GitHub. We first in-
ferred ARGs for two contigs with association peaks (contig 400 and contig 947;
total of 9 Mb) and 20 similarly-sized contigs (ranging from 1.2 to 11 Mb; total
of ∼65 Mb) that did not contain association peaks. We inferred ARGs using
the arg-sample module from ARGweaver version 1 (Rasmussen et al., 2014),
which estimates a local tree for each position along the contig. We ran the
software independently on each of the 22 contigs indicating that the data were
unphased and assuming a mutation and a recombination rate of 10−9/bp/gen
(Smeds et al., 2016; Hejase, Salman-Minkov, et al., 2020). We set the effective
population size to 500,000 individuals and the following options for the remain-
ing parameters required by the software: -c 5 -ntimes 20 -maxtime 1e7

-delta 0.005 -resample-window-iters 1 -resample-window 10000 -n

1000. We sampled the last of 1,000 MCMC iterations and used it to extract a
local tree at intervals of 500 bp, discarding the edges of each ARG block (ini-
tial and final 50 kb) where there is uncertainty in the inferred topologies. We
subsequently calculated two statistics from each tree for downstream analyses:
species enrichment scores and RTH’ (see Rasmussen et al., 2014 for RTH and
Hejase, Salman-Minkov, et al., 2020 for a modification in how we normalize
TMRCA to obtain RTH’ or Fig. S7A in Appendix B).

Species enrichment scores are defined as the probability of observing a sub-
tree with n leaves for which k are mapped to a certain species or population,
assuming a hypergeometric distribution. Therefore, if a local tree contains a
large clade composed of individuals from the same species this will be reflected
in a high enrichment score for that species. Because any given tree contains
various subtrees, the score for each species at each site was defined as the
highest score obtained from all the possible subtrees. RTH’ was calculated
by dividing the time to the most recent common ancestor of half the haploid
samples for a given species (TMRCAH; nMakira = 22, nSA/SC = 19, nUgi = 16)
by the age of the youngest subtree that contained at least half of all haploid
samples (n = 57). The benefits of this normalization are that it is sensitive to
various types of selective sweeps (e.g., partial sweeps, those shared by multi-
ple species or complete species-specific sweeps) and that it is independent of
the variation in coalescent times that is observed along the genome (Hejase,
Salman-Minkov, et al., 2020). We obtained 20 kb nonoverlapping window
values for each statistic, derived from averaging statistics obtained from 40
individual trees. For each species, this process produced windowed averages
for species enrichment and RTH’, for the two contigs with association peaks
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and the sample of 20 contigs that did not contain association peaks.
We assessed statistical significance by generating empirical distributions for

each parameter from the total of 3,682 20 kb windows. We established species
and parameter specific significance thresholds by finding the cutoff value that
represented the top (species enrichment) or bottom (RTH’) 0.01, 0.005 and
0.001 of the distribution. Cutoff values that defined different slices of the dis-
tribution were used to establish statistical significance at different P values.
Windows that fell beyond or below a threshold (e.g., P < 0.001) were con-
sidered to come from a region of the genome with clades that are statistically
significantly enriched in a given species, or to have statistically significantly
shallow clades (RTH’), respectively. Finally, we exported randomly selected
individual topologies or trees which illustrated extreme enrichment or RTH’
values for particular species, for the regions containing association peaks or
for specific genes.

3.5.9 Inference of positive selection

The analyses of species differentiation and cross-species ARG statistics are
useful tools to detect signals of positive selection in genomic windows. To fur-
ther localize the target of selection and infer parameters of positive selection
such as the selection coefficient, time of selection onset and allele frequency
trajectories, we employed the machine learning method implemented in SIA
(Hejase et al., 2022). SIA uses a RNN to leverage features of single-population
genealogies. Selection in a population leaves characteristic signals in its geneal-
ogy that can be picked up by SIA to make inferences of selection parameters
for individual variants that map to gene trees embedded in an ARG (Fig. S7B
in Appendix B).

We simulated data for training and benchmarking the SIA model by ini-
tializing neutral simulation in msprime (Kelleher et al., 2016) and continu-
ing simulation of positive selection in SLiM (Haller et al., 2019; Haller and
Messer, 2019), to maximize computational efficiency. We ran coalescent sim-
ulation in msprime up to the generation of selection onset (or in the case of
neutral simulations, a randomly sampled generation), saved the progress in
tree sequence format, and loaded the tree sequence in SLiM to carry on with
forward simulation. We simulated separate datasets for the SA/SC/Makira
and Ugi/Makira population pairs, each under a two-population, 5-parameter
demographic model inferred by G-PhoCS (see above and Fig. 3.1G), with
effective population size scaled down by 10-fold. Scaling down the population
sizes reduces the running time of the simulations but requires scaling other
parameters accordingly. Because the migration rates from each of the satellite
islands into Makira were inferred by G-PhoCS to be negligible, these were
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ignored in the simulations. However, we simulated gene flow from Makira into
each of the satellite island populations because it was inferred to be much
higher (Fig. 3.1G) and can have a non-trivial effect on selection inference. For
example, a completed hard sweep followed by subsequent introgression and
recombination of the ancestral haplotype could be mis-classified as soft by a
model trained without simulations of such a scenario. For sweep simulations,
selection coefficients (s) were sampled between 0.001 and 0.025 (scaled up to
0.01–0.25 for simulations) from an equal mixture of a uniform distribution and
a log-uniform distribution. We kept only sweep simulations where the current
derived allele frequencies at the sweep site was greater than 0.2 and allowed for
alleles that are “recently fixed”. This sampling scheme corresponded roughly
to a range of selection onset from 250 to 20,000 generations before present, a
regime in which SIA would be trained to detect positive selection. For soft
sweep simulations, the allele frequency threshold (finit) above which selection
acts on the allele was sampled uniformly by finit ∼ U(0.01, 0.1). To simulate
a soft sweep, at the generation of selection onset, we picked a random clade
of the satellite island population whose size matches the sampled finit). We
then added a mutation to the branch leading to the MRCA of this clade before
turning on selection at this variant. This particular MRCA could be a native
(such that the mutation occurred on the satellite island), or alternatively a
migrant from Makira (such that the allele came from standing variation in the
Makira population). Nevertheless, since SIA uses features of single-population
genealogies of the satellite island population, it is agnostic to the two scenarios.
Each dataset consists of 1,500,000 neutral, soft and hard sweep simulations of
100kb regions (equal split among the three categories). For sweep simulations,
the sweep site was at the center of the region. The datasets were used to
train and benchmark two separate SIA models for the SA/SC and Ugi pop-
ulations following a train-val-test split of 85%-5%-10%. The ARG inference
process, genealogical feature extraction and deep learning architecture used
for building the SIA model are described in detail in Hejase et al., 2022. A
cartoon illustration of the genealogical features is provided in Fig. S7B in
Appendix B. We applied the SIA model to detect signals of positive selection
in the SA/SC and Ugi populations using the dataset without the minor allele
frequency filter, and for putative sweep sites, we inferred selection coefficients
and the time of selection onset. To gauge the uncertainty of the parameter
estimates, we applied dropout to the trained SIA model at inference time (Gal
and Ghahramani, 2016). We ran the model 1,000 times, each with random
sets of dropout nodes, to obtain 1,000 samples of the model prediction from
which a 95% confidence interval was derived. We conducted these predictions
across the 190 scaffolds that were longer than 100kb and had at least 1,000
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called variants (without applying a minor allele frequency filter). Sites with a
probability of being neutral greater than 0.05 were considered to be neutral.
In addition, for particular sites of interest, we applied the model to infer allele
frequency trajectories. Finally, we dated the origin of several mutations by
estimating the midpoint age of the branch in which they first appeared.
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Chapter 4

Domain-adaptive neural
networks improve supervised
machine learning based on
simulated population genetic
data

Content of this chapter was previously uploaded to bioRxiv (2023) under the
title “Domain-adaptive neural networks improve supervised machine learning
based on simulated population genetic data” by Ziyi Mo and Adam Siepel. The
manuscript was published in PLoS Genetics (2023) under the same title.

4.1 Abstract

Investigators have recently introduced powerful methods for population ge-
netic inference that rely on supervised machine learning from simulated data.
Despite their performance advantages, these methods can fail when the sim-
ulated training data does not adequately resemble data from the real world.
Here, we show that this “simulation mis-specification” problem can be framed
as a “domain adaptation” problem, where a model learned from one data
distribution is applied to a dataset drawn from a different distribution. By
applying an established domain-adaptation technique based on a gradient re-
versal layer (GRL), originally introduced for image classification, we show
that the effects of simulation mis-specification can be substantially mitigated.
We focus our analysis on two state-of-the-art deep-learning population genetic
methods—SIA, which infers positive selection from features of the ancestral
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recombination graph (ARG), and ReLERNN, which infers recombination rates
from genotype matrices. In the case of SIA, the domain adaptive framework
also compensates for ARG inference error. Using the dadaSIA model, we esti-
mate improved selection coefficients at selected loci in the 1000 Genomes CEU
population. We anticipate that domain adaptation will prove to be widely
applicable in the growing use of supervised machine learning in population
genetics.

4.2 Introduction

Advances in genome sequencing have allowed population genetic analyses to
be applied to many thousands of individual genome sequences (Auton et al.,
2015; Sudlow et al., 2015; Karczewski et al., 2020). Given adequately rigorous
and scalable computational tools for analysis, these rich catalogs of genetic
variation provide opportunities for addressing many important questions in
areas such as human evolution, plant genetics, and the ecology of non-model
organisms. Deep-learning methods, already well-established in other applica-
tion areas (LeCun et al., 2015), have proven to be good matches for these
analytical tasks and have recently been successfully applied to many problems
in population genetics (Sheehan and Song, 2016; Kern and Schrider, 2018;
Schrider and Kern, 2018; Flagel et al., 2019; Torada et al., 2019; Adrion, Gal-
loway, et al., 2020; Caldas et al., 2022; Hejase et al., 2022; Huang et al., 2023;
Korfmann et al., 2023).

The key to the success of deep learning in population genetics has been
the use of large amounts of simulated data for training. Under simplifying,
yet largely realistic, assumptions, evolution plays by relatively straightforward
rules. By exploiting these rules and advances in computing power, a new gen-
eration of computational simulators has made it possible to efficiently produce
large quantities of perfectly labeled synthetic data across a wide range of evo-
lutionary scenarios (Haller et al., 2019; Haller and Messer, 2019; Baumdicker
et al., 2022). At the same time, programming libraries such as stdpopsim
have made these simulators accessible to a broad community of researchers
while improving the reproducibility of simulation workflows (Adrion, Cole, et
al., 2020; Lauterbur et al., 2022). The facility of generating synthetic training
data serves as the foundation of the new simulate-and-train paradigm of super-
vised machine learning for population genetics inference (Fig. 4.1A; Schrider
and Kern, 2018; Huang et al., 2023; Korfmann et al., 2023).

At the same time, this paradigm is highly dependent on well-specified mod-
els for simulation (Korfmann et al., 2023). If the simulation assumptions do
not match the underlying generative process of the real data – that is, in
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Figure 4.1: Unsupervised domain adaptation in the context of popula-
tion genetic inference. A) A high-level overview of the supervised machine-
learning approach for population genetic inference and how domain adaptation
fits into the paradigm. B) Example formulations of the unsupervised domain
adaptation problem with application to computer vision and population ge-
netics. Note that in the specific case of SIA, which uses features of the ARG,
the source domain data always consist of true genealogies generated in simu-
lations, whereas the target domain data always consist of inferred genealogies
reconstructed from observed sequence data. C) Four benchmarking scenar-
ios considered in this study. The original model was both trained and tested
on source domain data (simulation benchmark), both trained and tested on
target domain data (hypothetical true model), or trained on source domain
data but applied to target domain data (standard model application). These
three cases contextualize the performance of the domain-adaptive model (see
Methods for details). Gold squares represent source domain data, blue circles
represent target domain data and crosses (×) represent labels.

the presence of simulation mis-specification – the trained deep-learning model
may reflect the biases in the simulated data and perform poorly on real data.
Indeed, previous studies have shown that, despite being robust to mild to
moderate levels of mis-specification, performance inevitably degrades when
the mismatch becomes severe (Adrion, Galloway, et al., 2020; Hejase et al.,
2022).

