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Longitudinal multi-omics analysis of host 
microbiome architecture and immune 
responses during short-term spaceflight

Maintenance of astronaut health during spaceflight will require monitoring 
and potentially modulating their microbiomes. However, documenting 
microbial shifts during spaceflight has been difficult due to mission 
constraints that lead to limited sampling and profiling. Here we executed 
a six-month longitudinal study to quantify the high-resolution human 
microbiome response to three days in orbit for four individuals. Using 
paired metagenomics and metatranscriptomics alongside single-nuclei 
immune cell profiling, we characterized time-dependent, multikingdom 
microbiome changes across 750 samples and 10 body sites before, during 
and after spaceflight at eight timepoints. We found that most alterations 
were transient across body sites; for example, viruses increased in skin 
sites mostly during flight. However, longer-term shifts were observed 
in the oral microbiome, including increased plaque-associated bacteria 
(for example, Fusobacteriota), which correlated with immune cell gene 
expression. Further, microbial genes associated with phage activity, toxin–
antitoxin systems and stress response were enriched across multiple body 
sites. In total, this study reveals in-depth characterization of microbiome 
and immune response shifts experienced by astronauts during short-term 
spaceflight and the associated changes to the living environment, which can 
help guide future missions, spacecraft design and space habitat planning.

The sources and health impacts of spaceflight-associated microbiome 
shifts are an open, yet important area of study. Microbes play mani-
fold roles in human physiology; understanding the complex interplay 
between the space environment and host-microbiome composition 
is critical. This is especially true with the recent proliferation of com-
mercial spaceflight missions and increased space tourism: individuals 
with increasingly diverse medical histories will travel into space and to 
the Moon (for example, dearMoon)1, and these crews will also carry a 
more complex history and range of microbiome states (for example, 
recent antibiotic usage). In this new age, astronauts can be immuno-
compromised, cancer survivors, elderly or have other health profiles 
that put them severe other severe outcomes, especially relative to 
previous NASA, ESA, JAXA and ROSCOSMOS missions2.

Microbes are already associated with many spaceflight-specific 
health indications. In microgravity, many individuals experience 
gastrointestinal discomfort (that is, constipation), which is heavily 
linked to gut microbiome composition3–7. The skin barrier is disrupted 
and often inflamed, allowing potential invasion of pathobionts or 
otherwise inflammatory microorganisms8–12. Although the mech-
anisms are not entirely understood, the immune system experi-
ences suppression during spaceflight, leading to inflammation or 
a ‘reactivation’ of latent infections, such as herpes viruses13–17. As a 
result, identifying the sources and impacts of microbiome changes 
as a function of spaceflight will be essential for the development 
of microbiome-targeted, spaceflight-relevant diagnostics and  
therapeutics.
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classifier between flight and the abundance of (1) bacterial species,  
(2) viral genera and non-redundant proteins. We grouped false discov-
ery rate (FDR) significant (q-value < 0.05) features into four categories: 
transiently increased in-flight, transiently decreased in-flight, per-
sistently increased in/after flight and persistently decreased in/after 
flight. We additionally fit generalized linear models (GLMs) alongside 
LMEs and identified the two approaches to be generally concordant  
(Extended Data Fig. 2).

In total, we observed a predominantly transient restructuring of 
the oral, nasal and skin microbiomes as a function of flight (Fig. 1b–c 
and Extended Data Fig. 3). Across all ten sites swabbed and regressed, 
over 821,337 associations were statistically significant (adjusted 
P < 0.05) and grouped into one of the four categories of interest. These 
comprised 314,701 distinct microbial features: 792 were viral, 767 
were bacterial and the remaining were microbial genes. The major-
ity (73.5%) of significant and categorized features were transiently 
increased in abundance, yet 24.6% were transiently depleted during 
flight, and 0.6% and 1.1% of features appeared to continually increase 
or decrease (respectively) following the crew’s return to Earth across 
multiple timepoints. Transient shifts were more dramatic than per-
sistent ones. The limited persistence of changes indicates that, while 
microbial communities may restructure in space, the relative abun-
dance of altered organisms, as well as their gene expression, generally 
reset upon returning to Earth. Despite these changes, we note that 
this analysis alone does not indicate the degree to which spaceflight 
itself, versus other confounding factors such as altered diet, affects  
the host microbiota.

Different body sites displayed distinct time trends that varied 
depending on molecular type (gene expression vs relative abundance) 
and domain of life. Time-dependent shifts were apparent in all body 
sites. The oral microbiome displayed a restructuring in both relative 
abundance and bacterial gene expression; 161 bacterial and viral tax-
onomies were transiently increased, 173 were transiently decreased, 
62 were persistently increased and 12 were persistently decreased 
(Fig. 1c). Alternatively, the skin microbiome demonstrated fewer per-
sistent changes, with 933 transiently increased (metagenomic) taxa 
across all eight skin sites. The number and direction of altered microbi-
ome features were generally consistent across classification methods 
(Extended Data Fig. 4), and most taxonomic associations were unique 
to individual body sites (Extended Data Fig. 5).

Bacterial and viral shifts during and after spaceflight
We next interrogated the taxonomies of bacterial shifts during space-
flight. The organisms with the strongest effects were distinct across 
biological modalities; in other words, an increase in gene expression 
did not necessarily imply the existence of a similar increase in the 
abundance of DNA ascribed to a given species. This discordance was 
apparent in the oral microbiome (Fig. 2), for example, where there 
was almost no overlap between the organisms that altered in terms of 
relative abundance and those that altered in terms of gene expression.

Specifically, the oral microbiome demonstrated flight-dependent 
variation in the metatranscriptomic expression of bacteria associated 
with dental decay and biofilm formation (Fig. 2). Various members 
of Fusobacteriota, a progenitor to gum and tooth disease previously 
reported as spaceflight-associated, demonstrated an increase either 
in or after spaceflight27. These included Fusobacterium hwasookii, 
Fusobacterium nucleatum and Leptotrichia hofstadii. Other oral biofilm 
species known to aggregate synergistically with Fusobacterium spe-
cies in the mouth were also enriched in and after flight; these included 
Streptococcus gordonii A, multiple Campylobacter species and Actino-
myces oris species28. Also, there was a persistent loss in the expression 
of Streptococcus oralis spp. and Lachnoanaerobaculum gingivalis, and 
a transient decrease in Veillonella spp. Alloscardovia omnicolens was 
the only organism with a strong, persistent increase in metagenomic 
levels. We compared the MetaPhlAn4 associations to those identified 

Microbial physiology, genetics and community composition are 
also dramatically affected by the space environment, probably due 
to the stressors of microgravity and radiation18–20. These changes, 
taken together, alter the nature of microbial communities and, there-
fore, their cumulative impact on the host21. We recently documented 
the ‘International Space Station (ISS) effect’, in which organisms on 
the ISS exhibit increasing resistance to antibiotics over time, despite 
not having been exposed to them in the first place22. Many Biosafety 
Level 2 organisms, including Haemophilus influenzae, Klebsiella 
pneumonia, Salmonella enterica, Shigella sonnei and Staphylococcus 
aureus, have been observed to exhibit ecological succession in the 
environment of the ISS, demonstrating the propensity of the space 
environment to select for specific community compositions and  
gene content23,24.

