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Highlights 

● Analysis of a large single-cell CRISPRi screen finds limited evidence for synergistic or 

redundant interactions between enhancers 

● The collective action of multiple enhancers on a common target gene follows a 

multiplicative model of activity 

● A new statistical framework for simulating and modeling data from single-cell CRISPRi 

screens  

Summary 

A single gene may have multiple enhancers, but how they work in concert to regulate 

transcription is poorly understood. To analyze enhancer interactions throughout the genome, we 

developed a generalized linear modeling framework, GLiMMIRS, for interrogating enhancer 

effects from single-cell CRISPR experiments. We applied GLiMMIRS to a published dataset and 

tested for interactions between 46,166 enhancer pairs and corresponding genes, including 264 

'high-confidence' enhancer pairs. We found that enhancer effects combine multiplicatively but 

with limited evidence for further interactions. Only 31 enhancer pairs exhibited significant 

interactions (FDR < 0.1), of which none came from the high confidence subset and 20 were 

driven by outlier expression values. Additional analyses of a second CRISPR dataset and in 

silico enhancer perturbations with Enformer both support a multiplicative model of enhancer 

effects without interactions. Altogether, our results indicate that enhancer interactions are 

uncommon or have small effects that are difficult to detect. 
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Introduction 

Enhancers are distal cis-regulatory elements that direct transcription and shape cellular identity, 

growth, and biological function. Most genes are regulated by multiple enhancers1,2, yet we lack 

a detailed understanding of how they act together to influence gene expression. When multiple 

enhancers for a gene are active in the same cell type, it is often assumed that they act 

additively—that is, their combined effect is equal to the sum of their individual effects3. However, 

enhancers may also act non-additively, and interactions between regulatory elements may 

modulate their effects on gene expression3–10.  

 

To date, most studies of regulatory elements have examined their effects independently, and 

studies of regulatory element interactions have focused on a small number of loci and reached 

contradictory conclusions4–8. For example, a study of ɑ-globin regulation in mice found that this 

gene’s expression is best explained by simple additivity between constituent elements of its 

super enhancer7. In addition, a study that systematically deleted three constituent enhancers of 

a super enhancer for Wap in mice found differences in the magnitudes of effect that each 
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enhancer had on the target gene and no evidence of synergy between the enhancers, with all 

three enhancers necessary to induce full induction of the gene during pregnancy8. 

Reexamination of both of these super enhancer datasets under hypothetical additive, 

multiplicative, and logistic activity models found that the effects of the constituent enhancers on 

the target genes were best described by a logistic model, where enhancers work together 

multiplicatively until a saturation expression level is reached, but no significant evidence for 

interactions between enhancers5. Contrary to these findings, a recent study of the MYC locus 

described both synergistic and additive enhancer-enhancer interactions, where enhancers 

separated from one another by larger genomic distances are more likely to have synergistic 

interactions and enhancers located closer to one another are more likely to have additive 

interactions9. Altogether, these studies have been limited to the examination of a small number 

of genes and enhancers and their results are difficult to interpret due to their conflicting findings 

and the lack of explicit definitions and consistent terminology for different models of enhancer 

activity. 

 

CRISPR-induced perturbations of enhancer sequences have enabled high-throughput 

quantification of the effects of enhancers on gene expression11,12. These experiments have 

revealed that an activity-by-contact (ABC) model that combines enhancer activity with promoter 

contact frequency can predict the effect of enhancers on gene expression11. However, the ABC 

model scores each enhancer individually and was not used to predict how joint perturbations to 

multiple enhancers affect gene expression11.  

 

CRISPR perturbations can be combined with single-cell RNA sequencing10,13–19 to induce 

multiple genomic perturbations and measure their effects on gene expression in individual cells. 

These experiments can be used to identify interactions, or epistatic-like effects, between 
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targeted sequences. Here, we harness this feature of datasets generated by these experiments 

to measure the combined effects of multiple regulatory elements on gene expression. We 

present GLiMMIRS (Generalized Linear Models for Measuring Interactions between Regulatory 

Sequences), a statistical analysis framework that can be applied to single cell CRISPR 

perturbation experiments to quantify the effects of multiple regulatory elements on gene 

expression and identify interactions between them. GLiMMIRS has both data simulation and 

modeling components and can account for variation in gRNA efficiency. We applied GLiMMIRS 

to a multiplexed, single-cell CRISPR interference (CRISPRi) experiment that targeted putative 

enhancers in K562 cells13 and conducted a power analysis, which found that this dataset 

provides sufficient power to detect strong interactions between enhancers, and moderate power 

to detect weak interactions. We also analyzed a second CRISPRi dataset and performed in 

silico perturbations to enhancer pairs with Enformer, a deep neural network that predicts gene 

expression from genomic sequences. All three analyses support a model in which enhancers 

act multiplicatively to affect the expression of their target genes, but provided limited evidence 

for the presence of additional interactions between them. 

Results 

Detecting Enhancer Effects with GLiMMIRS-base 

To analyze the effect of multiple enhancers on gene expression, we leveraged data from a 

multiplexed, single-cell CRISPRi screen performed in K562 cells13. In this screen, which we 

refer to as Gasperini et al., gRNAs were designed to target putative enhancers and enhancer-

gene pairs were identified by associating perturbed enhancers with differences in the 

expression of nearby genes. Due to the high multiplicity of infection (MOI) used in this 
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experiment, many gRNAs targeting different enhancers are present within each cell. We 

realized that this feature of the dataset could be leveraged to quantify how pairs of enhancers 

regulate the expression of common target genes and to detect potential interaction effects 

between them. 

 

To estimate the effects of regulatory elements on target genes using data from this single-cell 

CRISPRi screen, we developed GLiMMIRS, a dual modeling and simulation framework. 

GLiMMIRS consists of three components: GLiMMIRS-base, a baseline model for estimating the 

regulatory effects of a single enhancer on a target gene (Fig. 1A); GLiMMIRS-int, an interaction 

model for estimating the combined regulatory effects of two enhancers on a target gene (Fig. 

1B); and GLiMMIRS-sim, a simulation framework for single-cell CRISPRi screens (Fig. 1C).  

 

We first developed GLiMMIRS-base, which is a negative binomial generalized linear model 

(GLM) that can be fit to single-cell RNA-seq (scRNA-seq) data from CRISPR regulatory 

screens. The GLM's response variable, 𝑌, is the observed scRNA-seq counts for a gene in each 

cell, and the predictor, 𝑋!"#$%#&, represents the CRISPR perturbation of a putative enhancer for 

the gene in the same cells. GLiMMIRS also includes covariates to control for cell cycle and 

percentage of mitochondrial reads, and an offset term to control for the total number of unique 

molecular identifiers (UMIs) observed in each cell. 

 

So that we could evaluate the performance of GLiMMIRS-base and GLiMMIRS-int, we next 

developed the GLiMMIRS-sim simulation framework (Fig. 1C). GLiMMIRS-sim accepts user-

defined experimental parameters such as number of cells, number of genes, number of distinct 

regulatory target regions, and gRNA library size. Using these parameters, it then randomly 

assigns regulatory target regions to genes and gRNAs to cells and also generates reference 
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coefficient values. Reference coefficient values include enhancer effect sizes corresponding to 

each target region/gene pair and interactions between target regions, which can be used to 

benchmark GLiMMIRS-base and GLiMMIRS-int.  

 

We used GLiMMIRS-sim to generate a single-cell CRISPRi screen dataset resembling the 

Gasperini et al.13 experimental dataset. We then fit GLiMMIRS-base to the simulated count data 

so that we could compare the estimated model coefficients to the simulated “reference” values. 

We compared the estimated coefficients from GLiMMIRS-base to the reference simulation 

values, using two different settings for the CRISPR perturbation predictor, 𝑋!"#$%#&: a 

'perturbation probability' and 'perturbation indicator'. We examined both predictor types because 

most enhancers in this dataset were targeted by two different gRNAs and the estimated effects 

of enhancer perturbations can be biased by the presence of low-efficiency guides (Fig. S1, 

Table S1). In the perturbation probability setting, we defined the value of  𝑋!"#$%#& as a function 

of gRNA efficiency, which is the estimated probability that its intended target is actually 

repressed in a cell containing the gRNA. In the perturbation indicator setting, we simply set 

𝑋!"#$%#& to 1 for cells containing a gRNA targeting the enhancer and 0 for all other cells. The 

perturbation indicator ignores guide efficiency, but is simpler and is the standard approach that 

is commonly used in the analysis of CRISPR screens10,13,20,21. 

 

Upon applying GLiMMIRS-base to the simulated data, we found that the estimated enhancer 

effects  (𝛽"'()'*"#) correlated well with the reference enhancer effects when we used a 

perturbation indicator for 𝑋!"#$%#& (Pearson 𝑟 = 0.81) and that this correlation improved when we 

used a perturbation probability for 𝑋!"#$%#& (Pearson 𝑟 = 0.86) (Fig. 1D, Table S2). In addition, 

using the perturbation indicator underestimated the enhancer effects (Fig. 1D). This suggests 

that a model that accounts for variable guide efficiency using a measure of perturbation 
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probability can obtain more accurate estimates of enhancer activity; however, gRNA efficiency 

estimates can be noisy, which may impact these estimates22–25. To assess this, we performed 

simulations with varying levels of noise in guide efficiency estimates. In simulations with low to 

moderate noise, the perturbation probability continued to provide accurate estimates of 

enhancer effects (Pearson 𝑟 = 0.78 − 0.85). When the efficiency estimate noise was very high, 

the perturbation probability still yielded reasonable, albeit less accurate, estimates of enhancer 

effects (Pearson 𝑟 = 0.37) (Fig. S2, Table S3). In summary, GLiMMIRS-base provides accurate 

estimates of enhancer activity when applied to simulated data and accounting for guide 

efficiency can improve accuracy when guide efficiency estimates have low or moderate noise.  

 

We then applied GLiMMIRS-base to the Gasperini et al.13 dataset and compared the p-values 

obtained from our model to those from their published analysis, which utilized Monocle 226. We 

detected a similar number of significant enhancer-gene pairs (560 validated by GLiMMIRS-base 

out of the 609 reported as significant by Gasperini et al.13), but with lower p-values for most of 

the highly significant pairs. Our p-values are well-calibrated, and when applied to permuted 

data, where gRNA identities are assigned to different cells, or to shuffled genes, where the 

candidate enhancers are not near the target gene, the p-value distributions match the null 

expectation (Fig. 1E, Table S4). These results establish that GLiMMIRS-base provides similar 

results to the published analysis by Gasperini et al. and may boost power by including additional 

covariates such as cell cycle scores. Having established the validity of our approach for the 

simpler scenario of single enhancers acting on single genes, we proceeded to study the 

regulatory effects of enhancer pairs.  
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GLiMMIRS-int detects interactions between pairs of enhancers  

To estimate the effects of pairs of enhancers on gene expression, we developed GLiMMIRS-int 

(Fig. 1B). In this model, we replaced the single enhancer term (𝛽"'()'*"#𝑋!"#$%#&) in GLiMMIRS-

base with three new terms to represent: 1) the first enhancer in the pair (𝛽+𝑋+); 2) the second 

enhancer in the pair (𝛽,𝑋,); and 3) an epistatic-like interaction between the enhancers (𝛽+,𝑋+,). 

