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Multi-parametric atlas of the pre-metastatic 
liver for prediction of metastatic outcome in 
early-stage pancreatic cancer

Metastasis occurs frequently after resection of pancreatic cancer (PaC). In 
this study, we hypothesized that multi-parametric analysis of pre-metastatic 
liver biopsies would classify patients according to their metastatic risk, 
timing and organ site. Liver biopsies obtained during pancreatectomy from 
49 patients with localized PaC and 19 control patients with non-cancerous 
pancreatic lesions were analyzed, combining metabolomic, tissue and 
single-cell transcriptomics and multiplex imaging approaches. Patients 
were followed prospectively (median 3 years) and classified into four 
recurrence groups; early (<6 months after resection) or late (>6 months 
after resection) liver metastasis (LiM); extrahepatic metastasis (EHM); 
and disease-free survivors (no evidence of disease (NED)). Overall, PaC 
livers exhibited signs of augmented inflammation compared to controls. 
Enrichment of neutrophil extracellular traps (NETs), Ki-67 upregulation 
and decreased liver creatine significantly distinguished those with future 
metastasis from NED. Patients with future LiM were characterized by scant 
T cell lobular infiltration, less steatosis and higher levels of citrullinated 
H3 compared to patients who developed EHM, who had overexpression of 
interferon target genes (MX1 and NR1D1) and an increase of CD11B+ natural 
killer (NK) cells. Upregulation of sortilin-1 and prominent NETs, together 
with the lack of T cells and a reduction in CD11B+ NK cells, differentiated 
patients with early-onset LiM from those with late-onset LiM. Liver profiles 
of NED closely resembled those of controls. Using the above parameters, a 
machine-learning-based model was developed that successfully predicted 
the metastatic outcome at the time of surgery with 78% accuracy. Therefore, 
multi-parametric profiling of liver biopsies at the time of PaC diagnosis 
may determine metastatic risk and organotropism and guide clinical 
stratification for optimal treatment selection.

Pancreatic cancer (PaC) is an aggressive malignancy, with rising inci-
dence1 and a high rate of metastatic disease. Less than 25% of cases are 
amenable to potentially curative resection, and, of those, only 21% of 
patients survive to 5 years1,2. Liver metastasis (LiM) develops in over 
40% of patients within the first 3 years after surgery and is almost uni-
formly fatal within months of its occurence2,3. Extrahepatic metastasis 
(EHM) occurs mainly in the peritoneum and lung, with isolated lung 
metastases correlating to less aggressive disease2,3. The inability to 

predict the risk of subsequent LiM or EHM in patients with otherwise 
undetectable metastatic disease and effectively treat it represent major 
challenges in the management of PaC. Furthermore, the biologic deter-
minants of organotropism, within the primary tumor and metastatic 
organs, remain largely undefined. Here we show that, in patients with 
localized PaC, peri-operative liver biopsies reveal liver alterations con-
sistent with a pre-metastatic niche before overt metastatic coloniza-
tion. Thus, we extensively characterized the molecular, cellular and 
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‘MYC targets’, ‘PI3K-AKT-MTOR’ and ‘G2M signaling’) (Supplementary 
Table 7 and Supplementary_Tables_1.xlsx)6–8. These pathways were 
also enriched in EHM versus NED, although to a lesser extent com-
pared to LiM>6 (Supplementary Table 6), therefore demonstrating 
partial overlap among EHM and LiM>6. Immunostaining for Ki-67 
confirmed increased numbers of proliferating cells in EHM and LiM>6 
livers (Fig. 2f). In contrast, patients with LiM<6 had no significant GSEA 
differences compared to NED, and neither were they enriched for the 
EHM genes, suggesting lack of activation of ‘resistance gene programs’ 
in LiM<6 livers. Uniquely, expression of SORT1, which encodes for the 
lysosomal trafficking protein sortilin-1 and is implicated in hepatic 
cholesterol catabolism and regulation of cytokine secretion in myeloid 
cells, neutrophils and T cells9,10, was significantly upregulated in LiM<6 
compared to the other recurrence groups (Fig. 2g). Among patients 
with PaC, high SORT1 expression was associated with shorter time to 
LiM (TTLiM), reflecting an approximately three-fold increased risk 
of early LiM (hazard ratio (HR): 2.96 (95% confidence interval (CI): 
1.14–7.84); P = 0.029; Fig. 2h).

In summary, inflammatory and proliferative alterations detected 
at the molecular level distinguish the PaC pre-metastatic liver. Fur-
thermore, the livers of patients with PaC that ‘resist’ metastatic colo-
nization (for example, EHM and LiM>6) are characterized by distinct 
transcriptional programs involving interferon signaling, monocyte 
chemotaxis and proliferation, whereas patients with impending LiM 
(LiM<6) feature upregulation of SORT1.

Immune determinants of the hepatic 
pre-metastatic niche
Although standard histopathological analyses of inflammation, fibro-
sis or steatosis11 did not reveal any major differences between PaC 
and non-PaC livers (Extended Data Fig. 2), we examined individual 
immune cell types to evaluate their roles in evolution of the hepatic 
pre-metastatic niche. We previously showed that PaC-derived exosomes 
are taken up by hepatic Kupffer cells and contribute to the recruit-
ment of bone-marrow-derived cells (BMDCs) to promote LiM12. Thus, 
we stained liver tissue with the myeloid/BMDC marker CD11B, the 
macrophage marker CD68 and the myeloid activation marker IBA-1. 
Consistently, patients with PaC had significantly higher numbers of 
liver-infiltrating CD11B+ cells compared to non-PaC patients (Fig. 3a).

Although we did not observe differences in the total numbers of 
CD68+ or IBA-1+ macrophages (Extended Data Fig. 3a,b) between PaC 
and non-PaC livers, blinded examination by a pathologist observed 
altered spatial organization with moderate or strong IBA-1+ stain-
ing in portal tracts in 68% of patients with PaC compared to only 11% 
of non-PaC patients (P = 0.001; Fig. 3b). Additionally, nearly 40% of 
patients with PaC had either focal or diffuse aggregates of IBA-1+ cells 
in the liver parenchyma, outside the portal areas, versus only 11% 
of patients in the non-PaC group exhibiting only focal aggregates 
(P = 0.005; Fig. 3c).

Interestingly, co-staining of these three myeloid markers showed 
a great degree of overlap of CD68 and IBA-1 but less than 25% overlap 
of these markers with CD11B (Extended Data Fig. 3c), suggesting that 
other cells contribute to the liver-infiltrating CD11B+ cell pool. We, 
thus, expanded our analysis to neutrophils, which have been shown to 
contribute to LiM in animal models13,14. We found prominent clusters 
of neutrophils, which formed neutrophil extracellular traps (NETs), 
represented by neutrophil elastase (NE) and citrullinated histone H3 
positivity (Ct-H3) (P = 0.016 and P = 0.006, respectively; Fig. 3d) in PaC 
versus non-PaC livers. Furthermore, we examined putative anti-tumor 
effector cells and observed significantly higher numbers of CD3+ lym-
phocytes in pre-metastatic livers of PaC compared to non-PaC patients 
(P = 0.008; Fig. 3e) and confirmed by semiquantitative scoring by a 
blinded pathologist (P = 0.028; Fig. 3f). Sub-analysis of CD3+ lympho-
cyte subsets did not reveal significant differences in CD8+ or CD8− cells 
between PaC and non-PaC (Extended Data Fig. 3d–f).

metabolic alterations in PaC pre-metastatic livers and developed a 
liver biopsy-based model that predicted future sites of distant recur-
rence: early LiM (within 6 months after resection), late LiM (more than 
6 months after resection), EHM or no evidence of disease (NED). This 
classification schema could identify patients who benefit more from 
surgery versus neoadjuvant therapy (NAT).

Pre-metastatic livers of patients with PaC exhibit 
inflammation
To determine pre-metastatic niche features in livers of patients with PaC, 
we analyzed the molecular, cellular and metabolic profiles of intraoper-
atively collected liver biopsies from patients with localized, resectable 
PaC (n = 49) and non-PaC controls (n = 19) who underwent pancreatec-
tomy without receipt of any NAT (Fig. 1 and Supplementary Table 1). Two 
pathologists independently evaluated the liver biopsies by histology 
and p53 immunostaining (Supplementary Fig. 1) to confirm the absence 
of micrometastases. Bulk liver tissue mRNA sequencing (mRNA-seq) 
identified 79 differentially expressed genes (DEGs) that were signif-
icantly altered in PaC livers compared to non-PaC livers, including 
upregulation of cell migration-inducing and hyaluronan-binding 
proteins (KIAA1199/CEMIP), matrix metalloproteinase-7 (MMP7), lysyl 
oxidase-like 4 (LOXL4), V-set domain-containing T cell activation inhibi-
tor 1 (VTCN1/B7-H4), triggering receptor expressed on myeloid cells 
2 (TREM2), Toll-like receptor 7 (TLR7) and Ki-67 (MKI67) (Fig. 2a and 
Supplementary Table 2). Gene set enrichment analysis (GSEA; Supple-
mentary Table 3 and Supplementary Dataset 1) highlighted ‘interferon 
response’ and ‘allograft rejection’ as significantly enriched gene sets 
in PaC (Fig. 2b). DEGs upregulated in PaC were prominent in immune 
cell gene clustering4, suggesting enhanced ‘monocyte and lymphocyte 
chemotaxis’ in PaC pre-metastatic livers5 (Fig. 2c,d).