Early studies in aerospace medicine have indicated that the 
microbiomes of humans and the built environment shift as a func-
tion of spaceflight25; however, there are many open questions regard-
ing spaceflight’s microbiome architecture: the totality of detectable 
flight-associated compositional and expression shifts in the set of all 
bacteria, viruses and microbial genes in the host and their surrounding 
environment (Glossary/Supplementary Table 1). Also, the proportion 
of organisms acquired from other crew members, versus from the envi-
ronment, remains unclear, and the transience of microbiome changes 
post-flight remains opaque. Notably, the metatranscriptomic activity 
of human-associated microbes in response to flight is completely 
absent. These questions predominantly remain because previous 
studies have been hampered by (1) limited sample sizes, (2) a lack of 
longitudinal data and (3) a focus on single sequencing modalities (that 
is, amplicon sequencing or only DNA profiles).

To interrogate microbiome community activity in spaceflight, 
we recently executed a longitudinal, multi-omic (metagenomics, 
metatranscriptomics, single-cell immunome) sampling study of the 
SpaceX Inspiration4 mission (i4)—the first all-civilian commercial 
spaceflight. Over a 6-month window, the crew collected environmental 
(that is, from the Dragon capsule), skin (n = 8 sites), nasal and oral swabs 
at eight timepoints before, during and after a 3-day, high-elevation 
(590 km) mission in orbit, as well as peripheral blood mononuclear 
cells (PBMCs) before and after spaceflight (n = 3 per flight window). 
We focused on expression and abundance shifts and their relation-
ship to host immune status as a function of spaceflight. Our results 
yield a standardized approach for temporally monitoring microbial 
exposomic changes as a function of spaceflight and, in total, character-
ize the microbiome architecture26 of biomedically relevant taxa that 
are activated or repressed during short-term spaceflight.

Results
The human microbiome is altered in short-term spaceflight
The i4 crew collected a microbiome dataset spanning eight timepoints: 
three before flight, three after flight and two during flight. In total, 
we sequenced 385 metagenomic and 365 metatranscriptomic swabs 
comprising ten body sites representing the oral, nasal and skin micro-
biomes (n = 750 samples, Fig. 1a), plus eight stool samples (from two 
participants before and after flight). Locations inside the Dragon cap-
sule were swabbed twice in flight and also before spaceflight (a separate 
capsule was utilized for crew training).

We used a diverse set of short-read alignment and de novo 
assembly approaches to estimate the microbial community taxo-
nomic and functional composition of our dataset (Extended Data 
Fig. 1, Methods and Supplementary Figs. 1–7). We queried whether 
the conditions of short-term spaceflight (potentially including, for 
example, microgravity, radiation or altered dietary and cleaning hab-
its) altered overall bacterial and viral community composition and 
expression consistently across the crews. Via a linear mixed effect 
(LME) modelling approach, we executed a microbiome-association 
study (MAS), computing associations for each taxonomic rank and 
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in the GTDB database and found similar results, especially regarding 
the overall enrichment of Fusobacterium sp. in flight.

Many of the strongest bacterial skin microbiome alterations 
(Fig. 3) were predominantly metagenomic, as opposed to metatran-
scriptomic. We hypothesized that this may indicate the acquisition 
of new but non-transcriptionally active species from the surrounding 
environment and crew. For example, persistent increases were mostly 
in the metagenomic content of various gut microbes (for example, 
Bacteroides, Parabacteroides, Blautia, Enterocloster); this may result 
from altered hygiene habits during spaceflight.

As with the oral microbiome, there was little concordance 
between metagenomic and metatranscriptomic changes. On the 
other hand, Corynebacterium species (common skin commensals) 
experienced metatranscriptomic, temporary depletion in-flight, and 
Acinetobacter spp. demonstrated a persistent depletion. These ‘typi-
cal’ skin microbes (for example, Corynebacterium, Staphylococcus, 

Variovorax, Acinetobacter) underwent changes in metatranscrip-
tomic activity, whereas organisms not universally found on the 
human skin (for example, Mesorhizobium spp., Prevotella spp.) 
tended to experience metagenomic shifts, again indicating the 
potential acquisition of non-transcriptionally active organisms from  
different niches.

However, the landscape of viral activity and depletion covered 
region-specific, prokaryotic- and eukaryotic-targeting viral genera 
(Fig. 3b). The majority of detectable viral activity comprised phages in 
the skin microbiome (that is, DNA viruses targeting prokaryotic hosts), 
and it was concentrated in the gluteal crease. Most viral activity was 
transiently increased in-flight across diverse lineages. For example, 
Uroviricota, Cressdnaviricota and Phixviricota shifted across the oral, 
skin and nasal microbiomes. However, phyla containing biomedically 
relevant, potential human pathogens also increased, including Kitrino-
viricota, Artverviricota, Nucleocytoviricota and Duplornaviricota.
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Fig. 1 | Overview of dataset and summary of alpha diversity. a, Collection and 
analytic approach. Body swabs were collected from ten different sites, comprising 
three microbial ecosystems (oral, nasal, skin) around the body at eight different 
timepoints surrounding launch. These are referred to as L-92, L-44, L-3, FD2, FD3, 
R+1, R+45, R+82, where ‘L’ refers to pre-launch, ‘FD’ corresponds to flight day (that 
is, in-flight) and ‘R’ refers to return (that is, post-flight). Following collection and 
paired metagenomic/metatranscriptomic sequencing, samples were processed 

with a MAS to extract taxonomic (bacterial or viral) and functional features to 
determine their changes relative to flight. b, The time trajectories of persistently/
transiently increased/decreased significant findings, filtering for strong 
associations (see Methods). Plots with one line had either no significant findings 
or none that met the filtering criteria. Grey shaded area indicates 95% confidence 
intervals. The orange shaded area refers to the samples collected while subjects 
were in orbit. c, Significant features by specific swabbing sites.
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A core functional microbial landscape of spaceflight
We next aimed to characterize the consistency with which microbial 
gene abundances changed across time and body site across 3.6 mil-
lion non-redundant genes. First, we explored the broad functions of 
the genes that fell into either the transiently increased or transiently 
decreased categories. The increases in DNA content on the skin, as well 
as decreases in nasal microbiome content, were immediately appar-
ent (Extended Data Fig. 6a, third and first columns, respectively), 
and the oral microbiome and gluteal crease also underwent large 

metatranscriptomic increases. Of note, the category that exhibited 
the greatest fluctuation in genes was ‘amino acid transport and metabo-
lism’. In the exposed areas of the skin, such as the forearm, the genes that 
were changed in this category mostly came from metagenomic data. 
In less exposed body sites (that is, oral, gluteal crease), the activity in 
this category was primarily metatranscriptomic. This may indicate the 
dramatic degree to which microbial nutrient needs change in-flight, 
probably from a combination of features ranging from environmental 
strain transfer, competition and host dietary changes.
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Fig. 2 | The oral microbiome architecture of spaceflight. The strongest 
associations between bacteria and flight for the oral microbiome. X axes 
are average log2 fold change (L2FC) of all pre-flight or post-flight timepoints 
compared to the average mid-flight abundances for a given taxon. Columns 
correspond to different association categories that are described visually by 

the example line plots on top of each one. Red bars refer to associations in 
metatranscriptomic data. Blue bars refer to associations in metagenomic data. 
Dashed grey vertical lines demarcate an L2FC of zero. Plotted taxa were selected 
by ranking significant features in each category and sequencing type (RNA/DNA) 
by L2FC and showing up to 15 at once.
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The oral, nasal and skin microbiomes demonstrated consistency 
in the functions that were altered during spaceflight, especially in the 
metagenomic data. We observed five different categories of proteins 
of interest enriched among increased features: antibiotic and heavy 
metal resistance, haem binding/export, lantibiotic-associated genes, 
phage-associated genes and toxin–antitoxin systems (Extended Data 
Figs. 6b and 7–9). Lantibiotic biosynthesis again displayed a discordant 
response between sequencing types; it was decreased in the metagen-
omic data but increased in metatranscriptomics. Phage proteins, 
toxin–antitoxin systems, and antibiotic-related/heavy metal pathways 

increased noticeably across all host niches. As in other spaceflight stud-
ies22,29, we specifically observed an increase in the RelB toxin–antitoxin 
genes, most notably through metatranscriptomics.

