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Abstract 13 

There has been rising interest in exploiting data from genome-wide association studies (GWAS) 14 

to detect a genetic signature of natural selection acting on a given phenotype. However, 15 

current approaches are unable to directly estimate the distribution of fitness effects (DFE), an 16 

established property in population genetics that can elucidate genomic architecture pertaining 17 

to a particular focal trait. To this end, we introduce ASSESS, an inferential method that exploits 18 

the Poisson Random Field (PRF) to model selection coefficients from genome-wide allele count 19 

data, while jointly conditioning GWAS summary statistics on a latent distribution of phenotypic 20 

effect sizes. This probabilistic model is unified under the assumption of an explicit relationship 21 

between fitness and trait effect to yield a DFE. To gauge the performance of ASSESS, we 22 

enlisted various simulation experiments that covered a range of usage cases and model 23 

misspecifications, which revealed accurate recovery of the underlying selection signal. As a 24 

further proof-of-concept, ASSESS was applied to an array of publicly available human trait data, 25 

whereby we replicated previously published empirical findings from an alternative 26 

methodology. These demonstrations illustrate the potential of ASSESS to satisfy an increasing 27 

need for powerful yet convenient population genomic inference from GWAS summary 28 

statistics.  29 
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Author Summary 30 

The growth of genome-wide association studies (GWAS) over the past decade has provided a 31 

wealth of resources for uncovering the genomic architecture underlying complex traits, 32 

including the footprint of selection. Currently, there are computational tools for inferring 33 

natural selection whereby GWAS results are leveraged to conduct a binary test for overall 34 

presence, estimate a correlated property, or summarize polygenic selection strength with a 35 

single statistic. However, a methodology that exploits GWAS data to estimate the distribution 36 

of fitness effects (DFE), which is the most direct measurement for the genetic impact of natural 37 

selection acting on a complex trait, does not currently exist. To this end, we constructed an 38 

approach to directly infer the DFE, wherein per-site selection coefficients specifically associated 39 

with a focal trait are aggregated across the genome. This implementation is designed to 40 

explicitly model an entire genome-wide set of summary statistics output from a GWAS rather 41 

than the individual-level input data, which offers computational efficiency and convenience as 42 

well as alleviates privacy concerns. We expect this to be a promising development given the 43 

further accumulation of GWAS results and investigators seeking more sophisticated analyses 44 

into the relationship between genetics and traits.  45 
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Introduction 46 

A central focus of human genetics is to elucidate the genomic foundation of complex traits. 47 

Genome-wide association studies (GWAS), which deploy a regression analysis that maps 48 

phenotypes against genotypes, have been a long-standing approach to accomplish this task. 49 

Conducting a GWAS typically produces summary statistics for each genetic site, such as an 50 

estimated effect size of the genetic variant on the trait of interest as well as an associated 51 

standard error in this estimated value [1]. A GWAS typically aims to reveal key genetic 52 

contributors by isolating loci with large estimated effect sizes and relatively low standard error, 53 

yet most traits are found to be highly polygenic with predominantly small effect sizes. While 54 

such results do not quite fulfill the aspirations initially intended when GWAS were first 55 

performed over a decade ago, there is still much information contained within the data that can 56 

be exploited to gain broader knowledge about genomic processes [2,3]. Therefore, GWAS 57 

research has shifted towards developing alternative and downstream methods that consider 58 

the full set of variant associations with a focal trait to address questions of genomic 59 

architecture, population genetics, and evolutionary ecology [4,5]. 60 

One application that is of widespread interest is to utilize allele sample frequencies of 61 

single nucleotide polymorphisms (SNPs) to unveil a signature of selection underpinning a 62 

polygenic trait [6–16]. Currently, available tools are designed for binary classification of overall 63 

presence versus absence, or indirect quantification of genome-wide fitness by parameterizing a 64 

proxy property such as the correlation between allele frequency and true effect size. However, 65 

a desirable alternative would be to instead directly estimate the distribution of fitness effects 66 

(DFE), which is a frequency histogram that consolidates locus-specific selection coefficients 67 

throughout the genome [5,17]. As a fundamental concept in evolutionary genetics, the DFE 68 

borrows from a long-standing theoretical basis to allow a clearer understanding of population 69 

dynamics. Specifically, it is a composite that reflects magnitude and direction of selection, 70 

genomic architecture, mutation rates and patterns, demographic history, and other molecular 71 

ecology processes. Detection of the DFE marginalized to an individual phenotype of interest, 72 

particularly beyond targeted segments such as coding regions, then can be informative to 73 

adaptation, mutational load, mutational target, and lethality. Such insight is relevant to 74 
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elucidating the manner and speed with which evolution proceeds, predicting the trajectory of 75 

future variants, and comparing traits, independently structured lineages, and environmental 76 

conditions. 77 

 In contrast to tools that require the same individual-level genotypes and phenotypes 78 

employed as input for a GWAS, many techniques now typically take advantage of the summary 79 

statistics resulting from a GWAS that often are already publicly available. This provides much 80 

greater accessibility and convenience, not the least of which a substantial decrease in 81 

computational expense [18]. Notably, some methods indirectly utilize GWAS summary statistics 82 

to stringently subset the input data, thereby discarding the vast majority of information [19,20], 83 

but a much more desirable alternative would be to explicitly incorporate an entire set of 84 

genetic markers with a joint probabilistic model that unites evolutionary processes with 85 

genomic architecture [5,21,22]. A promising avenue to achieve this objective is the Poisson 86 

Random Field (PRF), which uses diffusion approximation to model allele counts for a given 87 

sample size conditional on parameterizations of demography and selection [23–26]. This 88 

calculation yields an expected site frequency spectrum that can be treated as a probability 89 

distribution for independent SNP data, as has been previously done to estimate a generalized 90 

DFE among coding regions [27]. Importantly, the assumption of independence between loci 91 

consequently does not address the influence of linkage disequilibrium (LD). However, while it 92 

would be ideal to explicitly model the full relationship among markers, such an endeavor would 93 

be too computationally intensive for practical implementation. Conversely, the PRF acts as a 94 

useful yet principled approximation by ignoring LD and thus allowing a composite likelihood 95 

across sites while still permitting maximum likelihood estimation of relevant parameters. This 96 

composite likelihood approach offers the large benefit of exploiting genomic-scale data 97 

efficiently, including integrating with a simple and computationally inexpensive model of GWAS 98 

summary statistics and true effect sizes. Additionally, the PRF is optimized for very weak 99 

selection coefficients, particularly at a scale much lower than typically explored for 100 

investigations of this nature. 101 

 Motivated by this potential to obtain a genome-wide DFE from modeling SNP-specific 102 

selection coefficients with the PRF, we present ASSESS (Association Summary Statistics for 103 
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Estimating Selection among Sites) as a Python2 module for inferring trait-specific fitness effects 104 

from observed genome-wide allele sample frequency and GWAS summary statistic data per 105 

