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Deep neural networks (DNNs) have greatly advanced the ability to predict
genome function from sequence. However, elucidating underlying

biological mechanisms from genomic DNNs remains challenging.

Existing interpretability methods, such as attribution maps, have their
originsin non-biological machine learning applications and therefore

have the potential to be improved by incorporating domain-specific
interpretation strategies. Here we introduce SQUID (Surrogate Quantitative
Interpretability for Deepnets), agenomic DNN interpretability framework
based on domain-specific surrogate modelling. SQUID approximates
genomic DNNs in user-specified regions of sequence space using surrogate
models—simpler quantitative models that have inherently interpretable
mathematical forms. SQUID leverages domain knowledge to model
cis-regulatory mechanismsin genomic DNNs, in particular by removing

the confounding effects that nonlinearities and heteroscedastic noise in
functional genomics data can have on modelinterpretation. Benchmarking
analysis on multiple genomic DNNs shows that SQUID, when compared

to established interpretability methods, identifies motifs that are more
consistent across genomic loci andyields improved single-nucleotide
variant-effect predictions. SQUID also supports surrogate models that
quantify epistatic interactions within and between cis-regulatory elements,
as well as global explanations of cis-regulatory mechanisms across sequence
contexts. SQUID thus advances the ability to mechanistically interpret

genomic DNNs.

Deep neural networks (DNNs) are increasingly being used to analyse
and biologically interpret functional genomics data. DNNs have dem-
onstrated remarkable success at predicting diverse genomic activities
from primary genome sequences, including mRNA expression levels',
transcription startsite activity>’, mRNA splicing patterns®*, protein-
DNA binding’, chromatin accessibility® and chromatin conforma-
tion’. It is widely believed that the success of genomic DNNs reflects
their ability to accurately model complex biological mechanisms.

However, interpreting genomic DNNs in terms of biological mecha-
nisms remains difficult.

A variety of post hoc attribution methods have been developed
foraiding theinterpretation of genomic DNNs*°. The most commonly
used attribution methods produce attribution maps, which quantify
the position-specific effects that variant nucleotides in a sequence of
interest have on DNN predictions. Attribution maps are often mecha-
nistically interpreted by identifying motifs, thatis, recurrent sequence
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Fig.1| Overview of SQUID. a, Schematic of the SQUID modelling framework.
Analysis using SQUID comprises three main steps: (1) generate an in silico MAVE
dataset; (2) train asurrogate model on the MAVE dataset; and (3) visualize
parameters of the surrogate model to uncover biological mechanisms.

b, Structure of the latent phenotype surrogate models supported by SQUID.

Pl, predictioninterval. ¢, Schematic diagram of a DNN function on a two-
dimensional projection of sequence space. Each point in the plane corresponds
toaunique sequence, and elevations represent DNN predictions. Green region

schematizes the ability of surrogate models to approximate the DNN function
over an extended region of sequence space. The insets show an example DNN
function (in one-dimensional profile; black line) centred about a sequence

of interest with the ground-truth function (dashed line) overlaid. The left
insetillustrates the sensitivity of Saliency Maps to non-smooth local function
properties. The right inset illustrates the ability of surrogate models to better
approximate ground truth.

patterns characteristic of specific biological mechanisms, present
within these maps. To provide consistent biological explanations
for sequence activity, attribution methods must produce consistent
motifs across input sequences that function through shared biologi-
calmechanisms.

Established attribution methods for genomic DNNs have major
limitations. Different attribution methods use different strategies
to quantify position-specific nucleotide effects and can therefore
yield different mechanistic explanations'®™2. For example, Sali-
ency Maps® quantify nucleotide effects using the gradient of DNN
predictions at the sequence of interest, whereas DeepLIFT" propa-
gates activation differences between the sequence of interest and
areference sequence. Moreover, the most widely used attribution
methods in genomics—including Saliency Maps”, DeepLIFT", in
silico mutagenesis (ISM)"*, SmoothGrad'®, Integrated Gradients"”
and DeepSHAP"®—assume that nucleotide effects on DNN predic-
tions are locally additive. As a result, these attribution methods do
not explicitly account for the combinations of genetic interactions
(that is, specific epistasis'*??), global nonlinearities (that is, global
epistasis (GE)*’) and heteroscedastic noise* that are often present
infunctional genomics data.

Inthis Article we introduce SQUID (Surrogate Quantitative Inter-
pretability for Deepnets), an interpretability framework for genomic
DNNs that overcomes these limitations. SQUID uses surrogate mod-
els—simple models with interpretable parameters—to approximate
the DNN function within localized regions of sequence space. SQUID
applies MAVE-NN%, a quantitative modelling framework developed for
analysing multiplex assays of variant effects (MAVEs), toin silico MAVE
datasets generated using the DNN as an oracle. SQUID models DNN
predictions in a user-specified region of sequence space; this is simi-
lar to LIME?, a surrogate modelling approach developed for general
DNNs. Unlike LIME, however, SQUID is able to account for important
domain-specific outputs of genomic DNNs: global nonlinearities and
heteroskedastic noise. Indeed, SQUID can be viewed as ageneralization
of LIME (see Methods for details).

Benchmarking SQUID against existing attribution methods, we
find that SQUID more consistently quantifies the binding motifs of tran-
scription factors (TFs), reduces noisein attribution maps and improves
variant-effect predictions. We also find that the domain-specific sur-
rogate models used by SQUID are critical for this improved perfor-
mance. Finally, we show how SQUID can provide insights into epistatic
interactions in cis-regulatory elements and can be used to study such
interactions both locally and globally in sequence space. SQUID thus
provides anew and useful way to interpret genomic DNNs.

Results

Surrogate modelling for genomic DNNs via SQUID

SQUID approximates DNNs in user-specified regions of sequence
space using surrogate models that have mechanistically interpret-
able parameters. The SQUID framework comprises three steps (Fig. 1a):
(1) generate aninsilico MAVE dataset composed of variant sequences
and the corresponding DNN predictions; (2) fit a surrogate model to
theseinsilico data using MAVE-NN?’; and (3) visualize and interpret the
surrogate model’s parameters. This workflow requires the specifica-
tion of two key analysis parameters: the region of sequence space over
which the DNNis to be approximated, and the mathematical form of
the surrogate model. By choosing different values for these analysis
parameters, users are able to test different mechanistic hypotheses.
SQUID assists users by facilitating the use of analysis parameters that
have been found in practice to work well in the design and analysis of
MAVE experiments.

First, SQUID generates an in silico MAVE dataset. This is done
by generating a library of variant sequences, then using the DNN to
assignafunctional score to each sequence inthelibrary. In this paper,
we consider two types of library: local and global. A local library is
generated by partially mutagenizing a specific sequence of interest
(for example, a genomic cis-regulatory sequence). A global library
is generated by inserting partially mutagenized versions of a genetic
element of interest into random sequences. In what follows, we use
a partial mutagenesis rate of 10% per nucleotide (which is common
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Fig.2|Benchmark analysis of attribution methods. a, Our benchmark
analysis pipeline consisted of three steps: (1) genomic sequences that contained
consensus bindingsites for a TF of interest were identified; (2) an attribution map
spanning the core identified site and 100 nt of flanking sequence on each side
was computed for each identified sequence; and (3) a corresponding attribution
variation was computed (see Methods for details). b, Attribution maps and
attribution variation for 7-nt consensus AP-1binding sites (core sequence
TGAGTCA; flank size 15 nt), computed using ResidualBind-32 as the DNN. Left:
box plots show attribution variation for n = 50 genomic sequences. Triangles
represent means; lines represent median, upper quartile and lower quartile;
whiskers represent 1.5 x the inter-quartile range. Right: binding motifs observed
for two example genomic sequences, together with the ensemble-averaged
binding motif. The position of these example binding motifs, representative
oflow variation and high variation, is marked in the left plot using a circle and

square, respectively. Note: we used K = 50 for the K-Lasso implementation of
LIME; results for other choices of K are shown in Extended Data Fig. 1.