Microbial similarity between the capsule and crew members
We observed that, on average, bacterial beta diversity appeared to 
decrease after flight (Fig. 4a), indicating a broad convergence of the 
crew microbiome. When ranking sites by similarity to the capsule 
mid-flight (Fig. 4a, from left to right), the beta diversity correlated 
with the degree of environmental exposure for a given sampling site. 
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Fig. 3 | The skin microbiome and viral architecture of spaceflight. a, The 
strongest associations between bacteria and flight for the skin microbiome. 
X axes are the average L2FC of all pre- or post-flight timepoints compared to 
the average mid-flight abundances for a given taxon. Columns correspond to 
different association categories that are described visually by the example line 

plots on top of each one. Dashed grey vertical lines demarcate an L2FC of zero. 
Plotted taxa were selected by ranking significant features in each category and 
sequencing type (RNA/DNA) by L2FC and showing up to 10 at once. b, Host and 
molecular type of viral genera associated with flight.
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For example, the oral microbiome remained highly dissimilar from 
the microbiome of the capsule and other sites, whereas the forearm 
microbiome became much more similar to that of the walls of the 
Dragon capsule and other crew members, which matches the degree 
of exposure of that body site.

Further, our MAS also indicated that during spaceflight, the com-
position of the crews’ microbiota changed, most notably in the skin 
niche, although the sources of these alterations were unclear. We 
hypothesized that these shifts in community composition and the 
overall increase in microbiome similarity could simply be a result of 
individuals cohabitating in a tight space; however, a change in gene 
expression in the oral microbiome, where microbial exchange is prob-
ably less likely, could derive from other ecological or other exposure 
changes such as diet or immune alterations.

Therefore, we next identified shared microbial signatures between 
individuals and the environment. Specifically, we queried whether host 
microbiomes converged during and after flight and whether putative 

microbial exchange occurred within individuals, between individuals, 
or both within individuals and the capsule, utilizing recently published 
methods30 to determine whether strain-level markers could discern the 
directionality of microbial exchange across environments.

Overall (Fig. 4b), we found that while in flight, marker genes for 
individual microbial strains were mostly shared between skin microbi-
ome samples from the same individual (and not across individuals). The 
capsule had variation in overlap with individuals, with most occurring 
in exposed skin. Moreover, there were more potential shared microbial 
strains between the capsule and different individuals by the second 
sampling in-flight (Fig. 4c), indicating an influence of cohabitation 
time on migration. Strains identified by StrainPhlAn, such as Mes-
orhizobium_hungaricum|t__SGB11031, identified as present in multiple 
locations mid-flight (Fig. 4d), were similar in part to those GTDB spe-
cies identified as increased metagenomically (but not transcription-
ally) across exposed skin sites (Fig. 3). Notably, most of these putative 
sharing between individuals were present after flight, as opposed to 
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Fig. 4 | Microbial propagation through the Dragon capsule and the crew.  
a, Beta diversities for bacterial metagenomics. Heat map colour corresponds 
to average beta diversity, with black being the midpoint (0.5), blue being totally 
dissimilar (1.0) and grey being highly similar (0.0). Columns are hierarchically 
clustered. The interpretation for a single cell is for the crew member annotated 
on the right-hand side: the value encoded refers to the dissimilarity of that 
individual’s body site (as indicated on the column) to all other cells in that column 

(so the capsule and all other crew samples from the same site). For example, the 
bottom right cell indicates C004’s average forearm dissimilarity to all other crew 
member’s forearm swabs. b, Strain-sharing events between the crew and the 
capsule during the mid-flight timepoints. c, The number of strain-sharing events 
across time, where an event is defined as the detection of the same strain between 
two different swabbing locations. d, Organisms with at least two strain-sharing 
events detected within a given timepoint.
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before the mission, indicating in-flight transfer. Finally, we note that 
in this dataset, which contains numerous low-biomass samples, any 
indications of strain-sharing are difficult to validate (for example, 
contamination could potentially drive some of the findings), so the 
following results should be validated in future skin microbiome and 
aerospace studies.

Spaceflight microbiome shifts associate with host gene 
expression
Having mapped the architecture of microbiome changes surrounding 
spaceflight and identified the source of some of those changes, we 
next searched for indications of a link between microbiome ecology 
and the host immune system. To do so, we integrated the observations 
from our MAS with host immune single-nuclei transcriptome data 
from PBMCs. Via averaging across single-nuclei sequencing informa-
tion, we estimated the gene expression of nine host immune cell sub-
populations and we computed differentially expressed genes within 
cell types post-flight using lasso regression to identify candidate rela-
tionships between flight-associated, increased microbial features and 
immune cell subpopulation gene expression. Specifically, we aimed 
to identify whether metatranscriptomic or metagenomic (that is, 
cohabitation-derived) changes were more likely to be correlated with 
immune transcriptome changes.

We observed many putative relationships between host immune 
cell expression, body site and microbial features (Fig. 5a). Bacterial spe-
cies, specifically in the oral microbiome, had many metatranscriptomic 
associations across all cell types. In terms of relative abundance (that 
is, metagenomics), oral microbes were associated with CD4 T cells, 
CD8 T cells and CD16 monocytes, which are known for innate immune 
response against pathogens31,32. Skin bacteria had very few associa-
tions with immune cells (compared to oral) in both metagenomics and 
metatranscriptomics. The overall lack of associations between skin 
bacteria and immune response was interesting, as it indicated that while 
microbes are potentially acquired during flight (as observed in Fig. 4), 
these acquired microbes may have limited immediate impact on the 
host. In other words, there was limited evidence that strain-sharing due 
to cohabitation drove a strong altered immune state in humans. Con-
versely, we did observe a limited link in our data between viruses and 
immune cell expression, with natural killer (NK) cells, CD14 monocytes, 
dendritic cells and CD16 monocytes showing the most viral associa-
tions; these associations were predominantly in the skin microbiome, 
which may relate to previous observations of increase viral shedding 
in astronauts.

Next, we examined a subset of microorganisms with expression 
and abundance changes that correlated with host genes across mul-
tiple immune cell types (Fig. 5b). A small group of metagenomically 
detected viruses were associated with many different immune genes; 
one genus (Family Genomoviridae) targets fungi and was correlated 
with 13 genes in natural killer cells. The presence of this virus on the skin 
makes additional sense given that fungi are known skin symbionts. The 
other associated viruses had unclassified hosts or targeted bacteria.

In the oral microbiome, pathobiont gene expression was associ-
ated with immune cell gene expression. Streptococcus pneomoniae A 
had the largest number of genes associated with it; 30/32 genes were 
found in natural killer cells. Streptoccocus gordonii A, which was persis-
tently increased after flight was associated with many different immune 
cell subtypes (N = 32 genes), including CD4 T cells, CD14 monocytes, 
CD16 monocytes and dendritic cells. The only oral bacterial relative 
abundance increase during or after flight that was associated with 
many immune cell subtypes was in Gemella morbillorum. The other oral 
microbes with the strongest oral associations included other medically 
relevant organisms, as well as some typical commensals: Pauljensenia 
hongkongensis, Campylobacter_A concisus_R, Actinomyces massilien-
sis, Haemophilus_A parahaemolyticus, Leptotrichia_A sp905371725, 
Porphyromonas catoniae and many Streptococcus spp.