In a typical workflow, key simulation parameters such as the mutation rate,
recombination rate, and parameters of the demographic model are either esti-
mated from the data or obtained from the literature (Fig. 4.1A; Adrion, Cole,
et al., 2020; Lauterbur et al., 2022). Sometimes these parameters are allowed
to vary during simulation, and sometimes investigators evaluate the sensitivity
of predictions to departures from the assumed range, but there is typically no
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way to ensure that the ranges considered are adequately large. Moreover, these
benchmarks do not usually account for under-parameterization of the demo-
graphic model. Particularly in the case of non-model organisms, the quality
of the estimates can be further limited by the availability of data. Overall,
some degree of mis-specification in the simulated training data is impossible
to avoid.

One way to mitigate the effects of simulation mis-specification would be
to engineer a simulator to force the simulated data to be compatible with real
data. For example, one could simulate from an overdispersed distribution of
parameters followed by a rejection sampling step (based on summary statistics)
as in approximate Bayesian computation (ABC) methods, or one could use a
generative adversarial network (GAN) (Z. Wang et al., 2021) to mimic the real
data. These methods tend to be costly, however. For example, ABC methods
scale poorly with the dimensionality of the parameter space, and GANs are
notoriously hard to train.

Here we consider the alternative approach of adopting a deep-learning
model that is explicitly designed to account for and mitigate the mismatch
between simulated and real data (Fig. 4.1A). A standard machine learning
model aims to make accurate predictions on data following the same proba-
bility distribution as the training instances. In contrast, the task of building
well-performing models for a target dataset that has a different distribution
from the training dataset is termed “domain adaptation” in the machine-
learning literature (Csurka, 2017; Wilson and Cook, 2020). A typical setting
of interest for domain adaptation is image classification (Fig. 4.1B). For ex-
ample, suppose a digit-recognition model is needed for the Street View House
Numbers (SVHN) dataset (the “target domain”), but abundant labeled train-
ing data is only available from the MNIST dataset of handwritten digits (the
“source domain”). In this case, a method needs to train on one dataset and
perform well on another, despite systematic differences between the two data
distributions.

Various strategies for domain adaptation have been introduced. Prior to
the advent of deep learning, early methods focused on reweighting training
instances according to their likelihoods of being a source or target example
(Shimodaira, 2000; Dai et al., 2007) or explicitly manipulating a feature space
through augmentation (Daumé III, 2009), alignment (Fernando et al., 2013;
Sun et al., 2016) or transformation (Pan et al., 2011). Recently, specialized
neural network architectures have been developed for deep domain adapta-
tion. Most model architectures of this kind share the common goal of learning
a “domain-invariant” representation of the data through a feature extractor
neural network, for example, by minimizing domain divergence (Rozantsev
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et al., 2019), by adversarial training (Ganin and Lempitsky, 2014; M.-Y. Liu
and Tuzel, 2016) or through an auxiliary reconstruction task (Ghifary et al.,
2016). Domain adaptation so far has been most widely applied in the fields
of computer vision (e.g., using stock photos for semantic segmentation of real
photos) and natural language processing (e.g., using Amazon product reviews
for sentiment analysis of movies and TV shows) where large, heterogeneous
datasets are common but producing labeled training examples can be labor
intensive (Wilson and Cook, 2020). More recently, deep domain adaptation
has been used in regulatory genomics to enable cross-species transcription-
factor-binding-site prediction (Cochran et al., 2022).

In this work, we reframe the simulation mis-specification problem in popu-
lation genetics as an unsupervised domain adaptation problem – unsupervised
in the sense that data from the target domain is not labeled (Fig. 4.1B). In
particular, we use population-genetic simulations to obtain large amounts of
perfectly labeled training data in the source domain. We then seek to apply
the trained model to unlabeled real data in the target domain. We use do-
main adaptation techniques to explicitly account for the mismatch between
these two domains when training the model.

To demonstrate the feasibility of this approach, we incorporated a domain-
adaptive neural network architecture into two published deep learning models
for population genetic inference: 1) SIA (Hejase et al., 2022), which iden-
tifies selective sweeps based on the ancestral recombination graph (ARG),
and 2) ReLERNN (Adrion, Galloway, et al., 2020), which infers recombina-
tion rates from raw genotypic data. Through extensive simulation studies, we
demonstrated that the domain adaptive versions of the models significantly
outperformed the standard versions under realistic scenarios of simulation mis-
specification. Our domain-adaptive framework for utilizing mis-specified syn-
thetic data for supervised learning opens the door to many more applications
in population genetics.

4.3 Results

4.3.1 Experimental design

We created domain-adaptive versions of the SIA and ReLERNN models, each
of which employed a gradient reversal layer (GRL) (Ganin and Lempitsky,
2014) (Fig. 4.2A&B). As noted, the goal of domain adaptation is to estab-
lish a “domain-invariant” representation of the data (Fig. 4.1A). Our neural
networks consist of two major components: the original networks (“feature
extractor” in green and “label predictor” in blue in Fig. 4.2A&B), which are
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Figure 4.2: Neural network architecture for domain adaptation. The
model architectures incorporating gradient reversal layers (GRLs) for A) SIA
and B) ReLERNN. The feature extractor of SIA contains 1.49× 105 trainable
parameters, whereas the label predictor and domain classifier contains 1.22 ×
108 each. The feature extractor of ReLERNN contains 1.52 × 106 trainable
parameters, whereas the label predictor and domain classifier contains 1.49 ×
105 each. Note that the total number of trainable parameters includes those in
batch normalization layers. C) When training the networks, each minibatch
of training data consists of two components: (1) labeled data from the source
domain fed through the feature extractor and the label predictor; and (2) a
mixture of unlabeled data from both the source and target domains fed through
the feature extractor and the domain classifier. The first component trains
the model to perform its designated task. However, the GRL inverts the loss
function for the second component, discouraging the model from differentiating
the two domains and leading to the extraction of “domain-invariant” features.

applied only to labeled examples from the “source” (simulated) domain; and
alternative branches (“domain classifier” in yellow in Fig. 4.2A&B), which use
the same feature-extraction portions of the first networks but have the distinct
goal of distinguishing data from the “source” (simulated) and “target” (real)
domains (they are applied to both). When the neural network is trained by
back-propagation, the GRL reverses the sign of the gradient for the feature
extractor with respect to the domain-classifier loss. By doing so, the GRL sys-
tematically undermines this secondary goal of distinguishing the two domains
(Fig. 4.2, see Methods for details), and therefore promotes domain invariance
in feature extraction.

We designed two sets of benchmark experiments to assess the performance
of the domain-adaptive models relative to the standard models. In both cases,
we tested the methods using “real” data in the target domain that was ac-
tually generated by simulation, but included features not considered by the
simpler simulator used for the source domain. In the first set of experiments,
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background selection was present in the target domain but not the source do-
main. In the second set of experiments, the demographic model used for the
source-domain simulations was estimated from “real” data generated under a
more complex demographic model and was therefore somewhat mis-specified
(as detailed below). Below we refer to these as the “background selection” and
“demography mis-specification” experiments.

4.3.2 Performance of domain-adaptive SIA model

We compared the performance of the domain-adaptive SIA (dadaSIA) model
to that of the standard SIA model on held-out “real” data, considering both a
classification (distinguishing selective sweeps from neutrality) and a regression
(inferring selection coefficients) task. In all cases, we focused on a comparison
of the domain-adaptive model to the standard case where a model is simply
trained on data from the source domain and then applied to the target domain
(“standard model”; Fig. 4.1C). Note that the version of SIA used by both the
domain-adaptive and standard models includes a variety of minor improve-
ments that led to modest gains in performance over the previously published
version (see Updates to genealogical features and deep learning architecture for
the SIA model in Methods and Fig. S1B&C in Appendix C). The codebase of
the original SIA model has been updated accordingly.

For additional context, we also considered the two cases where the training
and testing domains matched (“source-matched” or “target-matched”; Fig.
4.1C)—although we note that these cases are not achievable with real data
and provide only hypothetical upper bounds on performance. Notably, in
the source-matched (or “simulation benchmark”) case, the standard model is
both trained and tested with true genealogies from source-domain simulations.
By contrast, in the target-matched (or “hypothetical true model”) case, the
standard model is trained as if target-domain data with ground-truth selection
coefficient labels were available. Since genealogies need to be inferred in the
target domain (Fig. 4.1B), the hypothetical true model is both trained and
tested with inferred genealogies (see Setup of benchmarking experiments in
Methods for details).

As noted, we considered two types of mis-specification, background selec-
tion and demographic mis-specification. In the background selection exper-
iments, the target domain experienced selection in a central “genic” region
(following a DFE from Boyko et al., 2008), leading to background selection in
flanking regions. This genic region was omitted in the source domain. In the
demographic mis-specification experiments, the demographic model for source-
domain simulations was inferred from “real” data using G-PhoCS (Gronau et
al., 2011). Both the real (target domain) and inferred (source domain) models
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assumed three populations with migration, but the inferred model was under-
parameterized and its parameters differed substantially from the real model
(Fig. S1A in Appendix C) (see Methods for details).

In both the background selection and demography mis-specification experi-
ments, and in both the classification and regression tasks, the domain-adaptive
SIA model substantially improved on the standard model (Fig. 4.3). Indeed, in
all cases, the domain-adaptive model (turquoise lines in Fig. 4.3A&C) nearly
achieved the upper bound of the hypothetical true model (dashed gray lines)
and clearly outperformed the standard model (gold lines), suggesting that
domain adaptation had largely “rescued” SIA from the effects of simulation
mis-specification (see also Fig. S2C&D in Appendix C). The standard model
performed particularly poorly on the regression task (Fig. 4.3B&D), but the
domain-adaptive model achieved substantial improvements, reducing both the
absolute error as well as the upward bias of the estimation (Fig. S2C&D in
Appendix C).

The comparisons with the simulation benchmark and hypothetical true
model were also informative in other ways. Notice that performance in the
simulation benchmark case was considerably better than that in all other cases,
including the hypothetical true model. For SIA in particular, the ARG is
“known” (fixed in simulation) in the source domain, whereas in the target
domain it must be inferred (Fig. 4.1B). Thus, the difference between the
simulation benchmark (source-matched) and hypothetical true model (target-
matched) cases represents a rough measure of the importance of ARG inference
error (see Discussion). In addition, note that in many studies, benchmarking
of population-genetic models is performed using the same, or similar, simula-
tions as those used for training, as with our hypothetical true model. Thus,
the difference between the hypothetical true model and the standard model is
representative of the degree to which benchmarks of this kind may be overly
optimistic about performance, depending on the degree to which the simula-
tions are mis-specified.

We further investigated the effect of imbalanced training data from the tar-
get domain on the performance of the domain-adaptive model in the context
of sweep classification. Despite the ability to simulate perfectly class-balanced
labeled data in the source domain, in practice we have no control over whether
real data are balanced. Using simulations for the background selection mis-
specification experiments, we tested the performance of the domain-adaptive
SIA model classifying sweeps when trained with unlabeled “real” data under
different proportions of sweep vs. neutral examples. While a balanced dataset
yielded the best performance, significantly skewed datasets (20% or 80% sweep
examples) still provided the domain-adaptive model with reasonable improve-
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Figure 4.3: Performance of domain-adaptive SIA models. Results are
shown from (A, B) the background-selection and (C, D) the demography-
mis-specification experiments. (A, C) Precision-recall curves for sweep classi-
fication. (B, D) Contour plots summarizing true (horizontal axis) vs. inferred
(vertical axis) selection coefficients (s) for the standard (gold) and domain
adaptive (turquoise) models as evaluated on the held-out test dataset. The
ridge along the horizontal axis of each contour is traced by a dashed line, rep-
resenting the mode of the inferred value for each true value of s. Raw data
underlying the contour plots are presented in Fig. S2 in Appendix C. See Fig.
4.1C for definition of the model labels.
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ment upon the standard model (Fig. S3A&B in Appendix C). The exception
appeared to be when the target domain data consisted entirely of sweep ex-
amples (100% sweep). Although highly unrealistic, this scenario demonstrates
that the domain-adaptive model can underperform the standard model when
the target domain data follow a radically different distribution.