¢, Mutational effects predicted by the DNN versus additive effects predicted by
SQUID. Dots correspond to N =100,000 mutagenized sequences, with each dot
representing effects of different sets of mutations to a representative genomic
sequence. The GE nonlinearity (solid line) and 95% prediction interval (PI; shaded
region) inferred by SQUID are shown for comparison. d, DNN predictions versus
the predictions of two surrogate models for a representative genomic sequence.
One surrogate model (GE, right) has a GE nonlinearity; the other (Ridge, left) does
not. Dots represent test sequences from the in silico MAVE dataset. Diagonal lines
represent equality between DNN and surrogate model predictions. WT, wild-type
sequence; R?, squared Pearson correlation coefficient. e, R? values computed as in
dfor 50 different sequences of interest. Pvalues in b and e were computed using a
one-sided Mann-Whitney Utest; **P < 0.001.

in MAVE experiments, for example ref. 29) and libraries comprising
100,000 variant sequences (unless otherwise noted).

Next, SQUID fits a surrogate model to the in silico MAVE dataset.
SQUID uses nonlinear surrogate models developed specifically for
modelling MAVE data®. These models, called latent phenotype
models, have three components (Fig. 1b): a genotype-phenotype
(G-P) map, a GE nonlinearity and a noise model. The G-P map pro-
jects the input sequence down to a one-dimensional latent pheno-
type. SQUID, via MAVE-NN, supports the use of additive G-P maps,
pairwise-interaction G-P maps and user-defined G-P maps. The
GE nonlinearity, which is modelled using a linear combination of
sigmoids, maps the latent phenotype to a most-probable DNN pre-
diction. The noise model then describes how actual DNN predictions
are expected to scatter around the predicted most-probable value.
SQUID supports avariety of noise models, including heteroscedas-
tic noise models based on the skewed ¢-distribution of Jones and
Faddy®’ (which we use in this paper). Surrogate model parameters
are inferred from in silico MAVE data by maximizing variational

information?® (or, equivalently, log likelihood) using standard sto-
chastic gradient optimization.

The parameters of the G-P map are of primary interest for
downstream mechanistic interpretations. The parameters of addi-
tive G-P maps quantify single-nucleotide effects, and are readily
visualized using the same methods (sequence logos™ and heatmaps)
normally used for standard attribution maps. The parameters of
pairwise-interaction G-P maps quantify epistatic genetic interac-
tions as well as single-nucleotide effects, and can be visualized using
block-triangular heatmaps (asinref. 26).

SQUID improves the quantification of TF binding motif's

Acommon goal wheninterpreting attribution maps foraDNA sequence
of interest is to identify functional binding sites for TFs. However, the
TF binding motifs observed in attribution maps often vary substan-
tially from sequence to sequence. Some of this variation is probably
due to underlying biology; for example, TF binding preferences have
been experimentally observed to change in response to the binding
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Fig.3|Benchmark analysis across TFs, DNNs, and flank sizes. a, Attribution
variation analysis for various TFs and genomic DNNs. Results are visualized
asinFig.2b. Each test used n = 50 sequences from either the human genome

(for ResidualBind-32), the mouse genome (for BPNet) or the fly genome (for
DeepSTARR), together with consensus TF binding site listed in Supplementary
Table1, and flanked by 50 nt of DNA. b, Mean attribution scores computed asin
a, but using variable lengths of flanking DNA. The boxes above each plot indicate

Position (nt)

the largest (that is, least significant) Pvalue, computed as in Fig. 2b. n.s., P> 0.05;
*0.01< P<0.05;*0.001< P<0.01;**P<0.001. Dashed line, flank size used in

a. ¢, Binding motifs computed for Nanog via attribution analysis of BPNet. Left:
attribution maps averaged across 50 mouse loci containing (and centred on) the
consensus Nanog binding site AGCCATCAA. Right: attribution map observed
forasingle suchlocus. Grey bars indicate 10.5 nt periodicity on either side of the
consensus Nanog binding site.

of other TFs nearby***. However, variation in TF binding motifs can
be exacerbated by the specific ways in which attribution methods
quantify the behaviour of the DNN function in localized regions of
sequence space (Fig. 1c). The consistency of binding motifs observed
in attribution maps across different genomic sequences therefore
provides a way to quantify and compare the performance of different
attribution methods.

To benchmark the consistency of binding motifs identified by
different attribution methods, we identified sequences in the human
genome that contain putative TF binding sites. Specifically, for each
TF, we identified genomic instances of the consensus TF binding site
sequence at which astrong motifwas observed according to abaseline
attribution method. We then aligned these genomic sequences about
their putative binding sites and computed, for each genomic sequence,
anattribution map that spans the core putative binding site aswellas a
specified amount of flanking DNA on either side. Each attribution map
was then normalized to control for locus-to-locus variation in overall
motif scale (scale was substantial). Finally, we calculated the Euclid-
ean distance between the vector of normalized attribution scores for
individual sequences and the mean vector of normalized attribution
scores. We refer to this distance as the “attribution variation’ (Fig. 2a;
see Methods for details).

Wefirst applied this benchmarking pipeline to the human TF AP-1
using ResidualBind-32 (ref. 35), agenomic DNN that predicts chromatin
accessibility in human cell lines. We compared SQUID with two com-
monly used attribution methods that had previously beenusedinref.35

to analyse ResidualBind-32:ISM and Saliency Maps. We also compared
SQUID with two differentimplementations of LIME. Oneimplementa-
tion, Ridge, is similar to SQUID but lacks a GE nonlinearity and uses a
homoscedastic Gaussian noise model. The other implementation,
K-Lasso, uses the specific algorithm described in ref. 28 and requires
usersto specify the number of non-zero featuresin the attribution map.

We found that, across different genomic sequences that contain
the consensus AP-1binding site TGAGTCA, SQUID recovers AP-1binding
motifs that have markedly lower attribution variation than the binding
motifs recovered by ISM, Saliency Maps and both implementations of
LIME (Fig. 2b, left, and Extended Data Fig. 1). This result is supported by
the examination of attribution maps of individual sequences (Fig. 2b,
right). Compared with the attribution maps provided by other meth-
ods, the attribution maps provided by SQUID exhibit core regions
with greater similarity to the ensemble-averaged motif, and flanking
regions withreduced (probably non-biological) scores. Visual examina-
tion of individual PA-1 motifs suggest that some of the observed motif
variation was biological in nature and that in such cases SQUID was
better able than other methods to discern functional variation from
noise in these cases. Moreover, the motifs provided by SQUID were
largely robust to the choice of SQUID analysis parameters (Extended
DataFig.2). We conclude that SQUID quantifies the AP-1binding motif
from ResidualBind-32 more consistently than does ISM, Saliency Maps
or LIME.