Intriguingly, patients with the most robust upregulation of 
immune-related genes (Fig. 2a) subsequently developed metastasis, in 
contrast to patients with PaC without recurrence over follow-up (NED) 
who displayed fewer differences in expression of these genes com-
pared to non-PaC patients. In addition, the livers of patients with PaC 
with distant recurrence at any site featured five significantly enriched 
gene sets, involving inteferon alpha response as well as potential pro-
liferation and regeneration mechanisms (such as ‘E2F signaling’ and 
‘spermatogenesis’) compared to NED (Supplementary Table 4 and 
Supplementary Dataset 1).

We hypothesized that, at the time of resection, the livers of patients 
with PaC would display features that either promoted or counteracted 
subsequent metastasis and correlate with metastatic outcome. Thus, 
we separated patients with PaC with distant recurrence into LiM and 
EHM groups (Extended Data Table 1 and Fig. 1). Although no significant 
differences were observed in bulk liver gene expression between LiM 
and NED groups, comparison of EHM and NED groups identified 59 
DEGs (Fig. 2e and Supplementary Table 5), with immune-related genes 
and pathways being the most highly enriched in the livers of the EHM 
group (Extended Data Fig. 1a and Supplementary Table 6).

These results suggest that EHM transcriptomic changes may 
reflect an anti-metastatic phenotype within the liver, as patients with 
EHM seemed to be ‘resistant’ to LiM during follow-up despite develop-
ing metastatic disease elsewhere. We used the EHM gene signature 
(Supplementary Table 5) to perform unsupervised hierarchical clus-
tering of all patients with PaC and noted that a cohort of patients with 
LiM clustered with the patients with EHM (Fig. 2e), with recurrence at 
a timeframe that was much longer than the median of LiMs (7 months 
after resection). Of the 23 patients who developed LiM as the first site 
of recurrence, there was a clear separation between the 10 patients 
who developed LiM early (<6 months (LiM<6)) and the 13 patients 
who developed LiM later (>6 months (LiM>6)) (Extended Data Fig. 1b 
and Extended Data Table 1). Indeed, as noted above, compared to NED, 
LiM>6 livers expressed several genes highly enriched in pathways 
involved in proliferation and liver regeneration (such as ‘E2F targets’, 
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Dysfunctional immune effector cells in 
pre-metastatic livers
To further characterize the immune infiltrates of pre-metastatic livers, 
we performed single-cell RNA sequencing (scRNA-seq) on hepatic 
immune cells isolated from three non-PaC and five PaC patients (Sup-
plementary Table 8 and Extended Data Fig. 4). Driver and marker genes 
for each cluster (Extended Data Fig. 4b,c) were concordant with previ-
ous scRNA-seq studies15,16. Our analysis demonstrated higher propor-
tions of T cells in PaC livers (P = 0.016; Fig. 3g), consistent with the 
aforementioned immunostaining data (Fig. 3e,f). The natural killer (NK) 
T cell fraction (which may also include other innate lymphocytes) was 
significantly decreased in the PaC group (P = 0.033). Notably, PaC intra-
hepatic T cells had altered expression patterns of activation/exhaustion 
genes, such as upregulation of the co-stimulatory molecules CD27 and 
CD97 and the co-inhibitory receptor KLRG1 and downregulation of 
effector genes, such as IFNG and GNLY (Supplementary Table 9), similar 
to a previous report on hepatocellular carcinoma-infiltrating T cells15. 
Furthermore, PaC T cells had upregulated CXCR4, which has been asso-
ciated with exclusion from tumor entry17, and downregulated XCL1 and 
XCL2, which are involved in cross-activation of dendritic cells (DCs)18,19.

ITGAM/CD11B, the immune cell marker most strikingly enriched in 
PaC livers by immunostaining (Fig. 3a), was predominantly expressed 
in the myeloid subpopulation as well as in the NK cell cluster, with 
little overlap with the macrophage marker CD68 (Extended Data 
Fig. 4d). Conversely, NK cells were significantly enriched within 
CD11B+ cells in PaC livers (P = 0.008; Fig. 3h), whereas CD14+ and 
CD16+ monocytes were decreased. CD11B+ NK cells in PaC livers had 
increased expression of genes involved in NK cell cytotoxicity and 
interaction with non-lymphoid cell types via killer cell lectin-like 
receptors, such as GZMB, PRF1 and KLRD1, compared to non-PaC livers  

(Extended Data Fig. 5a,b). However, PaC livers exhibited decreased 
expression of IFNG and TNF, suggesting an impaired ability to recruit 
and activate T cells20,21.

To understand the composition of the CD3+ population, we per-
formed subset analysis of scRNA-seq exclusively on CD3-expressing 
cells22 (Fig. 3i and Extended Data Fig. 5c–e). Despite a trend for increase 
in mucosa-associated invariant T (MAIT) cells among patients with PaC 
(P = 0.109), relative abundances of T cell subsets and NKT cells were 
not significantly altered (Extended Data Fig. 5e). Using the CIBERSORT 
methodology23, we deconvoluted the bulk liver tissue transcriptomic 
data in the larger patient cohort and confirmed the increase in acti-
vated NK cells in PaC both with the original CIBERSORT cell signa-
tures (Extended Data Fig. 5f) as well as with our T/NKT cell signature 
(Extended Data Fig. 5g).

We further confirmed the abundance and spatial distribution 
of hepatic CD3+ cells by analyzing CD4+, CD8+, NKT/γδT (NKG2A and 
TCRγδ) and regulatory T (Treg; FOXP3+) cells using imaging mass 
cytometry (Extended Data Fig. 6). Although an increase in CD3+ cells 
was confirmed, the cellular distribution or individual cell types did not 
reach statistical significance in this subcohort, although a trend for 
increased total CD8+ and CD4+ cells in PaC recapitulated our immuno-
fluorescence data (Fig. 3e,f and Extended Data Fig. 3d–f).

Taken together, these data indicate the presence of a unique 
immune cell landscape in the liver pre-metastatic niche.

Hepatic immune cells predict distinct recurrence 
patterns
Next, we assessed the impact of various immune cell features on PaC 
recurrence patterns (Fig. 4 and Extended Data Fig. 7). Consistent with 
our gene expression analysis showing augmented inflammation in 

Comparison Included patients Remarks

PaC vs
non-PaC All Patients with inadequate material for the specific analyses were

excluded from those.

Recurrence 
patterns

PaC patients, except those with early death
and unclear recurrence status.
Patients with isolated local recurrence were
excluded.

Comparison of individual cellular, molecular and metabolic features 
(e.g., CD3+ cell infiltration). In certain cases, recurrence patterns 
were combined, e.g. NED vs {EHM + LiM>6 + LiM<6} to analyze 
NED vs any distant recurrence, etc.

Time to Liver 
metastasis

PaC patients, except those with early death
and unclear recurrence status

PaC patients classified according to presence or absence of LiM.
Time to LiM was analyzed by Kaplan–Meier.

Schema of specimen collection and patient follow-up

vs

Types of comparisons included in the study

PaC

RecurLiver biopsy
during 

pancreatectomy

Dx

No recur (NED)

Liver (LiM)

Clinical follow-up (median 3 years)

Non-PaC
controls

Specimen
analysis

LiM<6

LiM>6

EHM

NED

Local
only

Extrahepatic

only

Fig. 1 | Study schema and classification into recurrence groups. Patients with 
resectable PaC (n = 49) who underwent upfront resection were subjected to 
intraoperative liver biopsy following diagnosis (Dx). Specimens were analyzed 
postoperatively, and patients were followed thereafter to assess for timing and 
pattern of recurrence (median follow-up: 36 months). Patients were classified 
into four recurrence groups: early (<6 months after resection) or late (>6 months 

after resection) LiM, distant EHM and NED. Patients with isolated local recurrence 
(n = 5) were classified separately and excluded from comparisons of individual 
recurrence groups, as described in the manuscript and summarized in the 
table above. Patients with benign or pre-malignant (peri-)pancreatic lesions 
undergoing pancreatectomy were recruited as controls and underwent similar 
specimen collection and analysis (non-PaC; n = 19).
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Fig. 2 | Livers of patients with localized PaC exhibit molecular alterations 
with prognostic significance. a, mRNA-seq of liver tissue collected 
intraoperatively identified 79 genes differentially expressed between PaC 
(n = 31) and non-PaC (n = 12) patients (Wald test performed using the DESeq2 
package with adjustment for multiple comparisons; genes shown were altered 
>2-fold, with adjusted P < 0.1). Patients with PaC were classified into five mutually 
exclusive recurrence groups: NED; isolated local recurrence (LR); EHM; early liver 
metastasis (within 6 months, LiM<6); and late LiM (beyond 6 months, LiM>6).  
b, Enriched gene sets related to immune response in PaC livers by GSEA using the 
Hallmarks of Cancer reference gene set (MSigDB, H; pathways were considered 
significant if P < 0.05, FDR < 0.25). The top 10 genes driving each gene set are 
listed, in descending order. c, Immune cell gene clustering and visualization of 