Another type of imbalance arises if only a limited amount of target do-
main data is available to train the domain-adaptive model. Using the same
set of simulations for the background selection mis-specification experiments,
we tested the performance of the domain-adaptive SIA model when trained
with less target domain data. With the target domain data at only 10% of
the source domain data (source:target ratio = 10:1), the model suffered a no-
ticeable drop in performance yet still maintained a clear advantage over the
standard model (Fig. S3C-E in Appendix C). We did not examine the case
where there is more target domain than source domain data, since one could
always simulate additional source domain data to match the size of the target
domain. In summary, our experiments suggest that domain adaptation can
accommodate reduced or imbalanced data for the target domain but there is
a cost in performance if the reduction or imbalance is extreme.

4.3.3 Performance of domain-adaptive ReLERNNmodel

We performed a parallel set of experiments with a domain-adaptive version of
ReLERNN. In this case, the background selection experiment was essentially
the same as for SIA, but we used a simpler design for the demography mis-
specification experiment, following Adrion, Galloway, et al., 2020. Briefly, the
“real” (target domain) data was generated according to the out-of-Africa Eu-
ropean demographic model estimated by Tennessen et al., 2012. By contrast,
the simulated data for the source domain simply assumed a constant-sized pan-

mictic population at equilibrium with Ne = θ̂W
4µ

, where θ̂W is the Watterson

estimator obtained from the “real” data (see Methods for details).
Similar to our results for SIA, the domain-adaptive ReLERNN model both

reduced the MAE and corrected for the downward bias in recombination-rate
estimates compared to the standard model (Figs. 4.4 and S6 in Appendix
C). In the background-selection experiment, the standard ReLERNN model
performed quite well (Figs. 4.4A and S6A in Appendix C, MAE = 5.60×10−9),
but the domain-adaptive ReLERNN model nonetheless further reduced the
MAE to 4.41 × 10−9 (Fig. S6C in Appendix C, Welch’s t-test: n = 25, 000,
t = 31.0, p < 10−208). The advantage of the domain-adaptive model was
more apparent in the demography-mis-specification experiment (Figs. 4.4B
and S6B in Appendix C), where it reduced the MAE from 8.06 × 10−9 to
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5.45 × 10−9 (Fig. S6D in Appendix C, Welch’s t-test, n = 25, 000, t = 72.4,
p < 10−323). Notably, our results for the standard model in the demography-
mis-specification experiment were highly similar to those reported by Adrion,
Galloway, et al., 2020, including the approximate mean and range of the raw
error (compare Fig. 4A from Adrion, Galloway, et al., 2020 and Fig. S6D in
Appendix C), as well as the downward bias.

Figure 4.4: Performance of domain-adaptive ReLERNN models. Re-
sults are shown from (A) the background-selection and (B) the demography-
mis-specification experiments. Each contour plot summarizes true (horizon-
tal axis) vs. inferred (vertical axis) recombination rates (ρ) for the standard
(gold) and domain adaptive (turquoise) models as evaluated on the held-out
test dataset. The ridge along the horizontal axis of each contour is traced
by a dashed line, representing the mode of the inferred value for each true
value of ρ. Raw data underlying the contour plots are presented in Fig. S6 in
Appendix C.

Interestingly, Adrion, Galloway, et al., 2020 observed that ReLERNN was
sometimes more strongly influenced by demographic mis-specification than un-
supervised methods such as LDhelmet, even though it still performed better
in terms of absolute error. The addition of domain adaptation appears to con-
siderably mitigate this susceptibility to demographic mis-specification, making
an excellent method even stronger.
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4.3.4 Efficacy of domain adaptation under various de-
grees of simulation mis-specification

So far, we have examined scenarios of relatively modest simulation mis-specifica
-tion, likely to be encountered in real applications. While domain adaptation
appeared to be effective in these cases, we expect a limit to its capability when
mis-specification is extreme. We therefore carried out a series of experiments
to probe the performance of the dadaSIA model under increasingly severe
simulation mis-specification (Fig. S4 in Appendix C, also see Methods).

We found that dadaSIA exhibited good performance when mis-specification
was caused by genealogy inference alone or by light to moderate bottlenecks.
As the bottleneck became more severe, its performance deteriorated, but even
with a 5% bottleneck, dadaSIA still outperformed the standard model (Fig.
4.5). To examine the limits of the method, we tested an extreme scenario with
the 5% bottleneck, background selection and an 8-fold mis-specification of
recombination rate. In this case, the model performed poorly, having virtually
no power to classify sweeps and large errors in its selection coefficient estimates
(Fig. 4.5). This example demonstrates that, while domain adaptation is useful
over a broad range of mis-specification levels, it eventually does fail when mis-
specification becomes extreme.

Does domain adaptation compromise performance at the opposite extreme,
where there is little or no simulation mis-specification? To address this ques-
tion, we tested the standard and domain-adaptive ReLERNN models in a set-
ting without any simulation mis-specification. We focused here on ReLERNN,
which directly uses raw genotypic data, as opposed to SIA, which always has
some mis-specification due to genealogy inference error. We observed that
the standard and domain-adaptive ReLERNN models performed nearly iden-
tically when no mis-specification was present, with only minor decreases in
performance (Fig. S7 in Appendix C). Thus, there is perhaps some cost in
using domain adaptation when it is not needed, but, at least in our case, that
cost appears to be slight.

4.3.5 Application of domain-adaptive SIA to real data

In applications to real data, the true selection coefficient is not known, so it
is impossible to perform a definitive comparison of methods. Nevertheless,
it can be informative to evaluate the degree to which alternative methods
are concordant, especially with consideration of their relative performance in
simulation studies.

Toward this end, we re-applied our domain-adaptive SIA (dadaSIA) model
to several loci in the human genome that we previously analyzed with SIA (He-
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Figure 4.5: Performance of domain-adaptive SIA (dadaSIA) model
with different degrees of mis-specification. The performance of the
model on the sweep classification task is quantified by the AUPRC (A). Per-
formance on the selection-coefficient inference task is quantified by RMSE
(B). In the “tree inference only” case, there is no mis-specification other
than that caused by error in genealogy inference. In the “extreme” case,
mis-specification consists of a 5% bottleneck, background selection and an 8-
fold mis-specification in recombination rate. See Fig. S4 in Appendix C for
illustrations of the different bottlenecks and Methods for details.
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jase et al., 2022), using whole-genome sequence data from the 1000 Genomes
CEU population (Auton et al., 2015). For the target domain, we sampled
genealogies from genome-wide ARGs inferred from the individual sequences
(see Methods). The putative causal loci analyzed included single nucleotide
polymorphisms (SNPs) at the LCT gene (Bersaglieri et al., 2004), one of the
best-studied cases of selective sweeps in the human genome; at the disease-
associated genes TCF7L2 (Lyssenko et al., 2007), ANKK1 (Spellicy et al.,
2014) and FTO (Frayling et al., 2007); at the pigmentation genes KITLG
(Sulem et al., 2007), ASIP (Eriksson et al., 2010), TYR (Sulem et al., 2007;
Eriksson et al., 2010), OCA2 (Han et al., 2008; Sturm et al., 2008), TYRP1
(Kenny et al., 2012) and TTC3 (F. Liu et al., 2010), which were also analyzed
by Stern et al., 2019; and at the genes MC1R (Sulem et al., 2007; Han et al.,
2008) and ABCC11 (Yoshiura et al., 2006), where SIA reported novel signals
of selection.

We found that dadaSIA generally made similar predictions to SIA at these
SNPs, but there were some notable differences. The seven loci predicted by
SIA to be sweeps were also predicted by dadaSIA to be sweeps (Table 4.1),
although dadaSIA always reported higher confidence in these predictions (with
probability of neutrality, Pneu < 10−2 in all cases) than did SIA (Pneu up to
0.384 for TYR). The five loci predicted by SIA not to be sweeps were also
predicted by dadaSIA not to be sweeps (Pneu > 0.5). At LCT, the strongest
sweep considered, the selection coefficient (s) estimated by dadaSIA remained
very close to SIA’s previous estimate of s = 0.01 and also close to several
prior estimates (Bersaglieri et al., 2004; S. Mathieson and Mathieson, 2018;
I. Mathieson, 2020). In all other cases, the estimate from SIA was somewhat
revised by dadaSIA, generally by factors of about 2-3. Importantly, in all
cases, the estimates from dadaSIA remained much closer to those from SIA
than to estimates by other methods (Table 4.1). Together, these observations
suggest that the addition of domain adaptation does not radically alter SIA’s
predictions for real data but may in some cases improve them (see Discussion).

4.4 Discussion

Standard approaches to supervised machine learning rest on the assumption
that the data they are used to analyze follow essentially the same distribu-
tion as the data used for training. In applications in population genetics, the
training data are typically generated by simulation, leading to concerns about
potential biases from simulation mis-specification when supervised machine-
learning methods are used in place of more traditional summary-statistic- or
model-based methods (Caldas et al., 2022; Korfmann et al., 2023). In this ar-
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ticle, we have shown that techniques from the “domain adaptation” literature
can effectively be used to address this problem. In particular, we showed that
the addition of a GRL to two recently developed deep-learning methods for
population genetic analysis – SIA and ReLERNN – led to clear improvements
in performance on “real” data that differed in subtle but important ways from
the data used to train the models. These improvements were observed both
when the demographic models were mis-specified and when background se-
lection was included in the simulations of “real” data but un-modeled in the
training data.

While we observed performance improvements in all of our experiments,
they were especially pronounced in the case where SIA was used to predict
specific selection coefficients, rather than simply to identify sweeps. The stan-
dard model (with training on simulated data and testing on “real” data) per-
formed particularly poorly in this regression setting and domain adaptation
produced striking improvements (Fig. 4.3B&D). This selection-coefficient in-
ference problem appears to be a harder task than either sweep classification
or recombination-rate inference, and the performance in this case proves to be
more sensitive to simulation mis-specification (cf. Fig. 4.3A&C). In general,
we anticipate considerable differences across population-genetic applications in
the value of domain adaptation, with some applications being more sensitive
to simulation mis-specification and therefore more apt to benefit from domain
adaptation, and others being less so.

We also observed some interesting differences in the ways SIA and ReL-
ERNN responded to domain adaptation. For example, the performance gap
between the “simulation benchmark” (trained and tested on simulated data)
and “hypothetical true” (trained and tested on real data) models was consider-
ably greater for SIA than for ReLERNN (Figs. S2C&D, S6C&D in Appendix
C). This difference appears to be driven by ARG inference, which is required by
SIA in the hypothetical true case but not the simulation benchmark case, and
for which no analog exists for ReLERNN. For SIA, the uncertainty about ge-
nealogies given sequence data makes the prediction task fundamentally harder
in the real world (target domain) than in simulation (source domain) (Fig.
4.1B). By contrast, ReLERNN does not depend on a similar inference task,
and therefore the target and source domains are more or less symmetric. This
same factor contributed to the much more dramatic drop in performance for
SIA than ReLERNN under the “standard model,” where the model is trained
on simulated data and naively applied to “real” data (Figs. 4.3B&D, 4.4).
It is, of course, also conceivable that simulation mis-specification has more
impact on selection inference than recombination rate inference, rendering the
standard SIA model less robust than the standard ReLERNN model. Re-
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gardless of the exact cause, the result is more potential for improvement from
domain adaptation with SIA than with ReLERNN (Figs. 4.3, 4.4, S2, S6 in
Appendix C). In effect, in SIA, domain adaptation not only mitigates sim-
ulation mis-specification but also compensates for ARG inference error, as
directly evidenced by the observation that domain adaptation improves model
performance when mis-specification is due to genealogy inference alone (Fig.
4.5, “Tree inference only”). More broadly, we expect domain adaptation to be
especially effective in applications that depend not only on the simulated data
itself but also on nontrivial inferences of latent quantities that are known for
simulated but not real data.

In addition, we performed a series of experiments to probe the limits of
domain adaptation. As expected, the dadaSIA model gradually lost its power
as simulation mis-specification became more severe. In an extreme case where
mis-specification involved demography, selection and recombination rate, the
dadaSIA model had virtually no power to classify sweeps and exhibited high
error of selection coefficient inference (Fig. 4.5). In practice, simulation models
themselves are inferred from real data. With high quality data, state-of-the-art
inference tools are unlikely to fail completely (e.g., by missing a 5% bottleneck
completely, or under-estimating recombination rate by an order of magnitude).
We thus expect the most extreme scenario tested here to be fairly uncommon.
Nevertheless, this experiment demonstrated that there are reasonable limits to
the efficacy of domain adaptation. Consequently, it is important in real-world
applications to begin with the best possible simulation model, before using
domain adaptation to further optimize performance.

