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Coexpression enhances cross-species 
integration of single-cell RNA sequencing 
across diverse plant species

Michael John Passalacqua    1   & Jesse Gillis    1,2 

Single-cell RNA sequencing is increasingly used to investigate cross-species 
differences driven by gene expression and cell-type composition in 
plants. However, the frequent expansion of plant gene families due to 
whole-genome duplications makes identification of one-to-one orthologues 
difficult, complicating integration. Here we demonstrate that coexpression 
can be used to trim many-to-many orthology families down to identify 
one-to-one gene pairs with proxy expression profiles, improving the 
performance of traditional integration methods and reducing barriers to 
integration across a diverse array of plant species.

Plants have a remarkably flexible cellular physiology, driving their 
adaptation into nearly every environment. Recently, the advent of 
single-cell RNA sequencing (scRNA-seq) has provided novel insights 
into the diversity of cell types underlying these adaptations1,2. The 
unique diversity in plants makes comparative assessments between 
species important but is complicated by uncertain homology rela-
tionships. Unlike in mammals, where homologous genes and struc-
tures can be easily identified, plant gene families frequently expand 
by whole-genome duplication, polyploidization and tandem gene 
duplication3–5. This scarcity of one-to-one gene pairs is a major barrier 
to defining a common gene space for the integration of single-cell 
data, a key step for successful cross-species comparative analysis or 
integration6,7. With vast amounts of plant scRNA-seq data becoming 
available8, this study aims to address a critical gap in its analysis by 
using coexpression to identify pairs of genes that, while not exclusive 
orthologues, are functionally related enough to enable the integration 
of this high-dimensional data. By reducing barriers to integration, we 
prime the field for the discovery of novel, cell-type specific innovations 
that have been critical to plant adaptation and domestication.

While a given plant sample may have thousands of expressed genes, 
the expression patterns of these genes are not independent and are 
instead organized into the regulatory programs that underlie cell types. 
This coexpression generates the low-dimensional expression space 
that is foundational to the success of modern single-cell analysis9. We 
hypothesize that genes with highly similar expression profiles between 
two species can be used as reasonable proxies for integrating cell-type 

specific data, that we can identify such profiles using coexpression 
and that this will expand the shared gene space, improving our abil-
ity to compare cross-species data. The essence of the approach is to 
use meta-analysis from previous bulk RNA sequencing data to define 
cross-species gene pairs (coexpression proxies) that can be applied to 
more specific, but sparser, single-cell data. By utilizing robust coexpres-
sion networks built from over 16,000 publicly available RNA sequencing 
datasets, as well as gene phylogenies from OrthoDB v11 (a database 
of precomputed gene orthology relationships), we ensure that the 
coexpression proxies accurately reflect the underlying biology of each 
species pair they are drawn from10,11. We illustrate this approach, where 
coexpression data and gene phylogenies identify gene pairs that expand 
the one-to-one (1–1) gene space, improving data integration and align-
ment between known cell types and highlighting novel ones between 
species (Fig. 1a). While previous work has expanded the shared gene 
space through gene homology comparisons, our focus on coexpres-
sion uniquely captures both regulatory and functional shifts between 
species12. By improving integration, we enable researchers to identify 
new and conserved cell types in their scRNA-seq data. We validate the 
coexpression proxies with two test examples, highlighting their utility. 
In the first test, we show that coexpression proxies can accurately rein-
tegrate a split dataset with no shared gene space. Second, we show that 
coexpression proxies improve the integration of real single-cell data 
between two species with complex genomes: maize and rice.

Our first test is an extreme one in which we generate and integrate 
two cross-species datasets with no one-to-one orthologues. This would 
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The first ‘species’ is generated by randomly selecting half of the cells as 
well as half the genome. For these cells, the second half of the genome is 
removed. We then take the remaining cells, which will become our sec-
ond ‘species’, and remove the half of the genome present in the first set of 
cells (Supplementary Fig. 1). This provides two sets of cells with known, 

be impossible with a traditional integration approach, which requires 
directly matched one-to-one orthology relationships between genes 
in each species for alignment before integration. To construct a case 
with a ground truth integration without using synthetic data, we split 
an existing Arabidopsis single-cell dataset into two pseudo-‘species’. 
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Fig. 1 | Coexpression proxies integrate a split dataset without shared genes. 
a, Schematic depicting the identification of coexpression proxies from gene 
orthology information and their use in expanding the gene space to enable 
integration followed by identification of novel and conserved cell types. b, Gene 
expression profile for target gene (AT1G16160) and two potential coexpression 
proxies (AT1G16150, AT4G31100). The gene with the more similar profile, 
AT1G16150, was identified as a coexpression proxy, while AT4G31100 was 
rejected. The centre band is the mean counts per million (CPM) for each gene 
in the cell type in our single-cell dataset. The error bar is the 95% confidence 
interval. QC, quiescent center. c, UMAP showing integration of a split and 
dissociated A. thaliana dataset containing 16,636 cells using coexpression 