genes significantly upregulated in PaC livers by Cytoscape ClueGO. d, Pathway 
gene expression analysis of significantly upregulated genes by Metascape (cutoff 
P < 0.1, after adjustment for multiple comparisons). e, Unsupervised clustering 
using the genes differentially expressed between patients with EHM and patients 
with NED. f, Confirmatory Ki-67 immunostaining showing upregulation in 
recurrence groups (n = 38; mean ± s.e.m.; Kruskal–Wallis ANOVA P = 0.023, 
pairwise testing with correction for multiple comparisons shown if P < 0.25).  
g,h, SORT1 expression in recurrence groups, showing upregulation in LiM<6 
(n = 29; mean ± s.e.m.; Kruskal–Wallis ANOVA P = 0.002, pairwise testing with 
correction for multiple comparisons shown if P < 0.25) (g) and association with 
time to LiM (TTLiM) (n = 32; log-rank test; P = 0.022) (h). GO, Gene Ontology.
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patients who developed metastases, significant portal inflammation 
was observed in patients with subsequent distant metastasis compared 
to the NED group (P = 0.031; Fig. 4a). Both portal and lobular inflamma-
tion were most intense in the EHM group, followed by the LiM>6 group 
(Fig. 4a and Extended Data Fig. 7a). Strikingly, analysis of neutrophils 
in the metastatic subgroups showed notably increased NETs in LiM<6 
compared to the other recurrence groups (P < 0.001; Fig. 4b). Despite a 
lower overall level of other inflammatory readouts, increased NETs may 
play an immunosuppressive role, as shown in preclinical studies24. No 
other differences in myeloid cells, compared by CD11B+, IBA1+ and CD68+ 

cell density, were observed (Extended Data Fig. 7b–e). The hepatic 
parenchymal distribution of CD3+ lymphocytes was significantly 
different between patients with and without LiM (P = 0.016; Fig. 4c), 
whereas no significant differences in absolute counts of CD3+ and CD8+ 
lymphocytes were noted (Extended Data Fig. 7f–h). Notably, the EHM 
group had mostly widespread lobular infiltration, whereas the LiM<6 
group had predominantly scattered to few lobular CD3+ lymphocytes.

These observations suggest that the exact composition of the 
enhanced immune infiltrate in PaC pre-metastatic livers may be a 
critical determinant of the metastatic outcome. Notably, our data 
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indicate that high NET burden and low CD3+ lymphocyte lobular infil-
tration could have important prognostic value in estimating the risk of 
metastasis and, in particular, early LiM, which is further corroborated 
by the association of these immune cell alterations with shorter TTLiM 
(P = 0.025 and P = 0.039 (log-rank), respectively; Fig. 4d,e).

Furthermore, we hypothesized that the metabolic status of the 
liver could influence immune infiltration and serve as another predic-
tor of recurrence patterns. Histologically graded steatosis (Extended 
Data Fig. 2) was significantly more prominent in patients with recur-
rence outside the liver compared to LiM (P = 0.034; Extended Data 
Fig. 8a). Although presence of steatosis did not significantly corre-
late with TTLiM (Extended Data Fig. 8b), an important interaction 
with lobular CD3+ cell infiltration was observed (Fig. 4f). Specifically, 
patients with steatosis and prominent CD3+ lobular infiltration had a 
significantly lower incidence of LiM, whereas absence of steatosis and 
concurrent lack of CD3+ lobular infiltration distinguished a subgroup of 
patients all of whom developed LiM within 1.5 years (P = 0.010; Fig. 4f). 
In conclusion, hepatic steatosis, together with prominent CD3+ lobular 
infiltration, represents an immunometabolic phenotype potentially 
counteracting LiM.

Metabolic reprogramming in pre-metastatic 
livers predicts LiM
To specifically assess metabolic changes within the liver pre-metastatic 
niche, we performed metabolomic profiling of liver biopsies. Remark-
ably, PaC livers had significantly decreased creatine and creatinine 
levels compared to non-PaC livers (P < 0.005; Fig. 5a and Extended Data 
Fig. 8c,d). The observed metabolic changes were likely restricted to the 

liver as pre-operative serum creatinine levels did not differ between 
the two groups (Extended Data Fig. 8e). We also observed significantly 
enriched arginine and proline metabolism in PaC compared to non-PaC 
livers (>8-fold, P < 0.05; Fig. 5b and Extended Data Fig. 8c,d). Levels 
of carbamoyl-phosphate, a precursor of citrulline, were significantly 
higher in PaC (P = 0.013), suggesting a potential diversion of the path-
way toward augmented utilization of citrulline (Fig. 5c). In support of 
this finding, Ct-H3 correlated inversely with hepatic creatine levels 
(Spearman’s r = −0.6, P = 0.031; Fig. 5d).

According to hierarchical clustering analysis, a panel of 15 metabo-
lites distinguished most of the patients who subsequently developed 
LiM from the patients with EHM and the patients with NED (Extended 
Data Fig. 8f). Consistently, low hepatic creatine levels were associated 
with shorter TTLiM (P = 0.047; Fig. 5e) and were lowest in patients with 
LiM>6 (Extended Data Fig. 8g). Furthermore, patients who eventually 
developed LiM had significantly higher Ct-H3 immunostaining that was 
not limited to immune cells (P = 0.004; Fig. 5f), with high Ct-H3 cor-
relating with earlier LiM (log-rank P = 0.009; Fig. 5g). Taken together, 
arginine metabolism and urea cycle are dysregulated in pre-metastatic 
livers, and specific metabolites, including creatine and Ct-H3, show 
promise as prognostic indicators for LiM in patients with PaC.

Machine learning predictive modeling for 
metastatic patterns
We hypothesized that combining pre-metastatic liver-specific signa-
tures could more accurately inform the risk for LiM in PaC. We employed 
the aforementioned individually significant histopathological (Figs. 3 
and 4) and metabolomic (Fig. 5) variables, as well as SORT1 and the 
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defining genes of the EHM transcriptomic signature (Fig. 2), and used a 
machine-learning-based approach (MLA) to create a predictive model 
for metastatic outcome. Body mass index (BMI) and biliary obstruction 
were included as variables because these could influence or confound 
cellular and molecular features of the liver but did not contribute to 
the final models (Supplementary Table 10). We generated four separate 
models that predicted the different metastatic outcomes in a binary 
fashion: LiM, early LiM (LiM<6), EHM and NED (Fig. 6a). The four models 
performed well, with areas under the receiver operating characteristic 
curves (AUCs) of 0.83–0.89. The early LiM model, which included three 
features (SORT1, NR1D1 and NET area), had the best performance, with 
90% sensitivity, 87% specificity and an AUC of 0.87.

We combined the predicted outcomes to classify patients into 
the recurrence patterns of interest (Fig. 6b). Patients were assigned 
to the metastatic group of the model that gave the highest risk score 

(Fig. 6c and Supplementary Table 11). The combined model performed 
well for identification of early LiM, with 90% accuracy (Fig. 6d). Of the 
10 patients who developed early LiM, nine were classified correctly. 
Conversely, nine of 12 patients predicted to develop early LiM were 
correctly classified. The overall accuracy of the combined model in 
assigning patients to specific recurrence groups was 78%.

In summary, our findings demonstrate the potential to predict 
PaC recurrence patterns via immunometabolic characterization of 
peri-operative liver biopsies (summarized in Fig. 6e) which is particu-
lary accurate in predicting early LiM.

Discussion
PaC is one of the most challenging malignancies due to its protracted 
subclinical course and early LiM, which almost universally results in a 
fatal outcome. We reported previousy that only 34% of resected patients 

L-arginine

Citrulline

Guanidoacetic acid

Creatine

Creatinine

Phospho-creatine

OrnithineUrea

Arginosuccinate

NH4

SAM

SAH

Glycine

NOS

ASL

Arginase

Carbamoyl-
phosphate

GAMT

CKBOTCASS

AGAT

c

e

ba PaC vs non-PaC: metabolite set enrichment analysisPaC vs non-PaC: Liver metabolomics

Liver creatine: time-to-LiM

NED EHM LiM>6 LiM<6
0

5,000

10,000

15,000

C
t-

H
3 

ar
ea

P = 0.023

P = 0.131

P = 0.004

0 2,000 4,000 6,000
0

5,000

10,000

15,000

Liver creatine

Li
ve

r C
t-H

3 
ar

ea Spearman’s ρ = –0.6
P = 0.031 

d Liver creatine –Ct-H3
correlation

f Liver Ct-H3 g Liver Ct-H3: time-to-LiM

Time to LiM (months)
3624120

C
um

 s
ur

vi
va

l

1.0

0.8

0.6

0.4

0.2

0

Ct-H3 area 
above 

Median 
(4,518)

log-rank
P = 0.009

Low 
(n = 12)
High 
(n = 12)

Time to LiM (months)

3624120

C
um

 s
ur

vi
va

l

1.0

0.8

0.6

0.4

0.2

0

Liver 
creatine 
above 
median

log-rank
P = 0.047

Low 
(n = 15)
High 
(n = 9)