Because the accuracy of the simulation model is typically not known a pri-
ori, it is tempting to apply domain adaptation in all cases, regardless of the
true degree of mis-specification. Indeed, we found that the domain-adaptive
model performed very similarly to the standard model in the absence of mis-
specification (Fig. S7 in Appendix C), suggesting little risk in applying the
approach liberally. When the target domain is mis-specified, the domain classi-
fier appears to “unlearn” the mis-specification, with its loss increasing steadily
before plateauing where the source and target domains are no longer distin-
guishable. In contrast, when there is no mis-specification, the domain classifier
starts with a high loss and this loss remains high (Figs. 4.2B, S8 in Appendix
C). In this case, because the source and target domains are effectively indis-
tinguishable, the domain classifier can never do much better than randomly
guessing, leading to near-zero gradients along the domain classifier branch. In
effect, the training process ignores the domain-classifier branch in this case,
and improves only the feature-extractor and label-predictor portions of the
model. For this reason, the domain-adaptive model behaves nearly identically
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to the standard model in the absence of mis-specification.
The accuracy of even the best current selection-coefficient inference meth-

ods appears limited (Flagel et al., 2019; Stern et al., 2019; Torada et al., 2019;
Hejase et al., 2022). More work is needed on models and methods for inference
as well as on the problem of simulation mis-specification. Nevertheless, current
methods can still be valuable in approximately characterizing the strength of
selection. In our re-analysis of several loci in the 1000 Genomes CEU popula-
tion, we found that dadaSIA made similar predictions to SIA, but it tended
to exhibit higher confidence in its predictions (Table 4.1). Considering the
extensive previous work on demography inference for the CEU population, we
expect that simulation mis-specification is limited in severity for this analysis,
but that some mis-specification is inevitable. Given the similar performance
on benchmarks of SIA and other leading methods such as CLUES, their simi-
lar sensitivity to moderate levels of simulation mis-specification (Hejase et al.,
2022), and the improvements offered by domain adaptation that are demon-
strated in this work, we find it likely that dadaSIA improves on previous
estimates of selection coefficients in this setting.

In a typical application of domain adaptation, the distribution shift be-
tween the source and target domains is treated as a nuisance. However, for
certain population genetic questions, the gap between the simulated and real
data could in principle help to reveal unmodeled evolutionary processes. We
observed that the domain classifier generally tended to start with a lower loss
and took more epochs to train when the mis-specification is more severe (Fig.
S9 in Appendix C). It might be worthwhile, as a future endeavor, to try to
identify the features driving this loss, understand their evolutionary signifi-
cance, and, perhaps, incorporate them into a new set of simulations. In such a
way, domain adaptation could be used to discover evolutionary processes and
improve the models used for simulation.

Although our experiments were limited to background selection and demo-
graphic mis-specification, we expect that the domain adaptation framework
would also be effective in addressing many other forms of simulation mis-
specification, involving factors such as mutation or recombination rates, or
the presence of gene conversion. Another interesting application may be to
use domain adaptation to accommodate admixed populations. Each ancestry
component could be modeled as a distinct target domain using a multi-target
domain adaptation technique (Isobe et al., 2021; Nguyen-Meidine et al., 2021;
Roy et al., 2021). It is also worth noting that our experiments considered only
one, rather simple, strategy for domain adaptation. Since the GRL was pro-
posed, several other architectures for deep domain adaptation have achieved
even better empirical performance on computer vision tasks (see: Papers with
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Code).
Our domain-adaptation approach leaves simulations unchanged and at-

tempts to “unlearn” their mis-specification, in contrast to other strategies that
aim to improve the simulations themselves. For example, the original SIA
model was trained with inferred genealogies from the simulated sequences,
rather than the true genealogies used to generate the data, to mitigate the
effect of genealogy inference error (Hejase et al., 2022). An alternative ap-
proach is to use a GAN to train a simulator that accurately mimics the real
data (Z. Wang et al., 2021). These methods can require costly preprocess-
ing steps, but they have the advantage of explicitly addressing the simulation
mis-specification in an interpretable manner.

It is perhaps worth distinguishing mis-specification along the axis of in-
ference – that is, of target parameters such as the selection coefficient – from
mis-specification of other “nuisance” parameters (such as demographic param-
eters), or similarly, other unmodeled aspects of the data-generating process
(such as background selection). From our observations, domain adaptation
appears to be effective at addressing mis-specification of nuisance parameters
or processes, at least if it is not too severe. Mis-specification of the target
parameters, however, is clearly a more challenging problem. For example, it
seems unlikely that domain adaptation will ever be able to “extrapolate” be-
yond the range of the training examples (as it fails to do in Fig. S5 in Appendix
C). Hence, it is essential in practical applications to simulate the parameter of
interest from an adequately large range. Notably, Burger et al., 2022 recently
developed a method that addresses mis-specification in the distribution (but
not the range) of a target parameter. Their method improves inference of the
scaled mutation rate when regions of the parameter space are under-sampled in
the training simulations by adaptively reweighing the training data, effectively
improving interpolation (but not extrapolation) from the training distribution.
We view these interrelated questions of how to accommodate mis-specification
of both nuisance and target parameters as promising areas for future work.

Mis-specification is not only a problem in the simulation-based supervised
machine learning setting explored in this work (simulation mis-specification),
but also arises in many unsupervised methods (such as maximum-likelihood or
Bayesian probabilistic models). In these cases, mis-specification typically re-
sults from simplified or incorrect assumptions built into a probabilistic model
(model mis-specification, reviewed in detail by Johri et al., 2022). Such model
mis-specification can be difficult and time-consuming to identify and address,
usually calling for careful experimental design and model comparison (Johri
et al., 2022). In some ways, the simulation mis-specification problem is more
straightforward to address through fully empirical, data-driven solutions such
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as domain adaptation. It remains to be seen whether these empirical tech-
niques can be used to improve probabilistic-model-based inference methods.
Overall, there is rich potential for new work to address a wide variety of mis-
specification challenges in population genetics, leading to improved accuracy
and robustness in inference.

4.5 Methods

4.5.1 Methodological summary of unsupervised domain
adaptation

To build domain-adaptive versions of SIA and ReLERNN, we opted for the
neural network architecture proposed by Ganin and Lempitsky, 2014, which
involved attaching a domain classifier branch via a GRL to a layer of the orig-
inal neural network where a latent representation of the data is presumably
obtained. For example, in a CNN, the attachment point is usually immedi-
ately after the convolutional and pooling layers, which are primarily respon-
sible for feature extraction. One possible heuristic for picking the attachment
point is to look for a “bottleneck layer” in the original network corresponding
to the lowest-dimensional representation of the input. The GRL-containing
networks consist of three components–a label predictor branch, a domain clas-
sifier branch and a feature extractor common to both branches (Fig. 4.2A&B).
During the feedforward step, when data is fed to the neural network to obtain
prediction outputs in both branches, the GRL is inactive; it simply passes
along any input to the next layer. However, during backpropagation, when
the gradient of the loss function with respect to the weights of the network
is calculated iteratively backward from the output layer, the GRL inverts the
sign of any incoming gradient before passing it back to the previous layer.
This operation has the effect of driving the feature extractor away from dis-
tinguishing the source and target domains, and consequently encourages it to
extract “domain-invariant” features of the data. This effect is manifested dur-
ing training as the domain-classifier loss being maximized. We implemented
the GRLs in TensorFlow (v2.4.1) using the tf.custom gradient decorator.
On top of each custom GRL, the rest of the model was built using the tf.keras
functional API (see the GitHub repository for details).

All models were trained with the Adam optimizer using a batch size of
64. For the domain-adaptive models, training consisted of both (1) feeding
labeled data from the source domain through the label predictor and obtain-
ing a label prediction loss (cross entropy for classification task, mean squared
error for regression task); and (2) feeding a mixture of unlabeled data from
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both the source and target domains through the domain classifier, obtaining a
domain classification loss (cross entropy) (Fig. 4.2C). In each minibatch, back-
propagation from these two steps occurred simultaneously (i.e. the weights of
the feature extractor were updated according to the combination of gradient
from the label predictor and reversed gradient from the domain classifier).
Note that the same source-domain data (but shuffled differently) were used
for both steps. Training was accomplished using a custom data generator im-
plemented with tf.keras.utils.Sequence. In this study, we simply assigned
equal weights to the label-prediction and domain-classification loss functions
(following Ganin and Lempitsky, 2014). Nonetheless, the relative weights of
the two branches can be tuned via a hyper-parameter λ, with potential impli-
cations for performance. Intuitively, the domain classifier should be penalized
more when the simulations are more mis-specified. One potential strategy is
to leverage the losses and gradients of the domain classifier to guide the choice
of λ. Each training epoch took around 300 s for the domain-adaptive SIA
model and around 800 s for the domain-adaptive ReLERNN model on a single
NVIDIA Tesla V100 GPU. With early-stopping, the models in this study were
trained on average for tens of epochs. The runtimes for domain-adaptive SIA
and ReLERNN models were therefore on par with their standard versions (on
the order of hours) (Adrion, Galloway, et al., 2020; Hejase et al., 2022).

4.5.2 Setup of benchmarking experiments

We designed four benchmarking scenarios to contextualize the performance
of the domain-adaptive models (Fig. 4.1C). i) In the simulation benchmark
(source-matched) case, we tested the original model trained with source do-
main data on held-out samples in the source domain. This is how model
benchmarks are usually run, with the test data following the same distribu-
tion as the training data. Note that for the SIA model, the source domain
consists of true genealogies and therefore both training and testing were per-
formed with true trees. ii) In the hypothetical true model (target-matched)
case, the original model was trained and tested with labeled target domain
data. Here, both training and testing were performed with inferred genealo-
gies for the SIA model. This is a hypothetical case because it is unlikely in
the evolution setting to have large quantities of labeled data from the target
domain for training (i.e. real population data with known ground truth of
evolutionary parameters). This case represents the performance ceiling of a
standard machine learning model trained in-domain. iii) The standard model
application recapitulated the usual workflow of supervised machine learning
methods, where the model trained with source domain simulations was applied
directly to “real” data in the target domain. This was the baseline case to
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which we compared the domain-adaptive model. iv) Domain-adaptive appli-
cation of supervised machine learning models is the novel approach introduced
in this study (see above and Fig. 4.1A).

4.5.3 Background selection experiment with SIA

To assess the robustness of dadaSIA to background selection, we simulated la-
beled examples (250,000 neutral and 250,000 sweep) in the source domain
under demographic equilibrium with Ne = 10, 000 and µ = ρ = 1.25 ×
10−8/bp/gen. The sweep simulations consisted of 100kb chromosomal seg-
ments with a hard sweep at the central nucleotide having selection coefficient
s ∈ [0.002, 0.01]. Simulations were performed in SLiM 3 (Haller et al., 2019;
Haller and Messer, 2019) followed by recapitation with msprime (Baumdicker
et al., 2022), and we kept the true genealogies as source domain data. The un-
labeled data in the target domain (with the exception of held-out test dataset
with labels retained) were simulated in a similar fashion, albeit with a 10kb
segment (“gene”) under purifying selection at the center of each 100kb chro-
mosomal segment. All mutations in the central 10kb segment that arose dur-
ing the forward stage of the simulations (in SLiM), other than the beneficial
mutation in sweep simulations, followed a DFE parameterized by a gamma
distribution with a mean s̄ = −0.03, a shape parameter α = 0.2 and had dom-
inance coefficient h = 0.25 (Boyko et al., 2008). We retained only the sequence
data from the target domain simulations and inferred genealogies using Relate
(Speidel et al., 2019). The datasets were partitioned following a 90%:2%:8%
train-validation-test split.

4.5.4 Demography mis-specification experiment with SIA

In a second set of simulations, we gauged whether domain adaptation also
protects SIA against demographic mis-specification. In this case, instead of
specifying the degree of mis-specification a priori, we designed an end-to-end
workflow that recapitulated how demographic mis-specification arises in a real-
istic population genetic analysis (Fig. S1A in Appendix C). First, we simulated
“real” data (in the target domain) using an assumed demography (Fig. S1A
in Appendix C, loosely based on the three-population model in Campagna
et al., 2022). Similar to what one would do with actual sequence data, we
then used the “real” samples to infer a demography with G-PhoCS (Gronau
et al., 2011), pretending that the true demography and genealogies were un-
known. The G-PhoCS model assumed constant population sizes between split
events and a single pulse migration from population C to B, and therefore
was under-parameterized. As shown in Fig. S1A in Appendix C, the inferred
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demography was consequently somewhat mis-specified. In addition to errors
in population sizes, the split between B and C was inferred to be much more
recent compared to the true demographic model. This mis-specified demo-
graphic model was then used to simulate labeled training data (in the source
domain) for SIA.