The microbial genes (Fig. 5c) associated with the most human 
genes were detected via both shifts in relative abundance (DNA) as well 
as expression (RNA). They spanned many different protein annotations, 
yet there were some commonalities among those that were correlated 
with many immune cell subpopulations. Most notably, these annota-
tions, across both metagenomics and metatranscriptomics, included 
transcription factors, cell surface proteins and transporters. Pertinent 
to our previous results (Extended Data Fig. 6b), the top microbial gene 
(for example, hemX) in the nasal microbiome was the haem uptake 
protein IsdC.

Discussion
In this study, which comprises the largest dataset of spaceflight- 
associated microbiome data so far, we systematically queried the micro-
biome architecture of short-term spaceflight. Previous efforts, such as 
the NASA twins study, have had difficulty mapping microbiome shifts 
due to small sample sizes, restricted body site sampling (n = 3) and 
limited sequencing modalities25. Here we show significant bacterial, 
viral and gene-level microbiome shifts and their potential relation-
ship to host immune response, which can help inform sampling and 
monitoring for future missions.

Chief among our findings was that native microbiome shifts were 
highly correlated with host immune changes. Naturally, a microbial 
shift can affect the host immune system, or vice versa, without the 
initial cause being ‘space-specific’ (that is, due to microgravity or 
radiation). Dietary factors or other confounders could drive a por-
tion of these effects. Putative convergence in microbiome signatures 
(Fig. 4a), for example, could be (and probably is) a function of humans 
residing in close quarters. Moreover, crews have been documented as 
experiencing immune and viral reactivation15; typically, this effect is 
not attributed solely to cohabitation, and we showed here that species 
potentially acquired from the environment in flight were not associated 
with immune cell changes—a topic that has been debated in previous 
studies25. We claim, therefore, that it is unlikely that strain sharing due 
to close quarters, or even variable sanitation in-flight, could explain 
the entirety of the link between host immune response and the micro-
biome. Future manuscripts, of course, could leverage this dataset 
as well as data from analogue astronaut studies on Earth to test this 
hypothesis more rigorously.

An additional paper focuses more on the host-side of immune 
activation33, reporting specific human genes that seem to be associated 
with microbial features and integrating additional datasets. However, 
for completeness, we briefly document here some human genes of 
interest that were microbiome-associated. By cell type, we documented 
the most strongly associated genes with microbial features. For bacte-
ria, gene functions were annotated with, for example, long non-coding 
RNAs (across all cell types), immunoglobulin genes (CD14 monocytes) 
and interferon regulatory factors. We additionally uncovered associa-
tions with specific immune modulatory genes such as CXCL10, XCL1, 
CXCL8 (immune cell migration), NLRC5, HLA genes, CD1C (antigen 
presentation/co-stimulation), SLC2A9 (immune cell metabolism), 
IRF1, NR4A3 and STAT1 (transcription factors that specify immune cell 
states) that increased across multiple immune cell types (B cells, CD4 
T cells, CD8 T cells, CD14 monocytes, DCs, NK cells).

A limitation of our work is its observational nature, which arises 
from the overall study design and an opportunistic mission. Despite 
having more samples than all other astronaut microbiome studies 
combined, this effort still hosts a relatively small crew size (n = 4), and 
we cannot determine from these data alone if an outside effect on the 
immune system is altering their abundance or expression or if microbi-
ome ecology may be driving these and similar changes. Given the nas-
cence of the multi-omic space biomedicine (and the difficulty of sample 
collection), we were limited in this study to simply observing shifts in 
microbes and, from multi-omic data integration, inferring hypotheses 
regarding the overall nature of the mid-flight microbe–immune axis.
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As a result, there are several opportunities to expand on this 
work in future studies and missions. Analytically, our lasso-based 
approach for immune–microbe interaction modelling of immune 
cell gene expression changes does not inherently allow for statistical 

inference or account for inter-individual variation. Further, some of our 
samples had very low biomass, requiring PCR-amplification (18 cycles)  
for RNA-sequencing data, which can increase duplicate rates of 
sequences. For this reason, we attempted to take a conservative and 
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Fig. 5 | The landscape of potential immune–microbiome associations related 
to spaceflight. a, The total number of microbial features, by type, associated 
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associated (increased in abundance or expression) bacteria and viruses that were 
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is known, no label was assigned. c, The spaceflight-associated microbial genes 
that were associated with the greatest number of host genes. We sorted for genes 
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systematic modelling approach to our effort. Specifically, (1) we 
implemented multiple algorithms and compared their concordance,  
(2) set coverage thresholds for bacterial and viral taxa to filter probable 
false positives, (3) used multiple, state-of-the-art taxonomic clas-
sifiers and compared our findings among all of them, (4) mapped 
reads across five databases and (5) implemented and compared 
both generalized linear models and mixed effect models, bearing in 
mind that the latter can face interpretability challenges with smaller 
sample sizes. Additional modelling strategies, including network 
analyses34, could be implemented in addition to those we have tested 
here. For example, recently developed network models or methods 
for controlling false positive rates in compositional data could be  
potentially useful34,35.

We additionally used 76 negative controls to attempt to avert 
false positive signals, which can stem from contamination and the 
kitome. Depending on their aim, future studies should alter collection 
methods to increase the amount of biomass collected during sampling 
(for example, using one swab for multiple skin sites) or examine rela-
tively unbiased methods of amplification36. In addition, they should 
encourage more detailed reporting on diet and cleaning methods (for 
example, wet wipes) to adjust for potential confounders introducing 
foreign microbial DNA into the host.

Further, in this study, we attempted to measure viral shifts as a 
function of flight. Measuring viral abundances in metagenomic and 
(particularly) metatranscriptomic data is extremely challenging. First, 
the decontamination process we used to remove environmental con-
taminants was not designed for organisms as ubiquitous and with such 
short, diverse genomes as viruses. Second, high-resolution taxonomic 
classification of viruses is non-trivial. We observed, for example, many 
spaceflight-associated viruses with unusual names, often mapping 
to viral species not typically found in or on humans. Simply put, the 
viral universe is so vast that these alignments may represent both read 
alignments and as well as spurious read mapping (and databases lack-
ing the strains that are truly present). While our benchmarking efforts 
(Extended Data Fig. 10) increased our confidence in our results, the viral 
taxonomic and functional mapping field is an area that will benefit the 
most from improved methods in the future.

Additional experiments and missions can further test a microbiome- 
derived theory of spaceflight-associated immune changes. In addition 
to stress-testing our findings and increasing sample sizes, future space-
flight studies should consider several enhancements. For instance, 
they should compare sequestered ground controls to discern differ-
ences between space-driven and proximity-driven immune shifts. 
In addition, future efforts should design experiments that enable 
a deeper view into the causality of microbe–immune associations. 
Exploring some of these hypotheses through animal or organoid 
models could be valuable, as well as comparison to large control  
cohorts.

In total, spaceflight microbiome studies are hyperbolic extensions 
of human exposome research. They capture a group of effectively 
immunocompromised individuals who share a self-contained environ-
ment that does not undergo microbial exchange with the outside world. 
Since these studies are rare, the range of immune system dynamics 
is just beginning to be explored. Overall, we describe here data and 
methods to map the axes of host–microbe–environment interaction, 
such that these observations and hypotheses can be tested and even 
modulated in future studies. Indeed, the increased access to space 
guarantees more opportunities to study astronauts, their microbiomes 
and their spacecraft while also motivating a strong health and medical 
impetus to plan for future missions.