Benign IPMN PaC

Creatinine

P = 0.026

N
or

m
. c

on
ce

nt
ra

tio
n

Creatine

P = 0.007

N
or

m
. c

on
ce

nt
ra

tio
n

Fold enrichment

0 2 4  6 8

P value

ARGININE AND PROLINE METABOLISM
VITAMIN B6 METABOLISM

GLYCINE, SERINE AND THREONINE METABOLISM
SELENOAMINO ACID METABOLISM

ALANINE METABOLISM
GLUCOSE-ALANINE CYCLE

NICOTINATE AND NICOTINAMIDE METABOLISM
CYSTEINE METABOLISM

ASPARTATE METABOLISM
MALATE-ASPARTATE SHUTTLE

TAURINE AND HYPOTAURINE METABOLISM
BILE ACID BIOSYNTHESIS

FRUCTOSE AND MANNOSE DEGRADATION
TRYPTOPHAN METABOLISM

LYSINE DEGRADATION
BETA-ALANINE METABOLISM

METHIONINE METABOLISM
BETAINE METABOLISM

PENTOSE PHOSPHATE PATHWAY
TYROSINE METABOLISM

PHENYLALANINE AND TYROSINE METABOLISM
FATTY ACID ELONGATION IN MITOCHONDRIA

GLYCOLYSIS
INSULIN SIGNALLING
RNA TRANSCRIPTION

CATECHOLAMINE BIOSYNTHESIS
AMINO SUGAR METABOLISM

UREA CYCLE
PORPHYRIN METABOLISM

CITRIC ACID CYCLE
PHOSPHOLIPID BIOSYNTHESIS

SPHINGOLIPID METABOLISM
BUTYRATE METABOLISM
INOSITOL METABOLISM

NUCLEOTIDE SUGARS METABOLISM
STARCH AND SUCROSE METABOLISM

BIOTIN METABOLISM
MITOCHONDRIAL ELECTRON TRANSPORT CHAIN

FOLATE AND PTERINE BIOSYNTHESIS
ONE CARBON POOL BY FOLATE

PANTOTHENATE AND COA BIOSYNTHESIS
PURINE METABOLISM

THIAMINE METABOLISM
INTRACELLULAR SIGNALLING THROUGH...

GLYCEROL PHOSPHATE SHUTTLE
STEROIDOGENESIS

GALACTOSE METABOLISM
UBIQUINONE BIOSYNTHESIS
GLYCEROLIPID METABOLISM

FATTY ACID METABOLISM

4 × 10–2

5 × 10–1

1 × 100

Creatine
Creatinine
Deoxyguanosine
1-Methyladenosine
dCMP
ADP-D-glucose
NAD_posi
Carnitine
Acetylcarintine DL
Cystine

Class
3

2

1

0

–1

–2

–3

Non-PaC: Benign
Non-PaC: IPMN
PaC

8.2

8.0

7.8

6.2

6.0

5.8

5.6

Fig. 5 | Metabolic features of the pre-metastatic liver correlate with patterns 
of recurrence in PaC. a–c, Metabolomic analysis of liver biopsies in 24 PaC 
versus nine non-PaC patients revealed creatine and creatinine to be most 
prominently differentially expressed using supervised clustering (P < 0.001, 
FDR < 0.15 and P < 0.005, FDR < 0.2, respectively) (a) and enriched arginine and 
proline metabolism in PaC livers by metabolite set enrichment analysis (MSEA) 
using MetaboAnalyst (b). c, Schematic showing the metabolism of arginine, 
citrulline, creatine and creatinine, with the levels of metabolites compared 
between PaC (teal bars) and non-PaC (light red bars). The levels of hepatic 
creatine and creatinine were compared between PaC (n = 24) and non-PaC (n = 9 

(four benign and five IPMN); box plots represent median ± IQR, with whiskers 
at 95th percentiles; ANOVA P = 0.007 and P = 0.026, respectively). d, Negative 
correlation between liver creatine measured in metabolomic analysis and Ct-H3 
quantified in Fig. 2e (Ct-H3; ρ = −0.6, P = 0.031). e, Kaplan–Meier curve of TTLiM 
for patients with high versus low creatine levels (based on median; n = 24; log-
rank P = 0.047). f,g, Total liver Ct-H3 differed among recurrence groups (n = 21; 
mean ± s.e.m.; ANOVA P = 0.023; multiple t-tests with correction for multiple 
comparisons, shown if P < 0.25) (f) and associated with shorter TTLiM by Kaplan–
Meier analysis (n = 24; log-rank P = 0.009) (g). IQR, interquartile range.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03075-7

with PaC remain alive 1 year after diagnosis of LiM2. Thus, reliable strat-
egies for identification of patients at high risk of distant recurrence 
in the pre-operative setting are urgently needed. Our multi-omics 
approach that comprehensively characterizes the liver pre-metastatic 
niche in patients with PaC demonstrates potential for such prognostic  
implementation.

Based on preclinical studies12–14,25,26, we hypothesized that meta-
static sites, particularly the liver, exhibit detectable microenviron-
mental changes before clinical evidence of metastasis. Alterations 
in resident cell phenotypes, extracellular matrix (ECM) and immune 
cell infiltration collectively create a pre-metastatic niche27,28. Using 
transcriptomics, metabolomics and histopathology, we observed that 
pre-metastatic livers of patients with PaC indeed displayed a prominent 
inflammatory response with augmented myeloid and lymphoid cell 
subsets at the time of resection. At the mRNA level, the inflammatory 
signature was prominent in patients with PaC who primarily developed 
EHM and secondarily late LiM as compared to long-term survivors. This 
suggests that the EHM-specific transcriptomic signature may represent 
a defensive anti-tumor immune response within the liver.

Although PaC livers had increased CD11B+ cell infiltration and a 
higher number of activated NK cells compared to non-PaC livers, the 
levels of intrahepatic CD11B+ cells did not differ significantly among 
patients with PaC with varying metastatic patterns. By contrast, CD3+ 
lymphocyte infiltration was elevated in PaC livers, especially in patients 
who remained free of LiM during follow-up. Analysis of these enriched 
CD3+ lymphocytes by scRNA-seq and imaging mass cytometry did not 
identify any specific expanded subset, although the strongest trends 
were observed for CD8+ lymphocytes. Furthermore, lobular infiltration 
of CD3+ lymphocytes correlated inversely with TTLiM and, thus, may 
have prognostic significance. These observations suggest that myeloid 
cell infiltration in the liver is an early event during PaC metastasis and 
a hallmark of the liver pre-metastatic niche, whereas T cell infiltration 
later in PaC progression may reflect anti-tumor activity. Thus, patients 
who fail to mount an intrahepatic T cell immune response are more 
likely to develop subsequent LiM. These findings are consistent with 
a report by Pommier et al.29, who found that isolated, disseminated 
PaC cells in mice were kept in check by infiltrating T cells, whereas 
T cell depletion combined with disseminated tumor cell endoplasmic 
reticulum stress enabled the development of macro-metastases.

We also observed an increased neutrophil infiltration and NET 
formation in PaC livers that developed LiM, particulary those that 
developed LiM within 6 months after resection. Preclinical studies have 
linked neutrophils and NETs to pre-metastatic niche formation and 
promotion of metastasis, potentially through inhibition of cytotoxic 
T cells as well as release of ECM-degrading enzymes that facilitate 
tumor cell migration and adhesion13,14. The precise role of NETs in 
hepatic metastasis remains to be determined.

In addition, we found several metabolic alterations in the liver of 
patients with PaC. We observed that patients with subsequent LiM had 
less microscopic evidence of hepatic steatosis at the time of resection. 
Previous studies suggested immunomodulatory roles of cholesterol 
and fatty acid metabolites, which may account for these observa-
tions30. For example, it was previously shown that lipid-rich hepatic 
DCs are more immunogenic and can promote lymphocyte-mediated 
anti-tumor immune responses, whereas lipid-poor DCs are tolerogenic 
and induce Treg responses with resultant anergy to cancer31. Reinforc-
ing these observations, we noted upregulation of SORT1 gene expres-
sion in early LiM, which has pleiotropic functions in hepatic cholesterol 
metabolism and has been shown to be regulated post-transcriptionally 
by Toll-like receptor signaling9,10. Furthermore, patients with steatosis 
and concurrent T cell lobular infiltration were least susceptible to 
LiM development. This particular phenotype is intriguing as it has 
similarities with the pathogenesis of non-alcoholic steatohepatitis, 
which features robust Th1, NKT and NK cell responses31–33. Thus, it 
may serve not only as a biomarker but also as a potential therapeutic 

target. It should be emphasized that the inverse association between 
steatosis and LiM does not necessarily imply causation, nor can the 
timing of the observed events be determined by evaluating one time-
point. Does steatosis and CD3+ infiltration precede the inception 
of PaC, or does this evolve during pancreatic carcinogenesis? Our 
recently published work showed that a subset of tumor-derived extra-
cellular particles termed ‘exomeres’ preferentially home to the liver 
and increase Kupffer-cell-mediated fat deposition and interfere with 
drug metabolism34. This might support hepatic steatosis and related 
immune infiltration as an evolving secondary process in a subset of 
patients with pancreatic carcinogenesis.

Moreover, we observed that hepatic creatine levels were reduced 
in patients with PaC and, more significantly, in patients who developed 
LiM. Creatine serves as an energy source for activated cytotoxic T cells, 
whereas depletion of T cell creatine leads to an exhausted phenotype35. 
Our metabolomic data suggest that PaC metastatic growth may be 
linked, at least in part, to immunometabolic deregulation and impaired 
anti-tumor immune responses. Further studies could precisely deline-
ate the immunometabolic events within the liver pre-metastatic niche 
and provide a promising therapeutic target to curtail LiM.