SNP. In this article, we introduce our likelihood-based model, represent its power and 106 

robustness through various in silico validations, and further illustrate its proof-of-concept with 107 

an empirical investigation. Importantly, we exhibit the ability of ASSESS to retain accuracy 108 

under several cases of model misspecification, including LD causing correlation structures 109 

within both allele count and estimated effect size input data vectors, and assumption violations 110 

of the genomic architecture. Subsequently, we demonstrate ASSESS usage on open-access 111 

GWAS datasets derived from the UK Biobank. These analyses exemplify the promising potential 112 

of ASSESS to obtain greater understanding of how natural selection regulates highly polygenic 113 

quantitative traits and disease. 114 

Results 115 

 

 

Figure 1. Probabilistic graphical model of ASSESS inferential framework. Free parameters of 

interest are in green, latent variables are in brown, and observed values are in gray (with 

demography “observed” in the sense that it is pre-estimated). The proportion of functional sites 
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is controlled by the mixture component   , with non-zero true effect sizes (  ) modeled by a 

normal distribution centered on zero and standard deviation parameterized by  . The GWAS 

summary statistic  ̂  is then, assuming a normal distribution, informed by   , which is 

numerically integrated, along with the GWAS-derived   ̂ . Allele count (  ) is conditional on the 

population-scaled selection coefficient, which is converted from    via  , under the PRF with 

demographic specifications separately inferred against the data, generically notated here as  . 

Notably, due to the direct relationship between selection and effect size,   is irrelevant for SNPs 

with zero effect on the trait of interest. Additionally, usage of the PRF here allows integration of 

the true population-level allele frequency (  ). 

ASSESS joins population genetic theory with a quantitative model of genomic architecture to 116 

estimate a DFE corresponding to a complex trait (model description) 117 

ASSESS directly captures a trait-specific DFE by deploying the PRF to model selection 118 

coefficients against sample allele counts, while simultaneously leveraging GWAS summary 119 

statistics to inform   , the true effect size on a particular phenotype by an individual SNP   120 

(Figure 1). The input, which favorably is sourced from only two dataset types that generally are 121 

easily accessible, is exploited to infer three parameters: 1)   , a weighted point-mass on zero 122 

that is informed by a Laplacian prior; 2)  , standard deviation for a Gaussian normal distribution 123 

with a mean of zero; and 3)  , a genome-wide constant that governs the linear relationship 124 

between the DFE and true effect size (       |  |) [28]. The quantities of    and   comprise 125 

a mixture model for    [29–31], which acts as a latent variable and thus is numerically 126 

integrated within the likelihood equation. Assuming fitness consequences are entirely 127 

dependent on the impact of a genetic site onto a trait,   is then a scalar that transforms the 128 

genome-wide distribution of    into population-scaled selection coefficients. Notably, the sign 129 

for   indicates either positive or negative selection ubiquitously among analyzed 130 

polymorphisms (i.e. larger phenotypic effects, regardless of directionality, translate to stronger 131 

fitness effects, which are exclusively beneficial or purifying for a given dataset); here, we focus 132 

solely on negative   following the rationale that new mutations are deleterious when stabilizing 133 

selection acts on a polygenic trait, which we perceive to be the most conventional scenario. As 134 

a result of this simplified structure for the DFE,    signifies the proportion of loci that are of 135 
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zero consequence to the phenotype in both functional effect and fitness, while 
    √ 

√ 
 136 

represents the expected selection strength across non-neutral markers given that the 137 

distribution of    is folded into the half-normal distribution of the DFE. 138 

 

Figure 2. ASSESS performance given a simulated history of constant population size. a, b) 

Yellow lines indicate true values while teal/green lines represent the associated independent 

inferences of the DFE among 100 simulated datasets, with black marks denoting the median 

estimate. The x-axis, which covers a range of very weak selection coefficients, is presented in 

discretized positive units of increasing selection strength (i.e. scale of       ) for visual 

convenience. a) The y-axis plots the cumulative density of SNPs, normalized as a proportion of 

the total set including sites with no functional effect as well as loci undergoing strong selection. 

b) The y-axis plots the DFE, normalized as a proportion of the total set including sites with no 

functional effect as well as loci undergoing strong selection. c) Yellow boxplot indicates true 

values while orange violin plot and embedded black boxplot represent inferences of the mean 

average for the functional component of the DFE (presented in positive units, i.e. scale of 

      ). The range of the y-axis corresponds to the total optimization search space. 

ASSESS can robustly recover the true DFE 139 

To test the performance of ASSESS, we conducted in silico experiments against simulated DNA 140 

sequences and GWAS summary statistics (Table S1). We find no bias in the median DFE inferred 141 

amid 100 datasets (Figure 2). There is noticeable variance across the estimates, which is driven 142 

especially from a few outliers. However, this is within the context of an extremely high 143 
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resolution in selection magnitude, i.e. |     |     , with most error occurring in the weakest 144 

bin of |     |     . Evaluation against additional simulation sets (Table S1) reveal that these 145 

favorable results are largely maintained regardless of: tuning parameterization (Figure S1); 146 

genomic processes such as recombination rate, mutation rate, and coefficient of allele 147 

dominance (Figure S2); sampling of individuals for both allele counts and GWAS summary 148 

statistics (Figure S3); assumption violations in how the latent true effect size is obtained (Figure 149 

S4); and single-population instantaneous size changes across three discrete epochs (Figure S5). 150 

Particularly notable is that simulations that challenge our assumption of a direct linear 151 

relationship between selection and effect size, including incurring decreased heritability and 152 

variance due to environmental effects, reflected no noticeable difference in the results (Figures 153 