We next investigated whether the surrogate models for AP-1
identified by SQUID benefitted from incorporating a GE nonlinearity.
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Fig. 4| Attribution method performance during benign overfitting.

a, DNN performance as a function of training epoch. DNN was a three-layer
convolutional neural network trained to classify 200-nt ChIP-seq peaks for the
human TF GABPA. Tests used DNN parameters from epoch 11 (pre-overfitting)
and epoch 211 (post-overfitting). b, Differences between attribution maps for
the DNN with pre-overfitting parameters versus post-overfitting parameters, as

quantified by the Euclidean distance between attribution map vectors.

Box plot results are shown for n =100 genomic sequences in the ChIP-seq peak
test set. Data are visualized and statistical tests were performed as in Fig. 2b.

¢, Attribution maps obtained for a representative test sequence using pre-
overfitting and post-overfitting DNN parameters.

We found that SQUID quantifies the AP-1 binding motif better when
using GE regression than when using the Ridge implementation of
LIME (Fig. 2b). Plotting the effects that mutations in a representative
genomic sequence have on DNN predictions, we found that virtually
all combinations of two or more mutations to the core 7-nt AP-1site
reduced DNN predictions to near-background levels (Fig. 2c). Moreover,
the GE nonlinearity learned by SQUID as part of the surrogate model
accurately recapitulated this saturation effect. By contrast, surrogate
modelling using the Ridge implementation of LIME failed to capture this
saturation effect (Fig. 2d,e). This finding demonstrates that surrogate
modelling of genomic DNNs can benefit from using our domain-specific
surrogate models, as opposed to the linear surrogate models that are
standard in other fields (for example, computer vision®).

We then expanded our analysis to other TFs and to other genomic
DNNs (DeepSTARR?** and BPNet’; Supplementary Table 1). In each
benchmark analysis, we compared SQUID with the attribution methods
(ISM, Saliency Maps, DeepLIFT or DeepSHAP) used in the original study
describing the DNN being modelled. We found that the attribution
maps provided by SQUID consistently yielded binding motifs with
markedly lower attribution variation than the binding motifs provided
by the other attribution methods (Fig. 3a). These results were robust to
theamount of flanking DNA used when computing attribution variation
(Fig. 3b). We also found that strong GE nonlinearities were pervasive
inthe surrogate models inferred by SQUID for the genomic sequences
tested (Extended DataFig. 3). These results suggest that SQUID, quite
generally, quantifies TF binding motifs more consistently than do
competing attribution methods. These findings also suggest that
modelling GE nonlinearities and heteroscedastic noise is important
for the accurate surrogate modelling of genomic DNNs.

The ability of SQUID to better quantify TF binding motifsis exem-
plifiedin Fig.3c.Shown are attribution maps for the mouse TF Nanog,
computed using BPNet, a consensus binding site of AGCCATCAA, and
50 nt of flanking DNA. When attribution maps are averaged across
genomicloci, ISM, DeepLIFT and SQUID all produce attribution maps
that reveal both the Nanog binding motif and amore subtle preference

for periodically spaced AT-rich sequences in the flanking DNA (which
probably reflects the interaction of nucleosomes with the DNA double
helix). However, the attribution maps for specific genomic sequences
often exhibit many other noticeable features. Some of these features
arelikely to be biological, as TFs often bind in clusters*®. However, many
features appear to be spurious and probably reflect non-biological
noise in the attribution map. The attribution map provided by SQUID
appears to exhibit less noise in the sequences that directly flank core
motifs than the attribution maps given by ISM or DeepLIFT. Similar
observations hold in analyses of other TFs (Extended Data Fig. 4). These
findings raise the possibility that the increased consistency of binding
motifs identified by SQUID is due, at least in part, to the reduction of
non-biological noise in attribution maps.

SQUID reduces noise in attribution maps
Non-biological noise in attribution maps can arise from the inherent
roughnessinthe DNN function, aphenomenon thatis often associated
with benign overfitting®*%, Benign overfitting is of particular concern
for Saliency Maps, since it can adversely affect the accuracy of DNN gra-
dients**. Benign overfitting is similarly expected to impact other attri-
bution methods, since these methods essentially quantify how small
changes in sequence space affect DNN predictions'®*°. We reasoned
that, because SQUID integrates information over an extended region
of sequence space, the attribution maps provided by SQUID might
be less noisy than the maps provided by other attribution methods.
We therefore asked whether SQUID can reduce the attribution map
variation caused by benign overfitting. To answer this question, we
trained a DNN to classify chromatinimmunoprecipitation followed by
sequencing (ChIP-seq) peaks for the human TF GABPA (Methods) and
saved DNN parameters both before benign overfitting (that is, using
early stopping) and after benign overfitting (Fig. 4a). Benign overfitting
isapparent fromthe plateauin validation-set performance that occurs
when near-perfect classification performance is achieved on the train-
ing set*>. We then selected 100 random sequences from the test set,
and for each sequence and each of four attribution methods (SQUID,
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Table 1| Attribution method performance on a zero-shot variant-effect prediction task

DNN Average Pearson correlation Statistical significance
Architecture Task Saliency ISM SQUID (Ridge) SQUID (GE) GE versus GEversusISM GE versus
Saliency Ridge
Enformer DNASE 0.2977 0.4498 0.4486 0.4801 el ** >
Basenji-32 ATAC-seq 0.2727 0.3575 0.3700 0.4036 bl bl **
ResidualBind-32 ATAC-seq 0.2846 0.3388 0.3567 0.3912 ** bl *

Performance of four attribution methods, applied to three DNNs, on the CAGI5 variant-effect prediction challenge”. Numbers indicate the average correlation observed across the 15 genomic
loci assayed by MPRA in ref. 47. Bold text indicates the best-performing method for each DNN. P values report results from a paired one-sided Wilcoxon signed-rank test on the 15 locus-specific

correlation values: *0.01<P<0.05; **0.001<P<0.01; ***P<0.001.

DeepSHAP, SmoothGrad and Saliency Maps), quantified the differences
between the attribution maps obtained using the pre-overfitting DNN
parameters versus the post-overfitting DNN parameters. Figure 4b
shows that SQUID provided attribution maps that changed substan-
tially less over the course of benign overfitting. Figure 4c illustrates
this behaviour for a representative sequence. These results support
the hypothesis that the attribution maps provided by SQUID are more
robust to the adverse effects of benign overfitting than are other attri-
butionmethods. Theseresults also suggest that SQUID, more generally,
yields attribution maps that have lower noise than maps computed by
other attribution methods.

SQUID better identifies putative weak TF binding sites

Weak TF binding sites play critical roles in eukaryotic gene regula-
tion*"*, Functional signals from weak binding sites, however, can be
difficult to distinguish from noise in attribution maps. Having shown
that SQUID reduces noise in attribution maps relative to other attribu-
tion methods, we hypothesized that SQUID would also better iden-
tify weak yet functional TF binding sites. To test this hypothesis, we
quantified how well attribution maps generated for putative weak
TF binding sites matched the TF binding motifs identified in Fig. 3a.
For each TF of interest, we randomly selected 150 putative binding
sites in the genome having zero, one or two mutations relative to the
consensus binding site (Supplementary Table1). We also recorded the
genomic sequence containing each selected site padded by 50 nt of
flanking DNA on either side. We then computed the score assigned to
each selected site using a TF-specific position weight matrix (PWM)*,
asin Extended DataFig. 5a. Different attribution methods were used to
computeattribution maps for each genomic sequence, after which each
sequence was assigned an attribution variation value quantified by the
Euclidean distance between the attribution map and the correspond-
ing ensemble-averaged attribution map from Fig. 3a. Extended Data
Fig.5b shows that, as expected, the resulting variation for all attribution
methods increased as PWM score decreased. However, the attribu-
tion variation observed for SQUID was consistently lower than the
attribution variation observed for competing methods. This finding
is confirmed by visually examining attribution maps for selected sites
(Extended Data Fig. 6). We conclude that SQUID is better than com-
peting methods at identifying signatures of TF binding at weak yet
functional TF binding sites.