Methods
Informed consent and ethics approval
This study was completely in accordance with appropriate ethics guide-
lines. All participants consented at an informed consent briefing at 

SpaceX (Hawthorne, California), and samples were collected and pro-
cessed under the approval of the institutional review board at Weill 
Cornell Medicine, under Protocol 21-05023569. All crew members 
provided written informed consent for data and sample sharing.

Sample collection, extraction and sequencing
We sequenced analysed samples from human skin, oral and nasal envi-
ronmental swabs before, during and after a 3-day mission to space. 
This dataset comprised paired metagenomic and metatranscriptomic 
sequencing for each swab. A total of 750 samples were collected in this 
study by the four crew members of the SpaceX Inspiration4 mission. 
The samples were taken from 10 body sites (Fig. 1a) across 8 collection 
points (3 pre-launch, 2 mid-flight and 3 post-flight) between June 2021 
and December 2021. The crew additionally collected 20 samples from 
multiple Dragon capsules from 10 different locations. We note that 
some crew members (two adult male, two adult female) were using wet 
wipes (UPC, 036000317985) to bathe themselves in-flight in between 
swabbing; however, not every crew member did so, and SpaceX did 
not require this to be a consistent protocol among the crew. Wet wipes 
used by the crew were neither reused nor shared, which should limit 
any influence of this confounding variable. No statistical methods were 
used to predetermine sample sizes but our sample sizes are greater 
than any previous publication in this field.

The crew were each provided sterile Isohelix Buccal Mini Swabs 
(Isohelix, MS-03) and 1.0 ml dual-barcoded screw-top tubes (Thermo 
Scientific, 3741-WP1D-BR/1.0 ml) prefilled with 400 μl of DNA/RNA 
Shield storage preservative (Zymo Research, R1100). Following sam-
ple collection, swabs were immediately transferred to the barcoded 
screw-top tubes and kept at room temperature for less than 4 days 
before being stored at 4 °C until processing. Additional descriptions 
of the sample collection and sequencing methods are available in 
companion publications37

DNA, RNA and proteins were isolated from each sample using the 
QIAGEN AllPrep DNA/RNA/Protein kit (QIAGEN, 47054) according to 
manufacturer protocol, yet omitting steps one and two. To lyse biologi-
cal material from each sample, 350 μl of each sample was transferred 
to a QIAGEN PowerBead tube with 0.1 mm glass beads and secured to 
a Vortex-Genie 2 using an adapter (1300-V1-24) before being homog-
enized for 10 min. Of the subsequent lysate, 350 μl was transferred to 
a spin-column before proceeding with the protocol. Concentrations 
of the isolated DNA, RNA and protein for each sample were measured 
by fluorometric quantitation using the Qubit 4 fluorometer (Thermo 
Fisher, Q33238) and a corresponding assay kit. The Qubit 1Xds DNA 
HS Assay kit was used for DNA concentration (Q33231) and the RNA 
HS Assay kit (Q32855) was used for RNA concentration.

For shotgun metagenomic sequencing, library preparation 
for Illumina NGS platforms was performed using the Illumina DNA 
FLEX Library Prep kit (20018705) with IDT for Illumina DNA/RNA US 
indexes (20060059). Following library preparation, quality control 
was assessed using a BioAnalyzer 2100 (Agilent, G2939BA) and the 
High Sensitivity DNA assay. All libraries were pooled and sequenced 
on an S4 flow cell of the Illumina NovaSeq 6000 Sequencing System 
with 2 × 150-bp paired-end reads.

For metatranscriptomic sequencing, library preparation and 
sequencing were performed at Discovery Life Sciences (Hunts-
ville, Alabama). The extracted RNA went through an initial purifi-
cation and cleanup with DNase digestion using the Zymo Research 
RNA Clean & Concentrator Magbead kit (R1082) following the 
manufacturer-recommended protocol on the Beckman Coulter Biomek 
i5 liquid handler (B87583). Following cleanup, ribosomal RNA reduction 
for RNA-seq library reactions was performed using the New England 
Bioscience NEBnext rRNA Depletion kit (Human/Mouse/Rat) (E6310X), 
and libraries were prepared using the NEBnext Ultra II Directional RNA 
Library Prep kit (E7760X) with GSL 8.8 IDT Plate Set B indexes. Follow-
ing library preparation, quality control was assessed using the Roche 
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KAPA Library Quantification kit (KK4824). All libraries were pooled and 
sequenced on an S4 flow cell of the Illumina NovaSeq 6000 Sequencing 
System with 2 × 150-bp paired-end reads.

For faecal collection, all participants were provided with DNA 
Genotek OMNIgene-GUT (OM-200) kits for gut microbiome DNA col-
lection. Each participant was instructed to empty their bladder and 
collect a faecal sample free of urine and toilet water. From the faecal 
specimen, each participant used a sterile single-use spatula, provided 
by the OMNIgene-GUT kit, to collect the faeces and deposit it into the 
OMIgene-GUT tube. Once deposited and sealed, the user was instructed 
to shake the sealed tube for 30 s to homogenize the sample and release 
the storage buffer. All samples from each timepoint were stored at 
room temperature for less than 3 days before storing at −80 °C long 
term. Faecal samples collected using the OMNIgene-GUT kit are stable 
at room temperature (15–25 °C) for up to 60 days.

DNA was isolated from each sample using the QIAGEN PowerFecal 
Pro DNA kit (51804). OMNIgene-GUT tubes were thawed on ice (4 °C) 
and vortexed for 10 s. Then, 400 μl of homogenized faeces was trans-
ferred into the QIAGEN PowerBead Pro tube with 0.1 mm glass beads and 
secured to a Vortex-Genie 2 using an adapter (1300-V1-24) before being 
homogenized at maximum speed for 10 min. The remainder of the proto-
col was completed as instructed by the manufacturer. The concentration 
of the isolated DNA was measured by fluorometric quantitation using 
the Qubit 4 fluorometer (Thermo Fisher, Q33238), and the Qubit 1Xds 
DNA Broad Range Assay kit was used for DNA concentration (Q33265).

For shotgun metagenomic sequencing, library preparation 
for Illumina NGS platforms was performed using the Illumina DNA 
FLEX Library Prep kit (20018705) with IDT for Illumina DNA/RNA US 
indexes (20060059). Following library preparation, quality control 
was assessed using a BioAnalyzer 2100 (Agilent, G2939BA) and the 
High Sensitivity DNA assay. All libraries were pooled and sequenced 
on the Illumina NextSeq 2000 Sequencing System with 2 × 150-bp 
paired-end reads.

Sample quality control
All metagenomic and metatranscriptomic samples underwent the same 
quality control pipeline before downstream analysis. Software used was 
run with the default settings unless otherwise specified. The majority 
of our quality control pipeline makes use of bbtools (v.38.92), start-
ing with clumpify (parameters: optical = f, dupesubs = 2,dedupe = t) 
to group reads, bbduk (parameters: qout = 33 trd = t hdist = 1 k =  
27 ktrim = ‘r’ mink = 8 overwrite = true trimq = 10 qtrim = ‘rl’ threads =  
10 minlength = 51 maxns = −1 minbasefrequency = 0.05 ecco = f) to 
remove adapter contamination, and tadpole (parameters: mode = cor-
rect, ecc = t, ecco = t) to remove sequencing error38. Unmatched reads 
were removed using bbtool’s repair function. Alignment to the human 
genome with Bowtie2 v.2.2.3 (parameters: –very-sensitive-local) was 
done to remove potentially human-contaminating reads39.