S4 – S5). Likewise, uncertainty in the demographic background appeared to have no impact on 154 

the analysis (Figure S5). Together, these exercises demonstrate consistent behavior in 155 

uncovering the DFE throughout an array of conditions, suggesting the promise of ASSESS to 156 

reach valuable conclusions when exposed to real data. 157 

ASSESS maintains accuracy in the face of severe genomic architecture misspecification 158 

To further challenge the robustness of ASSESS, we included a set of simulations that 159 

incorporated additional assumption violations. Specifically, the underlying distribution of effect 160 

sizes was governed by an exponential distribution rather than a Gaussian normal, which is also 161 

an additional stress to our modeling of selection and effect size (Table S1). Moreover, we 162 

performed a set of inferences wherein the informed prior on    was misspecified. This 163 

experiment yielded some bias from the deployment of the exponential distribution (Figure S6), 164 

especially in comparison to the previous efforts. However, there is no change in the median 165 

error, and the overall variance has noticeably decreased, though the minimum error has also 166 

increased (Figure S6d). Additionally, ASSESS accommodated the a priori inaccuracy in    in 167 

excellent fashion, with no visible difference in the estimates. This exercise, which combined a 168 

dynamic demographic history along with several ASSESS model misspecifications regarding LD, 169 

effect of selection on phenotype, and genomic architecture, provided a formidable test to 170 

demonstrate the potential utility of ASSESS for real data. 171 
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Figure 3. Selection inference for UK Biobank traits using ASSESS. Plots with the same x-axis 

unit have the same range among the four categories (i.e. the scaling remains the same 

horizontally across plots). a) The top half of the plots, which contain square data points, are 

estimates from Zeng et al. (2021), while the bottom half of the plots, which contain triangle 

data points, are corresponding empirical inferences from this study. Importantly, these two sets 

of results are of correlated yet distinctly different quantities; Zeng et al. (2021) investigated the 

relationship between minor allele frequency and effect size, whereas we focused on the 

expected value of the DFE (disregarding neutral sites). As a result, this is primarily a qualitative 

comparison, with the x-axis scale for the Zeng et al. (2021) and ASSESS estimates on the top and 

bottom, respectively. b, c) Color scheme for individual traits follow the legend in a). b) The y-

axis plots the normalized DFE of the ASSESS empirical inferences. c) The y-axis plots the 

normalized cumulative density of SNPs of the ASSESS empirical inferences. 

ASSESS recovers a range of DFEs for UK BioBank Traits 172 
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For our empirical application, we contextualized our empirical analysis against the estimates 173 

produced by Zeng et al. (2021), which we find to be the most similar implementation to ASSESS. 174 

However, though Zeng et al. (2021) explored a parameter correlated with fitness effects, their 175 

inferred property is nonetheless fundamentally different, thus a direct quantitative comparison 176 

is not possible. To this end, we selected two traits, specifically one under very strong selection 177 

and one under very weak selection based on the Zeng et al. (2021) inference, for a qualitative 178 

comparison of rank order per each of four UK Biobank trait categories. In three of the four 179 

categories, our findings are in agreement regarding which trait is under strong or weak 180 

selection (Figure 3). For the category of physical measures, we also added BMI due to its 181 

historical comparisons with height (e.g. [12]), and likewise found congruence with Zeng et al. 182 

(2021), as well as the conventional thought, in its inferred fitness effects relative to height. 183 

Hence, while a precise comparison to previously published results is difficult, this 184 

approximation via ranks nevertheless suggests general concordance. 185 

To better explore the inconsistency between the two studies for the category of 186 

reproductive phenotypes, we analyzed four datasets in total; this includes number of children, 187 

which although not part of Zeng et al. (2021), we decided to report since it is the most direct 188 

measurement of fitness. While the relative relationship between the estimates for first birth 189 

and menopause ages are quite similar, there is a strong disparity in the inference for age at 190 

menarche. However, it is important to consider that the parameter detected by Zeng et al. 191 

(2021) had a moderate correlation with selection strength, thus it is not expected to exactly 192 

reproduce a ranking of selection intensities. This is especially relevant here since the 193 

uncertainty estimated for the reproductive traits were overlapping in Zeng et al. (2021). 194 

Additionally, their methodology intended for a much different selection regime than is 195 

operated by ASSESS, with their study targeting selection coefficients up to three orders of 196 

magnitude greater than the resolution ASSESS is best suited (i.e. |     |     ). Furthermore, 197 

the inherently complex nature of reproduction combined with its intimate ties to fitness 198 

possibly incurs greater sensitivity to methodological differences and thus produces much more 199 

variance in results. Interestingly, the fitness effects detected for number of children is quite 200 

moderate in magnitude (a very close approximation to the average among all traits), which 201 
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perhaps exemplifies its high dimensionality to the point of effectively representing all traits 202 

simultaneously. 203 

Discussion 204 

This study illustrates the potential of ASSESS to detect genome-wide selection coefficients 205 

associated with a complex polygenic trait of interest. Our in silico experiments demonstrate 206 

that ASSESS remains robust across a range of tuning parameterizations, data properties, and 207 

genomic architectures, including a plethora of flagrant model misspecifications. In particular, 208 

we discover that in spite of the strict linear relationship enforced between selection coefficient 209 

and effect size, ASSESS behavior is stable amid more dynamic simulation models whereby the 210 

true trait effect distribution has a likely more realistic transformation into the DFE. In particular, 211 

decreasing the genotype-phenotype correlation and level of heritability showcased the ability 212 

of ASSESS to tolerate extrinsic forces influencing trait expression. We posit that the       213 

 |  | relationship allows the   parameter to “absorb” various confounding factors that are not 214 

addressed by our model, thus the simple linear regression of the true selection coefficient 215 

against the true functional impact sufficiently captures the DFE from the observed data. This is 216 

perhaps supported by previous work that demonstrated decoupling between environmental 217 

effects and the DFE [32]. Moreover, this may also have assisted in resolving the differing 218 

distribution type for the effect sizes. 219 

A major advantage of ASSESS is its usage of the PRF, which allows efficient computation 220 

due to its assumption of independent sites. However, this creates a major concern of the 221 

confounding effects from LD, which are inherently ignored by ASSESS due to this property of 222 

the PRF. Specifically, there are two avenues by which linkage can disrupt the underlying signal 223 

in the data: 1) the population genetic portion of the model – individual sites under selection 224 

induce an impact on allele frequencies for neighboring neutral SNPs, though negative selection 225 

should have a much less profound effect than a selective sweep signature; and 2) the genomic 226 

architecture portion of the model – non-causal genetic markers in close proximity to functional 227 

polymorphisms have an artificially inflated correlation with phenotypic values, thereby 228 

incurring error in the GWAS estimation of effect size. Fortunately, favorable conclusions from 229 

the simulation tests, all of which incorporated these two types of LD consequences, alleviate 230 
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this factor. This is especially exemplified in the trials that varied recombination rates across a 231 

total span of two orders of magnitude. However, the inflated variance among replicates, 232 

especially within the weakest selection bin, may indeed be from the influence of linkage; this 233 

could be less problematic though for cases wherein the proportion of functional sites is 234 

relatively low. 235 

Importantly, different combinations of parameter values can conceptually produce 236 

similar DFEs. For example, lowering    could largely offset decreasing  , and likewise reducing 237 

the intensity of the effect size architecture can be compensated by magnifying magnitudes of  . 238 