SQUID improves zero-shot prediction of SNV effects

A major goal of genomic DNNs and their attribution methods is to
predict which genetic variants are pathogenic. Having observed that
SQUID reduces noise inattribution maps, mitigates the adverse effects
of benign overfitting and better identifies TF binding motifs, we hypoth-
esized that SQUID would provideimproved variant-effect predictions.
To test this hypothesis, we used SQUID and other attribution methods
to predict the effects that single-nucleotide variants (SNVs) have on the
activity of cis-regulatory elements for 15 different disease-associated
loci in the human genome, loci for which the effects of SNVs had
been measured using massively parallel reporter assays (MPRAs)**5,

Intechnical terms, thisis a zero-shot prediction task, since none of the
methods tested were trained on MPRA data. Ateach locus, the Pearson
correlation coefficient was computed between the attribution scores
and measured SNV effects. We performed this benchmark analysis
using three genomic DNNs previously reported for predicting regions
of open chromatin: Enformer?, Basenji-32 (ref. 49) and ResidualBind-32
(ref.35). We found that SQUID yielded substantially higher correlations
between predicted and measured SNV effects across the 15 assayed loci
(Table1and Supplementary Fig.1). The results suggest that attribution
maps provided by SQUID are generally able to predict variant effects
better than the attribution maps provided by competing methods. The
improved performance of SQUID relative to ISM, which directly uses
DNN predictions to quantify SNV effect sizes, suggests that surrogate
modelling may provide a general way of improving the variant-effect
predictions of genomic DNNs themselves.

SQUID illuminates epistaticinteractions

Understanding the role of epistatic interactions within gene regula-
tory sequencesis amajor goalin the study of cis-regulatory codes. An
important advantage of surrogate modelling over other DNN inter-
pretability approaches is that surrogate models with different math-
ematical forms can be used to answer different questions about DNN
behaviour. To test whether SQUID could be used to study epistatic
interactionsin cis-regulatory sequences, weimplemented a surrogate
model that describes all possible pairwise interactions between nucleo-
tideswithinasequence (inaddition to the additive contributions from
individual nucleotides). We then used this pairwise-interaction model
to quantify the effects of pairs of putative AP-1binding sites learned by
ResidualBind-32%. We identified 50 genomic sequences having pairs
of putative AP-1binding sites spaced 4-20 nt apart, used SQUID to
infer the parameters of the pairwise-interaction model about each
of the 50 sequences, and then aligned and averaged the values of the
pairwise-interaction parameters corresponding to bothinter-site and
intra-site interactions across the 50 sequences (Fig. 5a).

The results are shown in Fig. 5b,c. We found that pairwise-
interaction models consistently performed better on test data than
additive surrogate models inferred in a similar manner (Fig. 5b).
This was true in both the presence and absence of a GE nonlinear-
ity (both additive and pairwise-interaction models benefitted from
having a GE nonlinearity). The pairwise-interaction models thus pro-
vide more accurate approximations of the DNN, suggesting that the
pairwise-interaction parametersin these models are likely to be mean-
ingful. Examining the resulting context-averaged pairwise-interaction
parameters (Fig. 5c), we observed strong positive intra-site interactions
and strong negative inter-site interactions for critical mutations, that
is, mutations away from the preferred nucleotide at any of the six most
selective positions of the AP-1 motif. Intuitively, the positive interac-
tions between a pair of critical mutations within the same AP-1site arise
because asingle critical mutationis sufficient to abrogate AP-1binding.
Thus, a second critical mutation within the same site has no effect,
rather than the additional negative effect that would be predicted by
an additive model. By contrast, the negative inter-site interactions
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Fig. 5|SQUID captures epistatic interactions. a, Pipeline for analysing
context-averaged epistatic interactions. The pipeline consists of three steps: (1)
pairs of consensus binding sites (A and B) are identified in genomic sequences;

(2) pairwise-interaction models are inferred for each identified sequence; and

(3) the values of surrogate model parameters describing intra-site interactions

(A, B) and inter-site interactions (AB) are aligned and averaged across sequence
contexts. b, Performance of surrogate models for n = 50 genomic sequences
having two consensus AP-1binding sites each. Swarm plot results are shown for
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aGE nonlinearity. Correlation values were computed between surrogate model
predictions and DNN predictions oninsilico test data. Overlaid lines represent the
median, upper and lower quartiles. Pvalues were computed using the one-sided
Mann-Whitney Utest. ***P < 0.001. ¢, Surrogate model parameters quantifying
intra-site and inter-site interactions, aligned and averaged across the 50 genomic
sequence contexts. Pairwise-interaction models having GE nonlinearities were
used in this analysis. d,e, Parameters of pairwise-interaction models, either with
(d) or without (e) a GE nonlinearity, determined for agenomic locus having three
putative AP-1binding sites. ADD, additive model; PW, pairwise model.

between critical mutations indicate a degree of redundancy between
nearby AP-1binding sites, since mutations that abrogate both AP-1
sites result in lower activity than is expected from adding the effects
of abrogating each AP-1site individually®.

While these averages are informative about overall trends, analy-
ses of specific sequences can provide additional insight. In the analysis
above, we observed one sequence that contained three putative AP-1
binding sites, with different combinations of these sites displaying
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either positive or negative epistatic interactions (Fig. 5d). This exam-
ple shows that context-specific interactions can be complex and that
other factors like binding site orientation and spacing may play an
important role’’. We note that including the GE nonlinearity in the
pairwise-interaction model was essential for identifying these complex
interactions. When a linear pairwise-interaction model was used, we
instead observed positive interactions of similar magnitude between
every pair of sites (Fig. 5e). The reason is that, in the linear pairwise
model, the pairwise-interaction parameters are co-opted to describe
a global nonlinearity instead of the nucleotide-specific interactions
they areintended to model. Specifically, for this genomic sequence, the
DNN exhibits a rapidly saturating effect of removing AP-1binding sites
on the functional score (Extended Data Fig. 7), such that disrupting a
second binding site hasamuch smaller effect on DNN predictions than
would be predicted on the basis of the effect of disrupting just one of
the three sites. We thus see that modelling GE nonlinearities is essential
when interpreting genomic DNNs in terms of epistatic interactions
between genetic elements.

SQUID supports global DNN interpretations

Inthe above analyses, SQUID used in silico MAVE libraries generated by
partially mutagenizing aspecific sequence of interestin the genome. As
aresult, the surrogate models inferred by SQUID provided DNN inter-
pretations that are limited to localized regions of sequence space. In
previous work, however, we proposed a DNN interpretation method
called global importance analysis™, in which the DNN is evaluated on
completely random sequences containingembedded genetic elements,
such as putative TF binding sites. We therefore investigated whether
SQUID could provide useful global DNNinterpretations using amodified
version of the sequence libraries used in global importance analysis.