The ability to predict which patients will develop metastasis is 
a critical goal for PaC management. That a portion of patients with 
seemingly localized PaC develop LiM within months after resection 
underscores the need for predictive tools to determine the optimal 
treatment approach. Identifying patients with a high probability of 
early LiM would provide strong justification to avoid surgical interven-
tion in favor of initial systemic therapy, whereas patients who do not 
develop metastasis would undergo upfront surgical resection. To this 
extent, we created a predictive model for early LiM based on findings 
in peri-operative liver biopsies. Although this approach will require 
further refinement and validation in larger patient cohorts, our results 
support the benefit of incorporating pre-metastatic liver biopsy into 
the pre-operative evaluation of non-metastatic PaC. Patients with a 
robust anti-tumor inflammatory signature and steatosis may be at 
lower risk of LiM, whereas patients exhibiting a high frequency of NETs 
and upregulated SORT1 in pre-metastatic livers may be at higher risk 
for rapid metastasis.

Currently, there is no reliable method to predict metastatic pro-
pensity of PaC, except for a markedly elevated serum CA19-9. However, 
high CA19-9 may result from large primary tumors rather than metas-
tasis, and it does not inform on the timing and patterns of recurrence. 
Moreover, patients without elevated CA19-9 are still at risk for metas-
tasis. A biomarker that predicts PaC organotropism and recurrence 
timing could have direct implications in therapeutic decision-making. 
In our defined PaC recurrence groups, for example, a patient predicted 
to develop early LiM could be managed with total NAT and maximum 
chemotherapy upfront (for example, 12 cycles of mFOLFIRINOX) before 
considering resection. Patients predicted to have late LiM could be 
treated with standard dose NAT. On the other hand, patients with EHM, 
who exhibited the strongest anti-metastatic features, may be better 
suited for approaches that can enhance anti-tumor immune responses, 
such as neoadjuvant chemoradiation with or without immune check-
point inhibitors. Furthermore, knowledge of the expected recurrence 
group could dictate frequency of post-resection surveillance, with 
patients predicted to develop early LiM being monitored most fre-
quently (for example, every 2 months initially) and less frequently for 
patients predicted as NED.

Our predictive (as opposed to prognostic) analysis of the 
pre-metastatic liver profile could have implications for selecting the 
best treatment modality for patients with borderline resectable and 
locally advanced PaC and may even have repercussions for the selec-
tion of the best candidates for cytoreduction of liver oligometastatic 
disease. Currently, the overwhelming majority of patients with PaC 
with resectable liver-confined metastases are managed with systemic 
therapy in a palliative setting, whereas only a very limited number of 
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Sensitivity Specificity NPV PPV Overall accuracy

0.90 (0.71–1.0) 0.87 (0.75–0.99) 0.69 (0.44–0.94) 0.96 (0.90–1.0)

0.90 (0.56–1.0) 0.90 (0.74–0.98) 0.75 (0.50–0.90) 0.97 (0.81–1.0)

0.77 (0.46–0.95) 0.89 (0.72–0.98) 0.77 (0.52–0.91) 0.89 (0.75–0.96)

0.77 (0.40–0.97) 0.94 (0.79–0.99) 0.78 (0.46–0.93) 0.94 (0.82–0.98)

78%

Early LiM
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NPV 1.0 0.96 (0.90–1.0) 0.88 (0.77–0.99) 0.90 (0.79–1.0)
PPV 0.59 (0.39–0.80) 0.69 (0.44–0.96) 0.71 (0.38–1.0) 0.55 (0.25–0.84)
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Fig. 6 | Features of the pre-metastatic niche can be used for prediction of 
future metastasis. Pre-metastatic liver-specific variables were combined in 
prediction models to classify patients into recurrence patterns. a, Performance 
of four prediction models generated using LOO with 10-fold cross-validation. 
b,c, The four prediction models were run concurrently (b), and their output was 

used to classify patients into recurrence pattern groups (c). d, Performance of 
the combined model. e, Summary diagram outlining stepwise comparisons of 
metastatic patterns, with the characteristic molecular, cellular and metabolic 
features favoring each pattern (fold change is shown for continuous variables). 
NPV, negative predictive value; PPV, positive predictive value.
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such patients are offered metastasectomy, after no progression on 
prolonged systemic therapy. Knowledge of the status of the unaffected 
liver (pre-metastatic versus anti-metastatic) could predict the risk of 
disease progression due to immune evasion and inadequate tumor 
control and, thus, aid the selection of patients appropriate for cytore-
duction, in a similar manner as in colorectal cancer.

A relative weakness of our study is the fact that patients did not 
have surveillance imaging studies at strictly defined time intervals, 
which may have affected the assessment of timing of recurrence. For 
example, one patient (PT16) who was incorrectly predicted to be early 
LiM (LiM<6) developed clinically detectable LiM at 8.4 months. Also, 
although biliary obstruction was more prevalent among patients with 
PaC, and we observed a trend to lower rates of biliary obstruction 
among patients with PaC who remained recurrence free, we previ-
ously reported that biliary obstruction itself does not translate into 
increased risk of LiM2. Lastly, the relatively small sample size in the 
different recurrence groups may have led to inadequate power to 
detect true differences and contribute to overfitting of the machine 
learning model, despite our attempts to minimize it using cross- 
validation techniques36.

Nonetheless, strengths of the present study include its prospec-
tive design and blinded specimen processing workflow. The down-
stream multi-parametric analyses were performed before knowledge 
of patients’ recurrence status. Moreover, the fact that patients were 
enrolled before administration of radiation or systemic therapy elimi-
nated any effects of treatment on the identified liver signatures and 
demonstrates the potential utility of pre-operative liver biopsies at 
the time of initial diagnostic workup.

As neoadjuvant treatment of PaC is used with increasing fre-
quency, the effect on the pre-metastatic liver and development of 
subsequent metastasis warrants investigation to define more effective 
anti-metastatic regimen for patients. Our data show that the use of 
multi-model data integration with machine learning may be effec-
tive in developing models to predict patients who are likely to fail a 
surgery-first approach and guide more precise oncologic management.

In conclusion, we present data supporting an overall augmentation 
of the immune infiltrate and inflammatory response in pre-metastatic 
PaC livers, with NET-forming neutrophils preceding emergence of LiM 
and, conversely, CD3+ lymphocytes acting as critical anti-metastatic 
effector cells. Metabolic derangements involving the creatine/arginine 
pathways and potentially impacting citrullination within the liver, 
as well as hepatic steatosis, represent putative immunometabolic 
links worthy of further investigation. We propose that a liver biopsy 
at the time of PaC diagnosis may be an invaluable adjunct to provide 
prognostic information and guide novel treatment approaches, such 
as liver-directed immunotherapies and metabolic repurposing, in the 
pre-metastatic setting.
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Methods
Study design and patients
We performed a prospective observational study of 68 patients sub-
jected to pancreatic resection at Memorial Sloan Kettering Cancer 
Center (MSKCC) between 2015 and 2018. Patients 18 years or older 
with presumed resectable pancreatic adenocarcinoma according to 
National Comprehensive Cancer Network guidelines (PaC group) or 
pancreatic/peri-pancreatic benign or pre-malignant lesions (non-PaC 
group) were eligible for the study. Patients who had received neoad-
juvant therapy and those with unresectable or metastatic disease or a 
cancer diagnosis other than pancreatic ductal adenocarcinoma (for 
example, acinar cell carcinoma and intraductal papillary mucinous 
neoplasms (IPMNs) with associated colloid carcinoma) were excluded.

The collection and analysis of human blood, tumor and liver tissue 
was approved by the institutional review boards (IRBs) of MSKCC (IRB 
no. 15-015) and Weill Cornell Medicine (WCM) (IRB no. 0604008488) 
(ClinicalTrials.gov registration: NCT02393703). All patients present-
ing in the MSKCC hepatopancreatobiliary (HPB) clinic for possible 
pancreatectomy who met inclusion criteria were screened and con-
sidered for recruitment at the discretion of the operative surgeon. 
All individuals who agreed to participate provided informed consent. 
The study is compliant with all relevant ethical regulations regarding 
research involving human subjects. The sex of the included patients is 
reported in Supplementary Table 1 and is in line with the established 
slightly higher incidence of PaC in males. Sex assignment was based on 
a self-reported questionnaire asking for sex at birth, as documented 
in the patient medical records. Gender or race data were not collected 
because they were not readily available from the medical records. No 
attempt to select patients on a race, sex and/or gender basis was made.

Clinical outcomes and recurrence groups
All patients underwent routine peri-operative clinical care and radi-
ologic follow-up according to our institutional standards37. Recur-
rence data were collected from medical records. The date and site of 
first metastatic recurrence were defined as the date a lesion was first 
detected on cross-sectional imaging, even if it was initially indetermi-
nate and later classified as a recurrence on subsequent imaging and/
or biopsy. Follow-up data were collected up to the occurrence of LiM 
or death; otherwise, patients were censored at 36 months. Time to 
first recurrence and TTLiM were calculated from the day of resection. 
Patients who developed LiM as first site of recurrence (with or without 
simultaneous EHM recurrence) were classified as LiM<6 or LiM>6, 
depending on whether LiM occurred within 6 months of resection or 
beyond 6 months, respectively. Patients with EHM-only recurrence at 
any time during follow-up were classified as EHM. Isolated local recur-
rences were classified separately. Patients without clinical or radiologic 
evidence of recurrence over follow-up were classified as NED.