Metagenomic assembly, bacterial and viral binning, and bin 
abundance quantification
We assembled all samples with MetaSPAdes v.3.14.3 (–assembler-only)40. 
Assembly quality was gauged using MetaQUAST (v.5.0.2)41. We 
binned contigs into bacterial metagenome-assembled genomes on a 
sample-by-sample basis using MetaBAT2 v.2.12.1 (parameters: –min-
Contig 1500)42. Depth files were generated with MetaBAT2’s built-in 
‘jgi_summarize_bam_contig_depths’ function. Alignments used in 
the binning process were created with Bowtie2 v.2.2.3 (parameters: 
—very-sensitive-local) and formatted into index bamfiles with sam-
tools v.1.0.

Genome bin quality was checked using the ‘lineage’ workflow of 
CheckM (v.1.2)43. Medium and high-quality bins were dereplicated 
using deRep v.3.2.2 (parameters: -p 15 -comp 50 -pa 0.9 -sa 0.95 -nc 
0.30 -cm larger). The resulting database of non-redundant bins was 
formatted as an xtree database (parameters: xtree BUILD k 29 comp 2),  

and sample-by-sample alignments and relative abundances were com-
pleted with the same approach as before. Bins were assigned taxonomic 
annotations with GTDB-tK (v.2.1.1)44.

Identification and taxonomic annotation of assembled  
viral contigs
To identify putative viral contigs, we used CheckV (v.0.8.1)45. For down-
stream viral abundance quantification, we filtered for contigs annotated 
as medium quality, high quality or complete. This contig database was 
dereplicated using BLAST and clustered at the 99% identity thresh-
old as described above using established and published approaches 
(https://github.com/snayfach/MGV/tree/master/ani_cluster)46. The 
non-redundant viral contigs were formatted as an xtree database 
(parameters: xtree BUILD k 29 comp 0), and sample-by-sample align-
ments and relative abundances were computed with the same approach 
as before, the only difference being the coverage cut-off used to filter out 
viral genomes, which was lowered to 1% total and 0.05% unique due to 
the fact that those in question came directly from the samples analysed.

Gene catalogue construction and functional annotation
We generated gene catalogues using an approach piloted in previous 
studies47–49. Bakta v.1.5.1 was used to call putative open reading frames 
(ORFs)50. The annotations reported in this study (for example, Fig. 5) 
derive directly from Bakta. We clustered predicted and translated ORFs 
(at 90% requisite overlap and 90% identity) into homology-based 
sequence clusters using MMseqs2 v.13.4511 (parameters: –easy-cluster 
–min-seq-id 0.9 -c 0.9)51. The resulting ‘non-redundant’ gene catalogue 
and its annotations were used in the functional analysis. We computed 
the abundance of the representative consensus sequences selected by  
MMseqs2 by alignment of quality-controlled reads with Diamond 
(v.2.0.14)52. We computed the total number of hits and computed gene 
relative abundance by dividing the number of aligned reads to a given 
gene by its length and then by the total number of aligned reads across 
all genes in a sample.

Benchmarking short-read viral taxonomic classification 
against the GenBank database
To identify viral taxonomic abundance via short-read alignment, we 
mapped reads to a database of all complete, dereplicated (by BLAST 
at 99% sequence identity) GenBank viral genomes. We used the Xtree 
aligner for this method (see below); however, given the difficulty of 
assigning taxonomic ranks to viral species on the basis of alignment 
alone, we first benchmarked this process. We used Art53 to generate 
synthetic viral communities at random abundances from 100 random 
viruses from the GenBank database. We then aligned (with Xtree) back to 
these genomes, filtered for 1% total coverage and/or 0.5% unique cover-
age, and compared expected read mapping vs observed read mapping. 
We additionally computed true/false positive rates on the basis of the 
proportion of taxa identified that were present in the mock community 
(true positive) versus those that were not (false positive) versus those 
that were present but not identified (false negative). Overall, we identi-
fied optimal classification at the genus level, with >98% true positive rate 
(that is, 98/100 taxa identified) and low false positive/negative rates (for 
example, <10 taxa not present in the sample identified) (Extended Data 
Fig. 10a,b). Species-level classification had higher false negative rates 
(generally arising from multimapping reads to highly similar species) 
and a 60–70% true positive rate. Genus-level classification also yielded 
a nearly perfect correlation (>0.99 on average) between expected and 
observed read mappings (Extended Data Fig. 10c). As a result, while 
we report analyses for every taxonomic rank in the supplement, in the 
main text we describe only genus-level viral analysis.

Overview of short-read taxonomic classification via alignment
In total, we used and compared seven different short-read mapping 
methods (MetaPhlAn4/StrainPhlAn, Xtree, Kraken2/Bracken run with 
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four different settings, and Phanta), which together utilize five differ-
ent databases that span bacterial, viral and fungal life. In addition, we 
identified and computed the relative abundance of non-redundant 
genes as well as bacterial and viral metagenome-assembled genomes. 
Subsequent downstream regression analyses were run on each result-
ant abundance table at each taxonomic rank.

Unless otherwise stated, for the figures involving taxonomic data 
used in the main text of this paper, we used XTree (https://github.com/
GabeAl/UTree) (parameters: –redistribute). XTree is a recent update 
to Utree54 containing an optimized alignment approach and increased 
ease of use. In brief, it is a k-mer-based aligner (akin to Kraken2 (ref. 55) 
but faster and designed for larger databases) that uses capitalist read 
redistribution56 to pick the highest-likelihood mapping between a 
read and a given reference based on the overall support of all reads in a 
sample for said reference. It reports the total coverage of a given query 
genome, as well as total unique coverage, which refers to coverage of 
regions found in only one genome of an entire genome database. We 
computed beta diversity (Bray–Curtis) metrics for taxonomic abun-
dances using the vegan package in R57.

Bacteria-specific short-read classification
For bacterial alignments, we generated an Xtree k-mer database 
(parameters: BUILD k 29 comp 0) from the Genome Taxonomy Data-
base representative species dataset (Release 207) and aligned both 
metagenomic and metatranscriptomic samples. We filtered bacterial 
genomes for those that had at least 0.5% coverage and/or 0.25% unique 
coverage. Relative abundance was calculated by dividing the total reads 
assigned to a given genome by the total number of reads assigned to all 
genomes in a given sample. We additionally ran MetaPhlAn4 (ref. 58) 
(default settings) as an alternative approach to bacterial taxonomic 
classification.

Virus-specific short-read classification
For viral GenBank alignments, we generated an Xtree database (param-
eters: BUILD k 17 comp 0) from all complete GenBank viral genomes. We 
first dereplicated these sequences with BLAST 99% identity threshold 
via published approaches (https://github.com/snayfach/MGV/tree/
master/ani_cluster)46,59. We filtered for genomes with 1%/0.5% total/
unique coverage. Relative abundance was calculated identically as with 
the bacterial samples. We additionally ran Phanta (default settings) as 
an alternative to this approach for viral classification60.

Kraken2 (multikingdom) short-read classification
As another set of methods for measuring taxonomic sample composi-
tion, we used Kraken2 and bracken, both with the default settings, to 
call taxa and quantify their abundances, respectively55,61. We used the 
default kraken2 reference databases, which include all NCBI listed taxa 
(bacteria, fungal and viral genomes) in RefSeq as of September 2022. We 
ran Kraken2 with four different settings: default (confidence = 0) and 
unmasked reads, confidence = 0 and masked reads, confidence = 0.2 
and unmasked reads, and confidence = 0.2 and masked reads. In the 
cases where we masked reads before alignment (to filter repeats and 
determine whether fungal and other eukaryotic alignments were prob-
ably false positives), we used bbmask running default settings.