We set the values of the 𝑋+ and 𝑋, predictors to be perturbation probabilities for the respective 

enhancers. Likewise, we set the value of 𝑋+, to be the probability that both enhancers are 

simultaneously perturbed (𝑋+, = 𝑋+𝑋,). 

  

To identify pairs of enhancers where interactions could be evaluated by GLiMMIRS-int, we 

identified pairs of putative enhancers that were targeted for CRISPRi perturbation in the 

Gasperini et al. experiment where both members of the pair were located within 1MB of a 

common target gene. We found a total of 795,616 such pairs. Since some cells must contain 

perturbations to both enhancers ("joint perturbations") to measure interaction effects, we 

evaluated the number of cells containing gRNAs targeting both enhancers in these pairs. The 

majority of enhancer pairs were jointly perturbed in a small number of cells, which limits power 

to detect interactions; however, we found that 46,166 were jointly perturbed in at least 10 cells 

(Fig. 2A). We considered this latter set to be "testable" enhancer pairs and restricted our 

downstream analysis with GLiMMIRS-int to these pairs. 

 

To assess our power to detect enhancer interactions with GLiMMIRS-int, we used GLiMMIRS-

sim to simulate data over a range of MOIs (𝜆) and interaction effect sizes (Fig. 2A-B, Table S5). 

In this simulated dataset, we defined “interacting” enhancer pairs as having an interaction effect 

on their target gene and “non-interacting” pairs as having individual effects on the target gene 

but no additional interaction effect. We focused on simulations with MOIs of 15 and 20 since the 
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properties of these simulated datasets most closely resembled the Gasperini dataset (Fig. 2A-B) 

and restricted our analysis to the testable enhancer pairs that were jointly perturbed in at least 

10 cells. As expected, our power to detect interaction effects scaled with the interaction effect 

sizes and MOI, which increases the number of cells with joint perturbations of both enhancers 

(Fig. 2A). We found that at MOIs of 𝜆 = 15,20, there is reasonable power (7-37%) to detect 

interactions with modest effect sizes (𝛽+,) of -1.0, -0.5, +0.5 and 1.0  (Fig. 2C, Table S5) and 

good power (50-78%) to detect strong interactions with effect sizes of -2 or +2. Negative 

interaction effect sizes as large as -2 are plausible as they resemble the effect sizes we 

estimated for individual enhancers in the Gasperini et al. dataset (Fig. 2D) and strong 

interactions might be expected if pairs of enhancers act in a highly redundant or synergistic 

manner. While our power to detect interactions with these effect sizes is incomplete, we 

nonetheless expect to detect a substantial number of interactions if they are a common feature 

of enhancer pairs.  

Enhancers act multiplicatively to control gene expression, but 

analysis of CRISPR perturbations provide limited evidence for 

interactions 

Next, we applied GLiMMIRS-int to the Gasperini dataset to study enhancer-enhancer 

interactions. In addition to the testable enhancer pairs defined above, which contained 46,166 

pairs and corresponding target genes (of which 5,895 were unique, Fig. S3A), we defined a set 

of "high-confidence" pairs where each of the individual enhancers showed prior evidence of 

enhancer activity from the Gasperini study. This high-confidence set contained 264 testable 

enhancer pairs and corresponding target genes (of which 94 were unique, Fig. S3B), where 
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each of the individual enhancers had a previously reported effect on the target gene based on 

the Gasperini analysis.  

 

We first examined whether the combined effects of multiple enhancers on gene expression 

were better described by a multiplicative or additive model. To this end, we fit two versions of 

GLiMMIRS-int to the 264 enhancer pairs and their target genes in the high-confidence set: an 

additive model, in which we used an identity link function; and a multiplicative model, in which 

we used a log link function. We then compared the model fits with Akaike Information Criterion 

(AIC), an approach similar to that used by Dukler et al.5 to compare different enhancer activity 

models. In all cases, the multiplicative model provided a better fit to the data, indicating that the 

combined effect of enhancers is better described by a multiplicative model (Fig. 3A). Thus, we 

used the multiplicative form of GLiMMIRS-int in all subsequent analyses. 

 

We applied GLiMMIRS-int to the 264 enhancer pairs in the high-confidence set and observed 

no significant interaction terms (Likelihood Ratio Test, FDR<0.1) (Fig. 3B, Table S6). We then 

applied GLiMMIRS-int to the 46,166 enhancer pairs in the entire testable set and identified 31 

significant interaction term effects (Likelihood Ratio Test, FDR<0.1) (Fig. 3C, Table S7). Of 

these significant interaction terms, 30 out of 31 were positive (Fig. 3D, Table S7). To better 

understand these significant interactions, we examined the distribution of single-cell RNA-seq 

UMI counts for the target genes, focusing on the cells that received guides targeting both of the 

corresponding enhancers. In the majority of cases, we observed a small number of outlier cells 

with very high UMI counts (Fig. S4A). Since GLM coefficients and p-value estimates can be 

sensitive to outliers, we computed Cook’s distance for each cell containing a joint perturbation. 

Cook's distance quantifies the influence of a single observation on the coefficient estimate. The 

outlier cells had large Cook’s distances, indicating that they disproportionately affected 
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coefficient estimates for the interaction effect, 𝛽+, (Fig. S4B). Therefore, we removed enhancer 

pairs where any of the cells containing a joint perturbation had an extreme Cook's distance 

(max / mean ratio>5). After applying this filter, 11 out of 31 significant signals remained (Table 

S8). 

 

The remaining interactions included one negative enhancer interaction for the gene TIMM13 

(Fig. 3E). In this case, a reduction in expression was observed only when both of the enhancers 

were jointly perturbed, potentially representing an example of “enhancer redundancy”6,27. 

However, we believe that this enhancer pair is unlikely to be a true case of enhancer 

redundancy as neither of the targeted candidate enhancers are marked by the canonical 

enhancer histone modification H3K27ac in K562 cells (Fig. S5), and they are located very far 

from one another (>988 kb) in different topological associating domains (Fig. S6). 

 

The other 10 remaining significant interactions were all positive and generally followed a pattern 

in which the expression of the target gene was low in the absence of any enhancer 

perturbations and elevated in jointly perturbed cells, as if the gene had become de-repressed 

(Fig. 3F).  De-repression of gene expression is not an expected response to targeting of 

enhancers by CRISPRi and could potentially be due to regulatory effects on other genes that 

exert downstream effects on the target genes.  

 

Based on our analysis, evidence for interactions between enhancers in the Gasperini dataset is 

very limited. In the cases where we do identify significant interactions, they do not have 

characteristics that would be expected given previously postulated "synergistic" or "redundant" 

enhancers6,27. To quantify the possible frequency of enhancer interactions throughout the 

genome, we estimated the posterior frequency of enhancer interactions given a range of 
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detection probabilities corresponding to our power analysis (Fig. 2C) and given different priors 

for the frequency of enhancer interactions (Fig. 3G-H). For example, with a prior enhancer 

interaction frequency of 25% and a detection probability of 20%, which roughly corresponds to 

our power to detect moderate interactions (effect size = -1), the posterior enhancer interaction 

frequency for the high-confidence set of enhancers is 2.4% (Fig. 3G). Even if we assume a very 

high prior enhancer interaction frequency of 50%, our posterior estimate is only 8.6%. Since a 

detection probability of 20% corresponds roughly to our power to identify moderate interactions 

(effect size -1.0), we infer that the frequency of enhancer interactions of moderate strength is 

likely less than 10%. If we consider a low detection probability of 5% corresponding to weak 

interactions, the posterior interaction frequency estimates depend more strongly on the priors 

and are 7.9% for a prior of 25% and 24% for a prior of 50% (Fig. 3G). Thus, we have less 

certainty in the frequency of weak enhancer interactions but conclude that they are not likely to 

be extremely common. 

 

For our entire set of 46,166 testable enhancer pairs, the posterior estimates of enhancer 

interactions are far lower (Fig. 3H). Here, the frequency of interactions is expected to be low 

because most of the individual enhancers included in this analysis do not have evidence for 

independent effects on the expression of their corresponding target genes. Nonetheless, this 

analysis implies that cases of enhancer redundancy, where enhancers’ effects on expression 

are only observed when two enhancers are jointly perturbed, must be uncommon. 

Validation with independent CRISPR perturbation dataset and in-

silico perturbation experiments 

To examine enhancer interactions in an independent dataset, we next applied GLiMMIRS to a 

CRISPRi regulatory screen performed by Morris et al28. This study targeted candidate regulatory 
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sequences in K562 cells that were implicated in genome-wide association studies of blood cell 

traits. We focused our analysis on the PTPRC locus because 6 out of the 9 candidate 

enhancers targeted near this gene were reported to affect its expression. We re-analyzed this 

dataset using GLiMMIRS-base and confirmed that those same 6 enhancers had significant 

effects on PTPRC expression (Table S9; Bonferroni-corrected p < 0.1). We then tested all 36 

possible combinations of pairs from the 9 candidate enhancers for interactions using 

GLiMMIRS-int and found two enhancer pairs with significant interaction terms (Bonferroni-

corrected p < 0.1). However, our Cook's distance analysis indicated that both significant 

interactions were driven by outliers (Fig. 4A, Table S10). Thus, we conclude that there is no 

evidence for enhancer interactions among the 9 candidate enhancers for PTPRC.  