Tissue collection and processing
Three geographically distinct incisional liver biopsies without any 
gross evidence of metastasis were obtained at the time of surgery and 
transferred on ice directly to the laboratory. Millimeter-sized pieces 
were frozen on liquid nitrogen for downstream RNA and metabolite 
extractions. When sufficient liver material was available, a fresh portion 
was immediately processed for flow cytometry and/or cryopreserved 
for scRNA-seq.

Histology, immunohistochemistry and immunofluorescence
For histologic analyses, liver biopsies were washed in PBS and fixed in 
4% PFA/PBS overnight at 4 °C, followed by multiple washes in cold PBS 
before being transferred to cold 70% ethanol. Tissues were dehydrated 
and embedded in paraffin and sectioned into 4-μm sections.

Formalin-fixed, paraffin-embedded (FFPE) tissues were stained 
by conventional hematoxylin and eosin (H&E) protocols and Masson’s 
trichrome. Two independent expert liver pathologists (G.A. and J.J.) 

examined the stained slides in a blinded fashion and graded fibrosis, 
steatosis and inflammation (portal and lobular) according to standard-
ized scores for reporting hepatic pathology11.

Next, 4-μm FFPE sections were stained for immunohistochem-
istry (IHC) and immunofluorescence (IF) manually or at the Molec-
ular Core Facility of MSKCC using a Discovery XT processor or an 
Ultra processor (Ventana Medical Systems-Roche). Ki-67, IBA-1 and 
CD45 were stained by IHC according to the following protocol. After 
32 min of heat and Cell Conditioning 1 (CC1, Ventana Medical Systems,  
950-500) retrieval, the tissue sections were blocked first for 30 min 
in background blocking reagent (Innovex, NB306). A rabbit mono-
clonal anti-Ki-67 (clone SP6, Abcam, 16667) was used at 2.5 μg ml−1 
concentration and incubated for 6-h incubation. A rabbit polyclonal 
anti-IBA-1 (Wako, 019-19741) was used in a concentration of 0.1 μg ml−1 
for 5-h incubation. A mouse monoclonal anti-CD45 (clone 2B11, Dako, 
M0701) was used at 2.5 μg ml−1 concentration and incubated for 6-h 
incubation. Thereafter, primary antibodies were followed by 60 min of 
biotinylated goat anti-rabbit IgG (Vector Labs, PK6101) in 5.75 μg ml−1  
concentration. Blocker D, Streptavidin-HRP D (part of the DAB  
Map Kit, Ventana Medical Systems) and the DAB Map Kit (760-124, 
Ventana Medical Systems) were prepared according to manufacturer 
instructions. The slides were counterstained with hematoxylin and 
coverslipped with Permount (Thermo Fisher Scientific). IHC for p53 
was performed similarly using the undiluted ready-to-use clone DO-7 
mouse monoclonal antibody (Dako, GA616), as described previously38. 
CD11B, CD68, CD206, CD3, CD8, NE, Ct-H3 and MPO were stained by 
IF. After 32 min of heat and CC1 (Ventana Medical Systems, 950-500) 
retrieval, the tissue sections were blocked first for 30 min in back-
ground blocking reagent (Innovex, NB306). The incubation with the 
primary antibodies was done for 6 h. A rabbit monoclonal CD11B anti-
body (clone EPR1344, Abcam, 133357) was used in 1 μg ml−1 concentra-
tion followed by 60-min incubation with biotinylated goat anti-rabbit 
IgG (Vector Labs, PK6101) in 5.75 μg ml−1. Blocker D, Streptavidin-HRP 
and TSA A488 (Life Technologies, B40932) were prepared according 
to manufacturer instructions in 1:100 for 16 min. A mouse monoclonal 
anti-CD68 (clone KP1, Dako, M0814) was used in 0.02 μg ml−1, fol-
lowed by biotinylated anti-mouse secondary (Vector Labs, MOM Kit  
BMK-2202) in 5.75 μg ml−1. Blocker D, Streptavidin-HRP and TSA CF594 
(Biotium, 92174) were prepared according to manufacturer instruc-
tions in 1:2,000 for 16 min. A rabbit polyclonal anti-CD3 antibody 
(Dako, A0452) was used in 2.4 μg ml−1 concentration, followed by 
60-min incubation with biotinylated goat anti-rabbit IgG (Vector 
Labs, PK6101) in 5.75 μg ml−1. Streptavidin-HRP and TSA A488 (Life 
Technologies, B40932) were prepared according to manufacturer 
instructions in 1:100 for 16 min. A rabbit polyclonal anti-CD8 antibody  
(Cell Signaling Technology, 98941) was used in 4.8 μg ml−1 concentra-
tion, followed by 60-min incubation with biotinylated goat anti-rabbit 
IgG (Vector Labs, PK6101) in 5.75 μg ml−1. Streptavidin-HRP and TSA 
CF594 (Biotium, 92174) were prepared according to manufacturer 
instructions in 1:2,000 for 16 min. All slides were counterstained in 
5 μg ml−1 DAPI (Sigma-Aldrich, D9542) for 5 min at room tempera-
ture, mounted with anti-fade mounting medium Mowiol (Mowiol 
4-88 (Calbiochem, 475904)) and coverslipped. For NET analysis, 
anti-NE / Neutrophil Elastase Sheep Anti-Human Polyclonal Antibody 
(LS-Bio, LS-B4244; dilution 1:200), anti-Ct-H3 / histone H3 (citrulline 
R2 + R8 + R17) rabbit antibody—ChIP grade (Abcam, ab5103; dilu-
tion 1:250) and anti-MPO / goat anti-myeloperoxidase (R&D Systems, 
AF3667; dilution 1:200) were used.

Quantifications of stains were performed by ImageJ and/or a 
blinded pathologist. Positive area, number of cells and localization 
were analyzed.

Tissue microarray construction and imaging mass cytometry
Two tissue microarrays (TMAs) were constructed from 37 patients 
(32 PaC—eight per recurrence group and five non-PaC) with sufficient 
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tissue to punch three cores of 1.5-mm diameter representing both 
portal and lobular areas, defined by a pathologist. TMAs were sec-
tioned and confirmed by H&E staining and used for imaging mass 
cytometry. Then, 100 μg of purified antibody in BSA and azide-free 
format was conjugated using the Maxpar X8 Multimetal Labeling 
Kit (Fluidigm) as per the manufacturer’s protocol (Supplementary 
Table 12). Sections were ablated on a Hyperion Imaging System 
(Fluidigm). Freshly cut 5-μm-thick FFPE sections were stored at 4 °C 
for 1 d before staining. Slides were first incubated for 1 h at 60 °C 
on a slide warmer, followed by dewaxing in fresh CitriSolv (Decon 
Labs) twice for 10 min and then rehydrated in descending series of 
100%, 95%, 80% and 75% ethanol for 5 min each. After 5 min of Milli-Q 
water wash, the slides were treated with antigen retrieval solution 
(Tris-EDTA, pH 9.2) for 30 min at 96 °C. Slides were cooled to room 
temperature, washed twice in TBS and blocked for 1.5 h in Super-
Block Solution (Thermo Fisher Scientific), followed by overnight 
incubation at 4 °C with the prepared antibody cocktail containing all 
metal-labeled antibodies in a humid chamber. The next day, slides 
were washed twice in 0.2% Triton X-100 in PBS and twice in TBS. DNA 
staining was performed using Intercalator-Iridium in PBS solution 
for 30 min in a humid chamber at room temperature. Slides were 
washed with Milli-Q water and air dried prior to ablation. The instru-
ment was calibrated using a tuning slide to optimize the sensitivity of 
detection range. All ablations were performed with a laser frequency 
of 200 Hz. Tuning was performed intermittently to ensure that the 
signal detection integrity was within the detectable range. The raw 
MCD files were exported for further downstream processing.

Processing IMC data into AnnData single-cell matrix with 
spatial coordinates
We used the IMC package (https://github.com/ElementoLab/imc, ver-
sion 0.1.4) to pre-process the raw MCD files into a combined AnnData 
object that contains the location and expression profiles of acquired 
cells. With original MCD files acquired through the Hyperion machine, 
regions of interest (ROIs) were extracted as stacks of images in .tiff file 
format along with associated metadata, including channel and epitope 
information. To reduce the images to three-dimensional conventional 
format, we used a pre-trained ilastik39 model to predict a nuclear, cyto-
plasmic and background probability map. The probability map was 
subsequently segmented using DeepCell40 to capture and identify 
cellular and nuclear borders.

To quantify cellular expressions, we used the cell masks to aggre-
gate the mean intensity of pixels within a cell for each antibody channel 
through scikit-image. We combined the per-cell expression vector 
from all cells across all images into a single matrix through scanpy41 in 
AnnData42 format to process the data comprehensively and consist-
ently. We then performed log transformation and z-score normaliza-
tion with truncation at positive and negative 3 standard deviations, 
followed by Harmony43 (version 0.3.0) batch correction to phase out 
sample-specific biases.