First we asked whether SQUID could provide global interpretations
for individual TFs. For each TF of interest, we generated an in silico
MAVE library by embedding partially mutagenized versions of the
consensus TF binding site withinrandom DNA (Extended Data Fig. 8a).
We then used this in silico MAVE library to infer an additive surrogate
model. This approach was applied to the four mouse TFs (Oct4, Sox2,
KIf4 and Nanog) modelled by BPNet’. Extended Data Fig. 8b shows that
theresulting additive surrogate models revealed prominent motifs hav-
inglow background, which matched the known sequence preferences
ofthe four TFs. Inthe case of Nanog, this analysis also revealed periodic
secondary motif features in flanking DNA nearly identical to those in
Fig.3c. We conclude that global surrogate modelling with SQUID can
provide accurate characterizations of TF binding motifs independent
of specific genomic sequence contexts.

We next investigated whether SQUID could provide global insights
into the epistatic interactions between pairs of TF binding sites. We
created an in silico MAVE library in which partially mutagenized ver-
sion of the Nanog and Sox2 consensus binding sites were inserted into
random DNA sequences afixed distance apart (Extended Data Fig. 8c).
Wethenused SQUID to infer a pairwise-interaction model based on this
insilico MAVE library. Extended Data Fig. 8d shows that, similar to the
findings in Fig. 5, critical mutations within Nanog and Sox2 binding
sites exhibited positive intra-site epistatic interactions and negative
inter-site epistatic interactions. We then repeated this analysis for
Nanog and Sox2 binding sites separated 0 to 32 ntand observed that the
strength ofinter-site epistaticinteractions varied inasinusoidal man-
ner consistent with the periodicity of the DNA double helix (Extended
DataFig.8e). We conclude that global surrogate modelling with SQUID
canprovide useful characterizations of epistatic interactions between
TFsinamanner that isindependent of genomic sequence context.

Discussion

Here we introduced SQUID, a framework for interpreting genomic
DNNs. SQUID uses surrogate models to approximate DNN functions
in user-defined regions of sequence space. The parameters of these

surrogate models can then be mechanistically interpreted: addi-
tive surrogate models can be interpreted as attribution maps, and
pairwise-interaction surrogate models canbeinterpreted as quantifying
epistatic interactions. Applying SQUID to a variety of genomic DNNs, we
observed that the attribution maps obtained by SQUID more robustly
identify TF binding motifs and provide better variant-effect predictions
than the attribution maps obtained using other DNN interpretability
methods. We also observed that SQUID is able to quantify epistatic inter-
actionsthat are otherwise obscured by global nonlinearitiesin the DNN.

SQUID works by using the DNN of interest as a forward simula-
tor of MAVE experiments. SQUID then uses the MAVE-NN modelling
framework® to infer surrogate models from the resulting insilico data.
This surrogate modelling approach has multipleimportant advantages
over standard DNN interpretability methods.

First, SQUID is model agnostic: it does not require access to
the parameters or gradients of the DNN. Rather, SQUID simply uses
the DNN of interest as a black-box oracle. This allows SQUID to be
appliedtoarbitrary genomic DNNsregardless of their computational
implementation.

Second, SQUID smooths over fluctuations in DNN predictions
that are likely to reflect noise rather than biological function. This is
because the parameters of the surrogate models that SQUID infers are
fitto DNN predictions over an extended region of sequence space. Our
results showed that thisincreased smoothness can cause the surrogate
models to have improved accuracy relative to the parent DNN.

Third, SQUID leverages domain-specific knowledge to improve
the utility of surrogate models. While the use of surrogate models for
interpreting DNNs hasbeen established previously in other fields, these
applications typically use linear models®. By using the latent pheno-
type models supported by MAVE-NN, the surrogate models inferred by
SQUID explicitly account for global nonlinearities and heteroscedastic
noise, both of whichare ubiquitousin functional genomics dataandin
genomic DNNs. By explicitly accounting for these influences, SQUID
is able to remove their confounding effects on the inferred surrogate
model parameters.

Finally, SQUID supports avariety of surrogate models. In this work,
we demonstrated the use of additive and pairwise-interaction models,
but SQUID also supports use of surrogate models having user-specified
mathematical form. SQUID thus has the ability toinfer surrogate mod-
els that reflect higher-order epistatic interactions?*>**?, or specific
biophysical hypotheses (for example, thermodynamic models®® or
kinetic models® ).

Although nonlinearities and genetic interactions can be identi-
fied by observing whether changes to sequence cause changes to
additive attribution maps (for example, maps provided by Saliency
Maps, DeepLIFT or DeepSHAP), explicitly accounting for these non-
linearities and genetic interactions within the surrogate model allows
SQUID to quantify these effects in a natural way. One limitation to
modelling epsitatic interactions in SQUID using pairwise-interaction
surrogate models is that the number of such interactions, and thus
the number of parameters that must be inferred, increases quadrati-
cally with sequence length. We found, in practice, that the inference
of pairwise-interaction models presented computational difficulties
when input sequences were longer than approximately 100 nt. The
number of parameters in additive models increases only linearly with
sequence length, and such models are often more practical to imple-
ment on long sequences as aresult.

The biggest drawback of SQUID relative to other DNN interpret-
ability methods (other than LIME, which has the same drawback) is
its higher computational demands. This is due to the need for many
forward passes through the DNN during simulation of the in silico
MAVE dataset, as well as the need to fit the surrogate model parameters
to these simulated data (see Extended Data Table 1 for typical SQUID
computation times). We therefore suggest that SQUID is likely to be
more useful for in-depth analyses of specific sequences of interest
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(for example, disease-associated loci) rather than large-scale
genome-wide analyses. In this context, however, the advantages of
SQUID described above—especially SQUID’s ability to support sur-
rogate models of arbitrary mathematical form—enables new ways of
biologically interpreting genomic DNNs.

Methods

The SQUID framework

An overview of SQUID’s workflow is given in Supplementary Fig. 2.
Briefly, SQUID takes as input a sequence of interest and a specified
surrogate model. Aninsilico MAVE dataset is generated with the InSili-
cOMAVE object, with specifications of the mutagenesis strategy given
by aMutagenizer object, and processed model predictions given by a
Predictor object. The in silico MAVE dataset is then fit with surrogate
models that are defined as objects in squid/surrogate_zoo.py.

« Mutagenizer. Aninsilico MAVE dataset is generated by sam-
pling a library of sequences using random partial mutagen-
esis of a sequence of interest. We modulate the size of the
sequence-space region from which this library is drawn using
two hyperparameters: the sequence that defines the region
of interest, which has length L, and the mutation rate r. The
resulting number of mutations in each individual sequence
is a Poisson distributed random variable having mean Lr.
squid/mutagenizer.py contains objects that apply the chosen
mutagenesis strategy, with the object RandomMutagenesis
executing the random partial mutagenesis in this study.

e Predictor. SQUID currently requires that DNNs provide
scalar-valued outputs. However, some genomic DNNs output
high-dimensional predicted profiles, not scalar predictions.
For example, ResidualBind-32 predicts 15 chromatin accessibil-
ity profiles of length 64, each profile corresponding to a differ-
ent cell type and each profile element representing a binned
position with a resolution of 32 nt. squid/predictor.py contains
objects, including ScalarPredictor and ProfilePredictor, that
reduce model predictions to scalar values. For profile-based
predictions, SQUID also offers an approach to reduce profiles
using principal component analysis (PCA). Specifically, profiles
are projected onto their first principal component, with sign
chosen so that the wild-type sequence has higher-than-average
score (Supplementary Fig. 3).