Evaluation of bacterial and viral short-read classification
To evaluate our taxonomic profiling approach, we first compared 
the top ten genus-level classifications by body site before and after 
decontamination for each classifier in metagenomic and metatran-
scriptomic data. We observed general concordance among the 
various classification methods; for instance, the predominant skin 
genera consistently identified included Staphylococcus, Cutibacte-
rium and Corynebacterium. The oral microbiome included Strepto-
coccus, Rothia and Fusobacterium. Kraken2, which uses a database 
comprising both eukaryotic and prokaryotic organisms, identified 

fungi in the skin microbiome, as expected. The swabs from the Dragon 
capsule predominantly contained a diverse array of environmental  
microbes.

We compared these results at additional taxonomic ranks and with 
other taxonomic classifiers. For example, to discern higher specificity 
of the viral changes, we additionally fit species-level virus associations. 
While species-level viral taxonomic classification can be difficult due to 
high read misalignments (Extended Data Fig. 10), we wanted to deter-
mine whether we could observe a higher-resolution picture of viral 
activity due to spaceflight, as this effect is known to be space-associated 
(as opposed to bacterial skin to skin transmission, which could be a 
result of sharing tight quarters and not a space-specific effect).

Sample decontamination with negative controls
We observed that many of the swabs collected, especially those from 
the skin sites, comprised low-biomass microbial communities; there 
are many documented challenges in analysing these data62,63. To filter 
environmental contamination and the kitome64 influencing our find-
ings, we collected and sequenced negative controls of both (1) the 
water that sterile swabs were dipped in before use, as well as (2) the 
ambient air around the sites of sample collection and processing for  
sequencing.

Following taxonomic classification and identification of de novo 
assembled microbial genes, we removed potential contaminants from 
samples by comparison to our negative controls. We ran the same clas-
sification approaches for each negative control sample as described 
in the above paragraphs. This yielded, for every taxonomy classifica-
tion approach and accompanying database, a dataframe of negative 
controls alongside a companion dataframe of experimental data. On 
each of these dataframe pairs, we then used the isContaminant function 
(parameters: method = ‘prevalence’, threshold = 0.5) of the decontam 
package65 to mutually high-prevalence taxa between the negative 
controls and experimental samples. The guidance for implementation 
of the decontam package, including the parameter used, was derived 
from the following R vignette: https://benjjneb.github.io/decontam/
vignettes/decontam_intro.html. Note that we used both metagenomic 
and metatranscriptomic negative control samples to decontaminate all 
data, regardless of whether those data were themselves metagenomic 
or metatranscriptomic. This decision was made to increase the overall 
conservatism of our approach.

MAS on bacteria, viruses and genes
Four mixed-model specifications were used for identifying micro-
bial feature relationships with flight. Time is a variable encoded with 
three levels corresponding to the time of sampling relative to flight: 
pre-flight, mid-flight and post-flight. The reference group was the 
mid-flight timepoint, indicating that any regression coefficients had 
to be interpreted relative to flight (that is, a negative coefficient on the 
pre-launch timepoint implies that a feature was increased in-flight). 
We fit these models for all genes, viruses, and bacteria identified in our 
dataset by assembly, XTree (GTDB/GenBank), MetaPhlAn4, Kraken2 (all 
four algorithmic specifications), Phanta and gene catalogue construc-
tion. Each variable encoding a body site is binary, encoding whether a 
sample did or did not come from a particular region.

To search for features that were changed across the entire body, 
we fit overall associations, oral associations, skin associations and 
nasal associations:

ln (microbial_feature_abundance +minval)

∼ β0 + β1Time + (1|Crew.ID) + ϵi
(1)

For associations with oral changes, we used:

ln (microbial_feature_abundance +minval)

∼ β0 + β1Time ×Oral + (1|Crew.ID) + ϵi
(2)
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For associations with nasal changes, we used:

ln (microbial_feature_abundance +minval)

∼ β0 + β1Time × Nasal + (1|Crew.ID) + ϵi
(3)

For identifying associations with skin swabs, we fit the following model:

ln (microbial_feature_abundance +minval)

∼ β0 + β1Time × Armpit + β2Time × ToeWeb + β3Time × NapeOfNeck

+β4Time × Postauricular + β5Time × Forehead + β6Time × BellyButton

+β7Time × GlutealCrease + β8Time × TZone + (1|Crew.ID) + ϵi
(4)

The β characters in each of the above equations refer to the beta coef-
ficients on a given variable in that given regression. The ε characters 
refer to the regression residuals. Note that in the final equation (4), 
the reference groups are samples deriving from the nasal and oral 
microbiomes; this means that highlighted taxa will be those associated 
with time and skin sites as compared to the oral and nasal sites. We 
additionally fit these same model specifications without the random 
effect and compared the results in Extended Data Fig. 2. Data distri-
butions were assumed to be normal but not tested for every single 
microbial feature. Individual data points for each feature are present 
in the online data stored at figshare66 and with NASA GeneLab (see Data  
availability).

We used the lme4 (ref. 67) package to compute associations 
between microbial features (that is, taxa or genes) abundance and 
time as a function of spaceflight and body site. For all data types, we 
aimed to remove potential contamination before running any associa-
tions. We estimated P values on all models with the ImerTest package 
using its default settings67,68. We adjusted for false positives using 
Benjamini–Hochberg adjustment and used a q-value cut-off point of 
0.05 to gauge significance.

Identifying and plotting time-dependent trends in microbial 
features
We grouped microbial features associated with flight into six differ-
ent categories. These were determined since our model contained 
a categorical variable encoding a sample’s timing relative to flight: 
whether it was taken before, during or afterwards. Since the modelling 
reference group was ‘mid-flight’, the interpretation of any coefficients 
would be directionally oriented relative to mid-flight microbial feature 
abundances. As a result, we were able to categorize features on the basis 
of the jointly considered direction of association and significance for 
the ‘pre-flight’ and ‘post-flight’ levels of this variable. The below listed 
categories are all included in the association summaries provided on 
figshare66 (see ‘Data availability’).

	 1.	 Transient increase in-flight—negative coefficient on the 
pre-flight variable level, negative coefficient on the post-flight 
variable, statistically significant for both

	 2.	 Transient increase in-flight (low priority)—negative coefficient 
on the pre-flight variable level, negative coefficient on the 
post-flight variable, statistically significant for at least one of 
the two

	 3.	 Transient decrease in-flight—positive coefficient on the 
pre-flight variable level, positive coefficient on the post-flight 
variable level, statistically significant for both

	 4.	 Transient decrease in-flight (low priority)—positive coefficient 
on the pre-flight variable level, positive coefficient on the 
post-flight variable level, statistically significant for at least one 
of the two

	 5.	 Potential persistent increase—negative coefficient on the 
pre-flight variable level, positive coefficient on the post-flight 
variable level, statistically significant for at least one of the two

	 6.	 Potential persistent decrease—positive coefficient on the 
pre-flight variable level, negative coefficient on the post-flight 
variable level, statistically significant for at least one of the two

We used these groups to surmise the time trends reported in the 
figures. It would be intractable to visualize every association of inter-
est, so we prioritized within each category on the basis of the absolute 
value of beta-coefficients and adjusted P values. In Fig. 1c, we removed 
the ‘low priority’ categories (two and four above) and only looked at 
the top 100 most increased and decreased significant genes, by group, 
relative to flight. We did so to make fitting splines feasible (especially 
in the case of genes, which had so many associations) and filter out 
additional noise due to low association-size findings.

We took a similar approach for the barplots in Figs. 2–4 and 
Extended Data Figs. 7–9. We again filtered out the low priority asso-
ciations and selected, for each body site represented in the figure (for 
example, oral, skin, nasal), the top N with the greatest difference in 
absolute value of average L2FC relative to the mid-flight timepoints. In 
other words, we selected for microbial features with dramatic overall 
L2FCs. We maximized N on the basis of the available space in the figure 
in question. We note that the complete, categorized association results 
are available in the online data resource (see Data availability).