proxies. d, UMAP showing integration of the same dataset using the worst 
potential coexpression proxy from each gene family. e, UMAP showing the failed 
integration of the split and dissociated dataset using 1,900 random gene pairs. 
f, Euclidian distance from the expression profile of the target gene for n = 117 
pairs of accepted coexpression proxies and rejected coexpression proxies in 
independent cell types, split by expression quartile of the target gene. The 
bottom of the box is the lower quartile, the top of the box is the upper quartile 
and the centre bar is the median. The whiskers are 1.5 times the interquartile 
range. g, Heat map showing the number of identified coexpression proxies 
between each species pair in the database.
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shared cell types and distinct genomes. We then identify coexpression 
proxies between the two subset genomes, finding pairs of genes with 
similar expression profiles. As an example, the selected coexpression 
proxy gene, AT1G16150, closely matches the expression profile of the 
target gene, AT1G16160. By contrast, AT4G31100, a rejected gene from 
the same orthologue family, has a distinct expression profile (Fig. 1b).

Next, we used these coexpression proxies to reintegrate the split 
Arabidopsis dataset. Highlighting that coexpression proxies smoothly 
integrate into existing workflows, we used Scanorama v1.7.113 to rein-
tegrate and re-cluster the dataset, placing 82% of cells into a cluster 
with cells from both datasets (Fig. 1c). The reintegration was accurate, 
successfully matching cells of the same cell type across datasets 75% 
of the time. To evaluate how much of the gene proxies’ success was 
dependent on information from the gene phylogenies and how much 
information was derived from the coexpression conservation profile, 

we attempted to integrate the datasets using the worst rejected proxy 
from within each orthologue group (that is, the proxy with the lowest 
coexpression). Performance was lower using these gene pairs, reducing 
the successful matching of cells to 65% (Fig. 1d). This moderate perfor-
mance suggests that simple relaxation of orthology constraints is a sub-
stantial contributor to performance. However, coexpression provides a 
substantial overall signal boost. This was particularly clear for phloem, 
which was otherwise unintegrated or mixed with atrichoblasts and 
xylem. To determine whether sequence similarity alone would prove 
sufficient, we calculated the pairwise protein sequence similarity of 
every Arabidopsis gene and attempted to use this to identify gene prox-
ies. While able to perform better than random, this metric was worse 
than coexpression at reintegrating the split dataset and completely 
failed to reintegrate certain clusters. Finally, we attempted integra-
tion using 1,900 random gene pairs and found that we were unable to 
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Fig. 2 | Integration of maize and rice scRNA-seq data using coexpression 
proxies. a, UMAP showing integration of 2,832 Z. mays cells and 3,500 Oryza 
sativa cells using coexpression proxies. b, UMAP showing integration of Z. mays 
and O. sativa using only 1–1 gene pairs from OrthoDB. c, MetaNeighbor plots 
showing post integration similarity between cell types using four different gene 

sets. d, Improvement in integration across 872 integration runs as random gene 
pairs are gradually swapped for coexpression proxies. e, Enriched Gene Ontology 
terms among rice–maize coexpression proxies. Enrichment was tested by a two-
sided Fisher’s exact test. It was then corrected using the Benjamini–Hochberg 
correction.
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achieve any integration (Fig. 1e). To further evaluate our coexpression 
proxies, we assessed the degree to which rejected and selected gene 
pairs show the same expression across cell types on a per-gene basis 
(measured by Euclidean distance). We found that accepted coexpres-
sion proxies are much closer to the target’s expression profile across 
cell types and that the rejected proxies are on average 83% further 
from the target’s expression (Fig. 1f). This shows that the coexpression 
proxies are more similar in expression profile to their target genes than 
even other genes from the same orthogroup.

Given the success of our approach, we generated coexpression 
proxies between 13 plant species and identified an average of 5,750 
gene pairs between species (Fig. 1g). The coexpression proxies are 
numerous enough to provide additional information across even highly 
diverged species and are well represented (4,899 pairs) even between 
Zea mays and Arabidopsis thaliana, which diverged 160 Ma. Impor-
tantly, although we used Scanorama, these coexpression proxies can 
be easily incorporated into any potential integration pipeline as they 
simply expand the shared feature space.