 

As an orthogonal approach to examine interaction effects between enhancer pairs, we used 

Enformer29 to perform in-silico perturbation experiments. Enformer is a state-of-the-art deep 

learning model that can accurately predict gene expression from long genomic sequences 

(~200kb). To use Enformer to estimate the effects of enhancers on gene expression, we 

provided 'wild type' sequences and synthetic sequences where regions corresponding to 

enhancer pairs from the Gasperini dataset 30 were shuffled (Fig. 4B). We then compared 

Enformer’s predictions when individual enhancers were shuffled versus when both enhancers 

were shuffled simultaneously (Fig. 4B, Table S11). The Enformer-predicted changes in gene 

expression when both enhancers in a pair were simultaneously perturbed were strongly 

correlated with the expected change in gene expression under a multiplicative model of activity 

given the predictions for individual enhancer perturbations (Pearson 𝑟 = 0.98; Fig. 4C). This 

strong correlation is consistent with a model of activity that does not require interaction effects 

between enhancers and provides further evidence that interactions between pairs of enhancers 

are uncommon.  
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Discussion  

CRISPR perturbations provide a new way to measure how combinations of enhancers regulate 

gene expression. We reanalyzed data from a single-cell CRISPRi experiment designed to map 

enhancers to the genes that they regulate. Since this dataset transduced gRNAs with a high 

MOI, multiple enhancers within 1MB of the same gene were sometimes perturbed within the 

same cells, making it possible to analyze the joint effects of multiple enhancers on gene 

expression. Our analysis of two CRISPRi datasets (Fig. 3,4A) and additional in silico sequence 

perturbations (Fig. 4B,C) support a model in which enhancers act multiplicatively to control gene 

expression. Such a model was previously proposed by Dukler et al.5, whose analysis of 

enhancers supported either a logistic or multiplicative model of regulatory activity over an 

additive model; however, this study was limited to examining enhancers at only two loci. 

Likewise, a subsequent study proposed the now well-known ABC model of activity based on a 

perturbation experiment targeting candidate enhancers for 30 genes; however, this study 

perturbed each enhancer individually and so its conclusions about their regulatory activity 

cannot be extended to the phenomenon of joint enhancer effects32. 

 

A novel aspect of our study is that we analyzed joint perturbations of thousands of pairs of 

enhancers. Under a multiplicative model of enhancer activity, we analyzed pairs of enhancers 

that were jointly perturbed by CRISPRi and found that the experimental results resemble those 

expected under the null hypothesis of no enhancer interactions (Fig. 3B,C; Fig. 4A). A limitation 

of the Gasperini dataset that we analyzed is that even with a high MOI and a large number of 

sequenced cells, only a subset of enhancer pairs could be interrogated. Specifically, we tested 

46,166 of a possible 795,616 enhancer pairs in the Gasperini dataset because most were not 

simultaneously perturbed in a sufficient number of cells. Furthermore, our power to detect 
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weaker interactions was limited. For example, we only had 21.5% power to detect interactions 

with an effect size of -1.0 under a simulated MOI of 𝜆 = 15 (Table S5). Many of these power 

limitations could be overcome through CRISPRi experiments designed specifically to probe 

enhancer interactions. For example, a high MOI CRISPRi experiment could be performed in 

which a much smaller number of candidate enhancers are targeted so that testable pairs are 

frequently perturbed simultaneously in the same cells. Multiple guides could also be transduced 

on the same vectors so that nearby enhancers are guaranteed to be targeted in many cells31. 

This type of approach was recently used to estimate enhancer interactions at the MYC locus9.  

Another advantage of providing multiple guides on the same vector is that enhancer interactions 

could be interrogated with low MOI experiments, which would circumvent two potential issues 

with high MOI experiments. First, Cas9 competition for gRNAs may reduce experimentally 

observed enhancer effect sizes, and second, high MOIs may induce unintended cellular 

responses that alter gene expression. 

 

Further limitations of our analysis are that both of the CRISPRi datasets that we analyzed were 

from K562 cells and it is possible that enhancer interactions are more prevalent under dynamic 

conditions or in different cell types. Interactions may also be more common among enhancers 

that are clustered into 'super-enhancers' which were not specifically interrogated by the 

Gasperini dataset. 

 

Despite the above limitations, our results argue against the presence of strong epistatic 

interactions between enhancers. If such interactions do exist, they must be infrequent, of small 

effect, or restricted to specific cell types or conditions. How can these observations be 

reconciled with prior reports of enhancer redundancy or synergy? A possible explanation is that 

if an additive model is assumed, then interaction terms are often required because the 
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combined effects of multiple enhancers are greater (synergistic) or less than (redundant) than 

expected under an additive model. However, these deviations from additivity may be naturally 

accounted for by a multiplicative model without the need for an interaction term. For example, 

under a multiplicative model, perturbation of a weak enhancer may have a small or negligible 

effect on expression on its own but a much more substantial effect when combined with a 

perturbation to a strong enhancer. An additive model would require an interaction term to 

describe these results and the enhancers would appear to be 'redundant'. 

 

A recent study by Lin et al. analyzed enhancer interactions at the MYC locus using pairs of 

CRISPR guides and reported additive interactions between nearby enhancers and synergistic 

interactions between distant enhancers9. Our results are difficult to compare with those from Lin 

et al. for two reasons. First, the high-throughput screen in Lin et al. was performed using cell 

proliferation rather than gene expression as readout, thereby assuming that proliferation was 

proportional to MYC expression. Second, while Lin et al. examined how selected pairs of 

enhancers affect the expression of MYC and other genes, their analysis relied on log relative 

expression obtained by RT-qPCR, which may not be directly comparable to expression 

estimated from scRNA-seq UMI counts. 

 

Future studies examining enhancer interactions will benefit from GLiMMIRS, which uses a 

generalized linear model that accounts for guide efficiency, differences in per-cell sequencing 

depth and several covariates. We note that it is important to consider a multiplicative model as 

the baseline expectation when looking for enhancer interactions, and when interactions are 

identified it is important to consider the possibility that the results are driven by a small number 

of outlier cells. To increase power to detect weak interactions, CRISPR experiments that are 

specifically designed to examine enhancer interactions are desirable. Our study motivates the 
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further study of enhancer interactions in more cell types and conditions, to which GLiMMIRS 

can be applied to yield novel insights into regulatory element interactions and their effects on 

transcription. 

STAR★Methods 

CRISPRi perturbation of NMU enhancers 

We identified two target sites of interest, A and B, for the gene NMU, each of which was 

targeted by two gRNAs in the Gasperini et al. experiment (A1 and A2 targeting enhancer A; B1 

and B2 targeting enhancer B). Pairs of gRNAs were designed by FlashFry to target enhancers A 

and B at the same time, using 2 gRNAs per site. The gRNA pairs included the following: 

NMU_tss+NMU_tss (positive control), Safe_harbor (SH)+SH (negative control), A_sgRNA1+SH, 

A_sgRNA2+SH, SH+B_sgRNA1, SH+B_sgRNA2, A_sgRNA1+B_sgRNA1, 

A_sgRNA1+B_sgRNA2, A_sgRNA2+B_sgRNA1, A_sgRNA2+B_sgRNA2. Pairs of gRNAs were 

cloned into pLV-dCas9-KRAB-puro (Addgene #71236) following published methods33,34. Briefly, 

DNA oligos carrying pairs of guides were synthesized by IDT and cloned into pLV-dCas9-

KRAB-puro plasmids by Gibson assembly reactions. Lentivirus was generated by co-

transfecting the plasmid with PsPAX2 (Addgene #12260) and pMD2.G (Addgene #12259) in 

293FT cells obtained from the Salk Institute Stem Cell Core. Lentivirus was harvested 48h post 

transfection. K562 cells (ATCC #CCL-243) were transduced by the lentiviruses using 

spinoculation. 72h after transduction, K562 cells with viral genome integration were selected by 

puromycin for 48h. Total RNA from live K562 cells was extracted and reverse transcribed using 

SuperScript IV First-Strand Synthesis System (Thermo Fisher Scientific #18091050) with 

random hexamers. NMU expression was quantified by reverse transcription quantitative PCR 
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(RT-qPCR). CRISPR gRNA designs and PCR primers used in experiment can be found in 

Table S1. 

Gasperini et al. Dataset 

Data from the at-scale screen in the Gasperini et al. study are available at GEO accession 

number GSE120861. We downloaded guide spacer sequences from Supplementary Table 2 of 

their paper13. The single-cell RNA-seq expression matrix from the at-scale screen was 

downloaded from the GEO file ‘GSE120861_at_scale_screen.exprs.mtx.gz’. The cell barcodes 

were determined from the GEO file ‘GSE120861_at_scale_screen.cells.txt.gz’. Gene names 

were determined from the GEO file ‘GSE120861_at_scale_screen.genes.txt.gz’. Covariate 

information as well as cell-guide mapping information was determined from the GEO file: 

‘GSE120861_at_scale_screen.phenoData.txt.gz’. Differential expression results were 

downloaded from ‘GSE120861_all_deg_results.at_scale.txt.gz‘ to determine candidate 

enhancer pairs from the 664 enhancer-gene links. Enhancer-guide assignments from the at-

scale screen were downloaded from ‘GSE120861_grna_groups.at_scale.txt.gz‘ to find 

candidate enhancer pairs for the larger low-confidence set. 

Computing guide efficiencies 

We first collected the 13,189 guide RNA sequences used in the at-scale screen previously 

published by Gasperini et al.13, which were published in Supplementary Table 2 of their study. 

We then appended ‘NGG’ to each spacer sequence for compatibility with GuideScan 2.035. We 

then used the GuideScan 2.0 gRNA sequence search tool (https://guidescan.com/grna) with the 

organism ‘hg38’ and the enzyme ‘cas9’ parameters to predict efficiencies for the guide RNA 

spacer sequences. We used the “Cutting.Efficiency” values outputted from GuideScan as our 

guide efficiency values. These values are equivalent to the "Rule Set 2" scores defined by 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2024. ; https://doi.org/10.1101/2023.04.26.538501doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?DM4Px2
https://www.zotero.org/google-docs/?d41htn
https://www.zotero.org/google-docs/?uDxa3c
https://guidescan.com/grna
https://doi.org/10.1101/2023.04.26.538501
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

20 

Doench et al. 2016 and can be used to predict the on-target activity of gRNAs in CRISPRi 

screens23. 

 

Out of the 13,189 guide RNA sequences, 762 guide RNAs were designed to target transcription 

start sites, 101 guide RNAs were designed as non-targeting controls, 14 guide RNAs were 

designed as positive controls targeting the globin locus, and the remaining 12,312 guide RNAs 

were designed to target candidate enhancer sequences. 

 

From the 12,312 enhancer-targeting guide RNAs, 2,331 guides did not have a guide efficiency 

value because GuideScan does not compute scores for guides for which it cannot find a match 

or for which there are multiple matches within edit distance 1 (Table S12). We excluded these 

2,331 guide RNA sequences from downstream analysis so that in total 9,981 guides were used 

for our downstream analysis. 

Computing cell cycle scores for Gasperini et al. 

Cell cycle scores were computed from the single-cell RNA-sequencing gene expression matrix 

from the at-scale screen previously published by Gasperini et al.13 using the Seurat36–40 R 

package.  