« InSilicoMAVE. The object InSilicoMAVE, defined in squid/mave.
py, is a data structure that takes the mutagenizer and predictor
objects and generates the in silico MAVE dataset for a sequence
of interest.

< Surrogate Zoo. The squid/surrogate_zoo.py module currently
offers alinear model (SurrogateLinear) as well as models based
on MAVE-NN (SurrogateMAVENN). In SurrogateLIME, the
‘K-Lasso’ approach is implemented?. First, sklearn regression
is performed using linear_ model.LassoLars to model the entire
regularization path over all values of a (ref. 63). We then select
the model associated with the appropriate a that gives the
desired number of non-zero features, K, that is, weights. These
K features are then fit using least squares linear regression. In
SurrogateRidgeCV, a linear model is computed using sklearn
ridge regression with iterative fitting along a regularization path,
where the best model is selected by cross-validation (linear_
model.RidgeCV)®. SurrogateMAVENN supports models based
on the built-in modelling capabilities of MAVE-NN. The math-
ematical forms of these models are described in detail in ref. 26

Surrogate models

The surrogate models supported by MAVE-NN for use in SQUID com-
prise three parts (Fig. 1b): a G-P map, a GE nonlinearity and a noise
model. Here, we summarize the mathematical forms of these model

components. In what follows, x represents a sequence of interest,
X..is a one-hot encoding of x (that is, is equal to 1if x has character ¢
at position /and is equal to O otherwise), and y is the DNN-predicted
scalar activity of x.

« The G-P map,f(x, ), which has parameters 6, maps a sequence
xto alatent phenotype ¢. There are two types of G-P map:
additive G-P maps and pairwise-interaction G-P maps. Addi-
tive G-P maps have a constant parameter 6, additive param-
eters 0,., and the mathematical form

L
Sadditive™, 0) = 6o + Z Z Or.cxi.c -

=1 ¢

Pairwise-interaction G-P maps have a constant parameter,
additive parameters, pairwise-interaction parameters ;.. ,..and
the mathematical form

L L-1 L
fpairwise(x’ 0) = 60 + zzgl:cxl:c + Z Z Z BIIC,I’:C’ XpzeXp:cr -

=1 ¢ [=10'=l+1c,c’

« The GE nonlinearity, g(¢p), maps the latent phenotype ¢pto a
most-probable scalar DNN prediction y. By default, g(¢) is
defined to be an over-parameterized linear combination of
hyperbolic tangent sigmoids. In this paper we use 50 sigmoids,
corresponding to 50 hidden nodes in the neural network
formulation of g(¢). This is the default number of sigmoids
used by MAVE-NN, and was chosen on the basis of previous
analyses of diverse MAVE datasets®. We found that TF motifs
inferred by SQUID, as well as corresponding R? values, were
highly robust to the number of hidden nodes (Extended Data
Table 2). For SQUID analyses performed without a GE nonlin-
earity, g(¢) is defined to be a linear function of ¢.

« Thenoise model, p(yly), describes the expected distribution of
DNN predictions y about the most-probable prediction y. The
noise model can be defined using a Gaussian distribution, a
Student’s t-distribution, or the skewed ¢-distributed of Jones
and Faddy®°. The shape parameters of this distribution can
either be independent of y (for homoscedastic noise) or a
polynomial function of y (for heteroscedastic noise).

LIME

LIMEisasurrogate modelling approach forinterpreting general DNNs.
Here, we describe the general LIME framework, how SQUID generalizes
LIME and how the two implementations of LIME used for the bench-
marking results in Fig. 2 and Extended Data Fig. 1 work.

Let x denote a one-hot encoded sequence input, y(x) denote the
prediction of the DNN of interest, m(x) denote a probability distribution
onsequencespace, f(x, 6) denote the surrogate model used to approxi-
matey, and 8 denote the parameters of the surrogate model. We note
that ref. 28 distinguishes between the input x fed to the DNN and the
‘interpretable input representation’ x’ used as input to the surrogate
model inferred by LIME. In our genomics applications, however, we
take both x and x' to be the standard one-hot encoding of sequence.
We therefore omit this distinction in what follows.

LIME determines values for surrogate model parameters via

o = arg;nin Lime(3, 0, m) + 211ve(6),

where L, is aloss function and Q, is a regularization penalty on 6.
Followingref. 28, we adopt the weighted L, loss function

Lune = Y 000 - fix, O],

which is estimated by randomly sampling inputs x according to the
probability distribution m(x).
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SQUID can be thought of as a generalization of LIME in which the
loss function has latent parameters that must be inferred simultane-
ously withthe parameters of the surrogate model. Asin LIME, the G-P
map f(x, 6) serves as the surrogate model. But unlike LIME, the SQUID
loss function is determined by a measurement process pys(y|.f, 7),
which represents a probability distribution over DNN predictions
y conditioned on the prediction f of the G-P map, and which has its
own set of latent parameters (denoted by 7). SQUID simultaneously
determines values for 8and n via

0%, = 3"%"11" Lsquin(¥, 0,1, 1) + Lsquin(6, 1),
.

where Qqqp is a regularization penalty on both 6 and n, and the loss
function Lsqup is given by

Lsquip = ), () log [pnp (Y| fix, 6), )] .

Interms of the GE nonlinearity y(f, )and the noise model p,ise (Y13, 1),
the measurement process is given by

PvpNF 1) = Proise VI Y 1), 1D)- (4]

In‘Main’, we consider two differentimplementations of LIME: Ridge and
K-Lasso. The Ridge implementationis equivalent to SQUID when the GE
nonlinearity is taken to be the identity function and the noise model is
taken tobe a Gaussian with fixed variance. In thisimplementation, we
also take Q,,: to be an L, penalty with scaling coefficient determined
by cross-validation. The K-Lasso implementation is equivalent to the
specificalgorithm describeinref. 28, if m(x) is taken to be the distribu-
tion in sequence space resulting from a Poisson mutation process.
In this implementation, the user selects a value K for the number of
non-zero one-hot features (as DNA sequence of length L having 4L such
features). Lasso regressionis thenused toselect the K specific features
for which @is allowed to be non-zero, and the specific values of these
non-zero elements of f are inferred by least squares.

Deep learning models

This study used six DNNs: ResidualBind-32 (ref. 35), Basenji-32 (ref. 35),
DeepSTARR*, Enformer?, BPNet’ and a baseline convolutional neural
network (CNN) that predicts ChIP-seq data for the human TF GABPA.
Here, we briefly describe each DNN and how that DNN was used in our
study tocompute a predictionyfor each sequencexwhen generating
insilico MAVE data.

« ResidualBind-32 predicts assay for transposase-accessible chro-
matin with sequencing (ATAC-seq) profiles across 15 human
cell lines®. ResidualBind-32 takes as input a DNA sequence of
length 2,048 nt and outputs 15 profiles (one for each cell line)
where each profile comprises 64 bins, with each bin spanning
32 nt. The published ResidualBind-32 parameters were used to
compute these profiles. In our attribution variation analyses, y
was set equal to the sum of predicted binned ATAC-seq signals
over all 64 bins for the single output channel corresponding to
the cell type most associated with the TF of interest (Supple-
mentary Table 1). In our variant-effect analysis, y was set equal
to the sum of predicted binned ATAC-seq signals over all 64
bins, using a profile averaged across all 15 output channels.

- Basenji-32 predicts ATAC-seq profiles across 15 human cell
lines”. The input and output of Basenji-32 is identical to that
of ResidualBind-32, and the published Basenji-32 parameters
were used to computed predicted ATAC-seq profiles. Analyses
performed using Basenji-32 were performed the same way as
for ResidualBind-32.