T cell phenotyping and spatial localization
To filter out the T cell population, we extracted cells that had CD3 
expression that was more than 2 standard deviations after z-score 
normalization. This captured 36,987 cells (5.3%) out of 696,335 cells. 
For the extracted T cells, we performed principal component analysis, 
neighborhood calculation and Leiden clustering44 to systematically 
and quantitatively identify the cell phenotypes captured in IMC with 
all markers combined across all images. These clusters were annotated 
into CD4, CD8, Treg and NKT/γδT cells based on their expression of 
CD3, CD4, CD8A, FoxP3, NKG2A and TRDC.

To identify the spatial localization of the T cells, we performed 
UTAG45 with a max_dist of 20 and Leiden clustering at 0.1 and mapped 
the resulting three clusters to lobular or portal based on the whether 
the zones were KRT8/18 and ARG1 positive.

RNA-seq
mRNA-seq of liver biopsies was performed at Integrated Genomics 
Operation (IGO), MSKCC. In brief, total RNA from 5 mg of frozen liver 
tissue was extracted using an RNeasy Mini Kit (Qiagen, 74104) accord-
ing to instructions provided by the manufacturer. After RiboGreen 
quantification and quality control (QC) analysis of 1 μg using a Total 
RNA Nano chip on an Agilent Bioanalyzer 2100, samples with RNA 
integrity number (RIN) values less than 3 were excluded. Samples 
underwent ribosomal depletion and library preparation using the 
TruSeq Stranded Total RNA LT Kit (Illumina, RS-122-1202) according 
to instructions provided by the manufacturer with 6–8 cycles of PCR. 
Samples were barcoded and run on a HiSeq 2500 in Rapid or High Out-
put Mode or a HiSeq 4000 in a 50 bp/50 bp paired-end run, using the 
HiSeq Rapid SBS Kit v2, TruSeq SBS Kit v4 or HiSeq 3000/4000 SBS Kit, 
respectively (Illumina). On average, 88 million paired reads were gen-
erated per sample, and 32% of the data mapped to the transcriptome. 
Standard pipeline analyses were performed by IGO, and subsequent 
comparisons were performed by DESeq2, R software. log2 fold changes 
exceeding 1/−1 with adjusted P < 0.1 (Wald test) were considered differ-
entially expressed. Genes of interest were further confirmed by protein 
expressions and scRNA-seq. Heatmaps and hierarical clustering were 
generated by Morpheus (Broad Institute). GSEA using the Hallmarks 
of Cancer gene set (Molecular Signatures Database (MSigDB)) was 
performed to determine pathways differentially enriched between 
the groups (P < 0.05, false discovery rate (FDR) < 0.25). Gene cluster-
ing analysis and visualization were performed by Metascape version 
3.5 and Cytoscape 3.5.1 ClueGO with the GO Immune System Process 
with a P value cutoff of <0.1.

Metabolomics
Metabolite extraction was performed on 24 PaC and nine non-PaC 
patients with enough liver biopsy material, as previously described46. 
In brief, 5 mg of liquid nitrogen snap-frozen liver tissue was submerged 
in 80% methanol and pestle-grinded on dry ice, followed by serial 
incubations and centrifugations to obtain a clear supernatant for lyo-
philization by SpeedVac. The samples were stored at −80 °C. Unlabeled 
polar metabolite profiling by liquid chromatography with tandem mass 
spectrometry (LC–MS/MS) was performed at Beth Israel Deaconess 
Medical Center, Harvard Medical School. In total, 296 metabolites were 
detected. Results are presented as peak area of total ion current. Data 
analyses were performed using MetaboAnalyst 4.0 and 5.0 (ref. 47).

Hepatic non-parenchymal cell isolation
Hepatic non-parenchymal cell (NPC) isolation for downstream 
single-cell studies was performed on a subset of patients with adequate 
liver tissue as follows. A portion of the specimen was minced with scis-
sors to 1-mm pieces and digested in HBSS with 1 mg ml−1 Collagenase 
IV (Worthington) and 1 U ml−1 DNAse I (Roche) for 20 min at 37 °C with 
constant agitation. After washing and straining through a 70-μm mesh, 
the NPCs were separated by density gradient centrifugation with 40% 
OptiPrep solution as previously described31. Specifically, the cell sus-
pension was combined with the OptiPrep, underlayed in GBSS buffer 
and spun at 900g for 20 min. The NPCs, which concentrated at the 
interface, were collected and subjected to red blood cell lysis using 
ACK lysis buffer (Gibco). Isolated NPCs were validated to be more than 
90% CD45+ cells by flow cytometry on a FACSCanto with FACSDiva 
software (BD Biosciences). Analysis was performed using FlowJo ver-
sion 10 software.

scRNA-seq
The isolated hepatic NPCs (>90% CD45+) were cryopreserved in 10% 
DMSO/90% FBS mix until the time of analysis. Upon retrieval, live 
cells were sorted by exclusion on ethidium homodimer-1 and gating 
on calcein violet, validated by trypan blue staining and submitted to 
downstream processing for scRNA-seq if viability was more than 80%. 
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Of the 10 tested patient samples, eight met the recommended cell 
concentration and viability criteria (6,000 cells per 50,000 reads) 
and were submitted for downstream analysis by 10x Genomics at the 
Epigenomics Core, WCM (Supplementary Table 3). Sequencing results 
were post-processed by Cell Ranger software (10x Genomics), sub-
jected to ZINB-WaVE dimensional reduction48 and further analyzed 
by the R Seurat pipeline (Satija laboratory). Unsupervised cluster-
ing of all cells combined after ZINB-WaVE dimensional reduction 
yielded six distinct clusters, with most cells expressing PTPRC/CD45, 
consistent with immune cell lineage (Extended Data Fig. 6a). The two 
major clusters consisted of myeloid cells (cluster 1; 4,747 cells) and 
lymphoid cells (cluster 5; 28,564 cells). Unsupervised subdivision of 
the main clusters at higher resolution (0.8) resulted in refinement 
of the lymphoid cluster into NK, NKT and T cell clusters and further 
division of the myeloid cluster into monocytes and myeloid DCs. 
Finally, supervised lineage marker-based clustering of the myeloid 
population yielded three subsets: CD14+ classical monocytes, CD16+ 
non-classical monocytes and CD1c+ myeloid DCs. The other initial 
clusters were defined as myeloid DC subset (CD1c−; cluster 2), lym-
phoid DCs (cluster 3), B cells (cluster 4) and a population of prolifer-
ating lymphoid cells (cluster 6). Subsequent analyses were done on 
CD3+ lymphoid clusters by subsetting after further integration and 
dimensional reduction visualized by uniform manifold approxima-
tion and projection (UMAP).

Deconvolution of RNA-seq data was performed by CIBERSORTx 
software with custom or the LM22 gene signature23.

Statistical analysis
Statistical analysis was conducted using SPSS Statistics for Windows 
versions 25 and 26 (IBM) and GraphPad Prism version 9 for Windows 
(GraphPad Software). For nominal variables, Pearson’s χ2 test and 
Fisher’s exact test were used. For ordinal variables, the Kruskal–Wallis 
test was used. Continuous variables that followed a normal distribu-
tion were compared using a pairwise t-test, whereas non-parametric 
tests (Mann–Whitney U-test or Kruskal–Wallis test) were used if the 
distribution was not normal. All tests were two-tailed, and results 
were considered statistically significant when P ≤ 0.05. Data visual-
ized in bar graphs represent biological replicates and are displayed 
as mean ± s.e.m., unless otherwise specified. Recurrence and survival 
analyses were conducted using Kaplan–Meier methods. HRs were 
calculated using the Cox proportional hazards model.

Development of prediction models
The modeling of potential predictive features of future metastasis was 
evaluated with multivariate analysis using a machine-learning-based 
classification technique. Four models (m1–m4) were designed to dis-
tinguish one recurrence group at a time: m1, LiM versus all; m2, early 
LiM (LiM<6) versus all; m3, EHM versus all; and m4, NED versus all. 
Feature selection for each model was performed using the minimum 
redundancy maximum relevance (MRMR) method49. A forward selec-
tion method was applied to determine the final feature set, in which 
features were sequentially added to an empty candidate set until the 
addition of further features did not decrease the misclassification error. 
The selected features were then included in designing the prediction 
model using a naive Bayes classifier.

To evaluate the performance of the selected features, the 
leave-one-out (LOO) method was applied considering the small sample 
size. The LOO is a form of cross-validation where one sample is used 
for testing and the remaining observations are used to train the model. 
This is repeated until all samples are explored as test data. The feature 
selection followed by model designing was performed with training 
data only and evaluated with test data.

Classification of patients into recurrence groups was performed 
by calculating a probability score with each of the four models. The 
result with the highest probability score was selected.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Gene expression data have been deposited to the National Institutes 
of Health Gene Expression Omnibus repository and can be accessed as 
GSE245535 (bulk mRNA-seq) and GSE267209 (scRNA-seq). Cytoscape 
ClueGO with GO Immune System Process was used for gene clustering 
(https://apps.cytoscape.org/apps/cluego), and Metascape (https://
metascape.org/gp/index.html#/main/step1) was used for Gene Ontol-
ogy analysis. Gene set enrichement analysis was performed using the 
Hallmark gene sets from the MSigDB (https://www.gsea-msigdb.org/
gsea/msigdb/human/genesets.jsp?collection=H). The LM22 dataset 
was used for deconvolution of bulk mRNA-seq by CIBERSORTx (matrix 
provided in Supplementary_Tables_1.xlsx). Metabolomics source 
data can be accessed in Supplementary Dataset 1. Clinical data in 
this study can be found in Extended Data Table 1 and Supplementary 
Tables 1, 8 and 11.