Having shown that coexpression proxies could integrate an oth-
erwise uncorrectable dataset, we tested their ability to improve the 
integration of single-cell data across two different species. Using a 
supervised integration, we attempted the integration of two root data-
sets, one from maize and one from rice. We focused on four broad cell 
types for which author annotations directly aligned. Using coexpres-
sion proxies, we successfully integrated the maize and rice dataset, 
accurately integrating 36% of cells into clusters with cells from both 
datasets (Fig. 2a and Supplementary Fig. 2). The remaining cells were 
different enough to still appear as distinct sub-clusters across species. 
While this is far from 100%, real cross-species differences do exist, so 
it is not clear what the maximum plausible integration percentage 
is. Importantly, our integration is better than using only the 1–1 gene 
pairs, which integrated only 14% of the cells (Fig. 2b). Key cell types, 
such as epidermis and stele, are well integrated using coexpression 
and are less well integrated by 1–1 gene pairs, as evidenced by lack of 
species mixing within cell types and close proximity across cell types. 
Similarly, coexpression did not overfit away real differences, capturing 
the likely real difference between cortex cells where constitutive aeren-
chyma formation is critical to oxygen diffusion in partially submerged 
rice14. To evaluate the integration on a cell-type-by-cell-type basis, we 
used MetaNeighbor v3.19, which enables us to quantify the degree to 
which cell types replicate across datasets in a statistical framework15,16. 
We compare four integrations using scGen—utilizing coexpression 
proxies and 1–1 genes, using only coexpression proxies, using only 1–1 
genes and using random genes (Fig. 2c). As can be seen, coexpression 
proxies alone, 1–1 pairs alone and the combination all accurately and 
similarly group cell types across species. While subtle for this broad 
classification, the full coexpression proxy set integrates better than 
either of its parts in all cell types when evaluated by MetaNeighbor 
(except cortex, where all methods are perfect), reflecting the additional 
information from the coexpression proxies. Because this is a validation 
focused on well-defined alignment, performances generally go from 
high to even higher (for example, stele goes from AUROC (area under 
the receiver operator curve) 0.93 to 0.973). To evaluate the utility of 
an increased known gene-pair space, as well as the robustness of the 
model, we swapped in coexpression proxies for random pairs and 
tracked performance improvement (Fig. 2d). Performance increases 
steadily to near 1 for most cell types, indicating that the typical number 
of 5,000 coexpression proxies is sufficient to integrate cross-species 
data. Further querying the coexpression proxies, we found they typi-
cally represented core conserved functions such as photosynthesis, 
mitochondrial proteins and ribosome metabolism (Fig. 2e).

Integrating cross-species single-cell data is an increasingly com-
mon goal in the fields of plant development, evolution and molecu-
lar biology. To facilitate this process, we have demonstrated that 
using coexpression proxies expands the gene space available for 

integration. To facilitate adoption of this approach by the community, 
we have generated pairwise coexpression proxies between 13 plant 
species at 3 thresholds. All coexpression proxy lists have been made 
available at https://gillislab.shinyapps.io/epiphites_v11/. In addition, 
we have provided a workflow for generating a coexpression network 
from scRNA-seq data and using it to identify coexpression proxies 
for integration (Supplementary Code), which additionally requires 
only gene phylogenies between the two species. We show that this 
approach generates networks similar to gold standard networks and 
enables similar integration (Supplementary Figs. 3 and 4). These 
proxy lists provide an important resource for improving the integra-
tion of single-cell data, accelerating the transfer of knowledge from 
well-studied model organisms to crop systems that are crucial to the 
global food supply.

Methods
Gene coexpression proxy identification
For each species pair, gene family orthology information was down-
loaded from OrthoDB V1111. Utilizing one-to-one gene pairs, coexpres-
sion conservation was calculated between all genes in each species17. 
Briefly, we compare each gene’s top 10 coexpression partners across 
species. These top 10 are limited to genes that are one-to-one ortho-
logues, although the matching of proxies is not limited in this way. 
Using one-to-ones as a basis set for comparison of other genes expands 
the range of potential proxies while still leaving it grounded in defined 
cross-species overlaps. We use the ranks from one species to predict 
the coexpression partners of the second species and then repeat this in 
the other direction, averaging the scores to generate the conservation 
of coexpression score, which is an AUROC. This resulted in a species A 
genes by species B genes matrix, filled with the AUROC score for each 
gene pair. For each gene family, the coexpression conservation matrix 
was filtered to every possible cross-species gene pair. Next, pairs in 
multigene groups were eliminated by thresholding in two steps. First, 
any gene pairs with scores below a quality threshold were discarded. 
Second, remaining pairs were required to be reciprocal best hits and 
to be higher than other potential options by a multi-pair threshold. 
For genes that were one-to-one matches, they were only discarded if 
below a lower single pair quality threshold. For the moderate filtering, 
the quality, multi-pair and single-pair junk thresholds were 0.85, 0.03 
and 0.8. For lenient filtering, the thresholds were 0.8, 0.02 and 0.7, and 
for stringent filtering, these were 0.9, 0.035 and 0.85. The moderate 
threshold was chosen by evaluating the number of proxies identified 
at many thresholds and choosing the elbow, and lenient and stringent 
thresholds were picked to form a 0.1 range around this number.