« DeepSTARR predicts Drosophila enhancer activity as assayed
by UMI-STARR-seq**. DeepSTARR takes as input a DNA

sequence of length 249 nt and outputs two scalar-valued
predictions for enhancer activity for developmental (Dev)

and housekeeping (Hk) regulatory programs. The published
DeepSTARR parameters were used to predict enhancer activity.
In each analysis, y was computed using the regulatory pro-
gram most associated with the TF of interest (Supplementary
Table1).

Enformer predicts many different types of functional
genomic track (for example, ChIP-seq, DNase-seq, ATAC-seq
and cap analysis of gene expression) across the human and
mouse genomes’. Enformer takes as input a DNA sequence
of length 393,216 nt and (for humans) outputs 5,313 profiles
(one for each track) where each profile comprises 128 bins,
each bin spanning 32 nt, representing the central 114,688 nt
of the input sequence. The published Enformer parameters
were used to compute these profiles. In our variant-effect
analysis, we used human predictions, where y was computed
as in the original study by cropping all 674 ‘cell-type agnostic’
DNase profiles to a 10-bin (1,280 nt) region centred about the
variant of interest, then summing across bins in the mean
cropped profile.

BPNet predicts nucleotide-resolution ChIP-nexus binding pro-
files for four TFs (Oct4, Sox2, KIf4 and Nanog) in mouse embry-
onic stem cells’. BPNet takes as input a DNA sequence of length
1,000 nt and outputs a1,000-valued positive (+) and negative

(-) strand profile for each of the four TFs (eight profiles in total
per input). The parameters of BPNet were retrained as specified
in the original release®*, and the resulting model was confirmed
to recapitulate the published model BPNet-OSKN® by a visual
inspection of attribution maps. Analyses for different prediction
tasks used different profiles (Supplementary Table 1). In all BPNet
analyses except those in Extended Data Fig. 8,y was computed
using the profile contribution score defined in the original paper’.
In the BPNet analysis for Extended Data Fig. 8, y was instead com-
puted using PCA as described above and in Supplementary Fig. 3.
The baseline CNN predicts ChIP-seq peaks for the human

TF GABPA in GM12878 cells. This model takes as input a DNA
sequence of length 200 nt and outputs a single probability. In
our analysis of the effects of benign overfitting, y was com-
puted as the logit of the output probability. The baseline CNN
has not been previously published. Briefly, this model was
trained to distinguish binary-labelled sequences: ChIP-seq
peaks of GABPA in human GM12878 cells (positive labels) and
DNase-seq peaks of GM12878 cells that did not overlap with
any GABPA peaks (negative labels). Data were acquired from
https://zenodo.org/record/7011631 (data/GABPA_200.h5);
11,022,1,574 and 3,150 sequences in the training, validation and
test sets were respectively used. The CNN takes as input a DNA
sequence of length 200 nt and outputs a probability. The hid-
den layers consist of three convolutional blocks each with max
pooling (size 4 with stride 4), followed by a fully connected
hidden layer with 128 units and an output layer to a single

node with sigmoid activations. The number of filters and the
kernel sizes from the first convolutional layer to the third are
(32,15), (64, 5) and (96, 5). The same padding was used for each
convolutional layer. All hidden layers used ReLU activations
and dropout®®, with rates given in order by 0.1,0.2, 0.3 and 0.5.
The CNN was trained to minimize the binary cross-entropy loss
function using Adam® with default parameters and a batch size
of 64. Early stopping was implemented to save model param-
eters at the epoch that corresponded to the largest area under
the reciever-operator characteristic curve (AUROC) on the vali-
dation set, yielding the pre-overfitting DNN parameters. From
that point, the CNN was trained for an additional 200 epochs,
yielding the post-overfitting DNN parameters.
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Attribution methods
Our analyses used attribution maps computed using a variety of meth-
ods, implemented as follows.

« ISMscores were computed by evaluating the scalar DNN pre-
diction for every SNV of the sequence of interest.

« Saliency Maps scores were computed by evaluating the gradi-
ent of the scalar DNN prediction at the sequence of interest
with respect to the one-hot encoding of that sequence.

« DeepSHAP scores were computed using the algorithm imple-
mented in the DeepSTARR repository?*.

« DeepLIFT scores were computed using the algorithm imple-
mented in the BPNet repository”’.

« SmoothGrad scores were computed by averaging Saliency
Maps over 50 noisy encodings of the sequence of interest. Each
noisy encoding was computed by adding Gaussian noise (mean
zero, standard deviation 0.25) to each of the 4L matrix ele-
ments of the one-hot encoding for the sequence of interest.

Standardization of attribution maps

Prior to comparing attribution maps, we standardized these maps to
remove non-identifiable and/or non-meaningful degrees of freedom.
Using v, to denote the attribution map value for character c at position
[, this standardization was carried out as follows.

« For plotting sequence logos and computing attribution
variation values: attribution map values were standardized

. . — — 1
using the transformatlozn V.c = (U.c —Up)/o, where v, = : Do Vise
1 - . . . .
and ¢ = oL Dt Wie = 0) . This transformation is essentially a

gradient correction at each position®®, followed by a normaliza-
tion with the square root of the total variation of the attribu-
tion scores across the sequence.

« For variant-effect analysis (Table 1): attribution map values
were standardized using the transformation v;.c — vj.c — vg.g,
where s is the wild-type sequence and s}" is the character at
position /in this sequence.

« For plotting heatmaps of additive and pairwise-interaction
model parameters (Fig. 5c-e and Extended Data Fig. 8d): param-
eters were standardized as in ref. 26 using the ‘empirical gauge’.

Attribution variation computations
Attribution variation values were computed as follows.

« Forconsensus TF binding sites (Figs. 2 and 3), we first located
all instances of the consensus TF binding site in the genome;
the consensus sites used for each TF are listed in Supplemen-
tary Table 1. Using a baseline attribution method (Saliency
Maps for ResidualBind-32, ISM for DeepSTARR and BPNet), we
then ranked and manually pruned these genomic sequences
to identify m =50 putative functional and spatially isolated TF
binding sites. For each of the m genomic sequences, we then
computed an attribution map spanning the putative TF binding
site plus 100 nucleotides on either side (that is, flanks). We then
cropped these m attribution maps to span n;nucleotides on
either side of the consensus TF binding site. For Fig. 2 we used
n,=15; for Fig. 3 we used n;= 0, 5,10, 20, 30, ..., 100. For each
of the m cropped attribution maps, the attribution variation
was defined to be the Euclidean distance between the cropped
attribution map and the average of the m cropped attribution
maps.

« Forweak TF binding sites (Extended Data Fig. 5), we first located
allinstances of variants of the consensus TF binding site in
the genome having up to 2 naturally occurring mutations. For
each group of putative binding sites having zero, one or two
mutations, we then ranked and manually pruned these genomic

sequences to identify m = 50 putative functional and spatially
isolated TF binding sites as above. For each of the 3m genomic
sequences, we then computed an attribution map spanning the
putative TF binding site plus 100 nucleotides on either side. We
then cropped these 3m attribution maps to span ny= 50 nucleo-
tides on either side of the consensus TF binding site. For each of
the 3m cropped attribution maps, the attribution variation was
defined to be the Euclidean distance between the cropped attri-
bution map and the average of the m cropped attribution maps
from the ensemble of binding sites having zero mutations.