 

Since the Seurat R package uses gene names from the HUGO Gene Nomenclature Committee, 

gene names were converted from their Ensembl Gene ID to HGNC symbol 

(https://www.genenames.org/) using the biomaRt41 tool from Ensembl42 with the 

“hsapiens_gene_ensembl” dataset. Of the 13,135 genes in the at-scale expression matrix, 351 

genes were not recognized by BioMart and 571 genes did not successfully map from Ensembl 

Gene ID to HGNC symbol. For the total 922 genes that could not be mapped from Ensembl 
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Gene ID to HGNC symbol, the Ensembl Gene ID was imputed as the gene name for 

downstream analysis with Seurat (Table S13). 

 

To determine cell cycle scores, we used pre-defined sets of genes associated with S and G2M 

phases from the Seurat library. We log-normalized the data, identified variable features, and 

scaled the expression matrix using functions defined in Seurat. We then used the cell cycle 

scoring function with the predefined S and G2M gene sets in Seurat to compute cell cycle 

scores for each cell in the at-scale screen. All Seurat functions were run with default parameters 

(Tables S14, S15). 

Model fitting and implementation 

All models were fitted by maximum likelihood using the `glm.nb()` function from the MASS 

package in R43. Both GLiMMIRS-base and GLiMMIRS-int use a negative binomial generalized 

linear model with a log link function. The additive model was implemented with an identity link 

function. 

Defining a baseline model for a single enhancer acting on a single 

target gene 

Our baseline model tests for the simple case where a single enhancer acts on a single gene. 

The model is a generalized linear model which assumes a log link function and that the single-

cell RNA-seq UMI counts of each gene follow a negative binomial distribution. In other words, 

𝑦~𝑁𝐵(𝜇, 𝜙), where 𝑦 represents the scRNA-seq UMI counts of the genes, 𝜙 represents the 

dispersion parameter of the negative binomial distribution, and 𝜇 is the mean parameter of the 

negative binomial distribution. The mean parameter is specified by a linear predictor passed 
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through an exponential (inverse log-link) function: 𝜇 = 𝑒𝑥𝑝 >𝛽- + 𝛽"'()'*"#𝑋!"#$%#& + 𝛽.𝑋. +

𝛽/01𝑋/01 + 𝛽23$4𝑋23$4	 + 𝛽678+9𝑋678+9 + 𝛽&)$*(𝑋&)$*( + 𝑙𝑛(𝑠)C.  

In this expression, we have gene-specific coefficients and cell-specific predictor values. 𝛽- is the 

intercept and represents the baseline gene expression before the influence of any other relevant 

factors on gene expression. 𝛽"'()'*"# represents the effect of a perturbed target site (putative 

enhancer) on its target gene. 𝛽. and 𝛽/01 are coefficients that represent the effect of the S and 

G2M cell cycle states, respectively. 𝛽23$4 is a coefficient representing the effect of percentage of 

mitochondrial reads. Finally, 𝛽678+9 is a coefficient representing the effect of the total number of 

gRNAs observed within a given cell. 𝛽&)$*( is a coefficient representing the effect of the prep 

batch, from the Gasperini et al. 2019 experiment. We incorporate measures of guide efficiency 

in the variable 𝑋!"#$%#&. This variable is calculated for each cell based on the efficiencies of 

every gRNA targeting the target site being modeled which are present in the cell. Specifically, 

𝑋!"#$%#& is calculated for any given cell and target site as 1 − ∏:
;<= (1 − 𝑔;), where 𝐾 is the 

total number of gRNAs targeting the target site found in the cell and 𝑔; is the efficiency of the 

𝑘$( gRNA. Because we interpret guide efficiency as the probability that a gRNA successfully 

perturbs its designated target site, the expression for 𝑋!"#$%#& can be interpreted as the joint 

probability of a perturbation in a given cell based on all of the gRNAs targeting the site that are 

present in that cell. 𝑋. and 𝑋/01 are S and G2M cell cycle scores, respectively, for each cell. 

𝑋23$4 is the percentage of mitochondrial reads in a cell. 𝑋678+9 is the total number of gRNAs 

observed in a cell. 𝑋&)$*( is the prep batch (from Gasperini et al. 2019). Finally, 𝑠 is an offset 

term for the model that serves as a scaling factor controlling for variable sequencing depth 

across cells. It is calculated as 𝑠 = >
="?

, where 𝑇 is the total scRNA-seq UMIs in a cell summed 

across all genes in the expression count matrix. Prior to fitting the models, we added a 

pseudocount of 0.01 to the scRNA-seq counts of the gene being modeled for all cells to prevent 
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inflation of coefficients (see section: Defining a model for an enhancer pair acting on a single 

target gene). 

Simulating data for single enhancers acting on single genes 

To begin, we define some simulation parameters, including the total number of cells, 𝐶; the total 

number of genes, 𝐺; the total number of target sites, 𝑁; and the number of gRNAs targeting 

each site, 𝑑. Note that the total number of target sites, 𝑁, is also the total number of target 

genes, as this simulation assumes that each target site is a unique enhancer for a unique gene. 

To generate a simulated dataset, we need to simulate sets of coefficient values for each gene 

(𝛽-, 𝛽"'()'*"# , 𝛽., 𝛽/01 , 𝛽23$4) as well as corresponding variable values for each cell 

(𝑋!"#$%#& , 𝑋., 𝑋/01 , 𝑋23$4, and scaling factor 𝑠). We also need to simulate the gRNA library and 

assign gRNAs to cells, as well as assign guide efficiencies to gRNAs (which will be used to 

calculate 𝑋!"#$%#&). These values are used to calculate a value of 𝜇 for defining a negative 

binomial distribution from which simulated counts for a given gene will be drawn. Specifically, 

𝜇 = 𝑒𝑥𝑝(𝛽- + 𝛽"'()'*"#𝑋!"#$%#& + 𝛽.𝑋. + 𝛽/01𝑋/01 + 𝛽23$4𝑋23$4 + 𝑙𝑛(𝑠)). The terms for total 

gRNA counts per cell and batch are omitted from the simulation for simplicity, and are also 

omitted when fitting the baseline model to the simulated data. The dispersion parameter for the 

negative binomial distribution will be constant across all genes and estimated from the empirical 

data. For the simulated dataset described in our paper, we used values of 𝐺 = 13000,𝑁 =

1000, 𝑑 = 2. 

 

We first simulated values of 𝛽-L for each gene. To do this, we randomly selected a subset of 

1,000 genes and 10,000 cells from the Gasperini et al. 2019 at scale experiment and fit the 

counts for these genes to negative binomial distributions using maximum likelihood estimation 

(MLE). Specifically, we define the mean parameter of the negative binomial here as 𝜇 =
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𝑒𝑥𝑝(𝛽-L+ 𝑙𝑛(𝑠)). Note that here 𝑠 is calculated from the total counts for the gene across the 

subset of 10,000 cells using the formula defined in the previous section. This simplified model 

has no covariates, but does account for the scaling factor, as the goal is to simply get a sense of 

what coefficient values reflect the empirical data. After modeling the counts from the random 

subset of data, we visualized the distribution of estimated 𝛽-L(from which 𝜇 is calculated) and 

dispersion parameters for each gene tested. From what we observed, we picked a fixed 

dispersion value of 𝜙 = 1.5 for defining the negative binomial distribution for generating 

simulated count data. We also observed that the distribution of 𝛽-L estimated from the subset of 

the at scale experiment were roughly normally distributed. Therefore, we fit these estimated 𝛽-L 

values to a normal distribution with MLE to obtain parameters for defining a normal distribution 

from which to sample 𝛽- values for the simulated dataset. We obtained parameters for the 

normal distribution of 𝜇 ≈ 2.24 and 𝜎 ≈ 1.8, so we sampled 𝐺 times from 𝑁(𝜇 = 2.24, 𝜎 = 1.8) to 

yield baseline coefficients for all the genes in the simulated dataset.  

 

To assign guides to cells, we first determined the number of gRNAs in each cell in our simulated 

dataset by sampling from a Poisson distribution defined as 𝑃𝑜𝑖𝑠(𝜆 = 15). This value of 𝜆 comes 

from the fact that in the Gasperini et al. 2019 experiment, they observed a median of 

approximately 15 unique gRNAs per cell. Thus, we sampled 𝐶 times from the distribution 

defined by 𝑃𝑜𝑖𝑠(𝜆 = 15) to obtain the number of unique gRNAs in each cell. To assign gRNAs 

to each cell, we sampled 𝑔 times without replacement from the set of all gRNAs in our library, 

where 𝑔 is the total number of gRNAs in each cell (determined in the previous step) and the 

gRNA library is denoted as a sequence of integers 1,2, . . . , 𝑑𝑁. Information about which gRNAs 

are found in which cells are stored in a one hot encoded matrix. 
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We defined guide efficiency for each gRNA by sampling from a left-skewed Beta distribution, to 

represent the fact that an experimental design would select for gRNAs with higher efficiencies). 

For our simulation we used a Beta distribution defined as 𝐵𝑒𝑡𝑎(𝑎 = 6, 𝑏 = 3).  

 

Next, we created a mapping of gRNAs to target genes. For each target site, or putative 

enhancer, we randomly select an integer from 1,2, . . . , 𝐺 to represent the target gene of the 

candidate enhancer (indexers are used as gene identifiers). This is done without replacement to 

simulate a case where we are attempting to study enhancers of distinct genes, and yields a 

vector of length 𝑁, which we will replicate 𝑑 times to yield a complete mapping of gRNAs to 

target genes. In this vector of length 𝑁𝑑, the index of a given value in the vector represents the 

gRNA identifier.  

 

Enhancer effect sizes are represented by the coefficient 𝛽"'()'*"# and are assigned on a per-

gene basis. These values represent the effect that an enhancer has on the expression of its 

target gene. To do this, we sampled from a gamma distribution and multiplied the values by -1 

to yield a negative value, representative of the expectation that successful repression of an 

enhancer will most likely decrease target gene expression. We wanted the values to be on a 

comparable scale with the expected baseline expression, 𝛽-, while also not being so small that 

they would be difficult for the model to detect changes in expression. We chose to sample 

values of 𝛽"'()'*"# from a gamma distribution defined by 𝛤(𝛼 = 6, 𝜎 = 0.5), and all values drawn 

from the distribution were multiplied by -1 to represent a negative effect on target gene 

expression, which is the expectation when an enhancer is repressed.  

 

𝑋!"#$%#& is calculated for each cell as a function of guide efficiencies for the gRNAs targeting the 

putative enhancer of interest found in that cell. Specifically, it is calculated for each cell as  
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𝑋!"#$%#&	 = 1 −∏:
;<= (1 − 𝑔;) where 𝐾 is the total number of gRNAs targeting the putative 

enhancer of the gene being simulated/modeled that are present in the cell and 𝑔; is the guide 

efficiency of the 𝑘th gRNA in this set of targeting gRNAs. 𝑋!"#$%#& = 0 when 𝐾 = 0. We 

compared the performance of using this variable in our model against the performance of using 

a binary indicator variable that simply represents the presence of any gRNA targeting the gene 

being simulated/modeled in each cell.  