With the goal of using SIA to infer selection in population B, we simulated
a soft sweep site at the center of a 100kb chromosomal segment with selec-
tion coefficient s ∈ [0.003, 0.02] and initial sweep frequency finit ∈ [0.01, 0.1],
under positive selection only in population B. To improve computational effi-
ciency, simulations were performed with a hybrid approach where the neutral
demographic processes were simulated first with msprime (Baumdicker et al.,
2022), followed by positive selection simulated with SLiM 3 (Haller et al., 2019;
Haller and Messer, 2019). We produced 200,000 balanced (between neutral
and sweep) simulations of “real” data, 10,000 of which were randomly held
out as ground-truth test data for benchmarking with their labels preserved
(Fig. S1A in Appendix C). The rest remained unlabeled. This corresponded
to a train-validation-test split of 93%:2%:5%. We preserved only the sequences
and used Relate (Speidel et al., 2019) to infer the ARG of population B from
the “real” data. SIA works with a single population and thus the central ge-
nealogies containing only samples from population B were encoded as input to
the model. For demographic inference, we randomly downsampled 10,000 5kb
loci and analyzed them with G-PhoCS, keeping 4 (diploid) individuals from
population A and 16 (diploid) individuals each from populations B and C. We
took the median of 90,000 MCMC samples (after 10,000 burn-in iterations) as
the inferred demography (shown in Fig. S1A in Appendix C). The control file
used to run G-PhoCS is available in the GitHub repository. We then simu-
lated true genealogies of population B using the inferred demography, yielding
200,000 balanced samples with neutral/sweep and selection coefficient labels.
All SIA models in this study used 64 diploid samples (128 taxa).

4.5.5 Running SIA under varying degrees of simulation
mis-specification

To probe the limit of domain adaptation in mitigating simulation mis-specifica
-tion, we performed a series of experiments that gradually increased the sever-
ity of mis-specification. In all cases, the source domain consisted of 400,000
balanced samples of true genealogies simulated under a constant Ne of 10,000.
The target domain had a matching size of 400,000 balanced samples of inferred
genealogies. We used µ = ρ = 1.25 × 10−8/bp/gen unless otherwise specified.
The datasets were partitioned following an 87.5%:2.5%:10% train-validation-
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test split. In the “tree inference only” case, the target domain consisted of
inferred genealogies simulated under a constant Ne of 10,000 with no demo-
graphic mis-specification. In addition, we tested four cases with Ne = 8,000,
5,000, 2,000 or 500 bottlenecks between 1,000 and 2,000 generations before the
present, respectively (Fig. S4 in Appendix C). Finally, we tested an “extreme”
case with the Ne = 500 bottleneck, a mis-specified ρ = 1 × 10−7, as well as
background selection in the central 10kb region following a DFE parameterized
by a gamma distribution with a mean s̄ = −0.03, a shape parameter α = 0.2
and a dominance coefficient h = 0.25.

4.5.6 Updates to genealogical features and deep learn-
ing architecture for the SIA model

For this study, we adopted a richer encoding of genealogies than the one used
previously for SIA. Instead of simply counting the lineages remaining in the
genealogy at discrete time points (Hejase et al., 2022), we fully encoded the
topology and branch lengths of the tree using the scheme introduced by (J.
Kim et al., 2020). Under this scheme, a genealogy with n taxa is uniquely
encoded by an (n−1)× (n−1) lower-triangular matrix F and a weight matrix
W of the same shape. Each cell (i, j) of F records the lineage count between
coalescent times tn−j and tn−1−i, whereas each cell (i, j) of W records the
corresponding interval between coalescent times, tn−j − tn−1−i (see Fig. S1B
in Appendix C and J. Kim et al., 2020 for details). In addition, we used a
third matrix R to identify the subtree carrying the derived alleles at the site
of interest, following the same logic as F (see Fig. S1B in Appendix C for an
example). The F, W and R matrices have the same shape and therefore can
easily be stacked as input to a convolutional layer with three channels (Fig.
4.2A, 128 taxa yield a 127 × 127 × 3 input tensor).

Unlike the previous reductive encoding of lineage counts, the new scheme
is bijective (J. Kim et al., 2020) and therefore contains the entirety of infor-
mation in the genealogy. To utilize the improved input feature consisting of
stacks of matrices, we modified the neural network architecture of SIA and
used convolutional layers (Fig. 4.2A). The new feature encoding and CNN
architecture resulted in modest gain in performance compared to the original
encoding and RNN architecture (Fig. S1C in Appendix C). In this study, both
the standard and domain-adaptive SIA models use convolutional layers with
the improved feature encoding. The original SIA codebase has been updated
to take advantage of the new feature encoding and model architecture as well.

92

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1011032#sec018
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1011032#sec018
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1011032#sec018
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1011032#sec018
https://github.com/CshlSiepelLab/arg-selection


4.5.7 Simulation study of recombination rate inference
with ReLERNN

We conducted two sets of simulation experiments to test the same two types
of mis-specification as previously described for SIA. Each simulation con-
sisted of 32 haploid samples of 300kb genomic segment with uniformly sam-
pled mutation rate µ ∼ U [1.875 × 10−8, 3.125 × 10−8] and recombination rate
ρ ∼ U [0, 6.25 × 10−8]. To test the effect of background selection, the labeled
source domain data (with true values of ρ) were simulated under demographic
equilibrium with Ne = 10, 000, whereas the unlabeled target domain data
were simulated under the same demography, but with the central 100kb re-
gion under purifying selection, as with SIA. To test the effect of demographic
mis-specification, we conducted simulations similar to those of Adrion, Gal-
loway, et al., 2020 where labeled source domain data were generated under

demographic equilibrium (with Ne = 6, 000, calculated approximately by θ̂W
4µ

where θ̂W was estimated from the target domain data) and unlabeled tar-
get domain data were generated under a European demography (Tennessen
et al., 2012). For each domain, 500,000 simulations were generated with SLiM
3 (background selection experiment) or msprime (demography experiment),
and partitioned following an 88%:2%:10% train-validation-test composition.
We modified the ReLERNN model to be domain-adaptive (Fig. 4.2B) and
used the simulated data to benchmark its performance against the original
version of the model.

4.5.8 Application of domain-adaptive SIA model to 1000
Genomes CEU population

Labeled training data (source domain) for SIA were simulated with discoal
(Kern and Schrider, 2016) under the European demographic model from Ten-
nessen et al., 2012. Following Hejase et al., 2022, we simulated 500,000 100-kb
regions of 198 haploid sequences. The per-base per-generation mutation rate
(µ) and recombination rate (ρ) of each simulation were sampled uniformly from
the interval [1.25 × 10−8, 2.5 × 10−8]; the segregating frequency of the benefi-
cial allele (f) was sampled uniformly from [0.05, 0.95]; the selection coefficient
(s) was sampled from an equal mixture of a uniform and a log-uniform distri-
bution with the support [1 × 10−4, 2 × 10−2]. An additional 500,000 neutral
regions were simulated to train the classification model, under the identical
setup sans the positively selected site.

We curated target domain data from the 1000 Genomes CEU population
to train the dadaSIA model. The genome was first divided into 2Mb windows
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1,111 of which passed three data-quality filters: 1) contained at least 5,000
variants, 2) at least 80% of these variants had ancestral allele information,
and 3) at least 60% of nucleotide sites in the window passed both the 1000
Genomes strict accessibility mask (Auton et al., 2015) and the deCODE re-
combination hotspot mask (standardized recombination rate > 10; Kong et
al., 2010). In each of these 1,111 windows, we randomly sampled 1,000 vari-
ants and extracted genealogical features at those variants from Relate-inferred
ARGs (Speidel et al., 2019), yielding around 1 million samples that constituted
the unlabeled target domain data. Finally, domain-adaptive SIA models for
classifying sweeps and inferring selection coefficients were trained as described
previously and applied to a collection of loci of interest (Table 4.1).
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Chapter 5

Conclusions and Perspectives

5.1 Summary

There has been astonishing progress in the adoption of AI/ML for population
genetics research since we began the works presented in this thesis. This field of
research has emerged from prototypical models tailored to relatively bespoke
tasks (Sheehan and Song, 2016), gone through speculation and excitement
about the promises and pitfalls of a data-driven ML approach to evolutionary
modeling (Schrider and Kern, 2018), and eventually accumulated a robust
body of literature that spans a range of technical and methodological aspects
of ML tailored to diverse empirical problems in population genetics (Huang
et al., 2023; Korfmann et al., 2023). My thesis work focuses on utilizing ML
to fulfill the potential of making accurate inference with complex genealogical
information in the ARG (Chapters 2 & 3) and addressing the fundamental
limitation of mis-specified training data for supervised ML models (Chapter
4). This thesis makes a significant contribution to simultaneous efforts in the
field that strive to make AI/ML a powerful and accessible inferential framework
for profound evolutionary discoveries.

There are rich opportunities to move forward with this line of work. For
example, model interpretability remains a crucial subject for further research
in the evolutionary applications of deep learning. Population geneticists are
interested in not only predictions, but also mechanistic understanding of evo-
lution. Therefore, despite the superb predictive performance of deep learning
models, their “black-box” nature presents an obstacle to uncovering the evolu-
tionary machinery driving the genetic diversity observed in populations. Much
effort has already been devoted to addressing this issue by incorporating the
latest techniques from explainable AI research. This growing body of work
is highlighted in Novakovsky et al., 2023. Below, we conclude the thesis by
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elaborating on another promising new area that pushes towards a deeper un-
derstanding of evolution through ML. Generative AI has achieve remarkable
success in a variety of domains, notably NLP and CV, but is still in its infancy
in population genetics.

5.2 Evolutionary modeling in the era of gen-

erative AI

Generative models capture the underlying probability distribution of observed
data and consequently are capable of creating novel data points beyond the
observed data by sampling from the captured probability distribution. Many
traditional population genetic models are generative models, parameterized
under theories of evolution. Although fully interpretable, these models often
lack either the scalability to handle large amount of modern genomic data or
the versatility to accommodate complex evolutionary processes, as discussed
previously (section 1.3). Deep generative models provide an alternative of
using neural networks to automatically learn the probability distribution from
the training data in a domain-agnostic fashion.

Several early deep generative models have already been applied to popula-
tion genetic tasks. Restricted Boltzmann machines (RBMs) are energy-based
models that map the probability of data to an energy function and have been
used to generate artificial genomes mimicking the properties of real ones (Yel-
men et al., 2021; Yelmen et al., 2023). A variational autoencoder (VAE)
consists of an encoder that maps the input into a latent space defined by
a variational distribution and a decoder that can produce different samples
from the distribution. VAEs are used to infer population structure and ances-
try proportions from large genomic datasets such as the UK Biobank (Meisner
and Albrechtsen, 2022). Generative adversarial network (GAN) is another
widely popular model architecture and has been applied to infer demography
(Z. Wang et al., 2021), selection (Riley et al., 2023), recombination (Gower
et al., 2023) as well as to generate synthetic genomes (Yelmen et al., 2021; Yel-
men et al., 2023). A GAN contains a generator and a discriminator trained in
an adversarial manner, where the discriminator aims to correctly distinguish
real data from synthetic data produced by the generator and the generator
aims to fool the discriminator by creating realistic synthetic data. These early
architectures suffer from various practical issues that limit their applications
and have gradually been overshadowed by a new generation of deep generative
models (Huang et al., 2023).

The latest and greatest deep generative models are diffusion models (Sohl-
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Dickstein et al., 2015) and transformers (Vaswani et al., 2017). Diffusion
models typically contain a forward diffusion process where noise is injected at
each step and a reverse denoising process where neural networks recover the
input by attempting to remove the noise. Diffusion models are most notably
used for text-to-image generation and yield impressive results. Transformers
pioneered the self-attention mechanism and have achieved unparalleled perfor-
mance for many NLP tasks. In particular, transformers power large language
models (LLMs) and help establish a new paradigm where large foundation
models such as LLMs are pre-trained in an unsupervised or self-supervised
manner and subsequently fine-tuned to use cases across a wide range of do-
mains.