Context-averaged epistatic interactions

To compute the context-averaged epistatic interactions shown in
Fig.5¢, first, we located all pairs of consensus AP-1binding sites in the
genome separated by nomore than 20 nucleotides. We then ranked and
pruned these pairs to identify m = 50 genomic sequences for further
analysis. For each of the m genomic sequences, we used SQUID to infer
a pairwise-interaction model spanning the pair of putative sites and
six nucleotides on either side. Parameter values were standardized
by expressing them in the empirical gauge”. Additive parameters for
each site were then cropped and averaged over the m sequences. The
intra-site and inter-site pairwise-interaction parameters were similarly
cropped and averaged. This process is schematized in Fig. 5a.

Variant-effect analysis
The ability of different attribution methods to predict variant effects,
quantified in Table 1, was benchmarked as follows.

« The variant-effect data used to perform these benchmark stud-
ies are MPRA data from ref. 47. These data comprise measure-
ments for the effects of nearly all SNVs in 15 disease-associated
regulatory sequences, with each sequence ranging from 187 nt
to 600 ntin length. For each assayed SNV, variant effect was
quantified as the difference in measured activity between the
variant and wild-type sequences.

« Tocompute attribution map predictions of variant effects, we
extracted the genomic sequences centred about each of the 15
assayed regulatory sequences (2,048 nt per sequence for tests of
ResidualBind-32 and Basenji-32; 393,216 nt per sequence for tests
of Enformer). For each attribution method, the effect of an SNV,
from character s;"* to character c at position /in each regulatory
sequence s**, was quantified as v;.. — Vg When inferring
surrogate models using SQUID, we mutagenized the regulatory
sequence and 400 nt of flanking sequence on either side.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets, models and computational results used to support
the findings in this paper are available on Zenodo at https://doi.
org/10.5281/zenodo.10047748 ref. 69. Datasets include the test set
sequences held out during the training of ResidualBind-32, DeepSTARR
and BPNet; the ChIP-seq peaks and background sequences used totrain
our three-layer CNN; and the CAGIS5 challenge dataset.

Code availability

SQUID is an open-source Python package based on TensorFlow™.
SQUID can be installed via pip (https://pypi.org/project/squid-nn) or
GitHub (https://github.com/evanseitz/squid-nn). Documentation for
SQUID s provided onReadTheDocs (https://squid-nn.readthedocs.io).
The code for performing all analyses in this paper is available on GitHub
as well (https://github.com/evanseitz/squid-manuscript, ref. 71), and
astatic snapshot of this code is available on Zenodo®.
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Extended Data Fig.1| Additional comparisons of K-Lasso LIME to SQUID.

Shown are the results of analyses, performed as in Fig. 2b for n = 50 genomic
sequences, comparing the performance of SQUID to the performance of the
K-Lasso implementation of LIME for four different values of K. Pvalues were
computed using a one-sided Mann-Whitney U test; ***, p < 0.001. We note
that the attribution variation values obtained for SQUID in these tests varied
systematically with the choice of K. The reason is as follows. The K-Lasso
LIME algorithm produces sparse attribution maps that have only K nonzero

parameters. Consequently, the variation observed in K-Lasso LIME attribution
maps systematically decreases as K decreases. This gives K-Lasso LIME an unfair
advantagein the attribution variation test described in Main Text and in Methods.
To fairly compare K-Lasso LIME to SQUID in this figure, we therefore modified
this test. Inthe analysis of each in silico MAVE, the attribution map elements
inferred by SQUID were first set to zero at the same positions where all K-Lasso
LIME attribution map elements were exactly zero. Attribution variation values
were then calculated as described in Main Text and in Methods.
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Extended Data Fig. 4 | Average and example binding motifs for Oct4 and Sox2. a, Oct4 motifs, centered on the putative binding site TTTGCAT. b, Sox2 motif's,
centered on the putative binding site GAACAATAG. TF binding motifs are from attribution maps computed for BPNet and plotted asin Fig. 3c.
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Extended Data Table 1| SQUID computation times

DNV oPmap T et (e (imiey (e (epochy (s
DeepSTARR Additive 250 1000 0.184+0.01  0.04+£0.00 13.3+2.9 180.9+39.0  13.5+2.9
DeepSTARR Pairwise 30 6960 0.09£0.00 0.05£0.01  4.5£2.8 102.1+63.4 4.612.8

ResidualBind-32  Additive 2048 8192 0.78+0.00 2.19+£0.01 4.8£1.1 61.3%15.6 7.8+1.1
ResidualBind-32  Pairwise 30 6960 0.12+0.00  2.19£0.01  3.2£0.2 41.6£3.5 5.54+0.2
BPNet Additive 1000 4000 0.344+0.00 17.36+0.01 11.34+2.7 138.7+34.0  29.0+2.7
BPNet Pairwise 30 6960 0.09+0.00 17.35+0.01 4.8£2.4  62.6+33.2 22.242.4
Enformer Additive 768 3072 0.37 1540.80 47+£1.1  829+20.0 1545.9+1.1
Enformer Pairwise 30 6960 0.09 1540.80 1.8+0.1 33.8£2.4  1542.7£0.1

Shown are SQUID computation times for the different stages of analysis of various genomic DNNs using various types of surrogate models. All analyses were performed using 100,000 variant
sequences mutagenized at 10% per nucleotide, a GE measurement process with a skewed-T noise model, and early stopping. Error bars indicate standard deviations over 10 analysis runs. For
DeepSTARR, ResidualBind-32, and BPNet, analyses were performed for 10 different in silico MAVE datasets. For Enformer, 10 analyses were performed on the same in silico MAVE dataset due
to each forward-pass being slower for Enformer than for the other DNNs. Shorter sequences were used when inferring pairwise-interaction models to keep the number of pairwise-interaction
model parameters comparable to the number of additive model parameters. DeepSTAR and ResidualBind-32 analyses were performed using a V100 GPU in Google Colab. BPNet and
Enformer analyses were performed using an RTX A4000 GPU on a private server.
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Extended Data Table 2 | GE modelling is robust to the number of hidden nodes

Measurement  GE Hidden test]_pred max I_var max val_I_var

DNN Process Nodes R? Epochs (bits) (bits) (bits)
DeepSTARR Linear N/A  070£003 9844234 12401 0501  05+0.
DeepSTARR GE 1 0.86+0.03 11244247 1301 12401 13403
DeepSTARR GE S0 0864003 20214415 1301 13401  12+0.1
DeepSTARR GE 1000 0.86+0.03 14684547 1301 1301  12+0.1

ResidualBind-32  Linear N/A  070£0.18 11384378 14402 02404  0.0+04
ResidualBind32  GE 1 0934004 13694794 23402 24402  2.0+02
ResidualBind32  GE 50 0944004 11674803 23402 24402 20403
ResidualBind-32  GE 1000 0.93+0.05 127.0447.8 2302 24402 21402

Shown are results for SQUID analyses performed using surrogate models having either no GE nonlinearity (Linear) or a GE nonlinearity (GE) computed using different numbers of hidden
nodes (that is, tanh sigmoidal components; see Methods). Analyses were performed as described in Extended Data Table 1, except that in each test the 10 in silico MAVEs were generated for
the same genomic locus (as opposed to different genomic loci). For DeepSTARR, an additive GP-map covering 250 nt was inferred. For ResidualBind-32, an additive GP-map covering 2048 nt
was inferred. Error bars represent standard deviations over the 10 in silico MAVE datasets.
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