Dataset integration and evaluation
To generate an integration task that was uncorrectable without a shared 
gene space, the Arabidopsis dataset was split into two sets of cells. 
Using Pandas DataFrame.sample, one half of the genome was randomly 
selected and assigned to the first set of cells, with other data being 
discarded. The second set of cells were assigned the second half of the 
genome, and the genes assigned to the first half were discarded. Utiliz-
ing the same method as above, coexpression proxies were identified 
between the two halves of the genome with the moderate threshold. 
Aligning the two gene spaces using these proxies, we performed inte-
gration using the Scanorama v1.7.1 Python package13. The scanorama.
integrate function was used to integrate the two datasets into a shared 
low-dimensional space, and this was plotted using scanpy.pp.neighbors 
with the default parameters (15 nearest neighbours, 50 principal com-
ponents) and the scanpy.tl.umap function (default parameters). For 
evaluation, we first clustered the integrated data using scanpy.tl.leiden 
at a resolution of 0.5. This provided an evaluation space that is based on 
the high-dimensional underlying data, instead of the 2D uniform mani-
fold approximation and projection (UMAP), which can be misleading. 
Then, using these clusters, we defined a cluster of the same cell type 
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as one containing more than 60% of that cell type and a mixed cluster 
as one composed of between 30% and 70% of each starting dataset. In 
plotted boxplots, the centre line is the median, the box limits are the 
upper and lower quartiles, the whiskers are 1.5 times the interquartile 
range and the points are any datapoints beyond the whisker range.

As the cross-species integration scenario was more challenging, 
it was integrated utilizing scGEN v2.1.018. The datasets were limited to 
4 broad cell types for which author annotations clearly aligned, and 
the rice dataset was subset to 3,500 cells to match the maize data-
set of 2,832 cells. The tissues were equally represented in each of the 
two datasets. Utilizing coexpression proxies between rice and maize 
at the moderate threshold, the two datasets were aligned. The two 
datasets were first aligned utilizing coexpression proxies between 
rice and maize at the moderate threshold. Next, the scGEN model was 
initialized using scgen.SCGEN and trained using scgen.model.train, 
using default parameters. Next, the integration was performed using 
scgen.model.batch_removal. To evaluate the integration beyond the 
low-dimensional representation, MetaNeighbor was used to compare 
the post-integration similarity of cell types15. To confirm the model 
was utilizing coexpression proxies and not relying on training infor-
mation, the integration was run 872 times, starting with random gene 
pairs. Following each run, seven random pairs were replaced with 
seven coexpression proxies, until all were replaced. Gene Ontology 
term enrichment was performed using Fisher’s exact test from scipy.
stats.fisher_exact() to find terms over-represented in the coexpres-
sion proxies, utilizing all genes in the bulk network as the background 
gene set. Multiple hypothesis correction was performed using the 
Benjamini–Hochberg correction function from statsmodels.stats.
multitest.multipletests() at alpha .05.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All analyses were performed in Python v3.9, Pandas v1.5, SCGEN v2.1.0, 
Statsmodels v0.14.1, Scipy v1.12.0, Scanorama v1.7.1 and SCANPY 
v1.9.119. Aggregate coexpression networks were downloaded from 
CoCoCoNet10. A. thaliana single-cell RNA-seq expression data total-
ling 16,636 cells from 4 datasets were downloaded from the Gene 
Expression Omnibus (GEO IDs: GSE116614, GSE121619, GSE123818, 
GSE123013)1,2,20,21. Cluster assignments were downloaded from GEO 
for IDs GSE121619 and GSE123013 or provided by the authors for IDs 
GSE123981 and GSE116614. O. sativa single-cell RNA-seq expression 
data and accompanying cluster assignments were downloaded from 
GSE14603522. Z. mays single-cell RNA-seq expression data and accom-
panying cluster assignments were downloaded from GSE18317123, and 
only nitrate-treated cells were used. Orthology information is from 
OrthoDB V11 (https://www.orthodb.org/).

Code availability
All code is available via our repository at https://github.com/gillislab/
Coexpression_Proxies.
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