In light of the striking success of generative AI models across many fields,
it is timely for applications of AI/ML in population genetics to move beyond
optimization of simple prediction tasks and towards fully generative evolu-
tionary models. Here we introduce two specific avenues of future work among
myriad other possibilities in this rising field of research.

As mentioned previously, a great deal of efforts have been devoted to learn-
ing evolutionary parameters from large-scale population sequencing data us-
ing GANs. The fundamental challenge to this approach is that the generator
component of the GAN is usually a population genetic simulator and there-
fore non-differentiable. A prototype of this model called “pg-gan” has been
trained with a gradient-free method – simulated annealing, which can be com-
putationally prohibitive for high-dimensional search spaces, hence limiting the
complexity of the evolutionary model (Z. Wang et al., 2021). This problem
is reminiscent of non-differentiable criteria encountered in training LLMs such
as human feedback, which have found effective solutions through either rein-
forcement learning (Christiano et al., 2017; Hui et al., 2021) or zeroth-order
optimizers using gradient approximation techniques such as ZO-SGD (Spall,
1992) and MeZO (Malladi et al., 2023). There is great potential in developing
GANs tailored to complex evolutionary generators where the simulators are
trained with either reinforcement learning or zeroth-order optimization algo-
rithms. This new approach has the prospect of accommodating a large set of
evolutionary parameters while maintaining computational efficiency.

Pushing the idea of generative models for evolutionary analyses further, an
ultimate vision is to make large foundation models of evolution a reality. The
emergence of generative AI models has made a profound impact on biomed-
ical research. For example, LLMs of protein and DNA have already shown
outstanding performance in a variety of problems in molecular biology such as
protein structure (Lin et al., 2023) or variant effect prediction (Benegas et al.,
2023; Cheng et al., 2023). Similarly, foundation models of evolution based
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on genealogical embeddings of the ARG have the potential to revolutionize
population genetic research. In order to build such models, an auto-regressive
training procedure for genealogies needs to be developed. One possibility is
to borrow the idea of “threading” from ARGweaver (Rasmussen et al., 2014;
Hubisz et al., 2020, see section 1.1) where one left-out sample or subtree is
“re-threaded” into the genealogy. We can similarly train a neural network by
“masking” a sample or a subtree and optimizing it to complete the genealogy,
akin to masked language modeling for LLMs. This will pave the way to foun-
dation models pre-trained in a self-supervised manner with an incredibly wide
range of simulations of many evolutionary processes. Such models have the
potential to “understand” the grammar and logic of how evolutionary histories
manifest in different topologies of the ARG, much like the way large language
models “understand” natural languages. Since access to computational re-
sources is a limiting factor for many academic researchers, the need to train
highly parameterized models from scratch remains a hurdle for the adoption
of deep learning in population genetics. Foundation models of evolution will
create a new paradigm where empiricists can fine-tune high-performing pre-
trained models even with limited amount of compute or labeled data instead
of creating less powerful models from scratch for each new application to a
different population or organism.

Generative AI models of evolution will empower rapid scientific discovery
that keeps pace with the ever-growing scale of genomic datasets and move
the field beyond solving isolated inference problems into a holistic view of
evolution.
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Tarazona, S., Dopazo, J., Meyer, T. F., & Conesa, A. (2012). Qualimap:
Evaluating next-generation sequencing alignment data. Bioinformatics,
28 (20), 2678–2679. https://doi.org/10.1093/bioinformatics/bts503

Garud, N. R., Messer, P. W., Buzbas, E. O., & Petrov, D. A. (2015). Recent
Selective Sweeps in North American Drosophila melanogaster Show Sig-
natures of Soft Sweeps. PLoS Genetics, 11 (2), e1005004. https://doi.
org/10.1371/journal.pgen.1005004

Ghifary, M., Kleijn, W. B., Zhang, M., Balduzzi, D., & Li, W. (2016). Deep
Reconstruction-Classification Networks for Unsupervised Domain Adap-
tation. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer
Vision – ECCV 2016 (pp. 597–613). Springer International Publishing.
https://doi.org/10.1007/978-3-319-46493-0 36

Gould, S. J. (1989). Wonderful life: The burgess shale and the nature of history.
WW Norton & Company.
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gren, P., Sjögren, M., Ling, C., Eriksson, K.-F., Lethagen, Å.-L., Man-
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Appendix A

Supplementary material for
Chapter 2

The simulation scripts and code for building and training the SIA model are
publicly available on GitHub. Supplementary figures are included in this ap-
pendix.

122

https://github.com/CshlSiepelLab/arg-selection


Supplemental Figures

Figure S1: Overview of the deep learning architecture. A form of Recurrent Neural Networks 1 
called Long-Short Term Memory (LSTM) was used for sweep prediction. LSTMs are designed 2 
to handle the temporal nature of our feature set and account for long term dependencies. Our 3 
model has 100 timepoints with the final target output differing in terms of the task at hand (i.e. 4 
classification or regression task). For the classification task, the final target output is a label for a 5 
binary classification problem predicting whether a region is under selection or neutrality. For the 6 
regression task, the final target output is a continuous value, representing the selection 7 
coefficient or the selection onset. We also took a many-to-many approach to model the allele 8 
frequency trajectory for the site under selection. 9 
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Figure S2: The impact of selection on the performance of SIA on the S. hypoxantha 10 
population. Data was simulated under a variety of selection regimes and segregating 11 
frequencies for the beneficial mutation under selection (shown in the legend under freq and s). 12 
The prediction task involves two classes: neutral versus soft sweep. SIA was tested on a set of 13 
200 regions per ROC curve (100 per class), and the receiver operating characteristic (ROC) 14 
curve records the true positive rate (TPR) as a function of the false positive rate (FPR). The 15 
curve associated with the binary prediction task (neutral vs. soft sweep) is obtained by varying 16 
the prediction threshold from 0 to 1 and recording for each threshold the number of regions 17 
correctly assigned (TPs) and misassigned (FPs) (with prediction probability above the 18 
threshold). The performance of SIA was evaluated based on the area under its ROC curve, or 19 
AUROC (shown in the legend under acc). We report SIA’s AUROC as an average across 200 20 
replicate datasets for each ROC curve. 21 
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Figure S3: Predictions of selection coefficient on simulations using true gene trees. 22 
Results are binned by segregating frequency for each selection regime. Each model condition 23 
(i.e. box plot) represents a set of 100 replicates. Figure layout and description are otherwise 24 
similar to Figure 3A. 25 
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Figure S4: Predictions of selection coefficient on simulations using SIA, ImaGene, and 26 
CLUES. Results are binned by segregating frequency for each selection regime. Each model 27 
condition (i.e. box plot) represents a set of 100 replicates. The simulations are based on the 28 
CEU demographic model where inferred genealogies were used as input to SIA and CLUES. 29 
Figure layout and description are otherwise similar to Figure 3A. 30 
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Figure S5: Predictions of selection coefficient on simulated regions using SIA based on 31 
inferred genealogies and CLUES with ARGweaver-sampled genealogies. Both methods 32 
were evaluated on a test set of 10,000 neutral and 10,000 sweep simulations of 32 haplotypes 33 
under a constant-sized demography with Ne=10,000. Figure layout and description are 34 
otherwise similar to Figure 3A. 35 
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Figure S6: Predictions of selection coefficient on southern capuchino simulations using 36 
SIA. The distribution of inferred selection coefficients for SIA on S. hypoxantha and each model 37 
condition is reported using a box plot. The simulations are based on the capuchinos 38 
demographic model where true or inferred genealogies were used as input to SIA. Each model 39 
condition (i.e. box plot) represents a set of 400 replicates. Figure layout and description are 40 
otherwise similar to Figure 3A. 41 
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Figure S7: Performance of SIA in selection-coefficient inference with different sample 42 
sizes. A separate SIA model was trained using 100,000 neutral and 100,000 sweep simulations 43 
(95%-5% train-validation split) under a constant Ne = 10,000 for 16, 32, 64, 128 and 254 haploid 44 
genomes. The performance of each model in selection-coefficient inference was evaluated on a 45 
test set of 10,000 neutral and 10,000 sweep simulations using root mean square error (RMSE, 46 
top) and mean absolute error (MAE, bottom), stratified by time of emergence (in coalescent unit 47 
of 4Ne) of the de novo beneficial allele (left), and by the current derived allele frequency (right). 48 
Grey dots indicate the overall performance on the entire test set. 49 
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Figure S8: Allele frequency (AF) trajectories inferred with SIA using true genealogies of 50 
simulations under the CEU demography. Each panel shows 20 randomly selected examples 51 
of AF trajectories for a particular combination of selection coefficient and current AF. For each 52 
example, the true and inferred AF at each time point are connected by a vertical line with color 53 
scaled to the percentage error. 54 
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Figure S9: Distribution of error in allele frequency trajectory inference with true 55 
genealogies of simulations under the CEU demography. The performance of SIA and 56 
CLUES for AF trajectory inference was evaluated with the same set of 100 simulations under 57 
each combination of selection coefficient and current AF. Violin plots in each panel show the 58 
distribution of absolute error in AF estimation in time point bins indicated on the x-axis. Note that 59 
the y-axes limits for each row of panels with current AF equals f were set to be (-f, +f).60 
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Figure S10: Root-mean-square error (RMSE) in allele frequency trajectory inference with 61 
true genealogies of simulations under the CEU demography. The error distributions 62 
visualized in Figure S9 are summarized here as RMSE. 63 
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Figure S11: Examples of allele frequency (AF) trajectories inferred with SIA using 64 
genealogies inferred from data simulated under the CEU demography. Figure layout and 65 
description are identical to that of Figure S8. 66 
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Figure S12: Distribution of error in allele frequency trajectory inferred with SIA using 67 
genealogies inferred from data simulated under the CEU demography. Figure layout and 68 
description are identical to that of Figure S9. 69 
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Figure S13: Performance of SIA and CLUES models on selection coefficient inference, 70 
tested on true genealogies simulated under variable combinations of population-scaled 71 
mutation rate (θ=4NeμL) and population-scaled recombination rate (ρ=4ΝerL). Each panel 72 
shows the model predictions for simulations of a particular selection coefficient (s) and current 73 
derived allele frequency (f). Each box represents a group of 100 simulations under θ and ρ 74 
either specified by a fixed ratio, or sampled independently and uniformly within a particular 75 
range, as indicated in the legend. The dashed line marks the target value of s. The root mean 76 
squared error (RMSE) of the model predictions for each group of simulations is indicated at the 77 
top of the panel. For reference, the SIA model tested here was trained with true genealogies 78 
simulated under combinations of θ and ρ sampled independently and uniformly from a range of 79 
[940, 1880]. 80 
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Figure S14: Performance of SIA and CLUES models on selection coefficient inference, 81 
tested on true genealogies simulated under five alternative demographies. Each 82 
demography is obtained from the CEU demography by modifying the population size at one 83 
time point during the recent population expansion phase (see Figure S19 for more details).  84 
Each box represents a group of 100 simulations under the demography as indicated in the 85 
legend. Figure layout and description are otherwise similar to Figure S13. 86 
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Figure S15: Performance of SIA and CLUES models on selection coefficient inference, 87 
tested on true genealogies simulated under the CEU demography scaled to different 88 
present-day Ne. Each group of 100 simulations of specific s and f under a particular present-89 
day Ne (i.e. a box) were performed with a globally scaled CEU demography such that the 90 
resulting demography has a present-day Ne indicated by the legend (i.e. relative population size 91 
changes are preserved). For reference, the SIA model was trained with true genealogies 92 
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simulated under a present-day Ne of 188,088 (standard CEU). Figure layout and description are 93 
otherwise similar to Figure S13. 94 