While the structure of the probabilistic model as informed by the allele counts and GWAS 239 

summary statistics should theoretically resolve these separate properties, including 240 

disentangling the effect size architecture from the DFE, the information may not be strong 241 

enough to tractably uncover these values; notably, this may be an avenue whereby LD has a 242 

particularly prominent effect. Indeed, we experienced preliminary difficulties in this regard, 243 

hence our informed prior with respect to   . While this is less than desirable, we found that 244 

the degrees of freedom had to be more limited, and we expect that polygenicity can be 245 

reasonably attained a priori for many datasets. Importantly, while individual estimates can be 246 

obtained for   and  , these are probably not interpretable under the inferential framework of 247 

ASSESS due to its simplifying assumptions; as previously alluded, these parameters may be 248 

capturing unintended signals in service of ASSESS optimizing      , thus are unreliable 249 

individually. 250 

 Interestingly, the quantity inferred by ASSESS deviates from a traditional perspective of 251 

the DFE. Our method of course has the feature of extracting a marginalized distribution, which 252 

is specified to a putative trait, from a theoretical aggregate of generalized fitness effects, which 253 

is a more commonplace construction of the DFE. Beyond this though, the modeling framework 254 

of ASSESS incurs additional atypical elements. First, whereas the target of obtaining the DFE is 255 

usually confined to a genomic subset, ASSESS is designed to be agnostic to type of genomic 256 

region and thus potentially genome-wide. However, the inference is ultimately dataset-257 

dependent, thus wholly conditional on the site selection of the SNP chip that was used to 258 

generate GWAS data, which may not be entirely representational. Moreover, while 259 
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ascertainment bias from allele frequency differences can be corrected within ASSESS, the 260 

impact of fixed mutations cannot be accommodated since our approach only operates on 261 

polymorphisms. As a result, the ASSESS DFE is partial to sites presently segregating within the 262 

collected data, therefore it cannot be interpreted as completely representing the predictive 263 

probability of generating fitness effects. Notably, while this elicits an omission of stronger 264 

negative selection coefficients, the focus on extremely small fitness consequences pairs well 265 

with the resolution of the PRF (i.e.          ). Our implementation then is able to discover a 266 

signature that can be challenging to capture on a highly polygenic scale and thereby may have 267 

been overlooked by other approaches. Interestingly, this heightened sensitivity to nuanced 268 

signals perhaps offers a compelling exploration of the genome under a more omnigenic 269 

perspective (i.e. one that considers contribution to a trait from a much greater mass of 270 

peripheral genes). 271 

 On that note, pleiotropy is another major consideration in the interpretation of our DFE. 272 

In particular, correlated traits would invoke a high overlap of the set of associated variants, thus 273 

ASSESS is potentially capturing a somewhat compounded DFE that describes several related 274 

traits. This begs the question of the exact definition of a trait, especially within the context of 275 

pleiotropy [11]. Theoretically, if the overall phenotype could be deconstructed into a suite of 276 

perfectly independent traits, then ASSESS is effectively aiming to discover the proportional 277 

contribution of each of these partitions to the absolute DFE. In practice though, traits are 278 

effectively an arbitrary artificial construction. To that end, a potentially interesting application 279 

of ASSESS then could be to compare estimated DFEs from seemingly related traits to reflect 280 

differences in pleiotropic effects. Similarly, inferences on the same trait from different 281 

populations could gain new insight for trait evolution. 282 

 A promising avenue to further develop this approach in a future implementation is to 283 

employ the simulation pipeline developed here coupled with a machine learning framework. 284 

This could allow a much greater level of complexity, such as incorporating pleiotropic 285 

interactions, environmental effects, positive selection with purifying selection, and temporal 286 

changes in phenotype optimum. Importantly, a simulation-based machine learning application 287 

could also possibly allow estimates of the individual parameters that define our DFE, including 288 
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without a prior on the proportion of functional sites. These individual quantities can be of great 289 

interest with: 1) offering insight into mutational target size; 2) disentangling scenarios of 290 

increased polygenicity of weaker selection from decreased polygenicity of stronger selection; 291 

and 3) describing the relationship between selection and genomic architecture. Regardless, 292 

ASSESS demonstrates a promising and interesting application of the PRF to leverage GWAS 293 

summary statistics in a convenient and efficient manner for illuminating the genomic 294 

architecture of complex traits. 295 

Methods 296 

Likelihood-based Model 297 

The baseline framework is a straightforward combination of the PRF for frequency changes of 298 

biallelic polymorphisms in response to selection and drift [23,24] and a sparse linear model for 299 

a complex trait that has been widely used in quantitative genetics [29–31] (Figure 1). These two 300 

components are linked by an assumed functional relationship between each site’s population-301 

scaled selection coefficient,         , and the corresponding true effect size, 302 

       (     )   |  |, wherein   is a free parameter that controls the scale of the linear 303 

relationship [28]. 304 

For the observed allele count,   , we deploy a standard PRF model that fits    305 

conditional on a pre-estimated single-population demographic history with instantaneous 306 

change among discrete epochs of constant size. This approach implies binomial sampling of    307 

given a true population-level allele frequency   , which is integrated over. For the purposes of 308 

this paper, however, we treat the calculation of the PRF density function: 309 

(1)   (   |     )  ∫ (   |   )  (   |     (     )   |  |)      310 

as a “black box” and execute it numerically given a discretization of 1,000 grid points using code 311 

borrowed from LASSIE [27]. For every possible    value, the density function  (   |     ) is 312 

solved over a fine grid of    values and subsequently obtained by a table lookup per SNP. 313 