 

We generated cell cycle scores for each cell in our simulated dataset using a similar approach 

to the one we used for sampling 𝛽- values. That is, we first fit models to the empirical data to 

identify a distribution to draw simulated values from such that they would reflect the distribution 

of the real data. We first calculated S and G2M cell cycle scores for the empirical data using 

Seurat’s CellCycleScoring() function36–40. We observed that while the S cycle scores calculated 

from the empirical data appeared to be normally distributed, the G2M scores appeared to show 

a right skewed distribution. Thus, we fit the empirical S cycle scores to a normal distribution and 

the empirical G2M scores to a skew normal distribution with MLE. We used the estimated 

parameters to define distributions for sampling S and G2M scores for the simulated dataset. 

Specifically, we sampled 𝐶 times from a normal distribution defined by 𝑁(𝜇 = −1.296𝑒 − 3, 𝜎 =

0.11) and a skew normal distribution defined by 𝑁(𝜁 = −0.256, 𝜔 = 0.312, 𝛼 = 6.29, 𝜏 = 0) to 

obtain simulated S and G2M scores, respectively.  

 

We generated corresponding values of 𝛽. and 𝛽/01 by sampling from the same distribution 

used to generate the enhancer effect sizes, or the gamma distribution defined by 𝛤(𝛼 = 6, 𝜎 =

0.5). 
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Percentage of mitochondrial DNA per cell is simulated using the same approach used to 

simulate the cell cycle scores and baseline expression values (𝛽-). We fit to the empirical 

percentages of mitochondrial DNA per cell. We fit to a beta distribution using MLE, and used the 

resulting parameter estimates to define a new beta distribution from which we sampled 

simulated values of percentage of mitochondrial DNA. This beta distribution was defined as 

𝐵𝑒𝑡𝑎(𝑎 = 3.3, 𝑏 = 81.48). 

 

Coefficients for the effect size of percentage of mitochondrial DNA, 𝛽23$4, were simulated per 

gene by sampling from the same gamma distribution used to sample the other coefficients 

(𝛽"'()'*"# , 𝛽., 𝛽/01). This is the gamma distribution defined as 𝛤(𝛼 = 6, 𝜎 = 0.5). 

 

Finally, we simulated scaling factor values, 𝑠, for each cell in our simulated experiment, which 

were used to calculate values of 𝜇 for simulating counts for each gene. To do this, we simulated 

values of 𝑇, or total counts per cell, for each cell by sampling from a Poisson distribution defined 

by 𝑃𝑜𝑖𝑠(𝜆 = 50000), where 50000 is the expected number of reads observed in each cell in a 

scRNA-seq experiment.  

Simulating noisy guide efficiencies 

The noisy guide efficiency estimate, 𝑤, for a given gRNA in our simulated dataset was sampled 

from a new Beta distribution parameterized by 𝑎′ and 𝑏′, which are calculated from the “true” 

simulated guide efficiency for the gRNA, 𝑤, and a dispersion-controlling constant 𝐷. We wanted 

the noisy guide efficiency to be sampled from a Beta distribution whose mean is equivalent to 

the “true” guide efficiency value; thus, 𝑤 = )@
)@A&@

. We defined the dispersion-controlling constant 

𝐷 as 𝐷 = 𝑎′ + 𝑏′. From this, it follows that 𝑎′ = 𝐷𝑤 and 𝑏′ = 𝐷 − 𝑎′. Like so, we calculated 

values of 𝑎′ and 𝑏′ from which to draw the noisy guide efficiency estimate for a given gRNA in 
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our simulated guide library. The magnitude of 𝐷 is inversely proportional to the amount of noise 

(Fig. S2A,B).  

Fitting baseline model to simulated data 

To fit the baseline model to simulated data, we used a negative binomial GLM with a mean 

defined by the same log-link function described for generating simulated counts: 𝜇 = 𝑒𝑥𝑝(𝛽- +

𝛽"'()'*"#𝑋!"#$%#& + 𝛽.𝑋. + 𝛽/01𝑋/01 + 𝛽23$4𝑋23$4 + 𝑙𝑛(𝑠)). Models were fitted by MLE. Each 

model can be described as 𝑦 = 𝑁𝐵(𝜇, 𝜙), where 𝑦 is the simulated counts for the gene being 

modeled, and all variable values (𝑋!"#$%#& , 𝑋., 𝑋/01 , 𝑋23$4) come from the per-cell values from 

the simulated dataset. We omit 𝛽678+ when fitting to the simulated data for simplicity. 

Evaluating performance of baseline model on simulated data 

Our simulated dataset had 𝑁 target sites, or genes that were regulated by an enhancer 

perturbed in the experiment. For each of these genes, we computed the Pearson correlation (𝒓) 

between the estimated coefficients, derived from fitting the baseline model to the simulated 

data, and the “true” (or reference) coefficients, which were generated for the simulation and 

used to parameterize the distribution from which the simulated counts were drawn. These 

results are summarized in Table S2 for the continuous vs. indicator forms of 𝑋!"#$%#& and in 

Table S3 for the three different sets of noisy simulated guide efficiencies.  

Fitting baseline model to experimental data 

For running a single enhancer-gene pair analysis on the experimental data, we obtained the 664 

previously published enhancer-gene pairs from the Gasperini et al.13 paper using information 

provided in their Supplemental Table 2. Using these 664 previously published enhancer-gene 
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pairs, we retrieved all experimental gRNAs targeting these enhancers, and filtered gRNAs 

where there was no valid guide efficiency from GuideScan 2.0 (Table S12). We then obtained 

the preparation batch, cell gRNA count, and percent mitochondrial reads covariates from their 

experimental data published on GEO and excluded cells without the ‘guide_count’ covariate 

value from our downstream modeling. To account for sequencing depth, we used the at-scale 

gene expression matrix and counted the number of transcripts per cell. We then divided these 

values by 1e-6 to obtain values for each cell which we included in our linear model through the 

offset() function. Prior to running the models, a pseudocount of 0.01 was added to the scRNA-

seq counts for each cell. Models were then fitted using the nb.glm() function in the MASS R 

package using a log-link function and optimizing via maximum likelihood estimation. In the at-

scale model, there were 207,324 cells total. After filtering for cells without guide count values, 

there were 205,797 cells that were included in the modeling process. The scrambled 

perturbation negative control was obtained by scrambling the vector of guide efficiencies prior to 

modeling. The mismatch gene negative control set was obtained by randomly sampling a gene 

for a given enhancer from the set of 664 previously published enhancer-gene pairs. Models 

were successfully run for 609 of the 664 enhancer-gene pairs. 

Defining a model for an enhancer pair acting on a single target 

gene 

Our model for an enhancer gene is quite similar to our baseline model, except we replace 

𝛽"'()'*"# with three new coefficients: 𝛽+, 𝛽, , 𝛽+,. Referring to the two enhancers in the pair 

being modeled as enhancers A and B: 𝛽+ represents the effect of enhancer A on the target 

gene; 𝛽, represents the effect of enhancer B on the target gene; 𝛽+, represents the interaction 

effect between enhancers A and B on the target gene. The new negative binomial GLM has a 

mean defined as: 𝜇 = 𝑒𝑥𝑝(𝛽- + 𝛽+𝑋+ + 𝛽,𝑋, + 𝛽+,𝑋+, + 𝛽.𝑋. + 𝛽/01𝑋/01 + 𝛽23$4𝑋23$4	 +
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𝛽678+9𝑋678+9 + 𝛽&)$*(𝑋&)$*( + 𝑙𝑛(𝑠)) . Here, 𝑋+, 𝑋, , 𝑋+, represent the perturbation probabilities 

of enhancer A, enhancer B, and both enhancers, respectively. They are calculated in the same 

manner as 𝑋!"#$%#&. 

 

When fitting linear models, we observed inflated 𝛽+,	coefficients associated with cases where 

all cells containing gRNAs for both enhancers A and B showed no expression of the target gene 

(Fig. S7). To prevent this inflation of the coefficients, we added a pseudocount of 0.01 to all the 

gene expression counts. When including a pseudocount in our modeling process, we observed 

a reduction in outliers in our enhancer effect sizes (Fig. S7). 

Defining testable pairs of enhancers 

From the at-scale screen, enhancers and genes were defined using the 

‘GSE120861_gene_gRNAgroup_pair_table.at_scale.txt’ file from Gasperini et al., which defined 

the gRNAgroup-gene pairs tested in their study. To filter for enhancer-gene tests only, 

gRNAgroup-gene pairs belonging to the ‘NTC’, ‘positive_ctrl’, and ‘TSS’ general groups were 

removed from our downstream analysis. This resulted in 5,766 unique enhancer sequences and 

18,389 unique genes across the gRNAgroup-gene pairs. 

 

The positions of both enhancers and genes were computed as the average between the start 

and end coordinates. Filtering for enhancers within 1 MB of a gene resulted in 131,356 

candidate enhancer-gene links. Some genes had the same Ensembl ID but different positions. 

After removing these duplicates by keeping the first entry in the table, there remained 128,918 

enhancer-gene links. Taking pairwise combinations of these enhancers resulted in 795,616 total 

enhancer-enhancer-gene sets. 
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The 795,616 total enhancer-enhancer-gene sets spanned 16,189 unique genes. However, only 

9,601 of these genes had gene expression measurements in the scRNA-seq matrix from the at-

scale screen. Filtering for enhancer-enhancer-gene sets with complete information yields 

477,994 enhancer-enhancer-gene sets.  

 

Enhancer-enhancer-gene sets were then filtered to remove any where both enhancers were not 

perturbed in at least 10 cells in the study. This was determined as a non-zero count in the matrix 

of gRNA assignments, which can be found in the 

‘GSE120861_at_scale_screen.phenoData.txt.gz’ file from the Gasperini et al. study. Filtering 

based on this criteria resulted in 82,314 enhancer-enhancer-gene sets. 

 

When computing guide efficiencies to run GLiMMIRS, there is a fraction of guides that do not 

have efficiency values in the GuideScan database, mostly due to having multiple genome 

matches or multiple off-target effects (see: Computing guide efficiencies). We removed these 

guides from downstream analysis, resulting in some enhancers where none of their targeting 

guides have valid guide efficiency information. Due to this dropout effect, there emerged 

additional cases where the number of cells with a non-zero perturbation probability for both 

enhancers is less than 10 which we also filtered out. Ultimately, we were left with 46,166 

testable enhancer pairs and corresponding target genes that we successfully ran GLiMMIRS-int 

on. 