Detecting microbial sharing between the crew and 
environment before, during and after flight
We modelled our species/strain-sharing analysis on the basis of ref. 30. 
Briefly, we used the –s flag in MetaPhlAn4 to generate sam files that could 
be fed into StrainPhlAn. We used the sample2markers.py script to generate 
consensus markers and extracted markers for each identified strain using 
extract_markers.py. We ran StrainPhlAn with the settings recommended 
in ref. 30 (–markers_in_n_samples 1, –samples_with_n_markers 10 – muta-
tion_rates –phylophlan_mode accurate). We then used the tree distance 
files generated by StrainPhlAn to identify strain-sharing cut-offs on the 
basis of the prevalence of different strains (detailed tutorial: https://github. 
com/biobakery/MetaPhlAn/wiki/Strain-Sharing-Inference).

Association with host immune gene subtypes
The single-cell sequencing approach and averaging of host genes to 
identify expression levels are documented in refs. 33,69. The resultant 
averaged expression levels across cell types were associated with micro-
bial feature abundance/expression using lasso regression. We used the 
same log transformation approach as in the mixed effects modelling for 
the microbial features, and we centred and rescaled the immune expres-
sion data. In total, we computed one regression per immune cell type 
(N = 8) per relevant microbial feature, with the independent variables 
being all human genes (N = 30,601). We selected features on the basis of 
their grouping described above, picking only those that were increased 
transiently or persistently increased after flight. Due to the volume of 
gene-catalogue associations, we only analysed persistently increased 
genes. We report outcomes with non-zero coefficients in the text.

Figure generation and additional data processing notes
The GNU parallel package was used for multiprocessing on the Linux 
command line70. We additionally used a series of separate R packages 
for analysis and visualization67,68,71–76. Figures were compiled in Adobe 
Illustrator.

Statistics and reproducibility
No statistical method was used to predetermine sample size; all pos-
sible samples from all crew members (N = 4) were taken. No sequenced 
data were excluded from the analyses; however, samples were quality 
controlled before bioinformatic and statistical analysis to remove 
duplicated reads, trim adapters and low-quality bases, remove human 
contamination and remove potential microbial contamination (using 
negative controls). The experiments were not randomized. Data 
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collection and analysis were not performed blind to the conditions 
of the experiments.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available at the NASA 
GeneLab/NASA Open Science Data Repository with the identi-
fiers OSD-630 (https://doi.org/10.26030/cyfk-5f38), OSD-570 
(https://doi.org /10.26030/41s1-j243), OSD-572 (https://doi.
org/10.26030/8v5d-xn21) and OSD-573 (https://doi.org/10.26030/
x57b-4722). Additional processed datasets (gene catalogues, taxonomic 
and gene abundances) are available on figshare at https://figshare. 
com/projects/Longitudinal_multi-omics_analysis_of_host_microbi-
ome_architecture_and_immune_responses_during_short-term_space-
flight/176043 (ref. 66). This figshare repository additionally contains 
figures detailing the top most abundant taxa for each alignment algo-
rithm before and after decontamination. Select data can be visualized 
online through the SOMA Data Explorer: https://soma.weill.cornell.
edu. The GenBank viral database used was the most recent as of 26 July 
2022. The GTDB database used was the 202 release. The MetaPhlan4 
database was mpa_vJan21_CHOCOPhlAnSGB_202103. The Kraken2 
database contained all NCBI listed taxa (bacteria, fungal and viral 
genomes) in RefSeq as of 1 September 2022. The Phanta database was 
the most recent as of 1 August 2022. The Bakta databases were the 
most recent as of 18 August 2022. Source data are provided with this  
paper.

Code availability
Code used to generate figures and analyses from this project is available 
at https://github.com/eliah-o/inspiration4-omics.
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Extended Data Fig. 1 | Data processing workflow and summary statistics.  
a) After quality-controlling reads, we executed two different, parallel, workflows 
to identify the microbial taxa and genes that comprised each sample. We used 
seven different algorithmic approaches (Xtree, MetaPhlAn4/StrainPhlAn4, 
Phanta, Kraken2 with multiple parameter settings) and four different databases 
to classify short reads into different taxonomic categories (bottom left). We also 
did a de novo assembly analysis to identify the abundance of non-redundant 
genes/functions as well as Metagenome-Assembled bacterial and viral genomes. 
We executed all regression analyses for every resultant abundance matrix 

across the taxonomic ranks ranging from species to phylum. b) Counts and 
percentages of reads aligning to the human reference genome. c) Aligned reads 
by taxonomic classification method. For metagenomics, N per column is 385 
biologically independent samples, for metatranscriptomics, N is 365 biologically 
independent samples. These numbers correspond to all microbiome samples 
collected. Lines on box plots indicate minimum and maximum values. The 
median is the centerline, and the bounds of the box are the interquartile range. 
The whiskers extend to 1.5 times the interquartile range of the upper and lower 
quartiles.
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Extended Data Fig. 2 | Null model results. Similarity between FDR-significant associations fit with mixed versus generalized linear models (sans a random effect).
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Extended Data Fig. 7 | Gene level analysis, oral microbiome. The strongest 
associations between genes and flight for the oral microbiome. X-axes are the 
average L2FC of all pre- or post-flight timepoints compared to the average mid-
flight abundances for a given taxon. Columns correspond to different association 

categories that are described visually by the example line plots on top of each 
one. Dotted, gray, horizontal lines demarcate an L2FC of zero. Plotted taxa were 
selected by ranking significant features in each category by L2FC and showing up 
to 10 at once.
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Extended Data Fig. 8 | Gene level analysis, nasal microbiome. The strongest 
associations between genes and flight for the nasal microbiome. X-axes are the 
average L2FC of all pre- or post-flight timepoints compared to the average mid-
flight abundances for a given taxon. Columns correspond to different association 

categories that are described visually by the example line plots on top of each 
one. Dotted, gray, horizontal lines demarcate an L2FC of zero. Plotted taxa were 
selected by ranking significant features in each category by L2FC and showing up 
to 10 at once.
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Extended Data Fig. 9 | Gene level analysis, skin microbiome. The strongest 
associations between genes and spaceflight for the skin microbiome. X-axes are 
the average L2FC of all pre- or post-flight timepoints compared to the average 
mid-flight abundances for a given taxon. Columns correspond to different 

association categories that are described visually by the example line plots on 
top of each one. Dotted, gray, horizontal lines demarcate an L2FC of zero. Plotted 
taxa were selected by ranking significant features in each category by L2FC and 
showing up to 10 at once.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Viral classifier benchmarking. Benchmarking a viral 
classifier across taxonomic ranks. Synthetic viral communities were generated 
from 100 genomes at random levels of abundance (from the GenBank database 
used in the rest of this study). a) The number of recovered genomes out of 100, 
for 10 mock communities for the genus and species levels. N = 10 independently 
generated mock communities. b) The number of true positive (identified and 
present in the sample), false positive (identified but not present in the sample), 

and false negative (that is, not recovered) genomes for the genus and species 
levels. N = 10 independently generated mock communities. c) The correlation 
between observed and expected read counts for each taxon as a function of 
being a true positive, false positive, or false negative. Lines on box plots in A and 
B indicate minimum and maximum values. The median is the centerline, and the 
bounds of the box are the interquartile range. The whiskers extend to 1.5 times 
the interquartile range of the upper and lower quartiles.
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