Notably, this calculation of  (   |     ) allows for controlling uncertainty in the ancestral allele, 314 

akin to LASSIE. To address missing data, sampling level can subsequently be down-projected 315 

through the hypergeometric distribution [33,34]. 316 
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To account for the GWAS process, we suppose that the resulting estimated effect size, 317 

 ̂ , represents sampling from a Gaussian normal distribution whose mean equals the true value 318 

   [13,30,35] with standard deviation given by the estimated standard error,   ̂ : 319 

(2)     ( ̂  |      ̂ )   . ̂  |         ̂ 
 
/  320 

wherein    is the standard deviation for the number of alternative alleles per sample in the case 321 

that  ̂  and   ̂  were obtained from standardized genotypes and thus    needs to be scaled 322 

proportionally (   defaults to a value of 1 otherwise). We further employ a sparsity-inducing 323 

“spike and slab” prior distribution for the true   , with a mixture coefficient for the weighted 324 

point-mass at zero,   , and variance,   , for the zero-centered Gaussian normal component: 325 

(3)   (   |     )      (    )  (    )  (   |    
 )  (    )  326 

wherein   denotes an indicator function. 327 

Combining these equations and assuming conditional independence of the population 328 

genetic data (  ), as in most applications of the PRF, as well as the quantitative genetic data 329 

(represented by the GWAS summary statistics  ̂  and   ̂ ) given the true value of   , we obtain 330 

the likelihood function at a single locus  : 331 

(4)   (            ̂    ̂ )   (    ̂  |          ̂ ) 332 

 ∫ (   |     )  ( ̂  |      ̂ )  (   |     )     

 ∫ 0    . ̂  |        ̂ 
 
/   (   |       )

 (    )  (   |    
 )  . ̂  |      ̂ 

 
/   (   |     )1     

     . ̂  |        ̂ 
 
/   (   |       )

 (    )∫ (   |    
 )  . ̂  |      ̂ 

 
/   (   |     )      
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We approximate the integral over    numerically using the Gauss-Legendre quadrature rule, 333 

with nodes and weights scaled by    . A genome-wide set of   markers, whereby   *  + 334 

corresponds with  ̂  { ̂ } and   ̂  {  ̂ }, then yields the full likelihood function: 335 

(5)    (           ̂   ̂)  ∏   (            ̂    ̂ )
 
     336 

Therefore, the likelihood function has three total free parameters, two of which (   and  ) 337 

define the prior distribution over the true effect size, and the third of which ( ) defines the 338 

scale of the relationship between the true effect size and selection coefficient. 339 

The commonly utilized platform to procure the genotypes considered in GWAS is the 340 

SNP chip, which tends to overrepresent variants segregating at higher minor allele frequency. 341 

Such ascertainment bias could be even further exacerbated by the SNP calling protocol or 342 

discordance in population structure between the samples informing the SNP chip design and 343 

GWAS individuals. To accommodate this, we make use of an importance weighting strategy. 344 

Here,  ( ) represents the target distribution of relative frequencies over all possible minor 345 

allele counts given a reference panel, which for our empirical application is represented by 346 

complete genome sequences. Moreover,  ( ) represents the distribution of all possible minor 347 

allele counts for loci present within the GWAS data, upon which we are forced to operate 348 

despite our desire to exploit  ( ) since our model depends on summary statistics. 349 

Nevertheless, we can estimate the expected value for any function of interest,  ( ), under the 350 

target distribution: 351 

(6)    , ( )-  ∑  (  )  
 (  )

 (  )
  

   ∑     (  )
 
     352 

wherein    
 (  )

 (  )
 is derived for each possible minor allele count prior to optimization. 353 

Therefore, casting the per-site log likelihood as  (  ), we obtain: 354 

(7)       (           ̂   ̂)  ∑         (            ̂    ̂ )
 
     355 

with    down-projected through the hypergeometric distribution in cases of incomplete 356 

individual sampling, as done for  (   |     ). 357 

Expectation-Maximization (EM) Algorithm 358 
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In the presence of observed values from  , the complete-data log likelihood function (CLL) for 359 

the baseline model can be expressed in terms of two sufficient statistics,    and   : 360 

(8)     (     ̂           ̂) 361 

         (    )    (    )  (    )      
  

   
 ∑    (   |     )

 

   

    

wherein   is a quantity that does not depend on the free parameters.    represents the 362 

number of SNPs with effect sizes exactly equal to zero and    represents the sum of squares for 363 

the    values: 364 

(9)     ∑  (    )
 
           ∑   

  
     365 

In this complete-data case, simple closed-form expressions are derived for maximum 366 

likelihood estimates (MLEs) of    and   : 367 

(10)     ̂  
  

 
       ̂  

  

    
  368 

To curb potential identifiability issues stemming from the trade-off between these free 369 

parameters of our DFE construction, we deploy a Laplacian prior distribution on      : 370 

(11)         
 
|   (    )|

 
⁄   371 

wherein   is the a priori expected value of       and   is a scale parameter positively related 372 

to the variance of      . This then transforms the CLL: 373 

(12)     (     ̂           ̂) 374 

         (    )    (    )  (    )      
  

   
 ∑    (   |     )

 

   

  |   (    )|     

wherein   
 

 
, which acts as a penalty in     space for departure from  . 375 
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In the usual way, an EM algorithm can be obtained by iteratively computing expected 376 

values of    and    (E step) and selecting values of    and    that maximize the expected CLL 377 

(M step). To achieve the expected values, Bayes’ rule is applied at each site: 378 

(13)   〈    〉  
    . ̂  |        ̂ 

 
/  (   |       )

 (    ̂  |          ̂ )
  379 

  〈   〉  
(    )∫  

  (   |    
 )  . ̂  |      ̂ 

 
/  (   |     )    

 (    ̂  |          ̂ )
  380 

with all sites subsequently summed, such that 〈  〉  ∑ 〈    〉
 
    and 〈  〉  ∑ 〈   〉

 
   ; notably, 381 

the denominators here simply represent the per-site likelihood. For the MLE of   , due to our 382 

Laplacian prior, a modification must be employed in the following two cases: 383 

(14)   ̂  
    

   
 when           and    ̂  

    

   
 when         384 

With all three calculations of   ̂ being potential maxima, given that    , then 
    

   
 
  

 
 385 

    

   
 and therefore the global maximum is: 

    

   
 when    .