Defining testable pairs of enhancers for high-confidence set 

The previously published 664 enhancer-gene pairs were derived from Supplementary Table 2 in 

the Gasperini paper. Taking pairwise combinations of enhancers that target the same gene from 

these 664 enhancer-gene pairs resulted in 330 enhancer-enhancer-gene sets. No distance 
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metric limitation was imposed for the high-confidence enhancer-enhancer-gene sets. However, 

a handful of guide RNAs did not have efficiencies, and were discarded. As a result, we were 

only able to run GLiMMIRS-int on 264 out of these 330 sets. Not all enhancer pairs in the high-

confidence set were jointly perturbed in a minimum of 10 cells (the threshold for defining the 

larger set of testable enhancer pairs). 

Simulating data for enhancer pairs acting on a single target gene 

We adapted the simulation framework used for simulating data for a single enhancer acting on a 

single gene to simulate data for pairs of enhancers acting on a single gene. We added 

additional parameters to determine the number of “reference” enhancer pairs with and without 

an interaction effect between them. We refer to these as “interacting” (𝑁3'$) and “non-

interacting” (𝑁'4') pairs, respectively. These are selected from the set of all possible pairwise 

combinations of 𝑁 target sites defined for our simulation. Note that for the case of an enhancer 

pair acting on a single gene, 𝑁 represents the total number of putative enhancers rather than 

the total number of target genes. After randomly selecting 𝑁3'$ and 𝑁'4' pairs without 

replacement from the set of possible pairs, we then randomly select the same number of genes 

without replacement from the set of possible genes (1, . . . , 𝐺) to be the target genes of those 

pairs. For the simulation described in this paper, we selected values of 𝑁3'$ = 𝑁'4' = 500 and a 

total of 𝑁 = 1000 target sites.  

Simulating data for power analysis 

Most aspects of the data simulation are identical to the data simulation for a single enhancer 

acting on a single gene. The coefficients 𝛽+ and 𝛽, are drawn from a normal distribution defined 

as 𝑁(𝜇 = −0.02, 𝜎 = 0.16). The cell cycle effects 𝛽. and 𝛽/01 were also sampled from normal 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2024. ; https://doi.org/10.1101/2023.04.26.538501doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.26.538501
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

33 

distributions defined as 𝑁(𝜇 = −0.21, 𝜎 = 1.04) and 𝑁(𝜇 = 0.004, 𝜎 = 0.49), respectively. The 

effect size for percentage of mitochondrial DNA, 𝛽23$4, was sampled from a normal distribution 

defined as 𝑁(𝜇 = −0.37, 𝜎 = 9.04). These distributions were selected by fitting to the enhancer 

effects estimated from the experimental data. For the power analysis, we assign a number of 

different fixed values of 𝛽+, for genes that are acted upon by an interaction effect between 

enhancers (e.g., the target genes of “positive” enhancer pairs). For genes that are not acted 

upon by any interaction effect, we set 𝛽+, = 0. The other parameter that we modulate in the 

simulations is the value of 𝜆 for the Poisson distribution used to sample the number of unique 

gRNAs found in each cell. This is representative of multiplicity of infection, or MOI, so for each 

value of 𝜆 that we want to test with our power analysis, we generate different numbers of 

gRNAs per cell and use these sets of values to generate different mappings of gRNAs in cells. 

This yields a different one-hot encoded matrix for each value of lambda, which will also lead to 

different sets of values of 𝑋+, 𝑋, , and 𝑋+,, as greater MOI may result in more gRNAs for a target 

site found in each cell and greater perturbation probabilities. Simulated counts are generated 

from a negative binomial distribution parameterized by 𝑁𝐵(𝜇, 𝜙), where 𝜇 = 𝑒𝑥𝑝(𝛽- + 𝛽+𝑋+ +

𝛽,𝑋, + 𝛽+,𝑋+, + 𝛽.𝑋. + 𝛽/01𝑋/01 + 𝛽23$4𝑋23$4 + 𝑙𝑛(𝑠)) and 𝜙 = 1.5 (determined from 

modeling empirical data, see Methods for simulating data for single enhancers acting on a 

single gene). We generated a set of simulated counts for each value of 𝜆 and interaction effect 

size. For our power analysis, we used values of 𝜆 = 15,20, 30, 50 and 𝛽+, = 0.5,1,2,3,4,5,6. 

Power analysis 

For our power analysis, we fit our model to the simulated data for the “positive” and “negative” 

pairs to obtain true positive rates (TPR) and true negative rates (TNR), respectively. We 

calculated the proportion of models that correctly called significant interaction terms, 𝛽+,, for the 
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“positive” cases to obtain TPR. We calculated the proportion of models that correctly called no 

significant interaction terms, 𝛽+,, for the “negative” cases to obtain TNR.  

Comparing multiplicative to additive model 

To compare the fits of multiplicative vs. additive models of enhancer pair activity, we defined 

each model under the null hypothesis (𝐻-), where there is no interaction term (for simplicity). For 

the multiplicative model under 𝐻-, we use the canonical log-link function and define the mean of 

the negative binomial, 𝜇, as: 

𝜇 = 𝑒𝑥𝑝(𝛽- + 𝛽+𝑋+ + 𝛽,𝑋, + 𝛽.𝑋. + 𝛽/01𝑋/01 + 𝛽23$4𝑋23$4 + 𝛽678+9𝑋678+9 + 𝛽&)$*(𝑋&)$*( +

𝑙𝑛(𝑠)). For the additive model under 𝐻-, we use the identity link function where the mean is 

simply equivalent to the linear predictor without transformation, defined as: 

𝜇 = 𝑠(𝛽- + 𝛽+𝑋+ + 𝛽,𝑋, + 𝛽+,𝑋+, + 𝛽.𝑋. + 𝛽/01𝑋/01 + 𝛽23$4𝑋23$4 + 𝛽678+9𝑋678+9 +

𝛽&)$*(𝑋&)$*(). We applied each model to the 330 testable pairs from the experimental data 

where each enhancer in the pair had evidence of being an enhancer for the target gene based 

on the analysis by Gasperini et al. We compare model fits by examining the Akaike Information 

Criterion (AIC), with a lower AIC indicating a better fit. We calculated 𝛥𝐴𝐼𝐶 by subtracting the 

AIC of the lesser model from the AIC of the best fitting model. Since we found that the 

multiplicative model fit better in every case we tested, every 𝛥𝐴𝐼𝐶 reported in our study reflects 

the AIC of the additive model subtracted from the AIC of the multiplicative model. 

Fitting interaction model to empirical data 

For analyzing both sets of enhancer pairs tested in our analysis, we followed an identical 

procedure to the baseline model scenario, with the exception of adding a second enhancer 
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effect vector, and allowing for interactions between the two enhancer vectors using built-in 

functionality within the glm.nb() function in the MASS R package.  

Cook’s Distance Outlier Filtering 

When analyzing the significant enhancer-enhancer interactions from our at-scale analysis, we 

observed that several of these interactions were large in magnitude and positive. We then 

manually inspected the gene expression counts of cells with both enhancers perturbed and 

observed that this cell population generally had a single cell with a high expression. Since 

coefficient estimates from generalized linear models can be strongly influenced by outliers, we 

believe the “significant” interactions detected by GLiMMIRS-int in the Gasperini analysis are 

artifacts of the single-cell CRISPR experiment rather than true biological signals. To identify 

outlier cells that drive interaction coefficient estimates, we used Cook’s distance, which is a 

metric that quantifies the influence of each observation on the coefficients of a regression model 

and which has been previously used in differential expression analysis tools like DESeq244. To 

define outlier-driven interactions, we set a threshold of: 

1)B	C44;@9	D39$)'*"	4E"#	)FF	*"FF9
1")'	C44;@9	D39$)'*"	4E"#	*"FF9	G3$(	H4%&F"	!"#$%#&)$34'

	> 	5, and we discarded enhancer-enhancer 

interactions with jointly perturbed cells that met this criterion from downstream analysis. We 

applied this same metric to the significant interactions detected in the Morris et al. dataset.  

Bootstrap expression confidence intervals 

We used a bootstrapping procedure to compute confidence intervals for gene expression 

estimates and the expected expression under a multiplicative model (Fig. 3E,F).  For each of 

the enhancer-enhancer interactions that remained significant in our at-scale analysis following 

our Cook’s distance-based filtering, we performed 100 bootstrap sampling iterations, in which all 
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cells were resampled with replacement. In each iteration, the full GLiMMIRS-int model was fit to 

the data, and the intercept, enhancer 1 perturbation (E1), enhancer 2 perturbation (E2), and 

interaction coefficient estimates were recorded. Using these coefficients, scaled expression 

values were computed using the following formulas: 

𝑁𝑜	𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛	 = 	𝑒𝑥𝑝(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) 

𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑟	1	𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛	 = 	𝑒𝑥𝑝(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡	 + 	𝐸1) 

𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑟	2	𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛	 = 	𝑒𝑥𝑝(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡	 + 	𝐸2) 

𝐷𝑜𝑢𝑏𝑙𝑒	𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛	(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒	𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛) 	= 	𝑒𝑥𝑝(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡	 + 	𝐸1	 + 	𝐸2) 

𝐷𝑜𝑢𝑏𝑙𝑒	𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛	(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) 	= 	𝑒𝑥𝑝(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡	 + 	𝐸1	 + 	𝐸2	 + 	𝐸1 ∗ 𝐸2) 

 

The central 90 coefficient estimates from the bootstrap iterations were used to compute 90% 

confidence intervals. 

 

Preprocessing Morris et al. CRISPRi data for PTPRC Analysis 

Single-cell RNA-sequencing and guide RNA data were downloaded from GEO accession 

number GSE171452 under ‘STINGseq-v1_cDNA’ (GSM5225857) and ‘STINGseq-v1_GDO’ 

(GSM5225859), respectively. Cell-level covariates were obtained from Supplementary Table 

S3C. SNP IDs for the SNPs surrounding the PTPRC locus were obtained from Supplementary 

Table S1E. SNP-guide RNA assignments were obtained from Supplementary Table S3A. All 

supplementary tables referenced were downloaded directly from the Morris et al. manuscript28. 

 

Cell cycle scoring was performed on the scRNA-sequencing data using the Seurat software 

package. Cells were pre-filtered using the same QC metrics as Morris et al. Cell cycle scores 

were computed using the following functions: Read10X(), CreateSeuratObject(), 
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NormalizeData(), FindVariableFeatures() with the ‘vst’ selection method, ScaleData() with all 

genes in the RNA-sequencing matrix, and CellCycleScoring() using the predefined S and G2M 

gene sets from Seurat. All functions were run with default parameters unless otherwise 

specified.  