Code availability
Code used for image quantifications and generation of the prediction 
models is available at https://github.com/czambir/PC_pml_code. Code 
used for imaging mass cytometry analysis can be found at https:// 
github.com/ElementoLab/imc, version 0.1.4.
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Extended Data Fig. 1 | Gene expression patterns in the liver associated with 
future recurrence. a, Immune cell gene clustering of the genes upregulated in 
EHM patients compared to NED (Cytoscape, ClueGO). b, Analysis of the timing 

of liver metastasis after resection of PaC demonstrated a pattern of an early peak 
of LiM, which occurred within 6 months of resection, followed by a second peak 
beyond 6 months.
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Extended Data Fig. 2 | Liver histology scoring. a-b, Liver fibrosis, steatosis, and inflammation were scored by two blinded pathologists and compared between PaC 
and Non-PaC. No statistically significant differences were noted (Somer’s d test: portal inflammation, p = 0.361; lobular inflammation, p = 0.986; fibrosis, p = 0.695; 
steatosis, p = 0.442).
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Extended Data Fig. 3 | Liver immune cell characterization. a, Liver biopsies 
stained by immunofluorescence (IF) for CD68, quantified using ImageJ and 
compared between PaC (n = 33) and Non-PaC (n = 10; Mann-Whitney U-test; 
p = 0.356). b, Liver biopsies were stained by immunohistochemistry (IHC) for 
the macrophage activation marker IBA-1. The percentage of stained area was 
quantified with ImageJ and compared between PaC (n = 45) and Non-PaC (n = 8; 
Mann-Whitney U-test; p = 0.687). c Liver biopsies were co-stained by IF for CD11B, 
CD68, and IBA-1 to assess for overlap of these markers (n = 3). d-f, Liver biopsies 

were co-stained by IF for CD3 and CD8 as in Fig. 2e,f. d, CD3 + CD8 + T cells were 
quantified using ImageJ and compared between PaC (n = 42) and Non-PaC (n = 13; 
Mann-Whitney U-test; p = 0.565). e, The intensity of CD8 staining and the degree 
of CD8 + T cell lobular infiltration in PaC livers (n = 42) were assessed by a blinded 
pathologist and compared to non-PaC livers (n = 12; Somers’ d; p = 0.112 and 
p = 0.648, respectively). f, CD3 + CD8− lymphocytes were quantified using ImageJ 
and compared between PaC (n = 42) and Non-PaC (n = 13; Mann-Whitney U-test; 
p = 0.070). Mean ± SEM are shown in bar graphs.
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Extended Data Fig. 4 | Single cell RNA sequencing (scRNAseq) of liver immune 
cells. a, Hepatic NPCs (>95% CD45+) were isolated from 3 non-PaC and 5 PaC 
patients and subjected to scRNAseq. A total of 33,311 cells were sequenced,  
with 48,294 mean reads per cell and 1,000 median genes per cell detected.  
The sequencing saturation was >78% for all samples. a, tSNE plot combining  
all samples showing clustering into 10 major cell clusters. b, Distribution of  
gene expression of conventional immune cell markers further defining the 

different cell types. c, Heatmap of top 5 genes assigning the main cell types.  
d, Co-expression of CD11B/ITGAM, CD68, and IBA-1/AIF1 was assessed at the  
gene level, revealing CD11B expression predominantly by the CD14+ monocyte 
subset of the myeloid cluster and by the NK cell subset of the lymphoid cluster, 
showing little co-expression with CD68 (top tSNE plot). IBA-1 was expressed  
by all 3 subsets of the myeloid cluster, and most CD68-expressing cells  
(bottom tSNE plot).
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Extended Data Fig. 5 | scRNAseq of liver immune cells showing altered NK cell 
subsets. a, GO pathway analysis (Metascape) of the upregulated genes (upper 
panel) and downregulated genes (lower panel; cutoff p < 0.1, after adjustment 
for multiple comparisons). b, Immune cell gene clustering (Cytoscape, ClueGO) 
of genes upregulated in CD11B + NK cells in PaC vs non-PaC (cutoff p < 0.1, after 
adjustment for multiple comparisons). c–e, Sub-analysis of the lymphoid cluster 
(corresponding to cluster 5 of Extended Data Fig. 5a) to explore subsets of CD3-
expressing lymphocytes demonstrated 7 sub-clusters (MAIT, mucosa-associated 
invariant T cells). c. Key defining genes are shown in d and in Fig. 3i. e, The relative 

proportion of these subclusters was compared between PaC and Non-PaC 
(multiple t-tests with correction for multiple comparisons, shown if p < 0.25).  
f, Cibersort-based deconvolution of the bulk liver mRNA sequencing data using 
the LM22 immune cell reference gene set for activated NK cells (PaC, n = 31; 
Non-PaC, n = 12; Mann-Whitney U-test, p = 0.053, Cibersort). g Cibersort-based 
deconvolution of the bulk liver mRNA sequencing data using the T/NKT immune 
cell gene set derived in Extended Data Fig. 4 (PaC, n = 30; Non-PaC, n = 12; Mann-
Whitney U-test, p = 0.042). Mean ± SEM are shown in bar graphs.
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Extended Data Fig. 6 | Imaging mass cytometry for characterization of 
CD3+ cell subsets. Imaging mass cytometry (IMC) was performed on a tissue 
microarray including 2-3 cores per patient from 5 Non-PaC and 30 PaC patients. 
a, Representative image from a patient with LiM>6 demonstrating the staining 
pattern and the spatial distribution. For calculation of lobular cell densities, 
portal areas (enclosed in dotted line here) were segmented and subtracted 
from the total cell count for each patient. b, Subsets of CD3+ cells in the entire 

liver section, or in the lobular areas only, were compared between PaC and 
non-PaC: CD3+, p = 0.048 (total) and p = 0.981 (lobular; Mann-Whitney U-test); 
CD4+, p = 0.048 (total) and p = 0.742 (lobular; t-test); CD8+, p = 0.170 (total) and 
p = 0.715 (lobular; Mann-Whitney U-test); NKT/γδΤ (TCRγδ+ and/or NKG2A+), 
p = 0.477 (total) and p = 0.604 (lobular; Mann-Whitney U-test); Treg (FOXP3+), 
p = 0.727 (total) and p = 0.448 (lobular; Mann-Whitney U-test). Mean ± SEM are 
shown in bar graphs. Only p < 0.25 are shown on the graphs.
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Extended Data Fig. 7 | Liver immune cells among recurrence groups.  
a, Liver biopsies obtained at the time of resection from patients with NED, or 
distant recurrence (EHM, LiM>6, or LiM<6) were manually scored by a blinded 
pathologist for lobular inflammation (Kruskal-Wallis test). b-h, Liver biopsies 
were stained by IHC (b, d) or IF (c, e-h) for different immune cell markers, 
quantified using ImageJ and compared between the defined PaC recurrence 

pattern groups (ANOVA and pair-wise t-tests with multiple comparison 
correction by FDR; only p-values < 0.25 are shown). Mean ± SEM are shown in bar 
graphs. b, CD45+ cells (n = 22; ANOVA p = 0.161). c, CD11B+ cells (n = 37; ANOVA 
p = 0.504). d, IBA1+ cells (n = 38; ANOVA p = 0.185). e, CD68+ cells (n = 29; ANOVA 
p = 0.544). f, CD3+ cells (n = 36; ANOVA p = 0.335). g, CD3+CD8+ cells (n = 36; 
ANOVA p = 0.289). h, CD3+CD8− cells (n = 36; ANOVA p = 0.420).
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Extended Data Fig. 8 | Metabolic dysregulations in the pre-metastatic liver. 
a, Liver steatosis, graded at the time of resection, was examined separately 
among patients with LiM (LiM<6 and LiM>6), and patients without LiM (either 
distant EHM or isolated local recurrence) or disease-free during follow-up (NED). 
Patients who developed LiM had significantly less steatosis compared to those 
who developed recurrence at other sites (either distant EHM or isolated local 
recurrence) which correlated with the severity of metastatic pattern (LiM<6 
being the worst and isolated local recurrence being the best prognostic group, 
based on overall survival outcomes [not shown]; Somer’s d test; p = 0.034).  
b, Kaplan-Meier curve of time to LiM in patients with (n = 24) or without (n = 19) 

evidence of liver steatosis (Log-rank test). c, Top 25 metabolites correlated 
with creatine in the pre-metastatic liver and d, expression of metabolites in the 
arginine/proline pathway (PaC, n = 24; Non-PaC, n = 9; t-test with correction for 
multiple comparisons). e, Comparison of serum creatinine levels among patients 
who underwent liver metabolomic analysis showed no difference (PaC, n = 24; 
Non-PaC, n = 9; Mean ± SEM; t-test, p = 0.680). f, Top 15 metabolites separating 
the defined recurrence groups (EHM, n = 5; LiM<6, n = 5; LiM>6, n = 5; NED, n = 7), 
including creatine and g, comparison of creatine levels in all analyzed samples 
(ANOVA; p < 0.001, FDR = 0.229). Box plots represent Median±IQR, with whiskers 
at 95th percentiles.
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Extended Data Table 1 | Clinicopathological characteristics of patients with PaC with different recurrence patterns (n = 41)
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