    

   
/   ; 

  

 
 when    .

  

 
/   ; 386 

    

   
 when    .

    

   
/   ; or whichever form of   ̂ maximizes      (                ̂   ̂) 387 

when the previous three conditions are not met. For implementation purposes, calculated 388 

values are forced to user-defined bounds when these are exceeded (typically           ). 389 

To produce a MLE of  , which requires a numerical method, an update at each EM iteration is 390 

accomplished simply by a single step of gradient ascent, leading to a “generalized” EM 391 

algorithm. 392 

In Silico Experiments 393 

To simulate test datasets, we developed a pipeline that exploits the software packages SLiM3 394 

[36], msPrime [37], and simGWAS [38] to respectively generate DNA sequences, an initialized 395 

stable state of panmixia wherein only genetic drift occurs, and summary statistics. Specifically, 396 

SLiM3 simulated    values given a single-population history of either equilibrium or 397 

instantaneous size change across three epochs. For computational tractability, recombination 398 

and mutation rates were respectively set to        and         (excepting certain trials 399 

wherein one of these genomic properties was evaluated), which is one order of magnitude 400 
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greater than accepted values for humans [39], with population size and temporal parameters 401 

correspondingly downscaled one order of magnitude from values relevant to human 402 

demography. Additionally, the coefficient of dominance equaled     for both neutral and 403 

selected alleles, barring individual tests wherein different values were tested (Figure S2; Table 404 

S1). To procure selection coefficients, which are specified as individual-level rates in SLiM3 405 

versus population-scaled for ASSESS, draws were made from our “spike and slab” prior (except 406 

our single experiment utilizing an exponential distribution; Figure S6) assuming    
 |  |

   
 with 407 

the three free parameters pre-defined (Table S1) as well as          due to the 408 

aforementioned downscaling from human demography. Importantly for the three-epoch 409 

scenario, the true value for the population-scaled DFE (along with   and  , regardless of 410 

generating value) is obscured since    is conditional on this reference    scalar, which 411 

represents a coarse approximation because of mutations randomly emerge throughout 412 

population size shifts over time. To address this,    was calculated from equally weighting    413 

with the harmonic mean size during the trajectory of demographic change, hence creating a 414 

known DFE in the unit consistent with ASSESS estimates. For runtime efficiency, a single shared 415 

pool of        independent sequences equal in length was curated per experimental group 416 

(Table S1), from which there was a random subset of       to construct each of the     417 

individual constituent datasets. 418 

Afterward, msPrime recapitated neutral mutations segregating within a stable-size 419 

panmictic population prior to the emergence of a selected trait, thus allowing SLiM3 to 420 

efficiently bypass an incredibly long and resource-intensive burn-in period. With a complete 421 

genomic segment of population-level frequencies established,     diploid individuals 422 

(notwithstanding examinations of other sampling levels; Figure S3; Table S1) were randomly 423 

chosen to elicit    values, with monomorphisms pruned from the data and derived states 424 

beyond the oldest allele present coded the same so as to follow infinite sites. Notably, this 425 

simulation effort caused   ,  , and   to be governed stochastically, and in fact in a directional 426 

fashion from the a priori input values due to selection intensities eliciting differential fixation 427 

rates (i.e. mutations with stronger negative selection are more likely to be lost, thus inflating 428 
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   and deflating  ;    also drastically increases simply from the neutral sites introduced by 429 

this recapitation procedure). Consequently, true values could only be retrieved post-hoc. 430 

 Values for    were then calculated under two alternative models for the relationship 431 

between selection and effect size (Figures S4 – S6; Table S1), yielding two distinct datasets 432 

(though sharing identical allele count data). The first is based on the BayesS method, wherein    433 

is calculated from the population-level allele frequency and this correlation is parameterized, 434 

thereby phenotypic contributions are naïve to selection coefficients (at least explicitly) but 435 

account for an environmental role [12]. Here, we simplified two of the parameters to be more 436 

aligned with ASSESS for the purpose of simulation efficiency: 1) the relationship between the 437 

variance of SNP effects and allele frequency was fixed to a constant specified a priori rather 438 

than randomly drawn per site, akin to the parameterization of gene-trait association from [40]; 439 

and 2) the common variance factor was set to a value such that the variance for the Gaussian 440 

component, given the mean of allele counts for markers under selection throughout the 441 

dataset, was equal to our a priori specification for   . The second strategy follows the seminal 442 

framework presented in [40] as modified by [41], wherein    derives from a more complex 443 

process that also incorporates heritability alongside all the variables already utilized in ASSESS 444 

and BayesS (i.e. fitness, allele frequency, and coupling between genetic variation and trait 445 

value). Notably, neither of these permit an exact equivalency for  , and likewise incur a 446 

different interpretation for  , due to assumption differences from ASSESS (which are further 447 

exacerbated by linkage). 448 

 The final stage of this procedure involved simGWAS assigning summary statistics 449 

conditional on  ,  , and GWAS sample size specifications (Table S1). Importantly, this approach 450 

considers covariance effects on  ̂  between adjacent loci, thus accounting for the influence of 451 

LD on the GWAS estimation process. However, this entailed computational restrictions, which 452 

was resolved by employing a sliding window with internal boundaries at every fourth 453 

polymorphism under selection from the first (e.g. 5th, 9th, 13th, etc.) up to the penultimate 454 

selected site per chromosomal segment. This paradigm allowed for overlapping sections, the 455 

absence of which would omit linkage dynamics at the edges, with at least two and up to five 456 

markers with functional effect for each simGWAS run. 457 
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Empirical Application 458 

Allele counts were retrieved from the 1000 Genomes phase 3 release while GWAS summary 459 

statistics, which were derived from the UK Biobank, were obtained from the lab website of 460 

Alkes Price [42]. This manner of data collection from two separate sources, wherein sample 461 

frequencies that are likely omitted from the GWAS study can instead be leveraged at higher 462 

resolution from an open-source repository containing many anonymized individuals across the 463 

whole genome, is what we envision to be most typical case. Given the drastic difference in 464 

amount of sites, non-intersecting loci between the two sets were culled and the discarded 465 

allele counts were used as part of the data for a priori demographic inference, a default feature 466 

of ASSESS. Notably, this independence in the data vector curation is not explicitly accounted for 467 

by the likelihood function, but this ought to be a rather minor consideration as long as the two 468 

data sources match in reference population. 469 

ASSESS Specifications 470 

When implementing ASSESS, the underlying demography was correctly specified for all 471 

simulated scenarios apart from the single instance that explicitly investigated uncertainty in 472 

single-population size change history (Figure S5). Here, as well as for the entirety of the 473 

empirical application, epoch length (in units of        intervals with temporal length     ) 474 

and relative    parameters were pre-estimated with a three-epoch instantaneous size change 475 

model utilizing LASSIE’s PRF implementation as called by ASSESS. This was executed against 476 