 

The gRNA assignment matrix was binarized based on whether each count value was greater 

than or equal to its gRNA UMI threshold. Guide RNA UMI thresholds were determined using the 

‘umi_thresholds.csv.gz’ file from GEO. For the STING-seq analysis, we did not include guide 

efficiency information, since none of the guide RNA sequences targeting PTPRC enhancers in 

the experiment had efficiencies available in the GuideScan database. 

 

Prior to running GLiMMIRS, both the guide RNA and RNA-sequencing matrices were pre-

filtered to only include cells passing the QC thresholds previously defined by Morris et al.  

 

In silico perturbation experiments with Enformer 

To select enhancer pairs for input into Enformer, we first filtered the set of 795,616 enhancer 

pairs in the Gasperini data set to those that were simultaneously perturbed in a minimum of 10 

cells. We then reduced this set to enhancer pairs associated with expressed genes in our 

single-cell RNA-sequencing matrix. To evaluate the effects of synthetic perturbations on a target 

gene of interest, we focused on enhancer pairs that were both located in a ~196kb window 

centered on the TSS of their putative target gene as these would be possible to evaluate with 

Enformer given the model’s input size constraints (196,608bp). These criteria reduced the set of 

enhancer pairs to 2,136 pairs. We then retrieved the input sequences containing each of these 

enhancer pairs from hg19 and used Enformer to make predictions on these wild type (WT) 
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unperturbed sequences. Enformer predicts CAGE-seq reads over a region of 114,688bp at the 

center of the input sequence in 128 bp bins, resulting in 896 output bins altogether. To focus on 

TSS activity only, we considered the average of the predictions for the central bins (i.e. bins 447 

and 448) across 10 different shuffles of the enhancer regions as the predicted gene expression 

signal for a given gene. We used predictions for track 5,111 of the human output head, which 

corresponds to K562 CAGE predictions. We then removed sequences where the Enformer 

predicted WT signal was below 10, leaving a total of 1372 sequences for downstream analysis. 

We then made predictions with the first enhancer in the pair shuffled (EnhA); the second 

enhancer in the pair shuffled (EnhB); and both enhancers in the pair shuffled (EnhA&EnhB). 

Shuffles were accomplished by performing ten independent dinucleotide shuffles of the target 

enhancer(s) and averaging Enformer’s predictions, similar to a Global Importance Analysis45. 

This shuffling and averaging serves to marginalize out the contribution of the enhancer(s), 

similar to inactivation perturbation via CRISPRi. The difference between the average predicted 

CAGE-seq level between mutant (i.e. shuffled) sequences and WT sequences was quantified 

with a log ratio: 𝑙𝑜𝑔( I!
I"#

), where 𝑦1 is the Enformer-predicted expression of the mutant 

sequence and 𝑦J> is the Enformer-predicted expression of the wild type sequence. We 

estimated enhancer effects for the individual mutant sequences under a multiplicative model as: 

𝛽-	 = 𝑙𝑜𝑔(𝑦J>)	 

𝛽+	 = 𝑙𝑜𝑔(𝑦K'(+) − 𝛽- 

𝛽,	 = 𝑙𝑜𝑔(𝑦K'(,) − 𝛽- 

and then computed the expected expression of the target gene for the double mutant sequence 

under the multiplicative model as: 

𝐸(𝑦K'(+	&	K'(,) = 𝑒𝑥𝑝(𝛽- + 𝛽+	 + 𝛽,)	 
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We then plotted the expected difference in expression 𝑙𝑜𝑔(K(I$%&'	&	$%&*)
I"#

) against the  Enformer-

predicted (observed) difference in expression  𝑙𝑜𝑔(I$%&'	&	$%&*
I"#

) and calculated the Pearson 

correlation between them (Fig. 4C).  

Bayesian Interaction Detection Probability Analysis 

We performed a Bayesian analysis to obtain posterior estimates of the frequency of enhancer 

interactions, given different prior beliefs in interaction frequencies. We used a beta distribution 

to specify priors for interaction frequency, with means between 0.05 and 1, and standard 

deviation of 0.2. Then, we considered various degrees of power to detect interactions: 0.05, 0.1, 

0.2, 0.4, 0.6, 0.8. For each power setting, we computed a prior probability distribution for 

detecting enhancer-enhancer interactions using GLiMMIRS by scaling the mean and standard 

deviation estimates by the power. Since the prior is a beta distribution and the number of 

detected interactions follows a binomial distribution, the prior is conjugate and the posterior 

distribution is also a beta distribution with a closed-form solution. The curves in Fig. 3G and 3H 

show the maximum a posteriori probability (MAP) from the resulting posterior distribution. For 

the high-confidence set of enhancer pairs (Fig. 3G), we set the number of detected interactions 

to 0 out of 264 tested. For the entire set of enhancer pairs (Fig. 3H), we excluded the significant 

outlier-driven interactions and set the number of detected interactions to 11 out of 46,166 

tested. 

 

Supplementary Figures 

Figure S1. Variable gRNA efficiency may bias interpretation of enhancer interactions. 
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Figure S2. Simulated noisy gRNA efficiency values and their effects on coefficient 
estimates. 
 
Figure S3. Number of enhancer pairs per gene. 
 
Figure S4. Example of enhancer pair with outlier gene expression. 
 
Figure S5. A pair of enhancers with a negative interaction effect on the expression of 
TIMM13. 
 
Figure S6. Enhancers with a negative interaction effect on the expression of TIMM3 are in 
different topological associating domains (TADs). 
 
Figure S7. Outlier interaction coefficient estimates are moderated by introduction of a 
pseudocount. 

Supplementary Tables 

Table S1. Data from NMU RT-qPCR experiment. Provided separately as an Excel file. 
 
Table S2. Fitting GLiMMIRS-base to simulated data comparing perturbation probability to 
indicator variable for Xperturb. See Supplementary Material. 
 
Table S3. Fitting GLiMMIRS-base to simulated data comparing different levels of noise in 
guide efficiency estimates.  See Supplementary Material. 
 
Table S4. Results from applying GLiMMIRS-base to high-confidence enhancers from 
Gasperini et al. Provided separately as .csv file. 
 
Table S5. Power analysis for GLiMMIRS-int. Provided separately as .csv file. 
 
Table S6. Results from applying GLiMMIRS-int to high-confidence enhancers from 
Gasperini et al. Provided separately as .csv file. 
 
Table S7. Results from applying GLiMMIRS-int to complete set of testable enhancers 
from Gasperini et al. Provided separately as .csv file. 
 
Table S8. Summary of Cook's distance estimates. Provided separately as .csv file. 
 
Table S9. Results from applying GLiMMIRS-base to candidate enhancers for PTPRC 
using data from Morris et al. 2023 Provided separately as .csv file. 
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Table S10. Results from applying GLiMMIRS-int to candidate enhancer pairs and PTPRC 
using data from Morris et al. 2023. Provided separately as .csv file. 
 
Table S11. Results from applying GuideScan 2.0 to Gasperini et al. guide sequences. 
Provided separately as .csv file. 
 
Table S12. Ensembl to HGNC gene mapping used for cell cycle analysis. Provided 
separately as .csv file. 
 
Table S13. Cell cycle S scores computed with Seurat. Provided separately as .csv file. 
 
Table S14. Cell cycle G2M scores computed with Seurat. Provided separately as .csv file. 

Data and code availability 

● Data from the Gasperini et al. experiment can be found under GEO accession number 

GSE120861.  

● Our NMU RT-qPCR experiment results (Table S1) are provided as a spreadsheet. 

● All relevant code and documentation can be found at 

https://github.com/mcvickerlab/GLiMMIRS. 
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Figure legends 

 

Figure 1. Detecting enhancer effects with GLiMMIRS. A) Schematic of GLiMMIRS-base, a 
GLM to infer the effect of individual enhancers on the expression of target genes. B) 
Schematic of GLiMMIRS-int, a GLM to infer joint perturbation effects of two enhancers on 
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target genes and for detecting interaction effects between the enhancers. C) Schematic of 
GLiMMIRS-sim, which simulates data from single-cell CRISPR perturbation experiments with 
RNA-seq readout. It can be used to generate reference values for evaluating the performance 
of GLiMMIRS-base and GLiMMIRS-int. D) Scatter plots comparing reference coefficient 
values generated by GLiMMIRS-sim to coefficient estimates from applying GLiMMIRS-base to 
the simulated data (y-axis) using two different values of 𝑋!"#$%#&: (1) a perturbation probability 
(magenta), calculated as a function of gRNA efficiencies; and (2) an indicator variable based 
on the presence/absence of a targeting gRNA for the putative enhancer of interest (lavender). 
Pearson correlations (r) are denoted on plots (see also Table S2). E) Quantile-quantile plot of 
observed versus expected -log10p values. The baseline values (red) are the results from 
GLiMMIRS-base. The Gasperini values (blue) are previously published results. Mismatch 
gene (green) is a negative control in which GLiMMIRS-base was applied to randomly selected 
genes, rather than genes near to the enhancer. Shuffled guides (purple) is a negative control 
in which the vector containing guide perturbation probabilities for each cell was shuffled. 
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Figure 2. GLiMMIRS-int detects interactions between pairs of enhancers in simulated 
data. A) Boxplots showing the number of cells containing gRNAs targeting both enhancers 
belonging to a testable pair in the Gasperini dataset (grey) or in the simulated data (colored). 
To consider an enhancer pair to be “testable”, we required both enhancers to be located 
within 1MB of a common target gene and for the enhancers to be jointly perturbed in at least 
10 cells. B) Histogram of the number of unique gRNAs per cell for data simulated with 
different values of 𝜆 (colored) and the Gasperini dataset (grey). C) Power to detect interaction 
effects (y-axis; TPR=true positive rate) in simulated datasets with varying multiplicities of 
infection (𝜆) and effect sizes (x-axis) using GLiMMIRS-int. See also Table S5. D) Histogram of 
effect sizes estimated by GLiMMIRS-base for significant individual enhancers in the Gasperini 
dataset. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2024. ; https://doi.org/10.1101/2023.04.26.538501doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.26.538501
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

46 

 

 