138



Figure S16: Performance of SIA and ImaGene models on selection coefficient inference, 95 
tested on genealogies inferred by Relate from simulations under variable combinations 96 
of population-scaled mutation rate θ and population-scaled recombination rate ρ. Note 97 
that the training data for both SIA and ImaGene are generated from identical sets of simulations, 98 
which were performed under combinations of θ and ρ sampled independently and uniformly 99 
from a range of [940, 1880]. Figure layout and description are otherwise similar to Figure S13. 100 
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Figure S17: Performance of SIA and ImaGene models on selection coefficient inference, 101 
tested on genealogies inferred by Relate from simulations under five alternative 102 
demographies. Figure layout and description are otherwise similar to Figure S14. See Figure 103 
S19 for details of the demography. 104 
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Figure S18: Performance of SIA and ImaGene models on selection coefficient inference, 105 
tested on genealogies inferred by Relate from simulations under the CEU demography 106 
scaled to different present-day Ne. Note that the training data for both SIA and ImaGene are 107 
generated from identical sets of simulations, which were performed under a present-day Ne of 108 
188,088 (standard CEU). Figure layout and description are otherwise similar to Figure S15. 109 
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Figure S19: Illustration of alternative demographies used to simulate test data plotted in 110 
Figure S14 and S17. Squares indicate population size changes of the Tennessen et al. CEU 111 
model. For a simulation under a particular alternative demography, population size at the time 112 
point with matching color to the legend was modified by randomly sampling from a range 113 
centered on the original value ([-0.02, +0.02] for Dem1, [-0.01, +0.01] for Dem2, and [-0.005, 114 
+0.005] for Dem3-Dem5, as indicated by the vertical bar in the plot). Population sizes at all 115 
other time points were kept identical to the CEU demography. 116 
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Figure S20: Performance of SIA and ImaGene models on selection coefficient inference, 117 
tested on genealogies inferred by Relate from simulations under selection coefficients 118 
(s) beyond the range used for simulating training data. Note that the training data for both 119 
SIA and ImaGene are generated from identical sets of simulations. Selection coefficients of 120 
sweep simulations constituting the training set were sampled uniformly from a range of [0.001, 121 
0.02]. Figure layout and description are otherwise similar to Figure S13. 122 
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Figure S21: Performance of SIA and CLUES models on selection coefficient inference, 123 
tested on true genealogies simulated under selection coefficients (s) beyond the range 124 
used for simulating SIA training data. For reference, selection coefficients of sweep 125 
simulations constituting the SIA training set were sampled uniformly from a range of [0.001, 126 
0.02]. Figure layout and description are otherwise similar to Figure S20. 127 
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Figure S22: Distribution of putative soft sweep sites in S. hypoxantha with respect to the 128 
nearest coding regions. Panels (A) and (B) show the distribution of 15,551 sites (blue) across 129 
333 scaffolds at different scales. For reference, the expected distribution of sites randomly 130 
drawn from all polymorphic sites is shown in black. Note that the sites that fall in coding regions 131 
are plotted in a separate bin. 132 
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Figure S23: Architecture of genotyped-based CNN for selection inference. The model 133 
shares the exact same architecture as presented by Flagel et al. (Flagel et al. 2019) with one 134 
modification –– the original softmax output layer for classification was replaced by a linear 135 
output layer for selection coefficient inference. 136 
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Appendix B

Supplementary material for
Chapter 3

The computer code for this project has been deposited in GitHub repos,
bird capuchino analysis and arg-selection. Genomic data have been
archived in GenBank (BioProject ID PRJNA835722). Supplementary tables
and figures are included in this appendix.
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Table S1: Genes within the association peaks. 
         

Comparison Contig Chromosome Number of 
annotations Genes 

SASC vs. Makira 400 11 15 

TANGO6, GAS8, DBNDD1, DEF8, 
TUBB3, MC1R, TCF25, SPIRE2, 

FANCA, ZNF276, VPS9D1, SPATA2L, 
CDK10, LOC100232461, 

LOC115496849 
Ugi vs. Makira 1042 Z 1 LOC115491070 

Ugi vs. Makira 224 Z 15 

SLC44A1, SLC27A6, ISOC1, 
ADAMTS19, MINAR2, CHSY3, HINT1, 
LYRM7, CDC42SE2, SPTLC1, ROR2, 

NFIL3, DIRAS2, GADD45G, 
LOC116806816 

Ugi vs. Makira 5 1 23 

EFHC2, FUNDC1, DIPK2B, MIR221, 
ICOSLG, GATD3A, PWP2, 

TRAPPC10, AGPAT3, PDXK, RRP1B, 
HSF2BP, SIK1, CRYAA, U2AF1, 
LOC116808847, LOC115496971, 
LOC115496975, LOC115496977, 
LOC115497347, LOC115496981, 
LOC115496994, LOC115497018 

Ugi vs. Makira 866 20 10 
TP53INP2, NCOA6, GGT7, RAB5IF, 
MYL9, TGIF2, DLGAP4, EPB41L1, 

SRSF6, L3MBTL1 

Ugi vs. Makira 947 20 14 
RALY, EIF2S2, ASIP, AHCY, ITCH, 
DYNLRB1, FSIP2, CEP250, GDF5, 

FAM83C, EIF6, MMP24, 
LOC116806597, LOC116809171 

Ugi vs. Makira 62 Z 19 

PLPP1, MSMP, GALT, SIGMAR1, 
DCTN3, ENHO, FAM219A, MYORG, 

NUDT2, UBAP1, DCAF12, NOL6, 
AQP3, KIAA1328, MAPK6, 

LOC115491277, LOC105760850, 
LOC115491042, LOC100226213 

Ugi vs. Makira 318 6 1 LOC116808540 
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Table S2: Details for the samples used in this study. 
 

Subspecies Island Collection date Locality Latitude Longitude Ventral Coloration Sample ID Sex* 

megarhynchus Makira 5/16/09 Kira Kira -10.5 161.9 Chestnut MA132 M 

megarhynchus Makira 5/16/09 Kira Kira -10.5 161.9 Chestnut MA133 M 

megarhynchus Makira 5/22/09 Kira Kira -10.5 161.9 Intermediate MA166 M 

megarhynchus Makira 6/21/09 Star Harbour -10.8 162.2 Chestnut MA175 M 

megarhynchus Makira 6/22/09 Star Harbour -10.8 162.2 Chestnut MA180 M 

megarhynchus Makira 6/22/09 Star Harbour -10.8 162.2 Intermediate MA182 F 

megarhynchus Makira 6/23/09 Star Harbour -10.8 162.2 Chestnut MA183 M 

megarhynchus Makira 6/23/09 Star Harbour -10.8 162.2 Chestnut MA184 M 

megarhynchus Makira 6/24/09 Star Harbour -10.8 162.2 Intermediate MA185 F 

megarhynchus Makira 6/24/09 Star Harbour -10.8 162.2 Chestnut MA187 M 

megarhynchus Makira 6/15/11 Kira Kira -10.5 161.9 Chestnut MA193 F 

megarhynchus Makira 3/15/12 Kira Kira -10.5 161.9 Chestnut MA230 F 

megarhynchus Makira 3/15/12 Kira Kira -10.5 161.9 Chestnut MA231 F 

megarhynchus Makira 6/30/12 Kira Kira -10.5 161.9 Chestnut MA250 F 

megarhynchus Makira 3/11/14 Waimasi -10.4 161.7 Intermediate MA434 M 

megarhynchus Makira 3/11/14 Waimasi -10.4 161.7 Intermediate MA435 F 

megarhynchus Makira 3/12/14 Waimasi -10.4 161.7 Chestnut MA440 M 

 megarhynchus   Makira  3/12/14 Waimasi  -10.4 161.7 Intermediate MA441 F 

megarhynchus Makira 6/15/18 Waimasi -10.4 161.7 Chestnut MA704 M 

megarhynchus Makira 6/15/18 Waimasi -10.4 161.7 Melanic MA705 M 

megarhynchus Makira 7/2/18 Waimasi -10.4 161.7 Chestnut MA714 M 

megarhynchus Makira 5/15/09 Kira Kira -10.5 161.9 Chestnut MA129** M 

ugiensis Santa Ana 8/8/06 Gupuna -10.8 162.5 Melanic SA082 M 

ugiensis Santa Ana 8/10/06 Gupuna -10.8 162.5 Intermediate SA085 M 

ugiensis Santa Ana 8/10/06 Gupuna -10.8 162.5 Melanic SA087 F 
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ugiensis Santa Ana 8/11/06 Gupuna -10.8 162.5 Melanic SA095 M 

ugiensis Santa Ana 6/17/07 Gupuna -10.8 162.5 Melanic SA105 M 

ugiensis Santa Ana 6/17/07 Gupuna -10.8 162.5 Melanic SA106 M 

ugiensis Santa Ana 6/17/07 Gupuna -10.8 162.5 Melanic SA107 M 

ugiensis Santa Ana 5/7/08 Gupuna -10.8 162.5 Melanic SA121 M 

ugiensis Santa Ana 5/7/08 Gupuna -10.8 162.5 Melanic SA123 M 

ugiensis Santa Ana 5/8/08 Gupuna -10.8 162.5 Melanic SA124 M 

ugiensis Santa Ana 5/7/08 Gupuna -10.8 162.5 Melanic SA125 F 

ugiensis Santa Ana 3/20/13 Gupuna -10.8 162.5 Melanic SA267 M 

ugiensis Santa Catalina 6/22/13 Santa Catalina -10.9 162.5 Intermediate SC275 F 

ugiensis Santa Catalina 6/22/13 Santa Catalina -10.9 162.5 Intermediate SC277 F 

ugiensis Santa Catalina 6/22/13 Santa Catalina -10.9 162.5 Intermediate SC278 M 

ugiensis Santa Catalina 6/22/13 Santa Catalina -10.9 162.5 Melanic SC283 M 

ugiensis Santa Catalina 6/24/13 Santa Catalina -10.9 162.5 Melanic SC296 M 

ugiensis Santa Catalina 6/24/13 Santa Catalina -10.9 162.5 Melanic SC402 M 

ugiensis Santa Catalina 6/24/13 Santa Catalina -10.9 162.5 Melanic SC404 M 

ugiensis Ugi 4/26/08 Pawa -10.3 161.7 Melanic UG108 M 

ugiensis Ugi 4/27/08 Pawa -10.3 161.7 Melanic UG115 M 

ugiensis Ugi 4/27/08 Pawa -10.3 161.7 Melanic UG116 F 

ugiensis Ugi 5/18/09 Pawa -10.3 161.7 Melanic UG147 M 

ugiensis Ugi 5/18/09 Pawa -10.3 161.7 Melanic UG148 M 

ugiensis Ugi 5/19/09 Pawa -10.3 161.7 Melanic UG152 M 

ugiensis Ugi 5/19/09 Pawa -10.3 161.7 Melanic UG155 M 

ugiensis Ugi 5/19/09 Pawa -10.3 161.7 Melanic UG156 M 

ugiensis Ugi 5/20/09 Pawa -10.3 161.7 Melanic UG160 F 

ugiensis Ugi 5/20/09 Pawa -10.3 161.7 Melanic UG161 M 

ugiensis Ugi 6/8/11 Pawa -10.3 161.7 Melanic UG197 M 

ugiensis Ugi 3/13/12 Pawa -10.3 161.7 Melanic UG220 M 
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ugiensis Ugi 7/4/13 Bio -10.2 161.7 Melanic UG407 M 

ugiensis Ugi 3/15/14 Pawa -10.3 161.7 Melanic UG448 M 

ugiensis Ugi 3/15/14 Pawa -10.3 161.7 Melanic UG450 F 

ugiensis Ugi 3/15/14 Pawa -10.3 161.7 Melanic UG451 M 

 
*We determined sex by calculating the average depth of coverage across all the positions in each of six different contigs. 
Three of these contigs were autosomal and three were part of the Z chromosome. We subsequently averaged the depth 
of coverage for the three Z-linked contigs and divided it by the average from the three autosomal contigs. This process 
produced values around 0.5 for heterogametic females, and values close to 1 for males. Additionally, for a subset of 39 
individuals we also determined sex through PCR as described in reference (1). Both methods produced congruent results. 
 
**This sample is labelled as UG129 and not MA129 in the different files from our bioinformatics pipeline (e.g., vcf files), yet 
was treated correctly as a sample originating from Makira and not from Ugi (as other samples denoted with UG). 
 
References 
 
1.  N. W. Kahn, J. St. John, T. W. Quinn, Chromosome-specific intron size differences in the avian CHD gene provide an 
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S1 Fig. Mitochondrial minimum spanning networks. A. Haplotype network based on a 
~17 kbp alignment of the mitochondrial genome. B. Haplotype network based on 650 bp 
of the mitochondrial COI gene, commonly used for species identification. Branch 
lengths are proportional to the number of nucleotide differences between haplotypes, 
which are indicated by short lines on each branch (omitted for simplicity in the case of 
the full mitochondrial network). 
  