SNPs without GWAS summary statistics combined with polymorphisms within the lowest     477 

quantile of | ̂ | values. Aside from the in silico tests that directly stressed one of the following 478 

listed variables (Figure S1; Table S1), the tuning details for every inferential undertaking were as 479 

follows: search range for   set automatically to 
 

 
 a       unit below and 

 

 
 a       unit above 480 

the standard deviation of  ̂ (the rationale for skewing the distribution higher in value is that a 481 

significant proportion of lower value  ̂ is expected to be captured by   ); search range for   482 

confined by the negative inverse of the upper bound for   and     (thus the upper bound for 483 

the standard deviation of the functional component of the DFE, if it were hypothetically an 484 

unfolded normal distribution, is    );    nodes symmetrically centered at zero, as governed by 485 
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the Gauss-Legendre quadrature rule, for numerical integration of   ; step size scalar of 486 

        for gradient ascent of  ; tolerance level of                      , for which 487 

when improvement of      is not greater than, optimization concludes and parameter values 488 

are estimated according to the local optimum; 50 maximum iterations of calculating      for 489 

simulated data, and 10 maximum iterations of calculating      for empirical data, at which 490 

point optimization concludes and parameter values are estimated according to the local 491 

optimum; and   independent replicates of optimization cycles to approach a global maximum. 492 

For the simulation experiments, the Laplacian prior expected value for    was always set to the 493 

correct value except for the single instance that tested this assumption (Figure S6; Table S1); for 494 

the empirical application, this was set to      in the interest of approximating the polygenicity 495 

detected from Zeng et al. (2021).  496 
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Figure Legend 497 

Figure 1. Probabilistic graphical model of ASSESS inferential framework. Free parameters of 498 

interest are in green, latent variables are in brown, and observed values are in gray (with 499 

demography “observed” in the sense that it is pre-estimated). The proportion of functional sites 500 

is controlled by the mixture component   , with non-zero true effect sizes (  ) modeled by a 501 

normal distribution centered on zero and standard deviation parameterized by  . The GWAS 502 

summary statistic  ̂  is then, assuming a normal distribution, informed by   , which is 503 

numerically integrated, along with the GWAS-derived   ̂ . Allele count (  ) is conditional on the 504 

population-scaled selection coefficient, which is converted from    via  , under the PRF with 505 

demographic specifications separately inferred against the data, generically notated here as  . 506 

Notably, due to the direct relationship between selection and effect size,   is irrelevant for SNPs 507 

with zero effect on the trait of interest. Additionally, usage of the PRF here allows integration of 508 

the true population-level allele frequency (  ). 509 

Figure 2. ASSESS performance given a simulated history of constant population size. a, b) 510 

Yellow lines indicate true values while teal/green lines represent the associated independent 511 

inferences of the DFE among 100 simulated datasets, with black marks denoting the median 512 

estimate. The x-axis, which covers a range of very weak selection coefficients, is presented in 513 

discretized positive units of increasing selection strength (i.e. scale of       ) for visual 514 

convenience. a) The y-axis plots the cumulative density of SNPs, normalized as a proportion of 515 

the total set including sites with no functional effect as well as loci undergoing strong selection. 516 

b) The y-axis plots the DFE, normalized as a proportion of the total set including sites with no 517 

functional effect as well as loci undergoing strong selection. c) Yellow boxplot indicates true 518 

values while orange violin plot and embedded black boxplot represent inferences of the mean 519 

average for the functional component of the DFE (presented in positive units, i.e. scale of 520 

      ). The range of the y-axis corresponds to the total optimization search space. 521 

Figure 3. Selection inference for UK Biobank traits using ASSESS. Plots with the same x-axis 522 

unit have the same range among the four categories (i.e. the scaling remains the same 523 

horizontally across plots). a) The top half of the plots, which contain square data points, are 524 
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estimates from Zeng et al. (2021), while the bottom half of the plots, which contain triangle 525 

data points, are corresponding empirical inferences from this study. Importantly, these two sets 526 

of results are of correlated yet distinctly different quantities; Zeng et al. (2021) investigated the 527 

relationship between minor allele frequency and effect size, whereas we focused on the 528 

expected value of the DFE (disregarding neutral sites). As a result, this is primarily a qualitative 529 

comparison, with the x-axis scale for the Zeng et al. (2021) and ASSESS estimates on the top and 530 

bottom, respectively. b, c) Color scheme for individual traits follow the legend in a). b) The y-531 

axis plots the normalized DFE of the ASSESS empirical inferences. c) The y-axis plots the 532 

normalized cumulative density of SNPs of the ASSESS empirical inferences. 533 

Figure S1. ASSESS performance across a range of optimization tuning parameterizations. The 534 

pictorial representation follows the same legend/structure as Figure 2. d) Blue violin plot and 535 

embedded black boxplot represent the Euclidean distance between estimated and true DFE, a 536 

goodness-of-fit metric that allows differences in overall sensitivity to be easily observed. The 537 

inferential application from Figure 2 is placed here as well for comparison. 538 

Figure S2. ASSESS performance across a range of genomic parameterizations. The pictorial 539 

representation follows the same legend/structure as Figure S1. 540 

Figure S3. ASSESS performance across a range of sampling regimes. The pictorial 541 

representation follows the same legend/structure as Figure S1. 542 

Figure S4. ASSESS performance across SNP effect parameterizations. Importantly, the 543 

alternative simulation model included here is much more highly parameterized and thus better 544 

accommodates realistic data. Moreover, added here are further analyses that varied generating 545 

values conferring a non-genetic impact, i.e. degree of heritability and extent that allele 546 

frequency corresponds to phenotype (Table S1). The continued success accomplished here 547 

validates ASSESS being agnostic to environmental effects and generally robust to model 548 

misspecification. The pictorial representation follows the same legend/structure as Figure S1. e) 549 