Figure 3. Enhancers act multiplicatively to control gene expression, but analysis of 
CRISPR perturbations provide limited evidence for interactions. A) Distribution of 𝛥𝐴𝐼𝐶, 
the difference in Akaike Information Criterion between the best fitting model and the lesser 
model for 264 high confidence enhancer pairs and corresponding target genes from Gasperini 
et al. In every case evaluated, the multiplicative model fit better than the additive model. B) 
Quantile-quantile (QQ) plot of interaction coefficient p-values for 264 high confidence 
enhancer pairs, where each individual enhancer had significant effects on the target gene 
expression. None of the interaction coefficients were significant (Benjamini Hochberg FDR < 
0.1). C) QQplot of 46,166 enhancer pairs in the entire testable set, where each constituent 
enhancer did not necessarily have a significant effect on gene expression. Significant 
interaction coefficients (FDR<0.1) are blue if one of the jointly perturbed cells was an outlier 
by Cook's distance and red otherwise. D) Volcano plot of interaction coefficients for the 
46,166 enhancer pairs in the entire testable set. E) An enhancer pair with a significant 
negative interaction on the expression of TIMM3. The Y axis is TIMM13 expression estimated 
in cells lacking perturbations to either enhancer (None), cells with perturbations of one 
enhancer (E1, E2) and cells with joint perturbations of both enhancers (E1+E2). The blue 
rectangle is the expected expression in joint perturbation condition under the null model of 
multiplicative enhancer effects (90% CI estimated from 100 bootstraps). Whiskers are 90% 
CIs of expression estimates (from 100 bootstraps).  F) A gene (SNX27) and enhancer pair 
with a significant positive interaction. G) Posterior estimate of frequency of enhancer pairs 
with interactions estimated from the dataset of 264 high-confidence enhancer pairs. Each line 
corresponds to a different power to detect interactions. X-axis is the prior belief in enhancer 
interaction frequency. H) Posterior estimate of frequency of enhancer pairs with interactions 
estimated from the 46,166 enhancer pairs in the entire testable set.  
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Figure 4. No evidence for enhancer interactions from an independent CRISPRi dataset 
and in-silico perturbations. A) Volcano plot of interaction coefficients and -log10(p values) 
estimated by GLiMMIRS-int from the Morris et al. CRISPRi perturbation dataset. All 36 possible 
pairs of enhancers for the 9 candidate enhancers for PTPRC were tested. Both significant 
interactions were driven by jointly perturbed cells with outlier expression levels. B)  Schematic of 
in silico perturbation strategy. We input 196kb sequences into Enformer, where each input 
sequence contained both candidate enhancers and the target gene. We generated predictions 
from unperturbed wild type (WT) sequences, sequences with the first enhancer (EnhA) 
scrambled, sequences with the second enhancer (EnhB) scrambled, and sequences with both 
enhancers scrambled (EnhA&EnhB). C) We compared the Enformer-predicted change in 
expression of the double mutant (EnhA&EnhB) to the expected expression under a 
multiplicative model with no enhancer interactions. We analyzed 1372 enhancer pairs and 
genes where Enformer-predicted WT expression >10 and quantified the change in expression 
as the log ratio of mutant expression to WT expression. The expected expression for the double 
mutant was computed from the Enformer-predicted expression of the single (EnhA and EnhB) 
mutants under a multiplicative model of activity. The shading of points corresponds to the 
Enformer-predicted WT expression level. 
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Supplementary Figures 

 
Figure S1. Variable gRNA efficiency may bias interpretation of enhancer interactions. 
A) We examined two enhancers of NMU, which were among the most significant enhancer-
gene pairs discovered by Gasperini et al. We performed CRISPRi experiments to perturb 
the enhancers of NMU using guide designs from the original study (Table S1).  B) Results 
of CRISPRi RT-qPCR experiment perturbing NMU enhancers for three technical replicates. 
For each NMU enhancer (enhancers A and B), two gRNAs were used (A1, A2 and B1, B2, 
respectively) and delivered on the same vector. Vectors containing gRNA A1 resulted in 
larger fold changes in NMU expression than their counterparts containing gRNA A2 instead 
(denoted p-values come from unpaired Welch's two-sided t-tests against the null hypothesis 
that there is no difference in mean fold change (FC) between vectors using gRNA A1 vs. 
gRNA A2. SH = safe harbor). TS = NMU transcription start site, WT = wild type K562 cells 
expressing dCas9-KRAB without any gRNAs, horizontal bar = mean log2(FC). See also 
Table S1. C) Distribution of guide efficiency values predicted by GuideScan 2.0 for the 
gRNAs used in the Gasperini et al. experiment. 
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Figure S2. Simulated noisy gRNA efficiency values and their effects on coefficient 
estimates. A) Histogram of noisy and true guide efficiencies from simulations with different 
values of 𝐷, the dispersion-controlling coefficient used to control “noise.” B) Scatterplot 
comparing noisy guide efficiencies to true guide efficiencies with different values of 𝐷. 
Pearson r = 0.391, 0.716, 0.956 for D=1, 10, 100, respectively. C) Scatterplot comparing true 
versus estimated coefficient values for each gene evaluated with GLiMMIRS-base. These 
plots summarize the results of fitting the model to 1000 genes in the simulated dataset which 
were designated as “true” target genes (genes whose enhancers were perturbed by gRNAs in 
the simulated experiment). Plot shows results of fitting to simulated data using the three 
different sets of noisy guide efficiencies. A pseudocount of 0.01 was applied to the counts for 
all cells. Pearson correlations (𝑟) are shown here and in Table S3. 36 outliers fall outside the 
axis range and are not visible in the 𝛽"'()'*"# panel for the set where D=1.  
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Figure S3. Number of enhancer pairs per gene. For A) the entire testable set of 46,166 
enhancer pairs; and B) the "high confidence" set of 264 enhancer pairs.   
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Figure S4. Example of enhancer pair with outlier gene expression. A) Expression of gene 
BABAM2 in cells with jointly perturbed enhancers. B) Distribution of Cook's distances for the 
same cells.  
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Figure S5. A pair of enhancers with a negative interaction effect on the expression of 
TIMM13. A) Overview showing entire genome regions and both enhancers. B) Zoom-in of 
enhancer A region. C) Zoom-in of  enhancer B region. 
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Figure S6. Enhancers with a negative interaction effect on the expression of TIMM3 are in 
different topological associating domains (TADs). The heatmap shows the Hi-C contact 
frequency in K562 cells46 from the WashU epigenome browser47 and the locations of both 
enhancers.   
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Figure S7. Outlier interaction coefficient estimates are moderated by introduction of a 
pseudocount. Magnitude of interaction term coefficients for 330 enhancer-enhancer pairs 
when adding vs. not adding a pseudocount of 0.01 to adjust the gene expression. The 
inclusion of a pseudocount greatly reduces the magnitude of outlier interaction coefficient 
estimates (note difference in x and y axis scales). 
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Supplementary Tables 
Table S1. Data from NMU RT-qPCR experiment. Provided separately as an Excel file. 
 
Table S2. Fitting GLiMMIRS-base to simulated data comparing perturbation probability to 
indicator variable for 𝑿𝒑𝒆𝒓𝒕𝒖𝒓𝒃. Pearson correlation (Pearson 𝑟, p_val) between reference and 
estimated coefficient values for each coefficient in the baseline model when fitting with guide-
efficiency derived value of 𝑋!"#$%#& versus with an indicator (0/1) value for 𝑋!"#$%#&. 
 

𝑋!"#$%#& term Pearson 𝒓 p_val 

indicator (Intercept) 0.997 0.00E+00 

indicator guide.eff 0.811 1.65E-234 

indicator s.score 0.974 0.00E+00 

indicator g2m.score 0.983 0.00E+00 

indicator percent.mito 0.925 0.00E+00 

probability (Intercept) 0.997 0.00E+00 

probability guide.eff 0.862 1.07E-296 

probability s.score 0.974 0.00E+00 

probability g2m.score 0.983 0.00E+00 

probability percent.mito 0.925 0.00E+00 
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Table S3. Fitting GLiMMIRS-base to simulated data comparing different levels of noise in 
guide efficiency estimates. Pearson correlation (𝑟), between reference and estimated 
coefficient values for each coefficient in the baseline model when fitting with perturbation 
probabilities 𝑋!"#$%#& calculated from different sets of noisy guide efficiency estimates (𝐷 = 1 
high noise; 𝐷 = 10 moderate noise, 𝐷 = 100 low noise). 
 

D term Pearson 𝒓 p_val 

1 (Intercept) 0.9970442026 0 

1 guide.eff 0.3706747091 9.85E-34 

1 s.score 0.972020145 0 

1 g2m.score 0.9808390969 0 

1 percent.mito 0.9031908794 0 

10 (Intercept) 0.9970706885 0 

10 guide.eff 0.7807013135 5.39E-206 

10 s.score 0.9720915922 0 

10 g2m.score 0.9815630149 0 

10 percent.mito 0.9034224054 0 

100 (Intercept) 0.9970696407 0 

100 guide.eff 0.8451032834 1.12E-273 

100 s.score 0.9720874449 0 

100 g2m.score 0.9815627591 0 

100 percent.mito 0.903438156 0 
 
 
Table S4. Results from applying GLiMMIRS-base to high-confidence enhancers from 
Gasperini et al. (Provided separately as .csv file). 
 
Table S5. Power analysis for GLiMMIRS-int. Power analysis results for different values of 𝜆 
(lambda) and interaction effect sizes (effect.size). True positive rate (TPR) is calculated from 
simulated data for interacting enhancer pairs and false positive rate (FPR) is calculated from 
simulated data for non-interacting enhancer pairs. (Provided separately as .csv file). 
 
Table S6. Results from applying GLiMMIRS-int to high-confidence enhancers from 
Gasperini et al. (Provided separately as .csv file). 
 
Table S7. Results from applying GLiMMIRS-int to complete set of testable enhancers 
from Gasperini et al. (Provided separately as .csv file). 
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Table S8. Summary of Cook's distance estimates. Cook's distance for the interaction 
coefficient was computed for each cell with joint perturbations for the 31 enhancer-pairs with 
significant interaction effects. (Provided separately as .csv file).  
 
Table S9. Results from applying GLiMMIRS-base to candidate enhancers for PTPRC 
using data from Morris et al. 2023 (Provided separately as .csv file). 
 
Table S10. Results from applying GLiMMIRS-int to candidate enhancer pairs and PTPRC 
using data from Morris et al. 2023. (Provided separately as .csv file). 
 
Table S11. Enformer gene expression predictions in the presence of perturbations to 
individual enhancers and joint perturbations for 2136 enhancer pairs and corresponding 
target genes tested. (Provided separately as .csv file). 
 
Table S12. Results from applying GuideScan 2.0 to Gasperini et al. guide sequences. 
(Provided separately as .csv file). 
 
Table S13. Ensembl to HGNC gene mapping used for cell cycle analysis. (Provided 
separately as .csv file). 
 
Table S14. Cell cycle S scores computed with Seurat. (Provided separately as .csv file). 
 
Table S15. Cell cycle G2M scores computed with Seurat. (Provided separately as .csv file).
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