152



 
S2 Fig. Linkage disequilibrium among association peaks identified in the GWAS 
conducted with Makira and Ugi individuals. Average (below the diagonal) and maximum 
(above the diagonal) R2 values among all the statistical outlier sites in the GWAS from 
different pairs of association peaks. The chromosome and contig to which each peak 
belongs is indicated in red, and the size and color of the circles denotes the magnitude 
of LD. 
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S3 Fig. Genetic differentiation within and outside of association peaks. A and B. 
FST values calculated for 5 kb windows inside and outside association peaks. The plot 
for contig 400 compares individuals from SA/SC and Makira, while the plot for contig 
947 compares individuals from Ugi and Makira. The red dot denotes the window 
containing the MC1R and ASIP genes. C to F. Smoothed ancestry values across 
contigs, with association peaks indicated between vertical lines. Ancestry values were 
calculated in 100 kb sliding windows in Admixture, and the analysis was restricted to 
Makira vs. SA/SC for contig 400 and Makira vs. Ugi for contig 947. The plot in (C) 
shows increased separation between individuals from Makira and SA/SC in the peak 
region on contig 400 and extending approximately 0.5 Mbp in each direction. The plot 
includes only individuals from Makira and SA/SC that were homozygotes for 
the Asp119 or Asn119 MC1R mutation, respectively. The plot in (D) shows the six 
individuals from Makira and the four individuals from SA/SC which were heterozygotes 
for this mutation and had intermediate plumage, and shows overall more admixture than 
what is seen in (C). E. Ancestry values across contig 947 showing increased resolution 
in the peak region and extending approximately 2 Mb downstream. Three individuals 
from Makira which were heterozygotes for the Tre55 ASIP mutation are labeled in gray 
(only one of these individuals had intermediate plumage). The single melanic individual 
from Makira (MA705), which was homozygous for the derived Tre55 mutation, is 
labelled in black. For all four individuals, Ugi ancestry decreases to levels comparable to 
other Makira individuals about 1 Mb downstream of the peak. F. Ancestry across contig 
27 shows little resolution compared to the association peaks on contigs 400 and 947. 
We note that ancestry values range from 0 to 1, but that the plots extend beyond this 
range because of the smoothing algorithm and particularly the uncertainty shown by the 
confidence bands. Values beyond the [0,1] interval are therefore meaningless. 
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S4 Fig. Clustering of haplotypes obtained from the association peak on contig 400. 
Phased genotypes for the 61 SNPs located in the association peak on contig 400. Rows 
represent single chromosomes, therefore individuals are represented twice in the 
clustering tree on the left. The four nucleotides, the collection locality and the coloration 
phenotype are color-coded as indicated at left. The three SNPs within the MC1R coding 
region are indicated with a black rectangle. All individuals from SA/SC contained at least 
one haplotype in the region delimited by the SNPs with significant association scores 
around MC1R that differed from the one present in most individuals from Makira and 
Ugi. All the melanic individuals from SA/SC possessed two copies of this haplotype, 
while the four individuals with intermediate coloration possessed one of each, as was 
the case for two of the six individuals with intermediate coloration from Makira. All 
melanic individuals from SA/SC carried two copies of the derived Asn119 mutation, 
while all but one of the chestnut-bellied individuals from Makira had two copies 
of Asp119. The individuals with intermediate coloration (from either Makira or SA/SC) 
were heterozygotes for this coding mutation. The exception to this pattern was a single 
chestnut-bellied individual from Makira (MA714), which was a heterozygote yet was 
scored in the field under heavy molt and may have been incorrectly classified as having 
a chestnut belly. Finally, the derived Asn199 mutation existed primarily on the haplotype 
background found on SA/SC, but also to a lesser extent on the haplotype background 
found on Makira and Ugi. We note that the chestnut-bellied MA714 bird carried 
the Asn119 mutation on the most common haplotype background observed on Makira. 
The birds from Ugi, which are all melanic, were sometimes homozygous for either allele 
or heterozygotes. 
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S5 Fig. Principal component analyses derived from the SNPs within the association 
peaks. PCAs from the variants within the association peaks on contig 400 and contig 
947. Coloration phenotype and the island where individuals were sampled are color-
coded. 
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S6 Fig. Clustering of haplotypes obtained from the association peak on contig 947. 
Details as in S4 Fig. Ugi individuals had two copies of a haplotype that was different 
from the one present in SA/SC and Makira individuals. The only melanic individual from 
Makira (MA705) also carried two copies of the derived Ugi haplotype. We found a few 
heterozygote individuals but there was no obvious pattern with respect to their 
coloration. 
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S7 Fig. Statistics and feature encoding of the genealogy. A. RTH’ tests for the reduction 
in within-species TMRCA and is defined as the ratio between the TMRCA of half of the 
samples from a given species and the age of the youngest subtree that contains at least 
half of all samples. The species enrichment score tests for species differentiation in 
local trees and is defined as the maximum score associated with a given species in a 
subtree of the full genealogy. For a subtree, the species enrichment score is the 
probability of observing the number of samples of a particular species in that subtree 
under a hypergeometric distribution. Here the coloring of the leaves indicates 
hypothetical species and the example illustrates the statistics with respect to the green 
species. B. Genealogical features for the SIA model consist of the number of lineages in 
the genealogy at a set of discrete time points (t0, t1, …). The time points are chosen in 
an approximately log-uniform manner resulting in finer discretization of more recent time 
scales. In addition, when encoding the genealogical features at a particular site of 
interest, we encode separately the counts of ancestral (shown in black in the example) 
and derived (shown in aquamarine) lineages. The aquamarine cross indicates the 
branch where the mutation occurred. 
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S8 Fig. Highest species enrichment scores and lowest RTH’ values for peak regions on 
contigs 400 and 947. Representative trees from the peak regions which show extreme 
values of species-enrichment (A) and RTH’ (B) for SA/SC and Ugi. 
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S9 Fig. Species enrichment scores and RTH’ values for a control contig. Plots showing 
species enrichment (A) and RTH’ (B) in 20 kb windows along contig 27. Horizontal lines 
show species-specific levels of statistical significance (p<0.005). Trees obtained from 
random positions on contig 27 (each position is shown under the tree) indicating 
species enrichment scores (C) and RTH’ (D) values for each population. 
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S10 Fig. Benchmarking of the SIA models. A. Confusion matrices generated by 
applying the SA/SC and Ugi models to simulated data. Instead of applying a specific 
probability threshold, the predicted class was identified as the one with the highest 
probability according to the model. Under this maximum likelihood classification 
scheme, both models perform best distinguishing neutral from selected sites, and 
moderately when identifying soft or hard sweeps. B. One-versus-rest (OvR) receiver 
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operating characteristic (ROC) curves of the model classification performance on 
simulated data. The models perform very well on distinguishing sweeps, and less so on 
precisely identifying hard or soft sweeps. C. Comparisons between true and inferred 
selection coefficients and time of selection onset (expressed in generations before 
present) for SA/SC and Ugi models trained to detect soft or hard sweeps. Models 
trained to predict hard sweeps generally perform better than those trained to predict soft 
sweeps, which tend to overestimate small selection coefficients and recent selection 
onset times. 
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S11 Fig. Genome-wide estimates of selection coefficients and time of selection onset. 
Predictions are based on all the variants from the 190 scaffolds longer than 100kb. 
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Appendix C

Supplementary material for
Chapter 4

All code used in this study are available at GitHub. The 1000 Genomes data
are available online. Supplementary figures are included in this appendix.
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Supplementary Figures 

Supplementary Figure 1. Domain-adaptive SIA. A) The workflow of a simulation study 

that aims to benchmark the performance of the domain-adaptive SIA model in a realistic 

setting of demographic mis-specification. B) An improved version of SIA input features 

that encodes the full genealogy (adapted from [59]). A genealogy with n taxa at a 

polymorphic site is uniquely encoded by three (n-1) x (n-1) lower triangular matrices. The 

weight matrix W encodes the coalescent intervals where 𝑤𝑖𝑗 = 𝑡𝑛−𝑗 − 𝑡𝑛−1−𝑖, ∀ 𝑖 ≥ 𝑗, and 

the topology matrix F encodes the number of lineages persistent in the coalescent 

intervals corresponding to W (i.e. 𝑓𝑖𝑗 = # 𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑔𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑛−𝑗𝑎𝑛𝑑 𝑡𝑛−1−𝑖, ∀𝑖 ≥ 𝑗). The 

derived lineage matrix R encodes only the subtree subtending the branch where the 

mutation occurred (red lightning symbol), following the same scheme as F. Note that the 

W matrix is a redundant encoding of the n-1 coalescent times (t1,t2, …,tn-1), which contains 

information roughly equivalent to the original SIA input features [12]. C) Comparison of 
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the performance of the new SIA input features in (B) to that of the original SIA input 

features. 
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Supplementary Figure 2. Selection coefficient inference performance of SIA 

models. Raw data used to plot Figs. 3B and 3D are presented in (A) and (B), 

respectively. Performance of SIA models in the simulation experiment of failure to account 

for background selection (C) and in the simulation experiment of demographic model mis-

specification (D) is presented in terms of mean and standard deviation of the absolute 

error (top) as well as the distribution of raw error (bottom). Statistical significance (*) of 

the difference between the absolute error of the standard model and that of the domain-

adaptive model is evaluated with Welch's t-test. See Fig. 1C for definition of the model 

labels. 
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Supplementary Figure 3. Performance of dadaSIA models trained with imbalanced 

data. The sweep classification performance of dadaSIA models trained with different 

proportions of sweep vs. neutral examples in the target domain is shown in the form of 

precision-recall curves (A) and the area under precision-recall curve (AUPRC) (B). Note 

that the performance is always evaluated on a balanced test set. The performance of 

dadaSIA models trained with less target domain data than source domain data is shown 

in the form of precision-recall curves (C) and the values of AUPRC (D) for the 

classification task, and in the form of root mean squared error (RMSE) (E) for the selection 

coefficient inference task. The dashed lines in (B), (D) and (E) indicate performance of 

the standard model. 
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Supplementary Figure 4. Demographic mis-specification in the form of different 

degrees of bottlenecks tested in Fig. 5 experiments. 
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Supplementary Figure 5. Inference of out-of-range selection coefficients in the 

target domain using the dadaSIA model. The dadaSIA model trained with source 

domain data under 𝑠 ∈ [0.01, 0.02] failed to meaningfully infer any value lower than 0.01, 

even when examples of 𝑠 ∈ [0.001, 0.01] were supplied to the model as “unlabeled” target 

domain data, and vice versa. 
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Supplementary Figure 6. Recombination rate inference performance of ReLERNN 

models. Raw data used to plot Figs. 4A and 4B are presented in (A) and (B), 

respectively. Performance of ReLERNN models in the simulation experiment of failure to 

account for background selection (C) and in the simulation experiment of demographic 

model mis-specification (D) is presented in terms of mean and standard deviation of the 

absolute error (top) as well as the distribution of raw error (bottom). Statistical significance 

(*) of the difference between the absolute error of the standard model and that of the 

domain-adaptive model is evaluated with Welch's t-test. See Fig. 1C for definition of the 

model labels. 
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Supplementary Figure 7. Distribution of raw error of the ReLERNN models 

inferring recombination rate without simulation mis-specification. The respective 

mean absolute error (MAE) of the standard and domain-adaptive models are 4.05 x 10-9

and 4.13 x 10-9, under demography equilibrium, and 4.28 x 10-9 and 3.93 x 10-9, under a 

European demography. Note that the domain-adaptive model has a slight upward bias 

in its estimates in the case of European demography. 
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Supplementary Figure 8. Validation loss of the label predictor branch (mean 

squared error) and the domain classifier branch (binary cross entropy) over 

training epochs. The losses of the domain-adaptive ReLERNN models during training 

are plotted with and without simulation mis-specification. The red dot marks the early-

stopping epoch (i.e. epoch with the lowest validation loss for the label predictor). 
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Supplementary Figure 9. Domain classifier loss of dadaSIA models under 

different degrees of simulation mis-specification. See Fig. 5 and Methods for 

details of the types of mis-specification. 
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