Yellow violin plot represents the distribution for simulated genome-wide estimated effect sizes, 550 

which includes non-functional loci. The x-axis is presented in discretized absolute value units, 551 

while the y-axis plots the proportion of SNPs from the total set of sites. Importantly, the 552 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.29.601707doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.29.601707
http://creativecommons.org/licenses/by-nc-nd/4.0/


disparity between the plots, particularly the distinctive distribution shapes on substantially 553 

different x-axis scales, depicts integrally different underlying functional relationships between 554 

selection and functional effect, providing a strong testing ground for ASSESS assumption 555 

violations. 556 

Figure S5. ASSESS performance given a simulated history of size change. Importantly, in 557 

addition to employing a scenario of demographic shifts, this dataset also utilized alternative 558 

DFE parameter values (notably at a decreased overall intensity) and GWAS sampling levels 559 

(Table S1). Estimates were performed under both the original and alternative simulation 560 

models. Moreover, included here is an additional inferential effort wherein demography was 561 

not correctly configured and instead pre-estimated from a subset of the data. Notably, due to 562 

differences in parameterizing the selection coefficient between ASSESS and the simulator 563 

(population-scaled versus rate, respectively), there was ambiguity over how to reconcile 564 

estimates with true values against a non-equilibrium population size, hence previous simulation 565 

experiments utilizing a constant size to avoid this artifact. An explanation regarding how the 566 

population size scaling factor was derived is in the Methods. The pictorial representation 567 

follows the same legend/structure as Figure S1. e) This is the assumed demographic model 568 

prior to rescaling, with units in diploid individuals and number of generations. * The first epoch 569 

is generically set to     generations after rescaling, with a deeper neutral coalescent history 570 

accommodated by msPrime recapitation. To compare, the constant size history assumed 571 

       diploid individuals for       generations prior to rescaling and recapitation. 572 

Figure S6. ASSESS robustness given misspecification of the DFE. This investigation, which 573 

utilized the demographic history of fluctuating population size as previously employed, 574 

challenged the genomic architecture underlying ASSESS by governing the simulated selection 575 

coefficients with a exponential distribution (Table S1). Estimates were performed under both 576 

the original and alternative simulation models, which (especially with the latter case) in 577 

conjunction with the altered distribution type, also violates the ASSESS assumption of a linear 578 

functional relationship between effect sizes and the DFE. Furthermore, inferences were 579 

additionally made with an incorrect prior for the point mass on zero. The pictorial 580 

representation follows the same legend/structure as Figure S1.  581 
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Table S1. Specifications for In Silico Experiments. 

original application 

(Figure 1) 

ω� � 0.05 � � 0.1 � � 	10.0 

length of each independent sequence 

� 25 KB 

gene-trait coupling � 1.0 

sample size for GWAS control � 5,000 sample size for GWAS case � 5,000 

each additional simulated dataset for Figures S2 – S4 follows these same specifications 

except when stated otherwise 

experiment on resolution of numerical integration in ASSESS 

(Figure S1) 

additional inferential application with 

decreased number of �� nodes � 20 

additional inferential application with 

increased number of �� nodes � 100 

experiment on step size for gradient ascent of constant selection scalar in ASSESS 

(Figure S1) 

additional inferential application with 

decreased step size scalar � 1.0� 	 8 

additional inferential application with 

increased step size scalar � 1.0� 	 4 

experiment on tolerance level for log likelihood improvement in ASSESS 

(Figure S1) 

additional inferential application with 

decreased likelihood tolerance � 1.0� 	 13 

additional inferential application with 

increased likelihood tolerance � 1.0� 	 5 

experiment on recombination rate in simulations 

(Figure S2) 

additional dataset with decreased 

recombination rate � 1.5� 	 8 

additional dataset with increased 

recombination rate � 1.5� 	 6 

experiment on mutation rate in simulations 

(Figure S2) 

additional dataset with decreased 

mutation rate � 1.25� 	 8 

additional dataset with increased 

mutation rate � 1.25� 	 6 

experiment on coefficient of allele dominance in simulations 

(Figure S2) 

additional dataset with decreased 

dominance coefficient for neutral sites � 0.2 

additional dataset with increased 

dominance coefficient for neutral sites � 0.8 

additional dataset with decreased 

dominance coefficient for selected sites � 0.2 

additional dataset with increased 

dominance coefficient for selected sites � 0.8 

experiment on sampling of individuals for allele count data in simulations 

(Figure S3) 

additional dataset with decreased 

total allele counts � 100 (i.e. 50 diploids) 

additional dataset with increased 

total allele counts � 500 (i.e. 250 diploids) 

experiment on sampling of individuals for GWAS summary statistics in simulations 

(Figure S3) 

additional dataset with additional dataset with additional dataset with 
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decreased GWAS control 

� 500 and cases � 500 

decreased GWAS 

cases � 500 

increased GWAS 

control � 50,000 

experiment on alternative simulation model 

(Figure S4) 

additional dataset with 

simulation model based on 

Lohmueller (2014) 

and heritability � 0.9  

additional dataset with 

simulation model based on 

Lohmueller (2014) 

and heritability � 0.7 

additional dataset with 

simulation model based on 

Lohmueller (2014) 

and heritability � 0.5 

additional dataset with simulation model 

based on Lohmueller (2014), 

heritability � 0.9, 

and gene-trait coupling � 0.75  

additional dataset with simulation model 

based on Lohmueller (2014), 

heritability � 0.9, 

and gene-trait coupling � 0.5  

additional dataset with 

gene-trait coupling � 0.75 

additional dataset with 

gene-trait coupling � 0.5 

experiment on demographic history of instantaneous population size change 

(Figure S5) 

ω� � 0.2 � � 0.2 � � 	5.0 

length of each independent 

sequence � 250 KB 

heritability � 0.3 gene-trait coupling � 0.9 

sample size for GWAS control � 6,744 sample size for GWAS case � 2,479 

experiment on misspecified DFE shape in simulations and Laplacian prior of ω� in ASSESS 

(Figure S6) 

� � 0.1 � � 	5.0 

common variance factor � 0.2 

length of each independent 

sequence � 250 KB 

heritability � 0.3 gene-trait coupling � 0.9 

sample size for GWAS control � 6,744 sample size for GWAS case � 2,479 

Laplacian prior of ω� � 0.753 (versus 0.780) 
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